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Toll-like receptors (TLRs) recognize conserved microbial

structures called pathogen-associated molecular patterns.

Signaling from TLRs leads to upregulation of co-stimulatory

molecules for better priming of T cells and secretion of

inflammatory cytokines by innate immune cells1–4. Lymphocyte-

deficient hosts often die of acute infection, presumably owing

to their lack of an adaptive immune response to effectively

clear pathogens. However, we show here that an unleashed

innate immune response due to the absence of residential

T cells can also be a direct cause of death. Viral infection or

administration of poly(I:C), a ligand for TLR3, led to cytokine

storm in T-cell- or lymphocyte-deficient mice in a fashion

dependent on NK cells and tumor necrosis factor. We have

further shown, through the depletion of CD4+ and CD8+ cells in

wild-type mice and the transfer of T lymphocytes into Rag-1–

deficient mice, respectively, that T cells are both necessary and

sufficient to temper the early innate response. In addition to

the effects of natural regulatory T cells, close contact of resting

CD4+CD25–Foxp3– or CD8+ T cells with innate cells could

also suppress the cytokine surge by various innate cells in an

antigen-independent fashion. Therefore, adaptive immune cells

have an unexpected role in tempering initial innate responses.

To study the early innate response, we infected nude mice and wild-
type mice with MHV-A59, a coronavirus that primarily infects mouse
liver and brain5,6. Nude mice died at a sublethal dose of virus as
compared with wild-type mice (Fig. 1a). We presumed that lack of
T cells might permit vigorous progression of the viral infection,
enough to kill the host. To our surprise, the virus titer in the liver
was not significantly higher in nude mice than in wild-type mice
(Fig. 1b). To determine the cause of death, we collected liver and brain
tissues and assessed them by H&E staining, but we did not observe any
major pathology (data not shown). As a functional readout for organ
damage after infection, we measured the concentrations of alanine
aminotransferase (ALT) and aspartate aminotransferase (AST), but we
detected only mild increases in nude mice as compared to wild-type
mice, insufficient to explain the elevated death rate of the former
(Supplementary Fig. 1). This raised the intriguing possibility that the
immunocompromised mice might actually die due to cytokine storm.
To test that, the sera of mice were collected and cytokine levels were
determined on days 2 and 4. Higher abundances of proinflammatory

cytokines were detected in T cell–deficient mice than in wild-type
mice (n ¼ 16) on both day 2 (Fig. 1c and Supplementary Fig. 2)
and day 4 (data not shown). The data suggest that acute infection
in immunocompromised mice might result in stronger innate
immune responses.
MHV-A59 is an RNA virus that can target TLR3, and RNA virus–

related poly(I:C) is a noninfectious ligand for TLR3 (ref. 7). To analyze
susceptibility to TLR3 stimulation independent of infectious particles,
we used the poly(I:C) compound to ensure that both wild-type and
immunocompromised mice were exposed to similar levels of TLR3
stimulation. Notably, all nude mice rapidly died in 12–24 h after
receiving a sublethal dose of poly(I:C) (Fig. 2a). As seen in MHV-A59
infection, various proinflammatory cytokine levels were much higher
in nude mice than wild-type mice at 2 and 6 h after treatment (Fig. 2b
and Supplementary Fig. 3a). It is likely that this rapid death of the
mice could be attributable to cytokine storm, similar to that caused by
lipopolysaccharide (LPS) or superantigens8–10. To study whether other
immunocompromised mice have similar sensitivity to poly(I:C), we
used Rag-1 knockout mice, which lack functional lymphocytes. Like
nude mice, Rag-1 knockout mice also showed hypersensitivity to
poly(I:C) and died within 12–24 h after treatment with a sublethal
dose of the compound (Fig. 2c). Again, cytokine levels were much
higher in the Rag-1 knockout mice than in wild-type mice (Fig. 2d
and Supplementary Fig. 3b). To further determine whether T cells are
essential to control the early innate response, we depleted wild-type
mice with antibodies to CD4 and CD8 before poly(I:C) treatment, and
found that the depleted mice produced more inflammatory cytokines
than the control mice (Fig. 2e). To assess whether T cells are sufficient
to control the overzealous cytokine response, we adoptively trans-
ferred lymphocytes to Rag-1 knockout mice, and after 2 d treated
them with poly(I:C). The reconstituted mice produced lower levels of
tumor necrosis factor (TNF) in 2 h, and interferon (IFN)-g in 6 h,
than control mice (Fig. 2f). It is possible that low-grade infection in
these immunodeficient mice might cause more activation of innate
cells. To examine whether T cells are sufficient to temper the initial
cytokine surge of innate cells from the same source, we divided
splenocytes from wild-type mice into non-T and T cell populations.
Non-T cells in culture responded vigorously to MHV-A59 or poly(I:C)
to produce high levels of cytokines, whereas T cells did not. Notably,
addition of T cells to non-T cells efficiently prevented this cytokine
surge (Fig. 3a and Supplementary Fig. 4). This suggests that constant
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monitoring by T cells is required to temper the innate response.
To further test which subset of T cells is more important, we
separated T cells into CD4+ and CD8+ populations. When either
population of T cells was mixed with non-T cells, cytokine production
was reduced (Fig. 3b).
To study whether T-cell receptor (TCR) engagement by specific

antigen is required, we used unprimed T cells from OTI (CD8+ T cells
for ovalbumin (OVA)) or OTII (CD4+ T cells for OVA) mice (Fig. 3c).
Either cellular population could control the cytokine surge, suggesting
that the tempering of the innate response is likely to be antigen
independent. Because cell-cell contact could still be important in this
process, we used a Transwell system, with non-T cells stimulated with
poly(I:C) in the lower well and T cells in the upper well, and found
that the inhibitory effect was greatly reduced (Fig. 3d). Therefore,
T cell–mediated inhibition of the innate response is dependent on cell-
cell contact. To determine whether contact-dependent functions of
T cells are mediated by TCR–major histocompatibility complex

(MHC) recognition, CD4+ cells were added into non-T cells from
MHC class II knockout mice and the cells were stimulated with
poly(I:C) overnight. These class II–deficient non-T cells were only
weakly inhibited by CD4+ T cells, whereas CD4+ T cells from the same
source robustly inhibited wild-type non-T cells (Supplementary
Fig. 5). The impaired inhibition of class II–deficient non-T cells by
CD4+ cells is consistent with the similarly weak inhibition seen in the
Transwell study. Therefore, the inhibition by T cells is mainly
mediated by cell-cell contact and is MHC dependent.
There is increasing evidence implicating regulatory T cells (Treg) in

the regulation not only of other T cells, but also of innate cells11,12. To
study whether natural Treg (CD4+CD25+FoxP3+) are essential for the
inhibition, we added CD25+ or CD25– T cells into non-T cells
(Fig. 3e). The Treg-depleted T cell population still efficiently inhibited
the cytokine surge, much as the whole population of T cells did. Next,
we tested the effect of depleting Foxp3+ cells by using FoxP3(GFP)
knock-in mice13, whose Foxp3+ cells have bright green fluorescent
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Figure 1 Comparison of mortality rates, liver virus titers and serum inflammatory cytokines of wild-type BALB/c mice and nude mice after MHV-A59

infection. (a) Mortality curves of wild-type BALB/c (B, n ¼ 12) and nude mice (’, n ¼ 12) after infection with 4 � 105 PFU MHV-A59. (b) Liver virus

titers were determined at day 2 (P ¼ 0.051) and day 4 (P ¼ 0.925) after infection (n ¼ 11). (c) TNF and IFN-g concentrations in serum were determined at

day 2 after infection (pool of 14–16 mice in each group from various experiments). Horizontal bars indicate the median values. Statistical comparisons were

significant. **P o 0.01, by t-test.
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Figure 2 Wild-type mice are more resistant to poly(I:C) than nude mice and Rag-1 knockout mice, and T cells are essential for controlling pro-

inflammatory cytokine production in vivo. (a) Mortality curves of wild-type BALB/c (}, n ¼ 7) and nude mice (’, n ¼ 10) after injection with 700 mg
poly(I:C). (b) TNF and IFN-g concentrations in serum were determined at 2 h and 6 h after poly(I:C) injection (n ¼ 4–9). (c) Mortality curves of wild-type

C57BL6 (}, n ¼ 8) and Rag-1 knockout (’, n ¼ 16) mice after injection with 400 mg poly(I:C). (d) TNF and IFN-g in serum of wild-type C57BL6

and Rag-1 knockout mice 2 h and 6 h after poly(I:C) injection. (e) TNF and IFN-g in serum of T cell–depleted wild-type C57BL6 mice 2 h and 6 h after

poly(I:C) injection. The results are representative of two experiments (n ¼ 6 mice total, 3 per group). (f) Reduced cytokines in Rag-1 knockout mice
reconstituted with lymphocytes. Rag-1 knockout mice (n ¼ 4 per group) were adoptively transferred with lymphocytes for 2 d and then treated with poly(I:C);

reconstituted mice produced significantly lower levels of cytokines than control mice. *P o 0.05, by t-test.
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protein (GFP) fluorescence and can be readily removed by sorting. We
isolated GFP-negative (non-Treg) T cells and GFP-positive (Treg)
T cells from the FoxP3(GFP) knock-in mice and found that both
populations were capable of inhibiting innate responses (Fig. 3f). It is
conceivable that a large number of T cells is needed to contend with
the vast number of innate cells inside and outside lymphoid tissues,
and both naive and regulatory T cells might be required to render
efficient suppression at all times.
Cross-talk between innate cells, such as dendritic cells and NK cells,

could be an important component in amplification of the innate
response14–18. To further refine our understanding of the cellular
mechanism of T cell mediated inhibition of the innate response, we
stimulated innate cells with poly(I:C) and analyzed cytokine produc-
tion by NK1.1+, CD11b+ or CD11c+ cells, with or without T cells. The
presence of co-cultured T cells led to a decrease in TNF production by
CD11b+ or CD11c+ cells and decreased IFN-g production by NK cells
after poly(I:C) stimulation (Fig. 4a). To determine which cells are
sufficient to respond to poly(I:C), we further separated non-T cells
into CD11b+ and NK 1.1+ cell populations and stimulated them with
poly(I:C). Upon direct stimulation, CD11b+ cells produced TNF, but
NK cells alone did not produce IFN-g. Furthermore, the addition of
NK cells to the CD11b+ culture enhanced TNF production, suggesting
that once NK cells are activated, they can in turn further activate
CD11b+ cells in a positive feedback loop. Under these conditions, the
addition of T cells attenuated the production of TNF and IFN-g
(Fig. 4b). Therefore, it is likely that poly(I:C) stimulates CD11b+ and
CD11c+ cells, which subsequently stimulate NK cells; T cells primarily
inhibit antigen-presenting cells, which then block the positive loop of
NK-cell activation.
To determine which cytokine is essential for poly(I:C)-mediated

death, we treated nude or Rag-1 knockout mice with TNF receptor–
human immunoglobulin (TNFR-hIg) or antibody to IFN-g (anti–
IFN-g) before poly(I:C) injection to neutralize TNF and IFN-g,
respectively. TNF seems to be more essential for cytokine-induced

death, as TNFR-hIg treatment rescued these
mice, whereas anti–IFN-g did not protect
them (Fig. 4c–e and Supplementary Fig. 6).
Because NK cells can enhance TNF produc-
tion by innate cells, we sought to determine
the necessity of NK cells in the poly(I:C)
response. Rag-1 knockout mice were treated
with anti-NK1.1 or anti–asialo-GM-1 anti-

bodies before poly(I:C) injection. After NK-cell depletion, the survival
rate of Rag-1 knockout mice was increased to 72%, and their levels of
proinflammatory cytokines were corresponding lower (Fig. 4f,g). TNF
and NK cells seem to have essential roles in poly(I:C)-induced sudden
death of Rag-1 knockout mice. To test whether T cells also inhibit
other TLR-mediated stimulation on innate cells, we stimulated
non-T cells with LPS, a potent stimulator of TLR4, and determined
their cytokine levels. Cytokine production by non-T cells was also
controlled by addition of T cells (Supplementary Fig. 7). Therefore,
T cells control innate cells under various conditions.
To test whether human T cells could also inhibit TNF production of

human non-T cells stimulated by poly(I:C) and LPS in vitro, we
stimulated non-T cells with poly(I:C) or LPS for 30 min. After
washing them with PBS, we cocultured these innate cells with or
without pan-T cells, CD45RO+ T cells or CD45RO– T cells for 20 h.
TNF production was reproducibly suppressed by naive T cells from
various healthy donors (Supplementary Fig. 8). Therefore, T cell–
mediated inhibition of the innate response may be important for the
pathogenesis of acute infection—a finding that suggests a potentially
new treatment for human diseases.
Contrary to the principle that lymphocytes might provide positive

reinforcement to the ongoing innate response19, our study implicates
lymphocytes as negative regulators in the very early response to acute
infection. The unrestrained innate immune response itself, owing to
the lack of supervision by T cells, can be the direct cause of death from
acute infection. In addition to natural regulatory T cells, large numbers
of naive T cells might be needed to efficiently temper the deadly TLR
response at the initial phase of infection. These studies confirm our
hypothesis that the adaptive immune system suppresses the innate
system in the early phase of viral and nonviral challenges and that lack
of T cells might result in excessive innate responses to TLR stimula-
tion. The concept of an unleashed innate response in the absence of
adaptive modulation may also lead to new diagnosis and treatment for
individuals with congenital or acquired immune deficiency.
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Figure 3 T cells inhibit proinflammatory cytokine

production of splenocytes stimulated with

poly(I:C) in vitro. (a–c) 1 � 106 non-T cells were

stimulated with 100 mg/ml poly(I:C) in the

presence or absence of 1 � 106 pan-T (a), CD4+

T cells or CD8+ T cells (b), or OT-II transgenic

CD4+ T cells or OT-I transgenic CD8+ T cells (c).

(d) To prevent close contacts between non-T cells

and T cells, non-T cells were cultured in the lower

chamber of a Transwell system containing T cells

in the upper chamber. (e,f) CD4+CD25+ (Treg) or

CD4+CD25– (non-Treg) T cells from wild-type

mouse with a ratio of non-T cell to T cell of 1:0.5

(e), or GFP– T cell (non-Treg) or GFP+ T cells

(Treg) from FoxP3 knock-in mouse (f), were added
to non-T cells. The ratio of non-T cells to GFP+ or

GFP– T cell was 1:0.5. *P o 0.05, **P o 0.01,

by t-test. The results are representative of at least

two independent experiments for each panel

(n ¼ 6 per group).

L E T TERS

1250 VOLUME 13 [ NUMBER 10 [ OCTOBER 2007 NATURE MEDICINE

©
20

07
 N

at
u

re
 P

u
b

lis
h

in
g

 G
ro

u
p

  
h

tt
p

:/
/w

w
w

.n
at

u
re

.c
o

m
/n

at
u

re
m

ed
ic

in
e



METHODS
Mice. BALB/c mice and nude mice of BALB/c background were purchased

from Vital River, and C57BL/6 Rag-1 knockout mice, C57BL/6J and MHC class

II knockout mice were purchased from the Jackson Laboratory. FoxP3 (GFP)

knock-in mice were a gift (see Acknowledgments). Animal care and experi-

ments were performed in accordance with institutional and US National

Institutes of Health guidelines and were approved by the animal use committee

of the University of Chicago. Informed consent was obtained from all subjects

for the use of human blood samples.

Virus, viral infection and viral titers. MHV-A59 virus and cell line were gifts

(see Acknowledgments). Mice were infected intraperitoneally (i.p.) with

4 � 105 plaque-forming units (PFU) live virus. Viral titers were determined

by plaque assay in 17Cl-1 cells.

Poly(I:C) injection, TNF blockage by TNFR–human immunoglobulin

(TNFR-hIg), and NK-cell depletion. Wild-type BALB/c mice and nude mice

were injected i.p. with 700 mg poly(I:C) and C57BL6 and Rag-1 knockout mice

were injected i.p. with 400 mg poly(I:C) (InvivoGen). Serum was collected at

indicated time after injection. Two groups of nude or Rag-1 knockout mice

were injected i.p. with 300 mg control hIgG and TNFR-hIg, respectively, 2 d and

2 h before poly(I:C) injection. For depletion of NK cells, anti-NK1.1 or anti–

asialo-GM-1 was injected in Rag-1 knockout mice i.p. at day 4 and day 1 before

poly(I:C) injection.

Isolation of splenocytes, non-T, pan-T, CD4+ T cells, CD8+ T cells, CD25–-

depleted T cells and FoxP3– T cell, and adoptive transfer of lymphocytes.

Non-T, pan-T, CD4+ T and CD8+ T cells were isolated by MACS (Miltenyi

Biotec). To deplete CD25+ T cells, the isolated pan-T cells were negatively

selected after ligation with anti-CD25–phycoerythrin and anti-phycoerythrin

microbeads. Pan-T cells were isolated from splenocytes of FoxP3(GFP)

knock-in mice and then GFP-negative cells (non-Treg) and GFP-positive cells

(Treg) were harvested by using MoFlow. Splenocytes and lymph node cells were

harvested from wild-type C57BL6 mice and were incubated for 2 h at 37 1C.

The suspended cells were harvested and 300 � 106 cells transferred into

knockout mice.

FACS analysis. Splenocytes or purified cells were stained with B220–fluorescein

isothiocyanate (B220-FITC), DX5-biotin, CD11b-biotin, CD4-FITC and

CD8-FITC (BD Pharmingen). To stain intracellular IFN-g and TNF, non-T

cells were stimulated with poly(I:C) in the presence or absence of T cells and

Golgi stop (BD Pharmingen) was added after 4 h of culture at 37 1C. The cells

were incubated for 16 h under these condition and then stained with NK1.1-

allophycocyanin or CD11b and fixed. The fixed, permeabilized cells were

stained with phycoerythrin-conjugated antibodies to mouse IFN-g or TNF.

FACS data were analyzed with FlowJo software (Becton Dickinson).

Poly(I:C), MHV-A59 and LPS stimulation in vitro. Splenocytes from adult

or neonatal mice, or T cell–depleted splenocytes, were stimulated with 50 or

100 mg/ml poly(I:C), 5 � 105 PFU MHV-A59, or 100 or 500 ng/ml LPS in the

presence or absence of different subsets of T cells. After coculture in a 96-well

round-bottom plate in MEM medium for 20 h, supernatants were collected for

cytokine analysis. A Transwell plate system (Costar; pore size 0.4 mm) was used

to prevent close contact between non-T cells and T cells.

Analysis of cytokine production. The amount of cytokines was quantified

using the cytometric bead array kit for mouse inflammatory cytokines (CBA;

BD Biosciences) on a FACSCalibur cytometer equipped with CellQuestPro and

CBA software (Becton Dickinson).

Statistical analysis. The Mann-Whitney test (for survival) and Student’s t-test

(for cytokines) were used. Error bars represent s.d. or s.e.m.
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Figure 4 TNFR-hIg can substantially improve survival rates among nude and Rag-1 knockout mice

treated with poly(I:C), and NK cells are critical in the sudden death of Rag-1 knockout mice after

poly(I:C) injection. (a) T cells inhibited induction of TNF-producing CD11b+ or CD11c+ cells and IFN-g–
producing NK cells in vitro. (b) Decreased inflammatory cytokines from innate cells (CD11b+ cells,

NK cells or both) after poly(I:C) in the presence of T cells. (c) Mortality curve of control hIg–treated

(}, n ¼ 10) and TNFR–hIg–treated nude mice (’, n ¼ 5) after injection of 700 mg poly(I:C).
(d) Mortality curve of Rag-1 knockout mice (hIg: }, n ¼ 5 and TNFR-hIg: ’, n ¼ 5) after poly(I:C)

injection. (e) Decreased inflammatory cytokines from non-T cells after poly(I:C) stimulation and addition of soluble TNFR-hIg. (f) Mortality curve of Rag-1

knockout (}, n ¼ 8) and NK-depleted Rag-1 knockout (’, n ¼ 8) mice. (g) Levels of proinflammatory cytokines in serum from Rag-1 knockout and

NK-depleted (NK–) Rag-1 knockout mice were determined at 2 and 6 h after poly(I:C) injection. *P o 0.05, **P o 0.01, by t-test.
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Note: Supplementary information is available on the Nature Medicine website.
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