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Abstract: This study presents classification and prediction exercises to evaluate the future behavior
of nitrogen dioxide in a critical air quality zone located in Portugal using a dataset, the time span of
which covers the period between 1 September 2021 and 23 July 2022. Three main results substantiate
the importance of this research. First, the classification analysis corroborates the idea of a neutrality
principle of road traffic on the target since the respective coefficient is significant, but quantitatively
close to zero. This result, which may be the first sign of a paradigm shift regarding the adoption of
electric vehicles in addition to reflect the success of previously implemented measures in the city of
Lisbon, is reinforced by evidence that the carbon monoxide emitted mostly by diesel vehicles exhibits
a significant, negative and permanent effect on satisfying the hourly limit value associated with the
target. Second, robustness checks confirm that the period between 8 h and 16 h is particularly remark-
able for influencing the target. Finally, the predictive exercise demonstrates that the internationally
patented Variable Split Convolutional Attention model has the best predictive performance among
several deep learning neural network alternatives. Results indicate that the concentration of nitrogen
dioxide is expected to be volatile and only a redundant downward trend is likely to be observed.
Therefore, in terms of policy recommendations, additional measures to avoid exceeding the legal
nitrogen dioxide ceiling at the local level should be focused on reducing carbon monoxide emissions,
rather than just being concerned about halting the intensity of road traffic.
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1. Introduction

Air pollution remains the most serious environmental threat in the European Union (EU).
According to estimates by the European Environment Agency (EEA), around 400,000 annual
premature deaths can be attributed to air pollution in EU Member States, which must
guarantee good air quality standards for their citizens. European Green Deal (EGD) and
Zero Pollution Action Plan (ZPAP) highlight the importance of reducing air pollution
through the implementation of air quality standards enshrined in EU legislation to effec-
tively protect human health and preserve the natural environment. The EU legislation on
air quality—Directive 2008/50/EC—leaves to EU Member States the choice of measures to
be adopted in order to comply with the limit values set.

1.1. Context

Regarding nitrogen dioxide (NO2), which is the target selected for this study, estimates
indicate almost 50,000 premature deaths per year in the EU. This air pollutant negatively
affects the human health by promoting severe diseases such as asthma and reduced lung
function. Air pollution caused by NO2 is mainly triggered by economic and human
activities such as industry. This source of concern is particularly remarkable in the Iberian
Peninsula since this European region is characterized by a strong persistence of both types
of activities, being the situation more problematic in urban areas.
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1.2. Motivation

If the limit values set by EU legislation are exceeded, EU Member States must adopt
air quality plans to ensure the application of appropriate measures to reduce as much
as possible the period of exceedance. In May 2019, the European Commission (EC) sent
Portugal a first letter of formal notice on air quality, followed by a reasoned opinion in
February 2020. Since the EC considered that the effort of Portuguese authorities was
unsatisfactory and insufficient given the persistence of poor air quality caused by high
levels of NO2, it decided to bring a legal action against Portugal at the Court of Justice of
the EU in 12 November 2021. This fact constitutes the motivation behind the elaboration of
this study. In a nutshell, Portugal has recorded continuous exceedances of the annual limit
value for NO2 in three air quality zones:

1. North Metropolitan Area of Lisbon (MAL) or, similarly, Lisboa Norte in Portuguese;
2. Coastal Porto or, similarly, Porto Litoral in Portuguese; and
3. Between Douro and Minho or, equivalently, Entre Douro e Minho in Portuguese.

1.3. Goals and Research Questions

The goal of this study is to develop classification and prediction exercises to evaluate
whether Portugal is likely to satisfy the ceiling associated with NO2. In order to perform this
empirical assessment, we use public metadata from the city of Lisbon. While the target, also
known as (a.k.a.) output or dependent variable, corresponds to hourly measurements of
NO2 concentration levels in the atmosphere, input variables (a.k.a. indicators, explanatory
variables, regressors or covariates) include

• Other air pollutants, namely:

1. Particle matter with a diameter of less than 2.5 µm (PM2.5);
2. Particle matter with a diameter of less than 10 µm (PM10);
3. Carbon monoxide (CO); and
4. Ozone (O3).

• Information about meteorological conditions, namely:

1. Hourly measurements of the atmospheric pressure (AP);
2. Hourly measurements of the relative humidity (RH);
3. Hourly measurements of the temperature (T);
4. Hourly measurements of the precipitation (P);
5. Hourly measurements of the wind intensity (WI);
6. Hourly measurements of the wind direction (WD); and
7. Hourly measurements of the ultraviolet index (UVI).

• Information about noise, measured by the equivalent continuous sound level (ECSL);
and

• Information about road traffic, measured by the total hourly traffic volume (THTV).

The technical analysis consists of two steps: first, we develop a discrete choice model
to perform a classification analysis; thereafter, we build a novel deep learning neural
network (DLNN) model designated by Variable Split Convolutional Attention (VSCA) to
perform a predictive analysis. Its innovative and unique character is ratified by the World
International Patent Organization (WIPO)’s recent concession of an international patent on
December 2021 [1]. While the first step is concerned with the interpretation of coefficients
and marginal effects on the target by quantifying how a unit change in a given explanatory
variable affects the likelihood of satisfying the NO2’s legal ceiling, the second step assesses
the performance and generalization power of the VSCA model on forecasting the evolution
of NO2 concentration levels in the atmosphere. With that being said, it is consistent to claim
that this study provides answers to two research questions:

1. Which impact in terms of sign and magnitude does each explanatory variable have
on the selected target?
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2. Can the internationally patented VSCA model adequately predict the evolution of
NO2 in a Portuguese air quality critical zone?

1.4. Literature and Research Hypotheses

Surprisingly, only a limited number of studies has been concerned with the assessment
of NO2 concentration levels in Portugal. Exceptions include [2–5].

Ref. [2] analyze daily records of hospital admissions due to cardiorespiratory diseases
and levels of PM10, NO2, O3, CO, sulfur dioxide (SO2) and nitrogen monoxide (NO) be-
tween 1999 and 2004 to evaluate the relationship between air pollution and morbidity
in Lisbon through generalized additive Poisson regression models, while controlling for
temperature, humidity and seasonality. Authors find significant a positive association
between CO and NO2 markers, as well as between CO and cardiocirculatory diseases in all
age groups. Ref. [3] study specific measures to reduce NOx emissions considering 2010 as
the target-year and using The Air Pollution Model (TAPM). Two scenarios were defined and
simulated: the benchmark case considers current NOx emissions, while the reduction sce-
nario considers re-estimated NOx emissions after the implementation of several measures.
Results not only demonstrate a decrease of 4–5 µg/m3 in the annual NO2 levels, but also
ensure compliance with the NO2 annual limit values in 3—out of 5—air quality stations.
Ref. [4] assess atmospheric factors responsible for poor air quality, relationships between
air pollution and meteorological variables or atmospheric synoptic patterns between 2002
and 2010. Their study finds a link between the interannual variability of daily air quality
and interannual variability of circulation weather types (CWTs). In particular, anticyclonic
and north CWTs do not prevail during pollution episodes dominated by easterly CWTs.
In general, a higher concentration of NO2, PM10 and O3 occurs with synoptic circulation
characterized by an eastern component and advection of dry air masses. Results on the
link between CWTs and air quality for Lisbon and Porto urban areas also suggest that air
quality regimes tend to be similar for northern and southern regions, with the exception of
spring and autumn PM10. Ref. [5] inspect the spatial distribution and trends of NO, NO2
and O3 concentrations in Portugal between 1995 and 2010 to claim that NO concentrations
have a significant decreasing trend in most urban stations, but a decreasing trend in NO2 is
only observed in stations with less influence from emissions of primary NO2.

Some studies also evaluate the relationship between NO2 concentration levels and
health-related outcomes. Ref. [6] assess the health risk of polycyclic aromatic hydrocarbons
in air to conclude that the estimated values of lifetime lung cancer risks considerably ex-
ceeded the regulatory guideline level. Their results also confirm that historical monuments
act as passive repositories for air pollutants present in the atmosphere. By focusing on
Estarreja, a region belonging to the center of Portugal where a large chemical complex is
installed, Ref. [7] measure the individual daily exposure of two different groups to PM10
and NO2. Results indicate that both groups display a high level of exposure variability and,
in general, no significant differences are found between the group composed by workers of
the chemical complex and the group of general population working in that region. Ref. [8]
analyze main causes of death due to diseases of the circulatory and digestive system,
respiratory tract and malignant tumors caused by levels of environmental exposure to
PM10, PM2.5, O3, NO2 and SO2 based on data collected in 46 Portuguese municipalities
between 2010 and 2015 considering both general linear and backward regression mod-
els. Results indicate a downward tendency for the air concentration of PM10, NO2 and
O3, with different patterns in urban, suburban and rural regions. Mortality from main
causes has remained constant, except for diseases of the respiratory tract, which increased
and sustains a higher preponderance in rural areas. Additionally, it is estimated that
15 deaths per 10,000 inhabitants could have been avoided with a 10 µg/m3 reduction of
the atmospheric level of PM10 and NO2. Ref. [9] evaluate the temporal evolution of air
quality in Setúbal between 2003 and 2012 by evaluating seasonal trends of PM2.5, PM10,
O3, NO, NO2 and NOx measured in nine monitoring stations. They conclude that the air
quality has improved, with a decreasing trend of air pollutant concentration except for O3.
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Nevertheless, the authors emphasize that PM10, O3 and nitrogen oxides do not necessarily
comply with requirements imposed by European legislation and reveal that main sources
of PM levels are traffic, industry and wood burning. In a study focused on assessing
the impact of schools’ indoor air quality on the health condition of school-age children,
Ref. [10] identify ventilation issues and indoor pollutant levels that exceed recommended
limits. Some of these, even at low exposure levels, are associated with the development
of respiratory symptoms. Nevertheless, environment attributes around schools have a
statistically significant effect on respiratory improvements. Ref. [11] compare mean levels
of air pollutants in 2020 with those measured between 2014 and 2019 to show a significant
improvement in air quality, namely regarding PM10 and NO2, which can be attributed
to the restriction of anthropogenic activities promoted by the recent pandemic lockdown.
Differently, the authors confirm that O3 levels exhibit the opposite trend. Ref. [12] compare
PM10, PM2.5 , NO2 , SO2 and O3 before, during, and after the lockdown period in Portugal,
while considering 2019 as a control year. All 68 Portuguese stations belonging to urban,
suburban and rural zones were considered for this purpose. The authors confirm that NO2
was the most reduced pollutant in 2020, which coincided with the reduction of road traffic.
Considering the period 2010–2017, Ref. [13] assesses trends in atmospheric levels of PM10,
O3, NO2 and SO10, and in mortality rates for diabetes, malignant neoplasms and diseases
of the respiratory, digestive and circulatory systems, and explores links between exposure
to air pollutants and mortality using statistics methods. The authors conclude that, despite
an initial downward trend in PM10 and a peak in O3 levels, fairly constant air pollution
levels were observed in Portugal. Moreover, increases in age-adjusted mortality rates were
significant for all diseases except diabetes. They also reveal that lower atmospheric levels
of pollutants were observed in rural areas when compared to urban areas, except for O3.
Results also indicate an increase of 0.30% in the mortality rate for diseases of the respiratory,
digestive and circulatory systems, and malignant neoplasms combined is expected to hold
for a 10 µg/m3 increase in atmospheric levels of PM10.

Lastly, from a statistical point of view, emphasis should be given to the study devel-
oped by [14], which characterizes the spatial and temporal dynamics of NO2 concentration
levels in Portugal. The dataset is characterized by a high resolution in the temporal dimen-
sion and the respective data incorporates multiple recurring patterns in time, according to
the authors, due to social habits, anthropogenic activities and meteorological conditions.
Their two-stage modelling approach is combined with a bootstrap procedure to assess
uncertainty in parameters estimates, produce reliable confidence regions for the space–time
dynamics of the target and a satisfactory model in terms of goodness of fit, interpretability,
parsimony, forecasting capability and computational costs. After considering the above-
mentioned literature and the set of objectives that this study pretends to satisfy, six research
hypotheses are formulated:

Hypothesis 1 (H1). Either nonsignificant or neutral effects characterize the relationship between
NO2 and meteorological input variables.

Hypothesis 2 (H2). O3 has a negative impact on the selected target.

Hypothesis 3 (H3). CO has a negative impact on the selected target.

Hypothesis 4 (H4). CO is more likely to influence the selected target in the period between 8 h
and 16 h.

Hypothesis 5 (H5). A neutrality principle characterizes the relationship between road traffic
and NO2.

Hypothesis 6 (H6). NO2 is expected to exhibit a decreasing trend in the near future.
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While H1–H3 ensure a comparison of our results with those observed in previous
studies, H4–H6 allow us to improve the state-of-the-art. In particular:

• H4 guarantees that the classification analysis is categorized according to different peak
traffic hours and/or time periods;

• H5 tests whether the use of electric vehicles, which are absent of CO emissions, plays
a role on influencing NO2 concentration levels in the atmosphere; and

• H6 ensures a credible prediction of NO2 in one of the Portuguese cities with the
highest level of air pollution caused by this specific pollutant.

1.5. Summary of Results

Main findings can be summarized as follows. First, the classification analysis corrobo-
rates the idea of a neutral effect of road traffic on the target since the respective coefficient is
significant, but quantitatively close to zero. Since the time span of analysis covers the period
between 1 September 2021 and 23 July 2022, this result may be the first sign of a paradigm
shift observable in the city of Lisbon regarding the adoption of electric vehicles, in addition
to reflect the success of previously implemented measures (e.g., ban the circulation of
vehicles registered before the year 2000). This finding is reinforced by the fact that CO has
a significant, negative and permanent effect on the target, thereby reflecting that a higher
concentration of NO2 in the atmosphere is more likely to hold with increasing level of CO
emissions. Second, robustness checks confirm that:

• 8–16 h is the period where compliance with the NO2’s hourly ceiling is most compro-
mised for a given increase in the level of CO emissions;

• Several regularization procedures confirm that the set of input variables used in the
benchmark analysis has explanatory power on the target;

• The input-oriented model aimed at minimizing NO2 emissions, which is solved
through several variants of stochastic frontier analysis, confirms the influence and
significance of input variables on the target;

• The two-step continual learning approach also validates benchmark findings from a
qualitative point of view; and

• Considering multiple scenarios, a variance importance analysis shows that CO unam-
biguously has the highest relevance on explaining NO2 concentration levels.

Third, the predictive exercise demonstrates that the internationally patented VSCA
model has the best predictive performance among several DLNN alternatives. Results
indicate that:

1. The level of NO2 concentrations in the atmosphere is expected to be volatile; and
2. This air pollutant does not have a downward trend in test and/or validation sets.

Therefore, in terms of policy recommendations, one can conclude that additional
measures focused on reducing CO emissions in the period 8 h–16 h should be implemented
at the local level to avoid surpassing NO2’s limit values in the near future. This is not
a contradiction, but rather the manifestation that desirable political actions to maximize
social welfare should consider environmental conditions faced by local communities.

The remainder of the study is organized as follows. Section 2 provides materials and
methods, while Section 3 clarifies main results and robustness checks. A discussion and
recommendations are exposed in Section 4, while Section 5 concludes.

2. Materials and Methods
2.1. Overview of Atmospheric Pollution Caused by Nitrogen Dioxide
2.1.1. Description

The exposure to high concentrations of NO2 can be translated into a serious damage to
the human health. When oxidized in the atmosphere, it can even produce nitric acid, which
is a component that increases the acidity of rain and causes a degradation in the nature and
materials due to its corrosive nature. This is, however, an occurrence with little significance
in Portugal. The legislation stipulates air quality objectives for the protection of human
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health. The indicator used is the annual average of NO2, which is an aggregated value of
the hourly concentration of this air pollutant measured at each station, for comparison with
the respective threshold value. The analysis of air quality at each zone is carried out by
considering the worst value obtained in the set of stations belonging to each territorial unit.
The typology of a measuring station with respect to the environment (i.e., urban, suburban
or rural) and influence (i.e., traffic, industrial or background) of its location allows us to
identify the nature of emission sources and the magnitude of measured levels. Lastly,
it should be highlighted that trend analyses carried out by the Portuguese Environment
Agency (APA) rely on the aggregation of average hourly values, depend on the type of
station and allow a better elucidation of measures to be adopted to satisfy limit values
throughout the national territory. All stations with a measurement efficiency greater than
75% are used, and in the case of stations covered by some indicative evaluation strategy,
measurements with efficiency greater than 14% are considered.

2.1.2. Targets

Main objectives established in Portugal are summarized as follows:

• Ensure compliance with objectives established at the EU level in terms of air quality,
which aim to avoid and prevent harmful effects of air pollutants on human health and
the environment;

• Assess the air quality throughout the national territory, with a special focus on urban
centers; and

• Portuguese legislation materialized by Decree-Law No. 102/2010 of 2010 establishes
the obligation to preserve air quality in cases where it is good and improve it in other
cases; moreover, it imposes two ceilings on NO2—hourly limit value (HLV) and annual
limit value (ALV)—that cannot be exceed:

1. HLV (i.e., a limit value for the average hourly concentration of 200 µg/m3 of NO2,
which must not be exceeded more than 18 times per calendar year); and

2. ALV (i.e., a limit value for the average annual concentration of NO2 of 40 µg/m3).

This study focuses on analyzing the first type of target.

2.1.3. Evolution

Europe. Regarding NO2 concentration levels in the EU-28, 2000–2017 is a period
marked by a reduction of the mean annual concentration of NO2 in a magnitude of 25% in
suburban stations, 28% at road traffic stations, and 34% at both industrial and rural stations.
In 2018, the greatest contribution to NOx emissions was the transport sector (47%, with 39%
of the road transport and 8% of the non-road transport) followed by the energy supply
(15%), agriculture (15%) and industry (15%) sectors [15].

Portugal. Figure 1 provides the concentration level of NO2 in the biennium 2019–2020
for different Portuguese regions. The year 2020 was atypical due to the pandemic effect
on air quality, resulting from several periods of confinement that significantly influenced
economic activities and mobility in the national territory. In particular, measures imposed
during the state of alert and the state of emergency resulted in a strong reduction in
emissions of atmospheric pollutants and led to a significant improvement of air quality,
especially in large urban areas. This reduction was predominantly felt in the NO2, including
in Lisbon, Porto and Braga, where the ALV of 40 µg/m3 has been surpassed in previous
years. For the first time, there is no exceedance of this ceiling in large agglomerations,
with a decrease in levels measured in the North MAL, from 55 µg/m3 in 2019 to 40 µg/m3

in 2020, in Coastal Porto, from 48 µg/m3 in 2019 to 40.5 µg/m3 in 2020 and in Between
Douro and Minho, from 57 µg/m3 in 2019 to 32 µg/m3 in 2020. The significant decrease in
the average annual concentration in Between Douro and Minho is explained by the fact that
the station that determines the exceedance of the AVL was not used in the 2020 assessment
due to malfunctions of the equipment. It can also be observed that, in the remaining
local administrative units (LAUs), there is a generalized decrease in the magnitude of
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measured levels. An exception stands out in Coimbra, where there is a slight increase in
NO2 concentration levels compared to 2019, from 15 µg /m3 to 22 µg/m3. This situation
may result from the use, in the 2019 assessment, of the urban background station instead
of the usual road traffic station, which was not operational that year due to equipment
failure [16].
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Figure 1. Evolution of NO2 in different Portuguese regions (2019–2020). Source: authors’ creation
based on data available from [16].

Figure 2 presents the annual average value of NO2 concentration levels by type of
station in Portugal during the period 2005–2021. It can be observed a reduction of NO2
concentration levels between 2009 and 2014, but then a slight increase after 2015 [11].
Nevertheless, Figure 2 allows us to identify a trend of decrease, more accentuated after
2017, in road traffic stations where the most significant exposure of the population to this
pollutant occurs and a less expressive decrease in background (i.e., urban and suburban)
stations from 2018 afterwards. For the remaining typologies, the magnitude of NO2
concentration levels has been maintained stable over time, with a series break observed in
2020 because of the lockdown, which influenced the normal functioning of the economy
and resulted in the improvement of air quality. With respect to the HLV of 200 µg/m3 not
being exceeded more than 18 times a year, Ref. [16] confirms that this air quality objective
was fully met in all areas of the national territory during the biennium 2019–2020. This fact
collapses and, in some sense, it seems to be inconsistent with the legal action taken by the
EC against Portugal in 12 November 2021.
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2.2. Data

This study uses public metadata related to the monitoring of:

1. Air quality;
2. Noise;
3. Road traffic; and
4. Meteorological conditions

In the city of Lisbon, which can be freely accessed online at https://dados.cm-lisboa.
pt/dataset/monitorizacao-de-parametros-ambientais-da-cidade-de-lisboa (accessed on
25 July 2022). Currently, this LAU maps the municipality in real or close time, at the
level of these indicators, in a sensing-as-a-service mode. This innovation, provided by
the MEO/Monitar/QART consortium, consists of an installed network that includes
80 stations, each equipped with different sensors, located mostly on public lighting poles.
The selection of locations for the installation of sensors aims to monitor the diversity of
spaces with different environmental characteristics and represent the entire county with a
homogeneous distribution. As a basis, the following criteria were considered:

• A grid with a spacing of 2 × 2 km;
• Inclusion of requirements related to the Sharing Cities project;
• Incorporation of geographical boundaries of each parish and Reduced Emission Zones

(REZs);
• Areas with a homogeneous climate response, land use and occupation rate; and
• The road network proximity to sources of pollution.

In general, available values correspond to hourly average data obtained from an arith-
metic mean of 4 segments, where each segment contains 15 min of resolution. Exceptions
are road traffic values, which result from summing the number of vehicles per hour. This
mapping complements the monitoring carried out by the official network of fixed stations
under management of the Lisbon and Tagus Valley Regional Coordination and Develop-
ment Commission (CCDR-LVT) and the Portuguese Institute of the Sea and Atmosphere
(IPMA), whose monitored values in real time are displayed in UTC time in autumn-winter
periods and UTC + 1 in spring-summer periods, without decimal places, except for indica-
tors T, RH, P, UVI, WI and WD. The present analysis deals with a multivariate time series
(MTS) dataset, whose time span covers the period between 1 September 2021 and 23 July
2022. Descriptive statistics of the set of input variables and target are presented in Table 1.

2.3. Preliminary Statistical Tests and Hypotheses Testing

Prior to classification and prediction exercises, several statistical tests are reported
in Tables 2–4 to obtain a greater sensitivity on data and justify technical options taken to
perform subsequent tasks in the most appropriate way from a scientific point of view.

These include the inspection of:

1. Multicollinearity;
2. Normality, skewness and kurtosis;
3. Homoscedasticity;
4. Autocorrelation or, similarly, serial correlation;
5. Stationary;
6. Specification; and
7. Hypotheses testing.

https://dados.cm-lisboa.pt/dataset/monitorizacao-de-parametros-ambientais-da-cidade-de-lisboa
https://dados.cm-lisboa.pt/dataset/monitorizacao-de-parametros-ambientais-da-cidade-de-lisboa
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Table 1. Summary statistics.

Dimension Variable Description Unit Mean Std. Dev. Min Max

Target NO∗2 Nitrogen dioxide for prediction µg/m3 82.728 64.421 0 341
NO2 Nitrogen dioxide above/below the HLV for classification Dummy = {0, 1} 0.963 0.189 0 1

Air quality O3 Ozone µg/m3 759.954 43.411 0 309
PM2.5 Particle matter with a diameter of less than 2.5 µm µg/m3 7.569 5.732 0 105
PM10 Particle matter with a diameter of less than 10 µm µg/m3 20.661 13.591 2 251
CO Carbon monoxide mg/m3 0.587 0.151 0.122 2.379

Noise ECSL Equivalent continuous sound level dB(A) 68.508 3.603 40 93
Road traffic THTV Total hourly traffic volume Veihicles 853.027 883.473 0 3087
Weather AP Atmospheric pressure mbar 1005.860 211.626 972 1127

RH Relative humidity % 0.651 0.153 0.164 0.937
T Temperature °C 19.042 5.004 7.2 40.8
P Precipitation mm 0.003 0.046 0 2.900
WI Wind intensity km/h 11.885 6.207 0.400 55.900
WD Wind direction ° 213.352 127.323 0 359.900
UVI Ultraviolet index I ∈ [0, 10] 0.731 1.729 0 10

Notes: time-step resolution in hours. Total number of observations corresponds to n = 7824. ‘I’ stands for index and ‘o’ stands for degrees. Target, air quality, noise, road traffic, AP, RH
and T input variables are collected from the sensor located at Avenida da Républica [Degrees, minutes and seconds (DMS) coordinates: 38°44′09.4′′ N 9°08′44.4′′ W]. P comes from the
sensor located at Praça de Espanha (DMS coordinates: 38°44′18.5′′ N 9°09′32.3′′ W), whereas WI and WD stem from the sensor located in Chelas—Rua Dr. José Espirito Santo (DMS
coordinates: 38°45′09.0′′ N 9°06′20.5′′ W). UVI is collected from the sensor installed in Olivais Sul—Quinta Pedagógica (DMS coordinates: 38°45′48.1′′ N 9°06′42.4′′ W).

Table 2. Correlation matrix and variable inflation factor.

NO∗
2 O3 PM2.5 PM10 CO ECSL THTV AP RH T P WI WD UVI VIF

NO∗2 1
O3 0.503 *** 1 1.14
PM2.5 0.347 *** 0.109 *** 1 331.30
PM10 0.347 *** 0.109 *** 0.999 *** 1 331.08
CO 0.504 *** 0.145 *** 0.460 *** 0.459 *** 1 1.33
ECSL 0.047 *** 0.032 *** −0.013 −0.013 −0.021 1 1.02
THTV −0.286 *** −0.071 *** −0.031 *** −0.031 *** −0.112 *** −0.053 *** 1 1.06
AP 0.134 *** 0.047 *** 0.095 *** 0.095 *** 0.082 *** −0.046 *** 0.050 *** 1 1.10
RH 0.196 *** 0.151 *** 0.114 *** 0.115 *** 0.143 *** −0.109 *** −0.0001 0.037 *** 1 1.06
T −0.196 *** −0.177 *** −0.167 *** −0.168 *** −0.097 *** −0.009 −0.020 * −0.265 *** −0.073 *** 1 1.17
P 0.043 *** 0.008 0.020 * 0.020 * −0.001 0.018 −0.033 *** 0.034 *** −0.012 −0.033 *** 1 1.00
WI −0.182 *** −0.037 *** −0.089 *** −0.088 *** −0.055 *** 0.009 0.111 *** -−0.032 *** −0.036 *** −0.014 −0.004 1 1.09
WD −0.226 *** −0.059 *** −0.062 *** −0.062 *** −0.116 *** −0.010 0.121 *** −0.123 *** −0.094 *** 0.159 *** −0.037 *** 0.238 *** 1 1.13
UVI −0.078 *** 0.195 *** −0.059 *** −0.060 *** −0.099 *** −0.016 0.101 *** −0.070 *** −0.016 0.077 *** −0.012 0.115 *** 0.026 ** 1 1.10

Notes: *** (**) [*] denotes statistical significance at the 1% (5%) [10%] level, respectively. Inputs in red color are excluded to avoid multicollinearity concerns.
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Table 3. Preliminary statistical tests.

Test Null Hypothesis (H0) Value Decision Applied to the Prediction Exercise

1. Normality Normal errors’ distribution
Jarque–Bera LM 120 *** [2] Rej H0: absence of data normality.
Doornik–Hansen LM 4,850,000 *** [24] Thus, use feature engineering
Henze–Zirkler 7.287 *** [1] in the prediction exercise.

2. Skewness Zero skewness
Mardia 1840.521 *** [364] Rej H0: presence of data skewness.
Cameron–Trivedi

Skewness decomposition 777.260 *** [11] Thus, use feature engineering
in the prediction exercise.

3. Kurtosis Zero excess kurtosis
Mardia 2563.017 *** [1] Rej H0.
Cameron–Trivedi Skewness decomposition 1.300 [1] Do not rej H0.

Given the reasonable doubt, use feature
engineering in the prediction exercise.

4. Homoscedasticity Disturbance term has a constant variance
White IM 1542.610 *** [77] Rej H0: presence of
Breusch–Pagan 331.470 *** [1] heteroscedasticity.

5. White noise Disturbance term follows a white noise

Portmanteau Q 189,100 *** [40] Absence of random
walk in the Disturbance term.

6. Autocorrelation No serial correlation

Durbin–Watson (12; 7824) d = 0.197 (original)
ρ = 1.940 (transformed)

Durbin’s alternative 37,343.759 *** [1] Rej H0: evidence of
Breusch–Godfrey LM 6470.582 *** [1] positive autocorrelation.
ARCH LM 3964.158 *** [1]

7. Number of NO2 lags to add as inputs

LL: −33,048.900; LR: 14.009 *** [1]; FPE: 276.947; AIC: 8.462; HQIC: 8.465; BIC: 8.472
Include up to 10 lags

in case of considering classical econometrics
models for the prediction exercise (e.g., ARIMAX).

8. Stationary Target has unit root

Augmented Dickey–Fuller −14.659 *** (2 lags)
−10.407 *** (5 lags)

Rej H0: presence of stationary.
Thus, it is unnecessary to integrate

the target in the prediction framework.

9. Specification Model has no omitted variables

Ramsey F(3; 7809) 65.090 ***
Rej H0: presence of omitted variable bias.

Since the model is not correctly specified, the inclusion
of roll padding is mandatory in the prediction framework.

Notes: *** denotes statistical significance at the 1% level. Degrees of freedom are displayed in brackets. ‘ARCH’ stands for autoregressive conditional heteroscedasticity. ‘LL’ stands for
log-likelihood, ‘LR’ stands for likelihood ratio, ‘FPE’ stands for final prediction error, ‘AIC’ stands for Akaike information criterion, ‘HQIC’ stands for Hannan–Quinn information
criterion and ‘BIC’ stands for Bayesian information criterion.
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Table 4. Hypotheses testing for individual and joint significance of input variables.

Test Null Hypothesis (H0) Value Decision Applied to the Classification Exercise

1. Joint significance Nonsignificant covariates
Wald with logit (probit) applied to ECSL, AP, RH, T, P, WI and UVI 6.360 (5.180) [7] Do not rej H0: lack of statistical significance.
LR with logit (probit) applied to ECSL, AP, RH, T, P, WI and UVI 5.020 (3.740) [7] Thus, disregard this subset of input variables.

2. Individual significance Nonsignificant covariate

Wald with logit (probit) applied to ECSL 0.000 (0.010) [1] Do not rej H0: lack of statistical significance.
Thus, disregard this input variable.

Wald with logit (probit) applied to AP 2.810 * (1.130) [1] Do not rej H0: lack of statistical significance.
Thus, disregard this input variable.

Wald with logit (probit) applied to RH 0.010 (0.140) [1] Do not rej H0: lack of statistical significance.
Thus, disregard this input variable.

Wald with logit (probit) applied to T 0.380 (0.030) [1] Do not rej H0: lack of statistical significance.
Thus, disregard this input variable.

Wald with logit (probit) applied to P 0.020 (0.020) [1] Do not rej H0: lack of statistical significance.
Thus, disregard this input variable.

Wald with logit (probit) applied to WI 1.330 (1.170) [1] Do not rej H0: lack of statistical significance.
Thus, disregard this input variable.

Wald with logit (probit) applied to UVI 0.210 (1.140) [1] Do not rej H0: lack of statistical significance.
Thus, disregard this input variable.

Wald with logit (probit) applied to O3 159.200 *** (127.540 ***) [1] Rej H0: evidence of statistical significance.
Thus, incorporate this input variable.

Wald with logit (probit) applied to CO 195.960 *** (183.290 ***) [1] Rej H0: evidence of statistical significance.
Thus, incorporate this input variable.

Wald with logit (probit) applied to THTV 6.170 ** (4.710 **) [1] Rej H0: evidence of statistical significance.
Thus, incorporate this input variable.

Wald with logit (probit) applied to WD 20.490 *** (23.780 ***) [1] Rej H0: evidence of statistical significance.
Thus, incorporate this input variable.

Notes: *** (**) [*] denotes statistical significance at the 1% (5%) [10%] level, respectively. Degrees of freedom (results with probit estimation) are displayed in brackets (parentheses),
respectively. ‘LR’ stands for likelihood ratio. Inputs in red color should be disregarded from the classification exercise.
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2.3.1. Multicollinearity

Results show that the mean variable inflation factor (VIF) corresponds to 51.89, which
is above the critical value of 5 usually considered for evaluation. Hence, data suffer
from multicollinearity in case of nothing being done. However, all VIF values related
to each input variable are below the critical threshold with the exception of those repre-
senting PM10 and PM2.5. These input variables exhibit a positive and strong correlation—
ρPM10,PM2.5 = 0.999—and, consequently, both must be excluded from classification and
prediction exercises to avoid multicollinearity concerns.

2.3.2. Normality, Skewness and Kurtosis

Results indicate p < 0.05 for all normality tests. As such, the null hypothesis claim-
ing the presence of normality in errors’ distribution is rejected for a critical p-value of
5%. Similar conclusion holds true for skewness tests. Nevertheless, Cameron–Trivedi’s
decomposition to test the zero kurtosis hypothesis has observed p-value of 0.255, which
suggests non-worrying differences compared to the representative kurtosis of a normal
distribution at the 5% critical significance level. Overall, these results legitimize to reject the
null hypothesis that input variables and target are homogeneously distributed at different
time-steps, thereby justifying the execution of several feature engineering actions when
moving towards the prediction exercise. In particular, Refs. [17,18] highlight the need to
normalize data in cases where either inputs have different units of measure or error terms
do not follow a normal distribution. Moreover, outliers can affect the learning ability of
DLNN models, particularly if data are concentrated in a very small portion of the input
range. Since explanatory variables subject to this type of bias may not have a significant
impact on the learning and final predictions of DLNN models, Ref. [19] proposes a solution
based on feature engineering to mitigate this technical concern. In a nutshell, it consists
of applying a bilateral truncation to the MTS problem based on frequency analysis and
histogram re-scaling. As such, in this study, DLNN models initially use normalized data
for training and testing. After these tasks being executed, data are de-normalized using
the inverse function to ensure a more realistic comparison between actual and predictive
values of the target under scrutiny.

2.3.3. Homoscedasticity

Both tests reject the null hypothesis of var(ui) = σ2, with σ2 ∈ (0, ∞), ∀i = {1, . . . , 7824}.
Although heteroscedasticity is more common in cross-sectional samples due to the hetero-
geneity between individuals, it is also observed in MTS problems due to the presence of
temporal differences between different observations. Given the detection of heteroscedastic-
ity, its correction is mandatory when running a multiple linear regression model using the
Ordinary Least Squares (OLS) method because coefficients remain centric and consistent,
but no longer have minimal variance in the class of linear and centric estimators. White’s
procedure, while not solving the problem of heteroscedasticity, restores the validity of
statistical inference in large samples such as the one considered in this study [20].

2.3.4. Autocorrelation

Autocorrelation (a.k.a. serial correlation) is more common in time series because obser-
vations of the same target in successive periods are often influenced by factors that exhibit
some persistence over time. Moreover, autocorrelation can also be induced by data manipu-
lation via certain procedures (e.g., deseasonalization). While the Durbin–Watson test checks
whether ui follows a first-order autoregressive process AR(1), the Breusch–Godfrey test
generalizes this assessment to check for the presence of a p-order autoregressive process
AR(p). Results in both tests reject the null hypothesis claiming the absence of autocorre-
lation and suggest the presence of positive autocorrelation (i.e., past NO2 concentration
levels positively influence current values). Given the presence of autocorrelation, regression
coefficients are centric and consistent, but they no longer have minimum variance in the
class of linear and centric estimators. Furthermore, statistical inference conducted in the
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usual way is not valid because var
(

β̂OLS

)
= σ2(X′X)−1 is no longer the correct formula.

In fact, this holds true regardless whether the variance and covariance matrix representative
of disturbance terms Ω is known or not. The main drawback of using OLS under these
conditions is the loss of validity of the statistical inference, which implies the need to obtain
another estimator of var

(
β̂OLS

)
that restores the validity of the statistical inference.

Knowing that var
(

β̂OLS

)
= σ2(X′X)−1X′ΩX(X′X)−1 in the presence of autocorrelation,

several estimation methods are useful to achieve this end [21]:

• OLS combined with the Newey–West estimator, after [22] proposing a var
(

β̂OLS

)
estimator that is consistent in the presence of heteroscedasticity and/or autocorrela-
tion generated by stationary processes and that asymptotically enables the statistical
inference conducted from the OLS results; this estimator is based on a function of
estimated residuals obtained by OLS and, unlike White’s procedure, takes into account
not only sample variances, but also sample covariances;

• First-order generalized least squares (GLS) method, either in GLS (AR(1)) or EGLS
(AR(1)) form, respectively depending on whether Ω is known or not; hence, the GLS
estimation is equivalent to the OLS estimation of the original model after this being
transformed by the first-order generalized difference method;

• Two-step Cochrane–Orcutt method [23] and subsequent extensions where, in first
place, the original model is estimated by OLS to obtain the residuals to estimate the
equation et = ρet−1 + vt, t = {2, 3, . . . , 7824} to obtain ρ̂ and then, in second place, use
this estimate to construct a set of new input variables from which results a transformed
model by first differences; and

• Nonlinear least squares (NLS) method, where the minimization condition cannot be
obtained analytically, being necessary to resort to a search algorithm that is developed
in several iterations, starting with predefined initial values. The search process ends
when a certain convergence criterion defined in advance is satisfied.

2.3.5. Stationary

Several stationary tests were executed in addition to Augmented Dickey–Fuller (ADF)
tests reported in Table 3, whose results confirm that the dependent variable does not
exhibit unit roots being, thus, unnecessary to integrate the target by taking first- or higher-
order differences.

2.3.6. Specification

In terms of specification of the regression model, the observed p-value of the Ramsey
test is 0.000, thereby implying that the null hypothesis of a correct specification is strongly
rejected for a critical significant level of 5%. This result suggests that the specification can be
improved by means of including other input variables (e.g., dummy variables with additive
and multiplicative effects related to weekly cyclicality) capable of providing additional
explanatory power on the target. However, if this action is not performed, then one must
introduce some technique that eliminates the need to include these extra covariates. In this
study, roll padding is introduced to overcome this source of concern. This mandatory action
is justified by the fact that this method is able to capture the cyclicality of data without
the need to include dummy variables representing this statistical property. Therefore,
taking into account the result highlighted by the Ramsey test according to which additional
input variables must be included, the comparison of a restricted model—absent from
weekly cycles—with an unrestricted model—which includes weekly cyclicality—allows
us to statistically confirm and formally validate the need to include roll padding and,
in affirmative case, avoid the need to include additional input variables representative of
weekly cyclicality.
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2.3.7. Hypotheses Tests

Based on Tables 1 and 2, the OLS regression model applied to the MTS problem under
analysis is formally described as follows:

NO∗2i = β1 + β2COi + β3O3i + β4WDi + β5THTVi

+β6ECSLi + β7 APi + β8RHi + β9Ti + β10Pi + β11WIi + β12UVIi + ui,

where β1 corresponds to the coefficient or weight associated with the independent term,
whereas β j corresponds to the coefficient associated with each input variable j, with
j = {2, . . . , 12}. The disturbance term ui is assumed to be independently and identically
distributed with zero mean and constant variance σ2 if the hypothesis of homoscedasticity
is satisfied, which is not the case as confirmed by White and Breusch–Pagan tests. This
regression model must be subject to hypotheses testing for single and joint significance of
the set of explanatory variables, whose results are displayed in Table 4. It can be concluded
that ECSL, AP, RH, T, P, WI and UVI individually and jointly lack statistical significance for
a critical p-value of 5% being, thus, excluded. As such, the restrictive model to be used in
the classification exercise is given by

NO∗2i = β1 + β2COi + β3O3i + β4WDi + β5THTVi + ui,

where, as explained in Section 2.4.1, the target NO2i consists of a dummy variable, whose
development is based on observation values of the latent variable NO∗2i.

2.4. Classification Analysis
2.4.1. Benchmark Model

Generically, considering that a certain observation i falls into one of the m possible
categories or alternatives that characterize a given target yi, a multinomial density is
formally defined as follows:

f (yi) =
m
∏
j=1

p
yj
ij ,

where the probability that the observation i belongs to the alternative j corresponds to

pij = pr[yi = j|X] = Fj(X′β), i = {1, . . . , n}, j = {1, . . . , m},

so that the usual multiple linear regression equation in convenient notation is given by:

yi = Xβ + ui,

with X corresponding to a vector (1× k) of components 1, X2i, X3i, . . . , Xki and β is a vector
(k× 1) of coefficients or weights associated with the independent terms and regressors.
In any discrete choice model, the functional form of Fj(·) should be selected and each pij
lies between 0 and 1 such that their sum over j corresponds to 1

m

∑
j=1

pij = 1.

The only exception occurs with the linear probability model (LPM) because the respective
binomial distribution implies Fj(X′β) = X′β such that pij = pr[yi = j|X] = X′β. As such,
a problem with the LPM is that predicted probabilities may not be limited to [0, 1] even
though their sum over j corresponds to 1. Other weaknesses include obtaining constant
marginal effects, the fact that the normality hypothesis is not acceptable and the fact that
the homoscedasticity hypothesis is not sustainable. Consequently, the LPM is not used
with binary outcome data. Instead, a more satisfactory approach to models containing a
dichotomous target is to assume that the dependent variable y is the observable manifesta-
tion of an unobservable event (a.k.a. latent variable). Therefore, the benchmark analysis
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of this case study in particular specifies a rule for determining the binary target NO2i as a
function of the latent variable NO∗2i, which is defined as follows:

NO2i =

{
1, if NO∗2i < 200 µg/m3;
0, otherwise,

(1)

such that each measurement only belongs to one of the two possible categories:

• 1 = HLV is satisfied since the observation i stands below the HLV (alternative); or
• 0 = HLV is surpassed and, thus, not satisfied (base category),

which allows the identification of the probability of the HLV being satisfied and quantifying
the magnitude of the marginal effect that each regressor has on the target. Obviously,
after considering the battery of preliminary statistical tests, the binary regression model
can be formally written as follows

NO∗2i = β1 + β2COi + β3O3i + β4WDi + β5THTVi + ui, (2)

where ui is the disturbance term. In the class of models characterized by the relations (1)
and (2), it follows that:

pr(NO2i = 1) = pr(NO2i * < 200)
= pr(β1 + β2COi + β3O3i + β4WDi + β5THTVi + ui < 200)
= pr(ui < 200− Xiβ)

and, by complementarity, also:

pr(NO2i = 0) = pr(ui > 200− Xiβ)

Then, being ui a random variable with a distribution function F(.), yields that

pr(NO2i = 1) = F(200− Xiβ); and
pr(NO2i = 0) = 1− F(200− Xiβ).

(3)

The two most common choices for the functional form of F(·) are those corresponding to the
logistic distribution (reduced normal distribution) representative of the logit (probit) model,
respectively. In the probit model, it is postulated that F(·) is the normal distribution function

Φ(ui) =

ui∫
−∞

1√
2π

e−
1
2 t2

dt

whose associated probability density function is given by:

φ(ui) =
dΦ(ui)

dui
=

1√
2π

e−
1
2 u2

i .

In the logit model, the choice of F(·) falls onto:

Λ(ui) =
1

1 + e−ui
,

which is the distribution function of a logistic variable with zero mean and variance π2/3.
The probability density function of the logistic distribution is given by:

λ(ui) =
dΛ(ui)

dui
=

e−ui

(1 + e−ui )2.
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It is easy to verify that the equality,

λ(ui) = Λ(ui)[1−Λ(ui)],

is unequivocally verified. In both cases, predicted probabilities are limited to [0, 1].
From a theoretical point of view, Ref. [24] confirms that the choice between logit and

probit depends on the type of characteristics sustained by the dependent variable. Ref. [25]
details that, if the dependent variable is directly observed and measured in reality, then
a logit model is expected to be the optimal choice to estimate the probability that a given
observation falls into a certain category. Despite these normative considerations, this study
follows objective criteria to determine the optimal model, which is the one that exhibits the
lowest Akaike information criterion (AIC) and Bayesian Information criterion (BIC) and
the highest log-pseudolikelihood.

Estimated coefficients assume the base category as reference point, so that their inter-
pretation is given as follows: compared to the HLV violation scenario, a unit increase in a
given explanatory variable makes compliance with the HLV associated with the level of
NO2 concentration in the atmosphere more (less) likely if the respective coefficient takes a
positive (negative) sign, respectively.

In turn, the marginal effect of a given regressor on the probability of belonging to the
alternative j results from observing

E(NO2i) = F(200− Xiβ),

such that
∂E(NO2i)

∂X′i
=

dF(200− Xiβ)

dXiβ

∂(Xiβ)

∂X′i
= f (200− Xiβ)β, (4)

where f (·) designates the density function corresponding to the distribution function F(·).
In (4), the first member is a column vector of partial derivatives of which the generic
component is, assuming that E(NO2i) is a linear function of Xj

∂E(NO2i)

∂Xij
=

dF(200− Xiβ)

dXiβ

∂(Xiβ)

∂X′i
= f (200− Xiβ)β j. (5)

The sum of marginal effects associated with each category is equal to zero and their
interpretation is straightforward: a unit increase in a given explanatory variable either
increases or decreases the probability of belonging to alternative j by the magnitude
∂E(NO2i)/∂Xij expressed in percentage terms. Additionally, two facts deserve emphasis
in (5):

1. Marginal effects vary across distinct observations given that different explanatory
variables influence the probability density function f (·); and

2. Marginal effects can vary for a given observation since the magnitude of the effect
may be different from one value of Xij to another.

As such, in addition to estimated coefficients, this study reports both marginal effects
at the mean and average marginal effects.

2.4.2. Technical Extensions

Several formal extensions are proposed to test whether benchmark findings remain
qualitatively robust, namely:

1. Application of a supervised machine learning (ML) model combined with several
regularization methods to the set of inputs used in the classification exercise;

2. Use of a two-step continual learning (CL) approach;
3. Execution of a variable importance analysis (VIA);
4. Evaluation of the ordered multinomial discrete choice model (OM-DCM) by increasing

the number of categories that define the target; and
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5. Development of a stochastic frontier analysis (SFA);

Standard regularization. To dissuade concerns related to the omitted variable bias,
this robustness check consists of a four-step procedure:

1. Initially, a supervised ML model—logistic LASSO—is exogenously chosen;
2. The objective function of this supervised ML model accommodates a penalty compo-

nent that must be optimized. To achieve this purpose, a certain penalized regression
technique (a.k.a. regularization method or tuning process) is applied to the initial set
of covariates in order to find the general degree of penalization (a.k.a. penalty level)
that optimizes the objective function, which is represented by λ. After identifying the
optimal value of this parameter, one can find which input variables have a statistically
significant impact on the target and, for each of these, the weight or coefficient on
the target which, similarly to what was verified in the initial exercise, can only be
interpreted in terms of sign. In this extension, three regularization techniques are
combined with the logistic LASSO model:

• k-fold cross-validation, whose purpose is to assess the out-of-sample classifica-
tion performance;

• AIC, BIC and Extended Bayesian information criterion (EBIC), by finding the
penalty level λ that corresponds to the lowest value taken by each of these
information criteria; and

• Rigorous penalization, which corresponds to a penalty level formally given by
λ = (c/2)

√
NΦ−1(1− γ), where c is a slack parameter with default value of 1.1,

Φ(·) is the standard normal cumulative distribution function (CDF) and γ is the
significance level, whose default value is 0.05/max{p× log(n), n}. According
to [26], this approach requires standardized predictors and the penalty level is
motivated by self-normalized moderate deviation theory to overrule the noise
associated with the data-generating process.

3. After identifying covariates with explanatory power on the target, coefficients are
estimated; and

4. Although not mandatory because classification metrics (e.g., cross-entropy loss) can
be reported, we convert the classification problem into a regression problem in order
to run the Wilcoxon signed-rank test and provide the following metrics: RMSE, MAE,
Mean Absolute Percentage Error (MAPE) and Theil’s U statistic. The later is a relative
accuracy measure that compares the predicted outcomes with results of forecasting
with minimal historical data.

Two-step continual learning approach. In alternative to the previous regularization
techniques, this study considers a two-step CL model proposed in [27]. In the context of
ML, the idea behind CL is to refine the treatment of covariates based on a bias-variance
trade-off argument given that CL consists of a two-step procedure where:

1. In a first step, random forest (RF) is applied to the set of covariates holding a strong
relative importance on explaining the dependent variable in order to mitigate the risk
of overfitting; and

2. In a second step, a probit model estimated by the maximum likelihood method is
applied to predicted target values obtained in the first step to mitigate the risk of
underfitting.

Overall, this approach is justified by the fact that it dissuades concerns related to
endogeneity, spurious correlation and reverse causation.

Variable importance analysis. Following [28], VIA is applied to gain additional ro-
bustness over the regularization approaches previously considered for variable selection.
This way, the analysis provides a tool to assess the importance of input variables when
dealing with complex interactions, making the framework more interpretable and compu-
tationally more efficient. VIA is performed under four different circumstances:

• Applied to the entire set of input variables;
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• Only applied to meteorological data;
• Only applied to ai pollutants; and
• Only applied to statistically significant covariates.

Ordered multinomial discrete choice model. Thenceforth, we decide to increase the
number of categories representing the dependent variable, which is now expressed as:

NO2i =


2, if NO∗2i < 150 µg/m3;
1, if 150 ≤ NO∗2i < 250 µg/m3;
0, otherwise.

(6)

The intermediate category can be interpreted as a class containing observations charac-
terized by a strong sensitivity towards the HLV of NO2. From a theoretical point of view,
multinomial logit models are used for discrete outcome modeling by operating under a
logistic distribution being, thus, preferred for large samples. Probit models operate dif-
ferently for a dependent variable defined by more than two categories, particularly when
these obey to a ranking. In MTS problems, Ref. [29] find evidence that the logit specifi-
cation provides a better fit in the presence of independent variables that exhibit extreme
levels. Conversely, model fit with random effects in moderate size datasets is improved
by selecting a probit specification. Notwithstanding, in similar vein to the benchmark
exercise, this extension uses statistical criteria to decide between using logit and probit
multinomial models. However, only the ordered form is considered in this extension given
that, ceteris paribus, any municipality unequivocally prefers to observe a low level of NO2
concentrations in the atmosphere.

Stochastic frontier analysis. Lastly, the benchmark exercise is complemented by the
inclusion of an input-oriented SFA based on the ground that a policymaker pretends to
minimize the latent output variable NO∗2 (i.e., concentration level of NO2 in the atmosphere)
given the set of input variables.

2.4.3. Normative Improvements through Sample Segmentation

The initial assessment is also improved by developing three normative extensions
based on a segmentation according to:

1. Peak traffic hours (8 h–16 h, 16 h–24 h and 24 h–8 h);
2. Seasons (summer, spring, autumn and winter); and
3. The weekend–weekdays dichotomy.

2.5. Prediction Analysis
Framework

Feature engineering. DLNN models are trained, tested and validated by consider-
ing a 50-25-25 partition. This rule ensures a prediction of NO2 concentration levels for
81 days ahead in the test and/or validation set. As required in MTS problems, shuffling is
neglected [30]. Figure 3 clarifies that the set of DLNN models used in this study define a
time resolution of inputs (outputs) in hours (days), respectively. In particular, 168 time-step
hours correspond to the resolution used for input variables, while the output to be pre-
dicted corresponds to the average of the next 24 time-step hours. As such, the predictive
exercise considers historical data corresponding to one week in order to predict the average
level of NO2 concentrations in the atmosphere during 24 h, representative of the first day
of the following week. In addition to the subset of covariates previously identified as
being statistically significant through the application of Wald tests in Section 2.3 (i.e., O3,
CO, THTV and WD), three additional regressors are included in the set of input variables
adopted for the prediction exercise:

1. AP because the respective Wald test indicates that this covariate is statistically signifi-
cant for a critical p-value of 10% when NO2 residuals follow a logistic distribution,
which corresponds to the inclusion of a softmax layer in DLNN frameworks;
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2. The target lagged in time by one period, NO2i−1, based on the presence of autocorre-
lation identified by Durbin–Watson, Breusch–Godfrey and autoregressive conditional
heteroscedasticity (ARCH) tests; and

3. ECSL, which is not individually significant according to the Wald test, so that the
DLNN models used in the prediction exercise are expected to assign a null weight
to this input variable; hence, its inclusion is justified by the need to identify the
consistency between the statistical robustness associated with the pre-processing
phase and the set of different DLNN models used in the forecast analysis.

Thus, as shown in Figure 3, a total of 7 input variables are used in the prediction exercise.

  

Output Prediction: AVG of next 24h Time Steps

168h Time Steps Sequences of 7 InputsSample N

168h Time Steps Sequences of 7 InputsSample N+1

24h Sliding Window

Figure 3. Sample format used for the set of DLNN models used in this study.

Benchmark models. To evaluate and compare the performance of the proposed DL
innovative model, we consider the following benchmark models:

• WaveNet defined by [31], where the application of a grid search to find its optimal
depth shows that this is given by N = 4. A relevant aspect from this model is the
use of causal convolutions, which ensures that the order of data modeling is not
violated. Hence, the prediction P(xt+1) generated by the WaveNet at time-step t + 1
cannot depend on future time-steps. Another key characteristic is the use of dilated
convolutions to gradually increase the receptive field. A dilated convolution is a
convolution where the kernel K is applied over one area larger than its length k by
skipping input values with a certain step. It is equivalent to a convolution with a larger
filter derived from the original filter by dilating it with zeros. Hence, when using a
dilation rate dr for any dr > 1 , the causal padding has size given by dr × (K − 1).
Finally, as recognized by [32], the residual block is the heart of a WaveNet, being
constituted by two convolutional layers, one using the sigmoid activation function
and another using the tanh activation function, which are multiplied by each other.
Then, inside the block, the result is pass through into another convolution with k = 1
and dr = 1. This technique is referred to as the projection operation or channel
pooling layer. Both residual and parametrized skip connections are used throughout
the network to accelerate convergence and enable training of much deeper models.
This block is executed a given number of times in the depth of the network, with
N = {1, . . . , depth}. The dilatation dr increases exponentially according to the formula
dr = kN .

• Temporal Convolutional Network (TCN) defined by [33], where the application of
a grid search allows us to conclude that one should optimally consider N = 2, with
dr = {1, 2} and a global kernel size given by k = 2. The TCN is characterized by three
main characteristics:

– Convolutions in the architecture are causal, which means that there is no informa-
tion moving from future to past since causal convolutions imply that an output
at time t is convolved only with elements from time t and earlier (i.e., sequence
modeling) from the previous layer;

– The architecture can take an input sequence of any length and map it to an output
sequence of the same length similarly to RNNs; hence, similar to the WaveNet
model, causal padding of length k× 1 is added to keep subsequent layers with
the same length as previous ones; and

– It is possible to build a long and effective history size using deep neural networks
augmented with residual blocks and dilated convolutions.
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• Standard Long Short-Term Memory (LSTM) of [34], where the application of a grid
search reveals as optimal strategy the inclusion of a first LSTM layer with 64 neurons,
input shape of (168, 7), active return sequences and ReLu activation function, fol-
lowed by a second LSTM layer with 32 neurons and without active return sequences;
these layers are followed by three dense layers, where the last one for the output is
defined with tanh activation function; the remaining optimal technical options include
100 epochs with a batch size of 64 and applying the Adam optimizer. Conceptually,
the LSTM has three basic requirements:

– The system should store information for arbitrary durations;
– The system should be resistant to noise (i.e., fluctuations of random or irrelevant

inputs to predict the correct output); and
– Parameters should be trainable in a reasonable time.

The LSTM adds a cell state c to the standard RNN that runs straight down the entire
recursive chain with only some minor linear interactions to control the information
that needs to be remembered. These control structures are called gates. Activations are
stored in the internal state of an LSTM unit (i.e., recursive neuron), which holds long-
term temporal contextual information. A common architecture consist of a memory
cell c and its update c̃ input gate i, output gate o and forget gate f . Gates have in and
out connections. Weights of connections, which need to be learned during training,
are used to orient the operation of each gate.

• LSTM of [34] complemented by the standard attention mechanism of [35]. A standard
attention mechanism is a residual block that multiplies the output with its own input
hi and then reconnects to the main pipeline with a weighted scaled sequence. Scaling
parameters are called attention weights αi and the result is called context weights ci for
each value i of the input sequence. As such, c is the context vector of sequence size n.
The computation of αi results from applying a softmax activation function to the input
sequence xl on layer l, thereby meaning that input values of the sequence compete
with each other to receive attention. Knowing that the sum of all values obtained from
the softmax activation corresponds to 100%, attention weights in the attention vector
α have values within [0, 1].

• Bi-Dimensional Convolutional Long Short-Term Memory (ConvLSTM2D) defined
by [36] considering 7 segments, where each segment represents 1 day, each day consists
of 24 time-step hours and each time-step corresponds to 1 h. The ConvLSTM2D is a
recurrent layer similar to the LSTM, but internal matrix multiplications are exchanged
with convolution operations. Since we are dealing with a MTS problem, the concept
of sequence segment is introduced to make inputs compatible with ConvLSTM2D
layers, which have to deal with segments of temporal sequences. Data flow through
the ConvLSTM2D cells by keeping a 3D input dimension composed by Segments ×
TimeSteps × Variables rather than merely applying a 2D input dimension composed by
TimeSteps × Variables as observed in the standard LSTM.

Details on the standard attention mechanism. Attention is a mechanism to be com-
bined with LSTM layers to ensure the focus on certain parts of the input sequence, thereby
enabling a higher quality of learning [35]. Attention was originally introduced for machine
translation tasks, but it was rapidly spread into many other application fields. As high-
lighted in Figure 4, the basic attention mechanism can be seen as a residual block that
multiplies the output with its own input hi and then reconnects to the main pipeline with a
weighted scaled sequence. Scaling parameters are called attention weights αi and the result
is called context weights ci for each value i of the input sequence. As such, c is the context
vector of sequence size n. Formally

ci =
n

∑
i=0

αihi. (7)
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The computation of αi results from applying a softmax activation function to the input
sequence xl on layer l

αi =
exp(xl

i)
n
∑

k=1
exp(xl

k)
, (8)

which means that input values of the sequence compete with each other to receive attention.
Knowing that the sum of all values obtained from the softmax activation is 1, attention
weights in the attention vector α have values within [0, 1]. Since we are dealing with a MTS
problem, Figure 4 shows the incorporation of attention mechanism in a 2D dense layer (i.e.,
the standard attention mechanism). This layer is subject to a permutation to ensure that
the attention mechanism is applied to the time-steps dimension of each sequence and not
to the dimension representative of input variables. It is important to highlight that, when
the attention mechanism is applied after the LSTM layer, it must return internal generated
sequences, which are equal to the number of recursive cells (NRC). This parameter is used
inside the attention block to know how many sequences must be processed.

  
Bidirectional LSTM(NRC)

Permute(2, 1)

Input(TimeSteps,Variables)

Dense((Variables,Timesteps), Softmax)

Permute(2, 1)

Bidirectional LSTM(NRC, ReturnSeq=true)

Permute(2, 1)

Input(TimeSteps,Variables)

Dense((NRC,Timesteps), Softmax)

Permute(2, 1)

Figure 4. Example of standard attention mechanism before and after the LSTM layer.

Details on the bi-dimensional convolutional long short-term memory. Ref. [36]
propose the ConvLSTM2D layer to predict future rainfall intensity based on sequences
of meteorological images. By using this layer in a DLNN model, they were able to out-
perform state-of-the-art algorithms. The ConvLSTM2D is a recurrent layer similar to the
LSTM, but internal matrix multiplications are exchanged with convolution operations.
As highlighted in Figure 5, the concept of sequence segment is introduced to make in-
puts compatible with ConvLSTM2D layers, which in turn deal with segments of temporal
sequences in light of the MTS problem under scrutiny.

  

Figure 5. Example of input segmentation for the ConvLSTM2D model.

Data flow through the ConvLSTM2D cells by keeping a 3D input dimension com-
posed of Segments × TimeSteps × Variables rather than just the typical 2D input dimension
consisting of TimeSteps × Variables as in the standard LSTM. The ConvLSTM2D model can
be useful for the prediction of NO2 concentration levels because this MTS problem can have
certain individual patterns for each day of the week that can be grouped and contained
into a 2D input dimension. For this DLNN model in particular, 7 segments were used,
where each segment represents 1 day, each day consists of 24 time-steps and each time-step
corresponds to 1 h.

Proposed innovative deep learning neural network model. Two improvements are
added on top of the ConvLSTM2D model:

1. Inclusion of convolutional layers inside the attention block to ensure that input
variables are split to assess the individual influence of each input variable on the
target [1]; and
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2. Incorporation of roll padding, which is a new padding method that allows us to
dissuade the specification problem identified by the Ramsey test.

The first technical refinement consists of introducing convolutional layers inside the
attention block. Attention mechanisms can be useful to obtain a pattern of attention
in contiguous time-steps, particularly in the context of MTS problems. Two types of
convolutional layers can be introduced inside any attention block:

• One dimensional (1D) convolutional (i.e., Conv1D) layers; and
• Two dimensional (2D) convolutional (i.e., Conv2D) layers.

The implementation of Conv1D layers inside the attention block requires that, after the
multivariate sequence being split by variable, a path should be created for each univariate
sequence processed with 1D convolutional layers. It is also important to observe that,
inside the attention block, each path must return a 1D vector with size TimeSteps, using only
one convolution kernel. Additionally, this single channel 1D convolution output must use
the softmax activation. The result of each path is concatenated leading to the formation of a
feature map of size TimeSteps × Variables with attention weights αi for each input variable.

Nevertheless, as observed in Figure 6, the novelty in the proposed architecture consists
of introducing Conv2D layers inside the attention block for the ConvLSTM2D model,
which deals with 3D maps holding a Segments × TimeSteps × Variables format. After the
segmented multivariate sequence being split by variable, a 2D input dimension is formed
since the new map is characterized by a Segments × TimeSteps format, which is then
processed by 2D convolutional layers. This means that a 2D kernel is not only able to
capture patterns in contiguous time-steps, but it also has the ability to identify patterns for
the same time-step in previous and next segments (e.g., when a segment represents days
and time-steps correspond to hours, a 2D kernel captures patterns that associate different
hours of the day i as well as patterns that associate the same hour j in adjacent days to the
day i). Note that the 2D output map for each variable is the result of a softmax activation
function. Individual values for each explanatory variable in the resulting 2D map compete
against each other and their sum is equal to 1 with a scaling factor ranging between [0, 1].
As described in Equation (7), the resulting α after all convolutions being concatenated is a
compatible 3D map to scale inputs h of the attention block to obtain c.
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Figure 6. Attention using 2D convolutional layer before and after the ConvLSTM2D.
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Figure 6 also reveals that roll padding can be used to complement the Conv2D attention
mechanism, particularly in MTS problems that exhibit cyclical properties. Since the analysis
deals with segments of 7 days, roll padding can be used in the component representing
segments to ensure that the first day of a given week is correlated with the last day of the
previous week once assuming that data exhibit a weekly cyclicality. To confirm that this
fact holds true in the MTS problem under scrutiny, one needs to compare the unconstrained
model given by:

NO∗2i = β2COi + β3O3i + β4WDi + β5THTVi

+β6 APi + β7NO2i−1 + β8ECSLi + β9D1i + β10D2i + β11D3i + β12D4i + ui,
(9)

against the restricted model that corresponds to:

NO∗2i = β2COi + β3O3i + β4WDi + β5THTVi + β6 APi + β7NO2i−1 + β8ECSLi, (10)

by means of performing a likelihood ratio (LR) test to check for the joint significance
of the null hypothesis H0 : β9 = β10 = β11 = β12 = 0, where D1i corresponds to
a dummy variable that represents the first week of each month, D2i corresponds to a
dummy variable that represents the second week of each month, D3i corresponds to
a dummy variable that represents the third week of each month and D4i corresponds
to a dummy variable that represents the fourth week of each month. Note that both
models should not include the regression coefficient β1 related to the independent term to
ensure that the statistical test confronting both models is focused on capturing significant
differences strictly caused by weekly cyclicality. Note that it is mandatory emphasizing that
the statistical test must be developed without including the independent term since this
action, which consists of creating a regression model with centered explanatory variables,
is the correct way to empirically infer the quality adjustment of any regression model
because centering a model allows to remove the unobserved–heterogeneous–characteristics
affecting the data, so that all regression coefficients remain equal to the original model with
the exception of the independent term’s coefficient, which disappears from the orginal
model’s specification. If the observed p-value is below the critical significance level of 5%,
then the null hypothesis representative of the absence of weekly cyclicality can be rejected.
If this statistical property is verified, then we are obliged to introduce dummy variables
representing weekly cyclicality or, alternatively, not introduce them through the inclusion
of roll padding. Estimated coefficients of the restricted model in (10) are given by:

N̂O∗2 = 36.9673CO
(1.4163)
[26.10]

+ 0.0324O3
(0.0052)
[6.29]

− 0.0035WD
(0.0015
[−2.31]

− 0.0011THTV
(0.0002)
[−4.92]

−0.0279AP
(0.0037)
[−7.59]

+ 0.9058NO2i−1
(0.0041)
[223.47]

+ 0.2030ECSL
(0.0520)
[3.91]

,

with R2= 0.9745, while estimated coefficients of the unrestricted model in (9) that includes
additive effects representative of weekly cyclicality correspond to

N̂O∗2 = 37.1852CO
(1.1487)
[26.21]

+ 0.0327O3
(0.0052)
[6.32]

− 0.0034WD
(0.0016)
[−2.16]

− 0.0012THTV
(0.0002)
[−5.09]

+ 0.0545AP
(0.0290)
[1.88]

+0.9039NO2i−1
(0.0041)
[221.07]

+ 0.2284ECSL
(0.0527)
[4.33]

− 84.1748D1
(29.5185)
[−2.85]

− 84.2316D2
(29.5240)
[−2.89]

− 84.3350D3
(29.5209)
[−2.86]

− 84.7390D4
(29.5335)
[−2.87]

with R2= 0.9746, standard errors within parentheses and observed t-statistics within brackets.



Atmosphere 2022, 13, 1672 24 of 50

The LR test result is χ2(4, n = 7823) = 12.64, p < 0.05, thereby implying that the null
hypothesis contemplating the absence of weekly cyclicality is rejected. Similar conclusion
emerges from the Wald test applied to assess the joint significance of all additive effects,
given that F(4, n− k = 7812) = 3.16, p < 0.05 for the case with uncontrolled heteroscedas-
ticity and F(4, n− k = 7812) = 2.87, p < 0.05 for the case with inclusion of robust standard
errors by considering the White’s procedure to control for heteroscedasticity.

Individual significance test results also indicate that each dummy variable is relevant
to explain the target given that FD1(1, n − k = 7812) = 8.13, p < 0.01 in addition to
obtain FD2(1, n − k = 7812) = 8.33, p < 0.01, FD3(n − k = 7812) = 8.16, p < 0.01 and
FD4(1, n− k = 7812) = 8.23, p < 0.01 for the case with uncontrolled heteroscedasticity
and, for the case with inclusion of robust standard errors to control for heteroscedasticity,
yields FD1(1, n − k = 7812) = 7.70, p < 0.01, FD2(1, n − k = 7812) = 7.88, p < 0.01,
FD3(n− k = 7812) = 7.74, p < 0.01 and FD4(1, n− k = 7812) = 7.78, p < 0.01.

Consequently, knowing that roll padding is a process capable of capturing the 7-days
window cyclicity observed in the data, the incorporation of dummy variables D1, D2, D3
and D4 in the set of input variables becomes a redundant action.

For illustrative purposes, Figure 7 describes the ConvLSTM2D architecture with the
Conv2D attention mechanism and roll padding, which defines the internationally patented
VSCA model.
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Figure 7. Variable Split Convolutional Attention model applied to the prediction exercise.
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2.6. Conceptual Framework and Methodological Pipeline

In order to systematize main ideas related to the empirical analysis and robustness checks,
Figure 8 presents the conceptual framework—including research hypotheses—and the
methodological pipeline adopted in this study.
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Figure 8. Conceptual framework, research hypotheses and methodological pipeline.

3. Results
3.1. Classification
3.1.1. Performance, Model Selection, Interpretation of Coefficients and Marginal Effects

Probit and logit exhibit high sensitivity but also low specificity, which suggests that
both discrete choice models predominantly fail to predict observations that do not comply
with the legal hourly ceiling imposed onto NO2 concentration levels.

However, as a large part of the sample is composed of observations that satisfy the
HLV associated with the target, both models end up showing a good classification capacity,
manifested by high accuracy values. Knowing that probit is considered the best binary
model since it exhibits the highest log-likelihood and the lowest AIC and BIC, (6) in Table 5
displays key results for clarifying the benefit of this classification analysis. In addition to
verifying that all coefficients are significant, the following interpretation can be inferred:

• Negative sign of O3 and CO indicates that satisfying the HLV of NO2 is less likely
with additional level of O3 and CO emissions;

• Positive sign of WD reveals that satisfying the HLV of NO2 is more likely when the
wind direction changes from north to east; and

• Even more interestingly, the null value taken by the representative coefficient of THTV
suggests that higher road traffic does not influence the fulfilment of NO2’s legal hourly
ceiling. Consequently, this result allows us to conclude that THTV has a neutral
character on satisfying the HLV associated with the target.

Moreover, both types of marginal effects are significant and quantitatively indicate that:

• In average terms, in the set of 7824 observations of the sample, it is estimated that
an additional µg/m3 of CO emitted to the atmosphere decreases the probability of
satisfying the HLV of NO2 by 19.1 percentage points (p.p.); however, at the mean
observation level, the probability of satisfying the HLV of NO2 only decreases 2.3 p.p.;

• In average terms, in the set of 7824 observations of the sample, it is estimated that
an additional µg/m3 of ozone concentrated in the air decreases the probability of
satisfying the HLV of NO2 by 0.04 p.p. while, at the mean observation level, this
probability drops 0.01 p.p.;
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Table 5. Main results of the classification analysis.

Regression Models for the Target NO∗2 Discrete Choice Models for the Binary Dependent Variable NO2
(1) (2) (3) (4) (5) (6)

Coefficient Coefficient Coefficient Coefficient/ Coefficient Marginal Effect Coefficient Marginal Effect
Marginal Effect Average At the Mean Average At the Mean

Input variable

CO 172.802 ***
3.472

172.802 ***
4.472

110.325 ***
2.078

−0.738 ***
0.025

−13.382 ***
0.929

−0.202 ***
0.011

−0.033 ***
0.005

−6.379 ***
0.465

−0.191 ***
0.011

−0.023 ***
0.006

O3
0.627 ***

0.012
0.627 ***

0.015
0.362 ***

0.009
−0.0005 ***

0.000
−0.029 ***

0.002
−0.0004 ***

0.00004
−0.0001 ***

0.00001
−0.015 ***

0.001
−0.0004 ***

0.00004
−0.0001 ***

0.00001

THTV −0.014 ***
0.001

−0.014 ***
0.001

−0.0001
0.0001

−0.00000
0.00000

0.0003 **
0.0001

0.00000 **
0.00000

0.00000 **
0.00000

0.0001 **
0.0001

0.00000 **
0.00000

0.00000 **
0.00000

WD −0.066 ***
0.004

−0.066 ***
0.004

−0.001
0.002

0.00002 *
0.00001

0.004 ***
0.001

0.00006 ***
0.00001

0.00000 ***
0.00000

0.002 ***
0.0004

0.00006 ***
0.00001

0.00000 ***
0.00000

Independent term −30.147 ***
2.467

−30.147 ***
2.919

−4.144
4.625

1.422 ***
0.014

14.541 ***
0.778

7.169 ***
0.401

ρ 0.966

Performance metrics
R2 0.502 0.502 0.422 0.383
RMSE 45.484 45.484 13.302 0.148
AIC 917.378 905.007
BIC 952.203 939.832
Log-likelihood −453.689 −447.504
Pseudo-R2 0.634 0.639
Sensitivity

[
pr
(

N̂O2 = 1|NO2 = 1
)]

99.39% 99.50%

Specificity
[

pr
(

N̂O2 = 0|NO2 = 0
)]

55.86% 48.97%
Accuracy 97.78% 97.62%

Notes: *** (**) [*] denotes statistical significance at the 1% (5%) [10%] level, respectively. Column (1) shows OLS estimation without heteroscedasticity correction, column (2) presents
OLS estimation with heteroscedasticity correction by the White’s procedure, column (3) displays Cochrane–Orcutt AR(1) regression to correct for the presence of autocorrelation,
column (4) exhibits LPM estimation with heteroscedasticity correction by the White’s procedure, column (5) reveals the Logit estimation and column (6) provides results from the
Probit estimation. Statistical criteria (i.e., either the lowest AIC and BIC or the highest log-likelihood value) imply that probit is the best model to fit the data being, thus, the one whose
coefficients and marginal effects are subject to interpretation.
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• At the level of wind direction, the exact value of the average marginal effect is
0.0000575 which suggests that, for each change in wind direction from north to east
in the magnitude of 100 degrees, the probability of satisfying the HLV concentration
of NO2 increases by 0.58 p.p.; at the average observation level, the increase is only
0.07 p.p. given the value 7.02 × 10−6 taken by the respective marginal effect; and

• With regard to road traffic, the exact value of the average marginal effect is 4.12× 10−6,
which suggests that, for every 10,000 additional vehicles circulating per hour in the
city of Lisbon, the probability of satisfying the HLV of NO2 concentration decreases
by 4.12 p.p.; at the mean observation level, the reduction is only 0.05 p.p. given the
value 5.03 × 10−7 taken by the respective marginal effect.

Considering the set of research hypotheses formulated in Section 1 and relying on the
outcomes of this initial classification exercise, it can be stated that:

• H1 and H3 are verified and thus unequivocally validated; notwithstanding, despite
the magnitude being low, results indicate that a change in wind direction can influence
the probability of satisfying NO2’s legal hourly ceiling;

• H2 is only partially verified because, although O3 negatively influences the probability
of compliance with the HLV associated with the target, the magnitude of the effect is
redundant; and

• H5 is also ratified such that, during the period between 1 September 2021 and 23 July
2022, results suggest that the relationship between THTV and NO2 is characterized by
the approximation to what, in the absence of a better terminology, can be considered a
principle of neutrality.

3.1.2. Standard Regularization Techniques Combined with Logistic LASSO

Table 6 shows results of the logistic LASSO model combined with three different regu-
larization techniques: k-fold cross-validation, rigorous penalization and information criteria
(i.e., AIC, BIC and EBIC). This extensions allows us to formulate three main conclusions:

1. Depending on the penalization technique adopted to reduce input dimensionality, it
can be concluded that only AP and WI are included on top of the input variables used
in the initial exercise;

2. Results show that the sign exhibited by the estimated coefficients is coherent across
different regularization techniques.; and

3. More importantly, the sign of each coefficient does not change relative to the bench-
mark scenario, which qualitatively reinforces the initial findings.

3.1.3. Continual Learning

While the first step of the CL approach allows us to obtain predicted probabilities of
the dependent variable by means of applying RF to the set of input variables, the second
step uses these values as dependent variable of a binary probit/logit estimation. Estimated
coefficients displayed in Table 7 exhibit the same sign to those sustained in the initial
classification exercise, thereby confirming the qualitative robustness of benchmark results.

3.1.4. Variable Importance Analysis

VIA is also performed, whose outcomes in Figure 9a–d demonstrate that:

• Regardless of the scenario, CO has the highest relative importance on the target;
• WD has the strongest relative importance on NO2 if considering only weather condi-

tions; and
• VIA outcomes are clearly consistent with those yielding in the benchmark analysis.
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Table 6. Outcomes considering three regularization techniques combined with Logistic LASSO.

Technique k-Fold Cross-Validation (Assumption: 5 Folds) Rigorous Penalization Information Criteria
Criterion LOPT (λ * = 6.473) LSE (λ * = 61.756) Either AIC, BIC or EBIC (λ * = 8.994)
Model Logistic LASSO Post-Estimation Logit Logistic LASSO Post-Estimation Logit Logistic LASSO Post-Estimation Logit Logistic LASSO Post-Estimation Logit
Input Variable Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient

O3 −0.027 *** −0.030 *** −0.015 *** −0.029 *** −0.008 *** −0.028 *** −0.026 *** −0.030 ***
CO −12.885 *** −13.428 *** −10.411 *** −13.486 *** −9.223 *** −13.641 *** −12.706 *** −13.428 ***
AP −0.013 *** −0.021 *** −0.009 *** −0.021 ***
WI 0.013 *** 0.022 *** 0.01 *** 0.022 ***
WD 0.003 *** 0.004 *** 0.0005 *** 0.004 *** 0.003 *** 0.004 ***
THTV 0.0002 *** 0.0003 *** 0.0002 *** 0.0003 ***
Independent term 26.577 *** 35.414 *** 11.559 *** 14.781 *** 10.219 *** 15.420 *** 22.952 *** 35.414 ***

Performance metrics (after converting the classification problem into a regression problem)
RMSE 0.129 0.137 0.129
MAE 0.032 0.041 0.033
MAPE 0.016 0.020 0.016
Theil’s U 0.851 0.851 0.844
Wilcoxon signed-rank test
H0: Med [HLV(NO2)] = Med

[
̂HLV(NO2)

] 67.394 *** 66.897 *** 67.321 ***

Notes: *** denotes statistical significance at the 1% level. ‘LOPT’ describes the penalty level that minimizes the cross-entropy loss measure, while ‘LSE’ corresponds to the largest penalty
level for which the mean square prediction error is within standard errors of the minimum loss. The Wilcoxon signed-rank test checks the null hypothesis that the median of samples
containing actual and predicted values of the target are equal.
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Table 7. Second-step outcomes with continual learning approach.

Method Probit Logit
Coefficient Coefficient Coefficient Marginal Effect Coefficient Marginal Effect

Input Variable Average At the Mean Average At the Mean

̂pr(NO2)RF
1.226 ***
(0.008)

1.208 ***
(0.120)

̂pr(NO2)
2

RF
0.015

(0.104)

O3
−0.021 ***

(0.002)
0.0004 ***
(0.00004)

0.00005 ***
(0.00001)

−0.030 ***
(0.002)

0.0004 ***
(0.00004)

0.0001 ***
(0.00001)

CO −9.060 ***
(0.664)

0.190 ***
(0.011)

0.022 ***
(0.006)

−13.441 ***
(0.937)

0.202 ***
(0.011)

0.032 ***
(0.005)

WD 0.003 ***
(0.001)

−0.0001 ***
(0.00001)

−0.00000 ***
(0.00000)

0.004 ***
(0.001)

−0.0001 ***
(0.00001)

−0.00000 ***
(0.00000)

THTV 0.0002 **
(0.0001)

0.00000 **
(0.00000)

0.00000 **
(0.00000)

0.0003 **
(0.0001)

0.00000 **
(0.00000)

0.00000 **
(0.00000)

Independent term −0.219 ***
(0.008)

−0.216 ***
(0.018)

10.181 ***
(0.573)

14.062 ***
(0.784)

Performance metrics
R2 0.969 0.967
RMSE 0.033 0.033
AIC 896.743 909.199
BIC 931.567 944.024
Log pseudolikelihood −443.371 −449.599

Notes: *** (**) denotes statistical significance at the 1% (5%) level, respectively. OLS estimation with correction of heteroscedasticity serves to confirm that the linear predicted probability
of the target estimated by RF in the first-step, rather than its quadratic version, should be the one used as explained variable in the second-step of CL.
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Figure 9. Variable importance analysis applied to four different scenarios. (a) All input variables.
(b) Only weather inputs. (c) Only significant air pollutants. (d) Only significant covariates from the
benchmark.

3.1.5. Ordered Multinomial Discrete Choice Model

Coefficients of the logit and probit ordered model differ by a scale factor. Therefore,
similarly to the binary DCM, only their sign can be subject to interpretation. Results
displayed in Table 8 indicate that the ordered logit model is the optimal choice for assessing
coefficients and marginal effects since it exhibits the highest log-likelihood and the lowest
information criteria, with AIC of 4040.452 and BIC of 4082.242. All estimated coefficients are
statistically significant and their interpretation is straightforward: the reduction of NO2 is
improved—from the worst category with concentration levels above or equal to 250 µg/m3

to the intermediate category with concentration levels between 150 and 249 µg/m3 and the
best category with concentration levels below 150 µg/m3—with decreasing (increasing)
CO and O3 (WD and THTV) values, respectively. Therefore, a first conclusion is that the
results of binary and multinomial DCMs are consistent. Moreover, intercept parameters of
the OM-DCM are significantly different from each other, which validates the more refined
segmentation of the target. Results also show that marginal effects at the mean and average
marginal effects from the logit estimation resemble to those of the probit model. A key
characteristic of marginal effects is that their sum across categories is necessarily zero.

Consequently, when a certain target is divided in more than two classes, one can
identify which category is more volatile to changes in a given regressor. Focusing on the
average marginal effect of CO on the target, it can be concluded that:

• With the probit model, one unit increase in CO is associated with being 88.65 p.p. less
likely to fall in the category of low NO2 concentration levels, 87.26 p.p. more likely to
stand in the intermediate category of NO2 concentration levels—where the HLV either
may or may not be surpassed—and 1.39 p.p. more likely to be part of the category
that largely exceeds the HLV of NO2; and
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Table 8. Outcomes with ordered multinomial discrete choice models.

Type of Ordered Multinomial Discrete Choice Model Probit
Input Variable Coefficient Marginal Effect

Average At the Mean
Excellent Category

(NO2i *< 150)
Intermediate Category
(150 ≤ NO2i * < 250)

Poor Category
(NO2i * ≥ 250)

Excellent Category
(NO2i * < 150)

Intermediate Category
(150 ≤NO2i * < 250)

Poor Category
(NO2i * ≥ 250)

CO
−6.366 ***

(0.300)
−0.887 ***

(0.032)
0.873 ***
(0.032)

0.014 ***
(0.001)

−0.849 ***
(0.043)

0.849 ***
(0.043)

0.00000 ***
(0.00000)

O3
−0.011 ***

(0.001)
−0.002 ***
(0.0001)

0.001 ***
(0.0001)

0.00002 ***
(0.00000)

−0.001 ***
(0.0001)

0.001 ***
(0.0001)

0.00000 ***
(0.00000)

WD
0.002 ***
(0.0002)

0.0003 ***
(0.00002)

−0.0003 ***
(0.00002)

0.00000 ***
(0.00000)

0.0003 ***
(0.00002)

−0.0003 ***
(0.00002)

0.00000 ***
(0.00000)

THTV
0.0005 ***
(0.00003)

0.0001 ***
(0.00000)

−0.0001 ***
(0.00000)

0.00000 ***
(0.00000)

0.0001 ***
(0.00000)

−0.0001 ***
(0.00000)

0.00000 ***
(0.00000)

Cut1(NO2i *)
−9.877
(0.466)

Cut2(NO2i *)
−4.983
(0.186)

Performance metrics
AIC 4041.474
BIC 4083.263
Log pseudolikelihood −2014.737
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Table 8. Cont.

Type of Ordered Multinomial Discrete Choice Model Probit
Input Variable Coefficient Marginal Effect

Average At the Mean
Excellent Category

(NO2i *< 150)
Intermediate Category
(150 ≤ NO2i * < 250)

Poor Category
(NO2i * ≥ 250)

Excellent Category
(NO2i * < 150)

Intermediate Category
(150 ≤NO2i * < 250)

Poor Category
(NO2i * ≥ 250)

CO
−12.218 ***

(0.519)
−0.923 ***

(0.030)
0.909 ***
(0.030)

0.014 ***
(0.001)

−0.760 ***
(0.040)

0.760 ***
(0.043)

0.00000 ***
(0.00000)

O3
−0.019 ***

(0.001)
−0.001 ***
(0.0001)

0.001 ***
(0.0001)

0.00002 ***
(0.00000)

−0.001 ***
(0.0001)

0.001 ***
(0.0001)

0.00000 ***
(0.00000)

WD
0.004 ***
(0.0003)

0.0003 ***
(0.00002)

−0.0003 ***
(0.00002)

0.00000 ***
(0.00000)

0.0003 ***
(0.00002)

−0.0003 ***
(0.00002)

0.00000 ***
(0.00000)

THTV
0.001 ***
(0.0001)

0.0001 ***
(0.00000)

−0.0001 ***
(0.00000)

0.00000 ***
(0.00000)

0.0001 ***
(0.00000)

−0.0001 ***
(0.00000)

0.00000 ***
(0.00000)

Cut1(NO2i *)
−18.674
(0.848)

Cut2(NO2i *)
−9.253
(0.326)

Performance metrics
AIC 4040.452
BIC 4082.242
Log pseudolikelihood −2014.226

Notes: *** (*) denotes statistical significance at the 1% (10%) level, respectively.
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• With the logit model, one unit increase in CO is associated with being 92.28 p.p. less
likely to fall in the category of low NO2 concentration levels, 90.86 p.p. more likely
to stand in the intermediate category of NO2 concentration levels and 1.43 p.p. more
likely to be part of the category that largely exceeds the HLV of NO2, which implies
that the logit estimation sharpens even more the chance of falling into the low or
intermediate categories of NO2.

Now, focusing on the marginal effect at the mean, it can be observed that:

• With the probit model, one unit increase in CO is associated with being 84.88 p.p. less
likely to fall in the category of low NO2 concentration levels and 84.88 p.p. more likely
to stand in the intermediate category of NO2 concentration levels, while it has a null
influence on the likelihood of belonging to the category that largely exceeds the HLV
of NO2; and

• With the logit model, one unit increase in CO is associated with being 75.99 p.p. less
likely to fall in the category of low NO2 concentration levels and 75.98 p.p. more
likely to stand in the intermediate category of NO2 concentration levels, while it has
a null influence on the likelihood of belonging to the category that largely exceeds
the HLV of NO2; therefore, in opposition to what happens with the average marginal
effects, the logit model smooths interchangeability between the low and intermediate
category of NO2 in relation to the probit model.

Furthermore, the remaining covariates sustain marginal effects on NO2 concentration
levels that are close to zero being, thus, characterized by a much more stable influence on
the target compared to CO. This conclusion reinforces the stylized fact that CO is the most
important determinant of volatility in NO2 concentration levels and, based on the strong
interchangeability of marginal effects between the low and intermediate category of NO2,
also the main driver of NO2 legal ceiling violations.

3.1.6. Stochastic Frontier Analysis

Knowing that estimated coefficients of input-oriented SFA models correspond to direct
effects, results in Table 9 reinforce the significant and positive impact of CO on the target.

Table 9. Outcomes of time-variant models for stochastic frontier analysis.

Model Tfe SFA Tre SFA MLrei SFA ILSfe SFA MLred SFA LSDVfe SFA
Input Variable Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient

O3
0.693 ***
(0.016)

0.693 ***
(0.016)

0.677 ***
(0.025)

0.695 ***
(0.016)

0.695 ***
(0.016)

0.695 ***
(0.016)

CO 180.598 ***
(4.835)

180.598 ***
(4.835)

181.571 ***
(4.666)

181.903 ***
(4.916)

181.903 ***
(4.916)

181.903 ***
(4.916)

WD −0.064 ***
(0.004)

−0.064 ***
(0.004)

−0.061 ***
(0.004)

−0.067 ***
(0.004)

−0.067 ***
(0.004)

−0.067 ***
(0.004)

THTV −0.020 ***
(0.001)

−0.020 ***
(0.001)

−0.021 ***
(0.002)

−0.015 ***
(0.001)

−0.015 ***
(0.001)

−0.015 ***
(0.001)

Independent term −5.923 ***
(3.065)

−5.923 ***
(3.065)

13.054 ***
(10.923)

−10.477 ***
(3.056)

−10.477 ***
(3.056)

−10.477 ***
(3.056)

Performance metrics
Log likelihood −40,854.017 −40,854.017 −40,840.225 −40,890.490 −40,890.490 −40,890.490

Notes: *** denotes statistical significance at the 1% level, respectively. The regression includes robust standard errors, which
adjust for within-cluster correlation. THTV is the explanatory variable specified for the inefficiency variance function. ‘Tfe SFA’
stands for true fixed effects SFA model, whereas ‘Tre SFA’ stands for true random effects SFA model [37]. ‘MLrei SFA’ stands for
maximum likelihood random effects time-varying inefficiency effects model [38]. ‘ILSfe SFA’ stands for iterative least squares
time-varying fixed effects model [39]. ‘MLred SFA’ stands for maximum likelihood random effects time-varying efficiency decay
model [40]. ‘LSDVfe SFA’ stands for modified least squares dummy variable time-varying fixed effects model [41].

Overall, it can be concluded that SFA results are consistent with those obtained by
DCMs and respective ML extensions in the classification analysis.

3.1.7. Normative Improvements through Sample Segmentation

Figure 10a begins by clarifying that only CO sustains a marginal effect on the target
quantitatively different from the null value. Figure 10b then reveals the evolution of the
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marginal effect for all admissible values of CO, thus allowing the conclusion that the
probability of satisfying NO2’s HLV is inversely proportional to the level of CO emissions.
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Figure 10. Average marginal effects without segmentation. (a) Impact of all significant inputs.
(b) Impact for all admissible values of CO.

Peak traffic hours. Considering the effect of CO emissions on the target keeping the
remaining input variables fixed at their mean value, Figure 11 confirms that the lowest
(highest) probability of satisfying the HLV of NO2 for all admissible values of CO stands in
the period between 8 h–16 h (24 h–8 h), respectively. Therefore, H4 is empirically validated.

Seasons. Considering the effect of CO emissions on the target keeping the remaining
input variables fixed at their mean value and knowing that the dichotomous dependent
variable did not change category during spring and summer, Figure 12 confirms that the
probability of satisfying the HLV of NO2 for all admissible values of CO is higher in autumn
compared to winter.

Weekend versus weekdays. Considering the effect of CO emissions on the target keeping
the remaining input variables fixed at their mean value, Figure 13 confirms that the proba-
bility of satisfying the HLV of NO2 for all admissible values of CO is lower in the weekend
compared to weekdays. However, unlike the other types of segmentation, the difference
is not very pronounced, which suggests the need to apply transversal policy measures
instead of differentiating ones depending on whether we are dealing with weekdays or
the weekend.
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Figure 11. Impact of CO with segmentation by peak traffic hour.
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Figure 13. Impact of CO with segmentation between weekdays and the weekend.

3.2. Prediction
3.2.1. Performance Evaluation

Forecasting error metrics. Prediction results are confirmed by relying on standard
forecasting error metrics—mean squared error (MSE ), root-mean-square error (RMSE) and
mean absolute error (MAE)—whose formulas are respectively given by:

MSE =

n
∑

i=1

(
NO∗2i − N̂O∗2i

)
n

RMSE =

√√√√√ n
∑

i=1

(
NO∗2i − N̂O∗2i

)
n

and

MAE =

n
∑

i=1

∣∣∣(NO∗2i − N̂O∗2i

)∣∣∣
n

,

with n = 7824. Table 10 presents main results, whose assessment and interpretation can be
summarized as follows. First, there is evidence that both WaveNet and TCN have higher
forecasting errors relative to LSTM models, which implies that these DLNN models exhibit
a weaker performance. Second, LSTM models incorporating attention mechanisms have
lower forecasting errors compared to LSTM models absent of attention mechanisms. This
result holds true, regardless of the type of attention mechanism introduced. Third, forecast-
ing errors are lower for the ConvLSTM2D model with Conv2D attention mechanism and
roll padding, which confirms that VSCA is best model in terms of predictive performance
for the case study under analysis. Fourth, the benefit associated with the Conv2D attention
mechanism is particularly recognized in the ConvLSTM2D model because forecasting
errors decrease substantially relative to the magnitude of reduction observed for LSTM
models where standard attention and Conv1D attention mechanisms are included.

Table 10. Forecasting errors in the test set with normalized output values.

DLNN Model RMSE MSE MAE

WaveNet 0.10169 0.01034 0.06713
TCN 0.10383 0.01078 0.06753
LSTM 0.09859 0.00972 0.06691
LSTM with Standard Attention Mechanism 0.09550 0.00912 0.06586
LSTM with Conv1D Attention 0.09192 0.00845 0.06499
ConvLSTM2D 0.09889 0.00978 0.06597
ConvLSTM2D with Conv2D Attention and roll padding (VSCA) 0.08940 0.00799 0.06414

Graphical visualization of the target applying the best prediction model. To pro-
vide a greater sensitivity on the model holding the best predictive performance, Figure 14
shows a confrontation between predicted and actual output values in the validation set.
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One can conclude that, in light of the case study under scrutiny, the technical competence
provided by the combination of a new padding method—which avoids the need to intro-
duce additive effects representative of cyclicity with weekly periodicity in the regression
model—with a special Conv 2D attention mechanism—which ensures that the attention
mechanism that establishes the connection between the set of inputs and target performs
this operation individually and independently for each input variable—ensures a superior
predictive ability of the VSCA model compared to alternative DLNN options currently
available for the analysis of MTS problems.
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Figure 14. Predicted and actual de-normalized output values with the VSCA model and using
the validation set. Notes: the dotted red horizontal line clarifies the mean value of the target,
de-normalized output values correspond to the 24 h average of NO2 concentration levels in the
atmosphere and the validation set consists of 81 consecutive days.

Moreover, the VSCA model offers two additional advantages that should be disclosed:

1. Adaptability and flexibility to other contexts (e.g., forecasting the evolution of inflation
rate in the context of supply-side shocks); and

2. Establishes the rationale for a credible and effective connection between the field
of Advanced Econometrics and Artificial Intelligence (AI) by providing a statistical
ground for the inclusion of technical components such as the roll padding rather than
falling into the fallacy associated with a pseudo-interpretation of weights observed in
some AI studies.

3.2.2. Robustness Checks

In Section 3.2.1, different DLNN models are compared to confirm a new stylized fact:
a superior generalization power sustained by the VSCA model. Differently, the research
goal here is not to evaluate whether forecast errors vary according to different technical
modifications, but rather to understand whether changes in the value taken by different
parameters modify the qualitative nature of NO2 concentration levels in the atmosphere
which, at the validation set level, exhibits two main characteristics:

1. A strong volatility; and
2. A negligible downward trend.

To fulfill this purpose, we use the standard LSTM model considered in the initial
prediction exercise, whose parameters have been optimized through a grid search. These
include a first LSTM layer that contains 64 neurons and ReLu activation function combined
with a second LSTM layer that contains 32 neurons. These layers are followed by three
dense layers, where the last one for the output is defined with tanh activation function.
Moreover, it is considered 100 epochs with a batch size of 64 and the Adam optimizer is
applied to the learning process. Then, in order to identify whether the qualitative nature of
NO2 concentration levels in the atmosphere remains unchanged, test and validation sets
are nested to generalize for 163 days and, without de-normalizing predicted and actual
values taken by the dependent variable, the following alternative options are applied:

• Change in the number of recursive neurons composing the first LSTM layer from 64
to r = {128, 256, 512} as observed in Figure 15a–d;
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• Modification of the number of dense layers from 3 to d = {1, 5} as observed in
Figure 16a–c;

• Change the batch size from 64 to b = {16, 32, 128, 512} as observed in Figure 17a–e;
• Change in the number of epochs from 100 to e = {10, 250, 500} as observed in

Figure 18a–d;
• Inclusion of dropout in the different layers, with dp = {5%, 10%, 20%} as observed in

Figure 19a–d;
• Modification of the activation function used in the dense layer for the output from

Tanh to a = {Sigmoid, ReLu} as observed in Figure 20a–c; and
• Change Adam to o = {RmsProp, Adadelta, Adagrad, SGD, Nadam, FTRL} alterna-

tive set of optimizers as observed in Figure 21a–g, while bearing in mind that:

– Adam is a stochastic gradient descent method that is based on the adaptive
estimation of first (i.e., mean) and second order (i.e., variance and covariance)
moments;

– RMSPROP maintains a discounted moving average of the square of the gradients,
dividing the gradient by the root of the mean;

– Adadelta is a stochastic gradient descent method that relies on the adaptive
learning rate per dimension to solve the disadvantage of continuous drop in the
learning rate throughout training;

– Adagrad is an optimizer with a parameterized learning rate, adapting to the
frequency for which a parameter is updated during training (i.e., the more updates
a parameter receives, the smaller the parameterizations);

– SGD is a stochastic gradient descent method using the Nesterov momentum
when the learning rate decreases;

– Nadam is an optimizer derived from Adam including Nesterov momentum and
with a correlation with the RMSPROP optimizer; and

– FTRL is a method that uses a unique global base learning rate and can behave
such as Adagrad with learning rate power= −0.5 or as a descending gradient
with learning rate power close to zero.

It should be emphasized that the best checkpoint model option is used in the callback,
whose function is to save the best model based on the validation error value at each
interaction, if this is reduced. The early stop option was also implemented to prevent
overfitting with a patience of 25 based on the validation error value. As the model is
trained, if there is no improvement in the patience distance, it stops and restores those that
are considered best weights for the model.
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Figure 15. Predicted versus actual normalized output values considering changes in the number of
recursive neurons used in the first LSTM layer. (a) First LSTM layer with 64 units. (b) First LSTM
layer with 128 units. (c) First LSTM layer with 256 units. (d) First LSTM layer with 512 units.
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Figure 16. Predicted versus actual normalized output values with different number of dense layers.
(a) 1 dense layer. (b) 3 dense layers. (c) 5 dense layers.
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(a) Batch size of 64.
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(b) Batch size of 16.
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(c) Batch size of 32.
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(d) Batch size of 128.
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(e) Batch size of 512.

Figure 17. Predicted vs. actual normalized output values with changes in the batch size.
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Figure 18. Predicted vs. actual normalized output values with changes in the number of epochs.
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Figure 19. Predicted versus actual normalized output values for diverse dropouts added to all layers.
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Figure 20. Predicted versus actual normalized output values considering different activation func-
tions applied to the last dense layer.
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Figure 21. Predicted vs. actual normalized output values with changes in the selected optimizer.
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As clarified in Figures 15a and 21g, main characteristics exhibited by NO2 in the
initial exercise remain qualitatively equivalent in the panoply of robustness checks, which
reinforces the consistent character of NO2 concentration levels in the atmosphere with
respect to volatility and stability over time. Indeed, a Wald test applied to each experiment
allows us to confirm that the null hypothesis representing the absence of a linear trend
cannot be rejected for a critical p-value of 5%. Then, considering the set of research
hypotheses formulated in Section 1 and relying on the set of outcomes emerging from this
forecasting exercise, it can be stated that H6 cannot be corroborated. Since NO2 is unlikely to
exhibit a decreasing trend in the near future, a discussion contemplating recommendations
and actuation measures should be now provided.

4. Discussion
4.1. Classification
4.1.1. Main Contributions and Identification of Potential Market Failures

The classification analysis provides two main contributions:

1. It demonstrates that CO is a determinant of NO2’s HLV disruption and identifies a
negative relationship between CO and satisfaction of NO2’s HLV; and

2. It shows evidence of a neutrality principle between NO2 and mobility measured by
the THTV.

Both conclusions provide a new window of opportunity to constitute, enhance and
flourish a valuable source of knowledge externalities. This is because, although the first
result is in line with that reported in previous studies, the second result expands the content
of evidence reported in the literature, which is only characterized by the homogeneous view
claiming that mobility has a negative impact on air quality, ultimately leading to de-growth.
However, agents circulate to satisfy their own needs, so that mobility can be interpreted
as a socially desirable action. Hence, the second result opens space for observing either a
negative, neutral or positive influence of THTV on NO2.

Conceptually, the role of environmental funds, as a central instrument for financing
climate action and environmental policy, is to promote support for projects:

• In mitigated fields, including projects to promote electric mobility;
• In the decarbonization of cities and industry; and
• In adaptation and cooperation on climate change, environmental education, water

resources, circular economy, nature conservation and biodiversity.

Therefore, the potential market failure that this study seems to have identified is that,
due to the lack of statistical significance in dimensions such as ambient noise and some
meteorological input variables, it may exist an underutilization of environmental funds and
their improper use towards drivers with redundant influence on the target. Furthermore,
this problem can be exacerbated by the integration of other funds (e.g., Energy Efficiency
Fund, Permanent Forest Fund, Fund for Systemic Sustainability of the Energy Sector and
Innovation Support Fund). With a merger of funds, rather than introducing a greater
focus on supporting transition projects, allocative inefficiency could gallop and, with it,
a detrimental impact on social welfare.

In this regard, it should be noted that one result of this study indicates that ECSL
does not have explanatory power on the target. Nevertheless, this dimension can promote
allocative inefficiency of environmental funds given that it is unlikely to be marginalized
and based on the argument that ambient noise requires a public policy intervention to
minimize other associated impacts. With the review of Portuguese National Air Strategy
(ENAR) completed in the first quarter of 2021, the effort to develop and implement the
Portuguese Air Quality Improvement Plan (PMQAr) has continued. The approval of this
diploma created conditions for stronger requirements with respect to licensing activities
and their articulation with the surrounding territory, thus guaranteeing the well-being
of local communities and contributing to the improvement of air quality. With regard
to ambient noise, the biennium 2022–2023 will meet the approval of a National Strategy
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for Environmental Noise (ENRA). This aims to define a model for integrating the noise
control policy into sectoral, environmental, territorial, economic and social development
actions. A good articulation of this strategy with intermunicipal scale noise reduction plans
is essential for improving the people’s quality of life. Likewise, ENRA is intensifying the
effort to provide all major transport infrastructures with strategic noise maps and action
plans, complying with European legislation. The role of public entities in monitoring
and inspecting the behavior and practices of stakeholders is relevant to ensure national
environmental goals with a view to guaranteeing resource management in accordance with
the law in order to avoid market distortions.

4.1.2. Contemporaneous Governance Framework

Currently, national public programs tend to identify as the first strategic challenge
the need to face climate change, while ensuring a just transition. Since environmental
actions define a transversal domain, the concentration of competences for the mitigation
of emissions, the energy transition, the adaptation of the territory and the dilution of the
carbon footprint are fundamental for a renewed ambition in the urgent response that this
challenge entails. Portugal was the first country in Europe to assume, in 2016, the objective
of carbon neutrality in 2050 and to achieve this goal with the release of a Roadmap for
Carbon Neutrality in 2050 (RNC 2050), innovating in the European landscape and abroad.
The Portuguese Central Government follows an integrated approach that:

• Recognizes the fundamental role of forests, biodiversity and ecosystem services in
building a territory more cohesive and resilient to the effect of climate change; and

• Recognizes the need to protect and enhance the coast, promoting a sustainable econ-
omy, combating desertification and helping to face demographic challenges.

In this context, and based on the compilation of results provided by this study, political
action requires to focus on two main pillars:

1. Decarbonization: through the energy transition, sustainable mobility, circular econ-
omy and enhancement of natural capital, territory and forests, promoting initia-
tives such as sustainable financing, green taxation and environmental education.
Among several dimensions of this challenge, the energy transition is the one that will
contribute most to the reduction of CO emissions in upcoming years. This should
rely on the decarbonization of energy systems, with special emphasis on the end of
electricity production from coal, focus on energy efficiency, promotion of energy from
renewable sources, placing the citizen at the center of energy policies, ensuring a level
playing field and a cohesive transition;

2. Circular economy, mobility and transport: it is essential to implement a circular
economy model that contributes to an efficient management of resources, which
allows the exploration of new economic opportunities and promotes efficient waste
management. It is also necessary a renewed and competitive public transport network,
as well as a sustainable–electric and active–mobility.

4.1.3. Theoretical Recommendations: Main Priorities

Decarbonization must be carried out at two levels: civil society and energy sector.
Decarbonize society. Results show that CO emissions are the main cause of non-

compliance with the ceiling on NO2. The National Energy and Climate Plan for 2030
(PNEC 2030) constitutes the benchmark for economic and social recovery aligned with the
objective of carbon neutrality, but also reinforcing the need to generate employment and
social welfare gains. In this sense, climate actions must respond to the double challenge
of decarbonizing the economy and promoting a territory more and better adapted to
structural change, creating more resilient forests, investing in public transport, fostering
the transition energy and dissuading energy poverty. Also noteworthy are measures of
environmental taxation, which is a crucial step for the decarbonization to be achieved.
Therefore, the elimination of tax exemptions on petroleum and energy products used in
the production of electricity from more polluting fuels should be continued. Moreover,
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the scope of this measure may be extended to other niches, such as industry and services
overly dependent on non-renewable energy sources.

Decarbonize energy. In the context of achieving carbon neutrality by 2050, Portugal
commits to the EU to reach a target of 47% of energy from renewable sources in gross final
energy consumption by 2030, with the first years of this decade being essential for the
success of the strategy contained in PNEC 2030. The challenge of reducing greenhouse
gas emissions is recognized, betting on an economy based on renewable endogenous
resources and continuing with efficient models of circular economy, which value the
territory, its endogenous resources and promote territorial cohesion, while inducing greater
competitiveness, job creation and innovation. Decarbonization and the energy transition
must be seen as mobilizing purposes for the entire Portuguese society. In this sense, both
elements define an opportunity to:

• Increase investment and employment through the development of new industries and
services;

• Reinforce research and development (R&D) and higher education systems;
• Foster economic growth through a substitution model of imports; and
• Benefit consumers, who will have lower costs when compared to costs they would

have in the case of maintaining fossil dependence.

The energy sector is expected to be the one that will make the greatest contribution,
assuming a relevant role in the energy transition. Portugal’s Horizon 2030 strategy, which
aims to double the installed capacity based on renewable energy sources and reach a
80% level of renewables’ inclusion in electricity production before 2030, is based on a
combination of different policies, measures and technological options, with priority given
to:

• Energy efficiency;
• Reinforcement of the diversification of renewable energy sources;
• Increase in electrification;
• Modernization of network infrastructures;
• Development of interconnections, reconfiguration and digitization of the market;
• Encouraging scientific research and innovation;
• Promoting low carbon processes, products and services; and
• Ensuring a more active and informed consumer participation.

Circular economy, mobility and transport. This study also finds evidence that road
traffic has a statistically significant effect on the target, but quantitatively close to zero. It
is then important to ensure that the likelihood of satisfying the HLV of NO2 is improved
with the implementation of measures and actions focused on road traffic. In general,
the transport and mobility sector is a fundamental pillar for economic development and
territorial cohesion. The public health situation caused by the COVID-19 pandemic had
a strong economic impact on the country and highlighted the importance of a modern,
efficient and safe public transport system that should be properly integrated with other
modes of transport, namely with pedestrian and alternative active models such as cycling.
The public transport system has been central to the economy, ensuring the mobility of
goods, services and people. Hence, accelerating investments in the transport and mobility
sector should be seen as key to promote economic recovery and long-term sustainable
growth. These investments are direct job generators and their implementation makes
it possible to improve the level of connectivity and accessibility to the main economic
poles, thus promoting the ability to bring people closer to employment opportunities and
bring companies closer to more qualified workers. It is therefore important to promote
investments in the reinforcement of public transport networks in medium-sized cities and
metropolitan areas (i.e., Lisbon and Porto), while keeping in mind the commitment to
electric and shared mobility. This public investment should rely on robust projects with:

• Effective impact on the quality of transport services;
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• Expectation of ensuring a strong contribution to the pursuit of public policies for a
decarbonization of the transport sector; and

• The goal of boosting the sector’s energy transition to renewable sources in order to
promote the reduction of greenhouse gas emissions and the incorporation of renewable
energy in the transport sector.

Alongside mitigation and adaptation, the system of production and consumption
will necessarily have to change. According to the United Nations, 50% of greenhouse
gas emissions are associated with the extraction and processing of basic materials. Thus,
persisting in a linear economy—which extracts, transforms, sells and throws away—entails
a heavy climate burden, in addition to intensifying the risks derived from the scarcity of
water, arable land and materials. Almost three years after the approval of the Portuguese
Action Plan for the Circular Economy (PAEC), the guidelines contained therein have been
implemented through action at three levels: national, sectoral and regional. Its continuity
is important, as well as the elaboration of a new PAEC in line with what is being carried
out at the European level. For a national economy to be circular, it is not enough to act on
waste, that is, only in downstream markets. It is also necessary, on the one hand, to modify
people’s behavior with environmental education initiatives that ensure less consumption
of scarce resources and greater recycling to enable the reuse of transformed materials and,
on the other hand, develop initiatives to reduce dependence on raw materials through
eco-design and impose a different conceptualization of production processes in upstream
markets of the value chain.

4.1.4. Practical Recommendations: Main Measures

Some measures under the two identified pillars of action are now detailed.
Decarbonization. Achieving carbon neutrality involves a concerted effort and an

alignment of policies, incentives and means of financing. It is, over the next decade, that the
greatest decarbonization effort must be achieved, involving the contribution of all economic
activity sectors and quadrants of society. The allocation of a significant volume of funds to
climate action should not only overcome the economic and social crisis, but also ensure
that objectives to which Portugal has committed are achieved. It is therefore important to
instill the necessary dynamics for a full implementation of the National Energy and Climate
Plan 2030 (PNEC 2030), in order to bring Portugal in line with the established emission
reduction objectives −55% decrease in greenhouse gas emissions by 2030 compared to 2005.
As such, PNEC 2030 implements RNC 2050 in the period up to 2030 and constitutes the
key plan for decarbonization through the establishment of:

• Sectoral emission reduction targets;
• Targets for the incorporation of energy from renewable sources; and
• Targets for the reduction of energy consumption.

This constitutes a transversal exercise that involves all areas of government action,
while requiring the creation of a new dynamic focused on decarbonization, continuous
monitoring of the progress and evaluation of the contribution of each sectoral policy to
climate action. In this context, it is instrumental:

• An assessment of legislative impacts on climate action, where the transformation
should involve different levels of the public administration, from parishes to the
national territory as a whole;

• Promote the quality of regional roadmaps for carbon neutrality that translate the
ambition set at the national level, which is expected to have a repercussion at the local
level with the promotion of carbon neutral city pacts (e.g., gastronomy routes like
Pestico);

• Promote the creation of sustainable network communities in articulation with munic-
ipalities to boost sustainability efforts (e.g., eco-neighborhood, national network of
circular cities, network of municipalities for carbon neutrality);
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• Promote initiatives to mobilize actors of the private sector for decarbonization and
develop sectoral roadmaps for the decarbonization of different industries;

• Develop a territorial plan for a fair transition focusing on territories potentially most
affected by the change to a carbon neutral economy;

• Monitoring by creating a platform that aggregates information and constitutes a
decision support tool;

• Promote sustainable financing through the elaboration of a national strategy, which
should include the identification of incentives and the creation of conditions to estab-
lish a Portuguese green bank;

• Definition of environmental criteria as a requirement for the allocation and articulation
between different public funds in order to orient the public funding to investments
that foster a resilient, circular and carbon neutral society; and

• Adopt a fiscal policy in line with energy transition and decarbonization goals, intro-
ducing more fiscal incentives and promoting more sustainable behavior.

Circular economy, mobility and transport. In this domain, investments and actions
must be primarily based on the following measures:

• Development of plans to expand a sustainable network of collective transport systems
in the Metropolitan Area of Porto (MAP), MAL and medium-sized cities;

• Continuous investment in the decarbonization of mobility, both in collective and
individual transport modes (e.g., in terms of collective electric mobility, new programs
should be launched to support the renewal of public transport fleets through the ac-
quisition of clean vehicles; in terms of individual electric mobility, incentive programs
should be reinforced for the acquisition of 100% electric light vehicles);

• Promote active mobility, while focusing on improving the quality of life in cities and
the attractiveness of urban spaces;

• Increase the autonomy and capacity building process of sectoral transport authorities
to ensure an increasingly efficient and more effective management of the country’s
transport networks;

• Promote innovative and intelligent solutions for the mobility of goods and people,
which requires to invest in new assets, improve interventions that promote intermodal-
ity with alternative transport modes (e.g., cycling) and increase the accessibility and
connectivity between different regions of the country;

• Regarding the promotion of urban public transport, it is important to maintain the
Public Transport Fare Reduction Support Program (PART) and the Program to Support
the Densification and Reinforcement of the Public Transport Offer (PROTransP);

• The National Strategy for Active Cyclable Mobility (ENMAC), the National Strategy
for Active Pedestrian Mobility (ENMAP) and the Portugal Cyclable 2030 Program
should extend active mobility solutions for cities (e.g., construct new cycling routes and
totally support the private acquisition of eco-friendly bicycles; implement solutions to
sharpen the complementarity between private transportation use and public transport
network);

• To promote greener cities, it is essential to conceptualize alternative solutions for
urban spaces (e.g., new logistic applications to support decarbonization; increase the
efficiency of mobility; optimize deliveries generated by e-commerce); and

• Increase training actions of the staff belonging to sectoral transport authorities and
stakeholders in general.

4.2. Prediction

The need to establish a protocol to ensure the persistence of best research practices
implies the formulation of recommendations at two distinct levels:

1. For the period before building DLNN models; and
2. For the period corresponding to the implementation of DLNN models together with

the period after the development of DLNN models.
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4.2.1. Recommendations before Building Deep Learning Neural Networks

In this spectrum, recommendations are summarized as follows:

• Either collect data from a reliable source [42] or guarantee the intellectual property
right over them in the case of holding data collected by own means in order to be
fairly compensated for such a work;

• Perform exploratory data analysis [43], which requires preliminary statistical tests
considered valuable to explain weaknesses and strengths of the data;

• Ensure that the dataset is robust by considering additional techniques such as data
augmentation and bootstrapping (e.g., either to avoid class imbalance in classification
problems or to boost small datasets in regression problems), while reporting them
clearly to the audience [44–46];

• Differently from [47], sharing projects beforehand with other experts is not recom-
mended because the market for ideas is scarce and classical industrial economics the-
ory already identified 40 years ago the persistence of a negative relationship between
horizontal differentiation and competitiveness [48]; instead, either find a credible
research partner or work with someone who has notability in the scientific field where
you are looking to acquire spillover effects;

• Survey the existing literature to confirm the reading of past studies and respect for the
effort developed by peers in previous research [49], which means not incurring the
fallacy of citing only those who have international reputation, but any researcher who
produces valuable content regardless of the respective provenance or professional
position;

• Think on new methodologies to combine knowledge from the field of Advanced
Econometrics and AI; and

• In a market environment characterized by information asymmetry between editors,
authors and readers, and where some authors are also editors and, consequently, any
attempt to criticize a work coming from this side of the market, even in a healthy
way, tends to be fruitless, it is mandatory to own international patents to protect
the innovative character of methods developed by credible authors. This not only
deters bad reviews of scientific work, but also fosters a good reputation within the
scientific community. It also defines a clear and objective way of distinguishing,
in the microeconomics terminology used by [50], lemons (i.e., low-quality research)
from peaches (i.e., high-quality research) in a market environment characterized by
asymmetry of information.

4.2.2. Recommendations during and after Building Deep Learning Neural Networks

Based on the detailed contribution of [49], a set of recommendations is also given for
the phase related to the model development and post-implementation process. It should be
emphasized the need to:

• Avoid using inappropriate models (e.g., DLNNs are not a good choice either if there is
data limitation or if the model needs to be interpretable) and do not allow test data to
leak into the training process [49];

• Optimize hyperparameters with caution by considering a grid search with the support
of statistical tests [51–53];

• If having a high number of input variables, execute feature selection [54,55];
• Combine DLNN models via ensemble learning and staked generalization [56]; and
• Be transparent, report statistical significance with caution and do not generalize

beyond the case study in hand [42,57].

4.3. Limitations and Future Research

Despite the effort to provide a valid contribution, this study is not exempted from lim-
itations. It should be noted that the interpretation of values taken by some environmental
parameters (e.g., abnormal levels of PM2.5, PM10 and CO), may require the correlation with
other factors not monitored within the scope of this study, namely unfavorable weather
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episodes (e.g., floods, heat waves, frost fall, seismic activity), the migration of dust from
the Sahara desert or the occurrence of big forest fires.

Although the methodology employed in this study is sophisticated, it ignores the
underlying chemistry that characterizes NO2 in the atmosphere. Critically, NO2 concentra-
tions are driven by ozone and photochemistry (i.e., through oxidation in photochemically
active atmospheres) [58]. The changing balance between NO and NO2 is also a crucial
aspect in Europe, where NO has typically declined more rapidly than NO2, especially
driven by changes in the emission of primary NO2 that have shifted considerably over
time with modifications in engine design and European emission standards [59]. Since
the chemical relationship between NO and NO2 seems to be relevant for a greater detail
about determinants of the HLV of NO2, but the Portuguese municipality under analysis
only provides open metadata on NO2, the failure to consider these specificities should be
considered as a limitation of this study.

In addition to classification and prediction exercises, future work should consider a
causality analysis of treatments observed in 2022. Treatment evaluation is the estimation of
average effects of a given program on the target. Therefore, it requires to compare outcomes
between treated and control observations before and after the treatment occur. This type of
analysis is particularly relevant because, on 11 May 2022, the Lisbon City Council approved
a reduction in maximum speed limits in the amount of 10 km/h. The legal measure, which
corresponds to the treatment, foresees the elimination of car traffic on Avenida da Liberdade
on Sundays and holidays, so that it is expected to have a statistically significant effect on
the target considered in this study.

5. Conclusions

This study presents classification and prediction exercises to assess the future evolution
of NO2 in a critical air quality zone located in Portugal using a dataset, whose time span
covers the period between 1 September 2021 and 23 July 2022. Among several results,
at least three deserve to be emphasized.

First, the classification analysis corroborates the idea of a neutrality principle of road
traffic on the target since the respective coefficient is significant, but quantitatively close to
zero. This result, which may be the first sign of a paradigm shift regarding the adoption
of electric vehicles in addition to reflect the success of previously implemented measures
in the city of Lisbon, is reinforced by evidence that CO emitted mostly by diesel vehicles
exhibits a significant, negative and permanent effect on satisfying the HLV associated with
the target.

Second, robustness checks confirm that the lowest probability of satisfying the HLV of
NO2 stands in the period between 8 h and 16 h. Moreover, the probability of surpassing
the HLV of NO2 for a marginal increase in CO while keeping the remaining covariates at
their mean value is less pronounced once confronting autumn (weekdays) against winter
(weekends), respectively.

Finally, the predictive exercise demonstrates that the internationally patented VSCA
model has the best predictive performance against several DLNN alternatives. Results
indicate that the concentration of NO2 is expected to be volatile, but without any positive
or negative trend. In terms of policy recommendations, additional measures to avoid
exceeding the legal ceiling of NO2 at the local level should be focused on reducing CO
emissions rather than overemphasizing the need to erode traditional forms of mobility.

6. Patents

International patents reported in this manuscript include WO2021255516: MULTI-
CONVOLUTIONAL TWO-DIMENSIONAL ATTENTION UNIT FOR ANALYSIS OF A
MULTIVARIABLE TIME SERIES THREE-DIMENSIONAL INPUT DATA. It is online avail-
able at https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2021255516 (accessed
on 15 August 2022).

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2021255516
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