Graphene plasmonics

From Wikipedia, the free encyclopedia

Graphene is a 2D nanosheet with atomic thin thickness in terms of 0.34 nm. Due to the ultrathin thickness, graphene showed many properties that are quite different from their bulk graphite counterparts. The most prominent advantages are known to be their high electron mobility and high mechanical strengths. [1] [2][3] Thus, it exhibits potential for applications in optics and electronics especially for the development of wearable devices as flexible substrates. More importantly, the optical absorption rate of graphene is 2.3% in the visible and near-infrared region. This broadband absorption characteristic also attracted great attention of the research community to exploit the graphene-based photodetectors/modulators.[4][5][6]

Plasmons are collective electron oscillations usually excited at metal surfaces by a light source. Doped graphene layers have also shown the similar surface plasmon effects to that of metallic thin films.[7][8] Through the engineering of metallic substrates or nanoparticles (e.g., gold, silver and copper) with graphene, the plasmonic properties of the hybrid structures could be tuned for improving the optoelectronic device performances.[9][10] It is worth noting that the electrons at the metallic structure could transfer to the graphene conduction band. This is attributed to the zero bandgap property of graphene nanosheet.

Graphene plasmons can also be decoupled from their environment and give rise to genuine Dirac plasmon at low-energy range where the wavelengths exceed the damping length. These graphene plasma resonances have been observed in the GHz–THz electronic domain.[11]

Graphene plasmonics is an emergent research field, that is attracting plenty of interest and has already resulted in a textbook.[12]

Application[edit]

When the plasmons were resonant at the graphene/metal surface, a strong electric field would be induced which could enhance the generation of electron-hole pairs in the graphene layer.[13][14] The excited electron carrier numbers linearly increased with the field intensity based on the Fermi’s rule. The induced charge carriers of metal/graphene hybrid nanostructure could be up to 7 times higher than that of pristine graphene ones due to the plasmonic enhancement.

So far, the graphene plasmonic effects have been demonstrated for different applications ranging from light modulation[15][16] to biological/chemical sensing.[17][18][19] High-speed photodetection at 10 Gbit/s based on graphene and 20-fold improvement on the detection efficiency through graphene/gold nanostructure were also reported.[20] Graphene plasmonics are considered as good alternatives to the noble metal plasmons not only due to their cost-effectiveness for large-scale production but also by the higher confinement of the plasmonics at the graphene surface.[21][22] The enhanced light-matter interactions could further be optimized and tuned through electrostatic gating.[23][24] These advantages of graphene plasmonics paved a way to achieve single-molecule detection and single-plasmon excitation.

See also[edit]

References[edit]

  1. ^ Low, T.; Avouris, P. (2014). "Graphene plasmonics for terahertz to mid-infrared applications". ACS Nano. 8 (2): 1086–101. arXiv:1403.2799. doi:10.1021/nn406627u. PMID 24484181. S2CID 8151572.
  2. ^ Grigorenko, A. N.; Polini, M.; Novoselov, K. S. (2012). "Graphene plasmonics". Nature Photonics. 6 (11): 749. arXiv:1301.4241. Bibcode:2012NaPho...6..749G. doi:10.1038/nphoton.2012.262. S2CID 119285513.
  3. ^ Ju, L.; Geng, B.; Horng, J.; Girit, C.; Martin, M.; Hao, Z.; Bechtel, H. A.; Liang, X.; Zettl, A.; Shen, Y. R.; Wang, F. (2011). "Graphene plasmonics for tunable terahertz metamaterials". Nature Nanotechnology. 6 (10): 630–4. Bibcode:2011NatNa...6..630J. doi:10.1038/nnano.2011.146. PMID 21892164.
  4. ^ Constant, T. J.; Hornett, S. M.; Chang, D. E.; Hendry, E. (2016). "All-optical generation of surface plasmons in graphene". Nature Physics. 12 (2): 124. arXiv:1505.00127. Bibcode:2016NatPh..12..124C. doi:10.1038/nphys3545. S2CID 117936342.
  5. ^ Wong, Liang Jie; Kaminer, Ido; Ilic, Ognjen; Joannopoulos, John D.; Soljačić, Marin (2016). "Towards graphene plasmon-based free-electron infrared to X-ray sources" (PDF). Nature Photonics. 10 (1): 46. Bibcode:2016NaPho..10...46W. doi:10.1038/nphoton.2015.223. hdl:1721.1/108279. S2CID 46931686.
  6. ^ Awad, Ehab (21 June 2022). "Graphene Metamaterial Embedded within Bundt Optenna for Ultra-Broadband Infrared Enhanced Absorption". Nanomaterials. 12 (13). MDPI: 2131. doi:10.3390/nano12132131. PMC 9268047. PMID 35807966.
  7. ^ Koppens, F. H.; Chang, D. E.; García De Abajo, F. J. (2011). "Graphene plasmonics: A platform for strong light-matter interactions". Nano Letters. 11 (8): 3370–7. arXiv:1104.2068. Bibcode:2011NanoL..11.3370K. doi:10.1021/nl201771h. PMID 21766812. S2CID 19009630.
  8. ^ Yan, Hugen; Low, Tony; Zhu, Wenjuan; Wu, Yanqing; Freitag, Marcus; Li, Xuesong; Guinea, Francisco; Avouris, Phaedon; Xia, Fengnian (2013). "Damping pathways of mid-infrared plasmons in graphene nanostructures". Nature Photonics. 7 (5): 394. arXiv:1209.1984. Bibcode:2013NaPho...7..394Y. doi:10.1038/nphoton.2013.57. S2CID 119225015.
  9. ^ Fang, Z.; Liu, Z.; Wang, Y.; Ajayan, P. M.; Nordlander, P.; Halas, N. J. (2012). "Graphene-antenna sandwich photodetector". Nano Letters. 12 (7): 3808–13. Bibcode:2012NanoL..12.3808F. doi:10.1021/nl301774e. PMID 22703522.
  10. ^ Huidobro, P. A.; Kraft, M.; Maier, S. A.; Pendry, J. B. (2016). "Graphene as a Tunable Anisotropic or Isotropic Plasmonic Metasurface". ACS Nano. 10 (5): 5499–506. doi:10.1021/acsnano.6b01944. hdl:10044/1/31105. PMID 27092391. S2CID 25531842.
  11. ^ Graef, H.; Mele, D.; Rosticher, M.; Banszerus, L.; Stampfer, C.; Taniguchi, T.; Watanabe, K.; Bocquillon, E.; Fève, G. (2018). "Ultra-long wavelength Dirac plasmons in graphene capacitors". Journal of Physics: Materials. 1 (1): 01LT02. arXiv:1806.08615. doi:10.1088/2515-7639/aadd8c. ISSN 2515-7639. S2CID 96422025.
  12. ^ Gonçalves, P. A. D.; Peres, N. M. R. (2016). An Introduction to Graphene Plasmonics. arXiv:1609.04450. doi:10.1142/9948. ISBN 978-981-4749-97-8. S2CID 118564287.
  13. ^ Jadidi, M. M.; Sushkov, A. B.; Myers-Ward, R. L.; Boyd, A. K.; Daniels, K. M.; Gaskill, D. K.; Fuhrer, M. S.; Drew, H. D.; Murphy, T. E. (2015). "Tunable Terahertz Hybrid Metal-Graphene Plasmons". Nano Letters. 15 (10): 7099–104. arXiv:1506.05817. Bibcode:2015NanoL..15.7099J. doi:10.1021/acs.nanolett.5b03191. PMID 26397718. S2CID 16697364.
  14. ^ Fernández-Domínguez, Antonio I.; García-Vidal, Francisco J.; Martín-Moreno, Luis (2017). "Unrelenting plasmons". Nature Photonics. 11 (1): 8. Bibcode:2017NaPho..11....8F. doi:10.1038/nphoton.2016.258. S2CID 256707515.
  15. ^ Ono, Masaaki; Hata, Masanori; Tsunekawa, Masato; Nozaki, Kengo; Sumikura, Hisashi; Chiba, Hisashi; Notomi, Masaya (2020). "Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides". Nature Photonics. 14 (1): 37–43. arXiv:1907.01764. doi:10.1038/s41566-019-0547-7. ISSN 1749-4893. S2CID 195791868.
  16. ^ Meng, Yuan; Ye, Shengwei; Shen, Yijie; Xiao, Qirong; Fu, Xing; Lu, Rongguo; Liu, Yong; Gong, Mali (2018). "Waveguide Engineering of Graphene Optoelectronics—Modulators and Polarizers". IEEE Photonics Journal. 10 (1): 6600217. doi:10.1109/JPHOT.2018.2789894. ISSN 1943-0655. S2CID 25707442.
  17. ^ Chen, J.; Badioli, M.; Alonso-González, P.; Thongrattanasiri, S.; Huth, F.; Osmond, J.; Spasenović, M.; Centeno, A.; Pesquera, A.; Godignon, P.; Elorza, A. Z.; Camara, N.; García De Abajo, F. J.; Hillenbrand, R.; Koppens, F. H. (2012). "Optical nano-imaging of gate-tunable graphene plasmons". Nature. 487 (7405): 77–81. arXiv:1202.4996. Bibcode:2012Natur.487...77C. doi:10.1038/nature11254. PMID 22722861. S2CID 4431470.
  18. ^ Zeng, S; Sreekanth, K. V; Shang, J; Yu, T; Chen, C. K; Yin, F; Baillargeat, D; Coquet, P; Ho, H. P; Kabashin, A. V; Yong, K. T (2015). "Graphene-Gold Metasurface Architectures for Ultrasensitive Plasmonic Biosensing". Advanced Materials. 27 (40): 6163–9. doi:10.1002/adma.201501754. hdl:20.500.12210/45908. PMID 26349431. S2CID 205261271.
  19. ^ Rodrigo, D.; Limaj, O.; Janner, D.; Etezadi, D.; García De Abajo, F. J.; Pruneri, V.; Altug, H. (2015). "APPLIED PHYSICS. Mid-infrared plasmonic biosensing with graphene". Science. 349 (6244): 165–8. arXiv:1506.06800. Bibcode:2015Sci...349..165R. doi:10.1126/science.aab2051. PMID 26160941. S2CID 206637774.
  20. ^ Echtermeyer, T. J.; Britnell, L.; Jasnos, P. K.; Lombardo, A.; Gorbachev, R. V.; Grigorenko, A. N.; Geim, A. K.; Ferrari, A. C.; Novoselov, K. S. (2011). "Strong plasmonic enhancement of photovoltage in graphene". Nature Communications. 2 (458): 458. arXiv:1107.4176. Bibcode:2011NatCo...2E.458E. doi:10.1038/ncomms1464. PMID 21878912. S2CID 942962.
  21. ^ García De Abajo, F. Javier; Avouris, Phaedon (2014). "Graphene Plasmonics: Challenges and Opportunities". ACS Photonics. 1 (3): 135–152. arXiv:1402.1969. doi:10.1021/ph400147y. S2CID 119248825.
  22. ^ Fei, Z.; Rodin, A. S.; Gannett, W.; Dai, S.; Regan, W.; Wagner, M.; Liu, M. K.; McLeod, A. S.; Dominguez, G.; Thiemens, M.; Castro Neto, A. H.; Keilmann, F.; Zettl, A.; Hillenbrand, R.; Fogler, M. M.; Basov, D. N. (2013). "Electronic and plasmonic phenomena at graphene grain boundaries". Nature Nanotechnology. 8 (11): 821–5. arXiv:1311.6827. Bibcode:2013NatNa...8..821F. doi:10.1038/nnano.2013.197. PMID 24122082. S2CID 494891.
  23. ^ Sun, Zhipei; Martinez, Amos; Wang, Feng (2016). "Optical modulators with 2D layered materials". Nature Photonics. 10 (4): 227–238. arXiv:1601.07577. doi:10.1038/nphoton.2016.15. ISSN 1749-4893. S2CID 44613238.
  24. ^ Meng, Yuan; Hu, Futai; Shen, Yijie; Yang, Yuanmu; Xiao, Qirong; Fu, Xing; Gong, Mali (2018-09-06). "Ultracompact Graphene-Assisted Tunable Waveguide Couplers with High Directivity and Mode Selectivity". Scientific Reports. 8 (1): 13362. doi:10.1038/s41598-018-31555-7. ISSN 2045-2322. PMC 6127104. PMID 30190496.