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Coding Theorems for

JACOB ZIV, FELLOW, |EEE

Abstract—A quantity called the finite-state complexity is asdgned to
every infinite sequence of dements drawn from a finite & This quantity
characterizes the largest compression ratio that can be achieved in accurate
tranamisson of the squence by any finitestate encoder (and decoder).
Coding theorems and converses are derived for an individual sequence
without any probabiligtic characterization, and universal data compresson
agorithms are introduced that are asymptoatically optimal for all ssquences
over a given aphabet. The finitestate complexity of a sequence plays a
rde smilar to that of entropy in dassical information theory (which deals
with probabiligic enssmbles of squences rather than an individual
suence). For a probabiligic source, the expectation of the finite date
complexity of its sequences is equal to the sourods entropy. The finite
date complexity is of particular interes when the source datigics are
ungpecified.

I. INTRODUCTION

UR PROBLEM concerns the system shown in Fig. 1.
The sequence u consists of letters drawn from an
alphabet of a letters occuring at the rate p symbols/s. The
sequence v is the encoded version of u and consists of
letters drawn from an alphabet of B letters at rate p. The
sequence # is the decoded version of v and should be an
accurate replica of u.
Let the density of errors be defined by

d(u, ) =lim sup 1 D(ul,al")
Nn—»r0Q n

where D(u,4;) is the Hamming distance between the
n-vectors uy, uy,- - - ,u, and &, 1, - - ,4,. In data compres-
sion the aim is to minimize 8 while keeping d(u, %) negligi-
ble. That is, we require d(u,%)<e where € is an arbitrary
small positive number.

Restricting the discussion to finite-state encoders and
decoders, we shall define a finite-state complexity H(u) of
an individual sequence u. Coding theorems and their
converses are then derived, which demonstrate that H(u)
is equal to the minimum of log,8 over all finite-state
encoders and decoders such that d(u,#)<e for an arbi-
trary small €>0. Furthermore, the coding theorem dem-
onstrates the existence of an asymptotically optimal uni-
versal block encoding scheme that achieves an arbitrary
small distortion d(u,#), as the block length approaches
infinity, for all sequences such that H(u)<log,8. This
finite-state complexity of an individual sequence (without
any probabilistic characterization) therefore, plays a role
similar to that of entropy in classical information theory,
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Fig. 1. Fixed-rate finite-state data compression system.

which deals with probabilistic ensembles of sequences
rather than with individual sequences.

It is demonstrated that H(u) is lower bounded by the
Lempel-Ziv complexity [1]. Finally, it is shown that a
universal data compression algorithm recently introduced
in [2] is asymptotically optimal and has an implementa-
tion complexity that grows only linearly with the block
length.

In Section II, we give a formal statement of the prob-
lem and state the main results, and in Section III we give
the proofs. In Section IV, we conclude with some observa-
tions regarding possible generalizations.

II. FORMAL STATEMENT OF THE PROBLEM
AND RESULTS

Let U be a set of a symbols that we call the source
alphabet. Elements in U are called letters.
Input sequence: Consider the infinite sequence

U=Up Uy, welU

and let
“{=uivui+l" LS
u is called the input or source sequence.

Encoder: An encoder is a mapping from the space of all
infinite sequences u to the space of all infinite sequences v
of letters drawn from an alphabet ¥V of B letters. The
sequence v is called the encoded sequence. A block encoder
is a mapping

i+tn . i+ -
ol =b(u}7), i=0,n,2n,

where b(-) is a function that maps n-vectors of letters
drawn from U (a-letters) into n-vectors drawn from ¥V
( B-letters).

A casual sliding block encoder is the mapping [11]

Ui'_'l(“i'—nﬂ)s
where /() is a function that maps n-vectors of letters
drawn from U into letters drawn from V.

Both these encoders (as well as noncausal sliding-block
encoders) are members of the more general class of
finite-state encoders defined as follows.

i2n
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An encoder is a finite-state encoder c[s,,S,f",),8("> )]
if for some positive integer 1 we have

v =f(u,s,), i>t
sl=g(ui—]9s'..l), 1>2 (1)

where 5;, the state of the encoder at the ith instant, is one
out of § states and is a function of u,_, and the previous
state 5;_,. 5, is the initial state, and ¢ is called the coding
delay.

Examples:

1) A causal sliding block encoder

n+1 =g(t_y,5- 1)"8(“
U= Uy, for 0>i3 —n,
S=q""! t=0
o= f(s,u)=f(ul_,).
2) A block encoder

=1, i-1
si"(ui—Zm

(where | x | denotes the largest integer that is smaller than
or equal to x)

S,- ux

i—[-:;Jn), u=u,, for 03i> —2n

S=na?” t=n

_ =f(u,s,) =f(u,-"_2,,;i— [ -:-1— Jn)

Observation: When a finite-state encoder is used, any
I-vector u/*'~! may be mapped into at most one out of S
possible /-vectors of letters drawn from V, since there are
S possible states s; at the /th instant.

Decoder: A decoder is a mapping of the infinite
sequence v into the sequence #, where 4, € U. A finite-
state decoder d[s,,S,q(:, ), k(,")] is defined as follows:

i>t,
i»2

U= Q(vi’si)1

s=k(v,-1,85-1), ()

s; is the state of the decoder at the ith instant and is one
out of § possible states. s, is the initial state, and ¢ is the
decoding delay.

In all that follows the discussion is limited to the class
of finite-state encoders and decoders.

The aim of data compression is to make 8 as small as
possible while keeping # an accurate replica of u. Two
cases will be considered:

Casel: i=u,

Case II: d(u,4) = lim sup%D(u,",ﬁ,")(e,

n—r
where ¢ is an arbitrary small positive number and
D(uf,a7") is the Hamming distance between u] and 4f,
ie.,

0, uy=4g

n
D(up,a)= 2 D(u,4,), D(ui’ﬁ‘)={ 1, w74,

Thus some errors are tolerated, provided that the error-
rate is arbitrarily small. (More general fidelity criteria will
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be discussed elsewhere—see also the remark in Section
V)

Results:

1) Case I: ti=u: Let 2% be the number of distinct
I-vectors that are contained in u. (That is, by sliding a
“window” of length / along u, wé count the number of
distinct /-vectqrs that appear through that window.

The existence of the limit A(u)=lim,  h(u), which
plays an important role throughout this paper, is demon-
strated in Section IIl, wherein the following coding theo-
rem and its converse are proved.

Theorem 1 (Converse to Coding Theorem):
a¥u, if h(u)>log,B

Theorem 2 (Coding Theorem): For any n >«, there ex-
ists a block encoder (and a corresponding block decoder)
(+n

Uisi f(ul+l -g(vx-é-l i=0,n,2n,'--
such that &= u for all sequences u for which

h(u) < logZB— n(u)

*H—n
U

where

lim e,(u)=0.

n—s»o0

More precisely, let / be the largest integer such that
I%a’ <n. Then

c,,(u)<(1+ )h,(u) h(u)+-log2a

2) Case II: d(u,i) <e for any arbitrary positive €.

This is the case in which some errors are tolerated in
order to achieve even greater compression than in Case 1.
However, one must keep the error-rate as arbitrarily
small.

For any two infinite sequences ¥ and w such that

u-ul,uz,"', u"EU,
W= Wy Wy, oo, w,eU,
let
d(u,w) = lim sup - D(uf, w{) 3)
N> 00
Also let
H,(u) = inf h(w)
w:d(u,w)<d @)
and
H(u) = Lim Hy(u) £ sup H,(u). (5)
d—-0 d>0

Clearly H(u)<k(u). For example, let u be a typical in-
finite sequence from an iid. source with unequal and
nonzero letter probabilities. For such a sequence h(u)=
log, a, since the relative frequency of any /-sequence will
be nonzero. But H(u)= H <log,a (see Theorem 5). The
following coding theorem and its converse are proved in
Section III.

Theorem 3 (Converse to Coding Theorem): If
H(u)>log,B
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then there exists an €>0 such that d(w,4)>e¢ for all

finite-state encoder-decoder pairs.

Theorem 4 (Coding Theorem): For any n» a and § >0,
there exists a block encoder and a block decoder
i+n

offf =fud) air=g(uil),
such that d(u,%) <28 for all sequences such that
H(u)<log,B—e,(u,8)—8
where lim,,_, . €,(4,8)=0.

i=0,n,2n,---

Discussion: It is clear from the coding theorems and
their converses that H(u), which is defined for each indi-
vidual infinite sequence, plays a role similar to that of
Shannon’s entropy (which is defined only for an ensemble
of sequences with a stationary probability measure) in the
sense that H(u) corresponds to the smallest log,8 for
which the error rate (or the probability of error in the
classical probabilistic case) can be made to approach zero
(71, [13].

The following theorem is proved in Section III.

Theorem 5: If u is drawn from an ergodic source with
entropy H, then H(u)= H almost surely. That is, P[|H(u)
- H|=0]=1.

Corollary: If u is drawn from a stationary source with
entropy H, then

EH(u)=H

where E denotes expectation. This corollary follows from
the ergodic decomposition of discrete stationary sources
[3], [12]. It should be noted, however, that EH(«) might
exist for nonstationary sources for which H does not
always exist, and can therefore be considered as a gener-
alization of the classical entropy..

It should also be pointed out that sequences exist that
can be described by simple algorithms, yet are incom-
pressible by any finite-state machine since they are char-
acterized by H(u)= h(u)=1log,a. For example, let u be the
infinite sequence obtained by concatenating the a-ry rep-
resentations of the natural numbers 1,2,3,- - - . That is, for
a=2, u=11011100101110111--- . Clearly hA(u)=log,a. It
is shown in Theorem 8 of Section III that H(u)=log,a=1
as well. Hence this sequence is “complex” in the sense of
this paper. However, its normalized Kolmogoroff-So-
lomanoff-Chaitin program-size complexity [4], [5] is zero.
The reason for the difference is that we have restricted our
encoders and decoders to be finite-state machines. The
quantity A(u) (for Case I) or H(u) (for Case II) can be
called “the finite-state normalized complexity” of an in-
finite sequence.

Theorem 6 in Section III states that a modified version
of the complexity defined in [1] is a lower bound on H(u),

ie.,
A g 1
n—o0 n
( log,n )

C(uf) < H(u) < h(u).
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Furthermore, if u is drawn from an ergodic source with

entropy H, it follows that (Theorem 7 of Section III):
Pllc(u)— H|>e€]=0.

Hence H(u)=c(u)= H almost surely.

Finally, a block coding version of a universal sequential
data compression algorithm that has been introduced re-
cently [2] is discussed in Section III. This encoding algo-
rithm is asymptotically optimal and its instrumentation
complexity grows linearly with the block length.

III. DERIVATIONS AND PROOFS

Lemma 1: The limit h(u)=lm,_, h,(u) exists.

Proof: Let h(u)=lim,, infh{u). Hence, for any
given arbitrary € >0, a number g=g(¢) can be assigned
such that A (u) < h+e. Let n be an integer, and let / be
such that

lg<n<(l+1l)q, I=12,--.

Since there are at most a? possible continuations of any
ql-vector to make it into a ¢/ + g vector, we have

k() & Dk (W) 2,
But
2lahy() & (20h())! = Dlahy (),
Hence
nh,(u) < lgh,(u) + qlog,a,

b (u) <-:;lq(h+e)+% logya,
lim sup A, (¥) <h+¢
P OQ

where e is arbitrarily small. Q.ED.

Lemma 2 (Data Processing Lemma):
h(a) < h(v) < h(u)
for any finite-state encoder-decoder pair.

Proof: For any positive integer /

2 (0) & ()
since any /-vector u/*'~! corresponds to one out of, at
most, S different /-vectors v/*/~!~* for any positive in-

i—t

teger i (there are S possible initial states). Thus
log, S
(0) < () + 2=,

h(v)=lim#A, (v) <11_i)r2) h(u)=h(u),

100

and similarly A(22) < h(v). QE.D.

Theorem 1 (Converse to Coding Theorem): If h(u)>
log, B then 4+ u.

Proof: Clearly h(v) <log, 8. Hence by Lemma 2
h(4) < h(v) <log,B.

But if d=u, it follows that A(#)=h(u). Hence if u=1,
h(u) < log, B. Q.E.D.
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Theorem 3 {Converse to Coding Theorem): If H(u)>
log, 8, then for any finite-state encoder-decoder pair
d(u,d) >e for some €>0.

Proof: Let H(u)=log, B+ 8, 6 >0. Then there exists
some positive e for which

ol OV =H () >log,B

But by Lemma 2,h(d)<h(v)<log,B. Therefore h(i})<
H_(u) and so d(u,i) >e. Q.E.D.

Theorem 2 (Coding Theorem): For every n> a there
exists a block encoder and a block decoder

1’:]”_f(u1+1 )

where f(-) and g(-) are independent of i, such that 4=u
for all sequences u for which A(u) <log, 8~ ¢,(u) where

“l+n
U1 =

i+n

g(u,+l i=0,n,2n,---,

nlirrgo €,(14)=0.

Proof: (By construction [6]) Let / be the largest in-
teger such that /%a’<n. Let the first L letters of v/} be
taken to be a “list” of all the dzstmct l-vectors in u'}].
Clearly there are no more than a' such /-vectors. If & is an
integer such that 8% >a’>g8%"! then

{1
L=ka’<(——2§ﬁ +1)a
log, 8

Now parse /" as follows:

l’: ]1’ ull: 12-91- 1’
where m=|n/I|. (The length of 4}, is less than / if /
does not divide n.) There are at most n//+1 vectors in
the parsed /.

The second part of the codeword v/} is taken to be a
sequence of “addresses.” Each vector u'}/,u/¥ --- is
encoded into a g-vector (of letters drawn from V) that
points out the place of that J-vector in the list. In the case
where / does not divide n, the last vector u/}7,.,, is
encoded into the address of the /-vector u'*" ,., (clearly
u'tn . is a suffix of u/tn . |, since ml >n—1).

Thus ¢ should satisfy

BT 2MO < B,

i+n__

i+ml i+n
Uiy = el (m— )i+ Y i 1o

or

logﬂ[hl( )'*‘log'B}<1 ! [hl( )+10g2a]

since a > 8. The resulting length of the list of addresses is

([ﬁlJH)q. (7

If N=L+(|n/I|+1)g turns out to be less than n, pro-
long it by adding an (n-—N )-vector whose letters are all
equal to the first letter in ¥ (say 0).

In any case 8 must be large enough so that

N<n. (8)
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By (6), (7), and (8)

N=L+([ lJ+l)m< 10g20‘(1+ 1)

[ log,B
+(3+1) g [h,( )+1°g2"‘]. ©)

Let B be large enough to make the right side of (9) smaller

than or equal to n, so that
n 1+l
1 log,a 1 ( logza
n>n{ 7 1ng'B(H—I”-F 1g2/3 [h,( u)+——— }
! 1 1 1\f log,a
log, B >(1+n)h,(u)+-l—logza(l+7)+(l+;)(——l——).

Thus a sufficient condition for error-free encoding and
decoding is

log, B > h(u)+¢,(u)
where

6 (1)=(1+
+<l+l)-l-log2a

<(145 )0 -+

Since / is the largest integer for which 1 a'<n

)h(u) h(u)+— logza(l+§)
4log2a

nl.l..»nolo €,(u)=0. QED.

Theorem 4 (Coding Theorem): For any n>a and € >0,
there exists a block encoder and a block decoder
i+k

zlrln—f( -g(u,+1 ’
such that d(u, u) < 2¢ for all sequences such that
H(u)<log,B—8,(u,e)—e¢

‘1+n

't i=0,n,2n, -

where
lim 8, (u,€)=0.
Proof: Let w be a sequence such that d(u,w)<e?/2
and such that for any / >/ (u,€)
h(w)<H(u)+e. (10)

By definition of d(u,v), there exists an integer m such that
for any k> m,

14311

) nD(u(,{ PrwdiPn) <
j:s
Let
i
8(])={0’ if ‘-D( UI]”",W'](,{I‘)" <€-—:€2
1, otherwise
so that
—1
1
> 3 LD(IP)> ¢ 3 Q0).
Jj= J‘
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Thus dividing by e,

1 k-1
7 2 80)<e
j=0
Therefore
1 k-1
limsup% > 8())<e. (1)
k->00 j=0
Thus by assuming that the block coding scheme will fail
to accurately encode those n-blocks for which

1 . .
L p(ugpnwt ) >e
we contribute to the total density of errors in 4 a factor
which is smaller than e.
Consider now n-blocks 4y} D" (j=0,1,2,- - -) for which

(12)

1 : ;
- D( Dm0 <e,

and recall that by (10)
h(w)<H(u)+e.

Therefore the number of distinct /-vectors in the n-vector
w D" is not larger than 2149+,

The encoding of u%}P" is done as follows. Among all
n-vectors that are at Hamming distance not larger than en
from u{/Y ", select that one, say 4", with the smallest
number of distinct /-vectors. Clearly the number of dis-
tinct /-vectors in @Y} " is less than or equal to that in
wdrPn, if the uft )" satisfy (12). Now apply the coding
scheme that was used in the proof of Theorem 2 to the
vectors 4%t " (j=0,1,2,---). It follows from Theorem 2
and (10) that for any n such that /%2’ <n<(I+1)’a’*! and
for every uf/T D" that satisfies (12),

1 . »
L p(ugzimagdr <e

provided log, 8 > h(w)+ 6,, where lim, . §,=0. Accord-
ingly, it suffices to have log,B8 > H(u)+e+§, where
lim[ 00 8[=0.

On the other hand the relative frequency of n-vectors
ugtP" such that (1/n)D(uy} ", witP")> € is bounded

by (11). Hence

d(u,i)<2e
for all sequences u such that
log, 8> H(u)+ e+ 8,(u,e) (13)
where lim,,_, , 6,(u,€)=0. Q.E.D.

Theorem 5: If u is drawn from an ergodic source that is
characterized by an entropy H, then

P[H(u)=H]=1.

Proof: Consider the set of all n-vectors u{ that are
emitted by the given ergodic source. By the asymptotic
equipartition property (AEP) [7], it follows that for any
arbitrary positive €
lim P[

N0

- —l; log, P(ul)— H

>e]=0
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where P(-) denotes probability. Therefore for any arbitr-
arily small € >0, there exists some integer / such that for
any n> !/

7|

Thus for n=/ there is a set S, that includes at most 2/ +9
elements (which are called rypical I-sequences) such that

PlujeSs|]>1-e
Any /-sequence that does not belong to S, is called an

atypical sequence.
Consider the following / different parsings of u:

- -:; logP(u])— H

>e}<e.

— k=1 I+k=1 , 2+k—1 i+ Di+k~1 .,
U=uy i 2 Uih ke "',u}hk) 2ty

J=0,1---; 1<k<],
and let §,(0)=0,

sy=[0 HufRTes,
1, otherwise,
forj=1,2,--- and 1 <k </ Let
R T =L
th:o I jgo 8 (/)= 8. (u).
(This limit exists with probability one since

8. (1), -+ ,8,(d),- - is a stationary sequence.) Furthermore
with probability one

1 !
7 E;a"(u)zl—P’[S‘] <¢,

the equality following from the ergodicity of the source.
Thus there exists some m (1< m</) for which

8, (u)<e.

For simplicity assume that m=1, and consider

e gp 4520 i+ 1) - ..
u_ulyu[+|"",ujsl+l),"" ./_0917' .

Replace any u{/\" that is not in S, by one of the
elements of §;. Let w denote the resulting infinite
sequence. Clearly d(u,w) < e. ,

Furthermore the number of distinct /-vectors among
wiwit e, wdiP is not more than 2/%*9. It follows
that for any positive integer ¢

Qalhy() [2“””")]"_ Lyl < 2q1[(H+€)+(losza/‘i)].
Hence
h(w) =q1_i£13° hy(w)< H+e.
Therefore by definition
H (u)=

inf
wid(u,w)<e

h(w)< H+e

and

H(")=€li,12, H(u)<H (14)

with probability one.
The number of elements in §, is at least 2/¥~9, all of
which are almost equiprobable (by the AEP). Therefore it
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can be shown that with probability one
H(u)>H. (15)
This also follows directly from the Coding Theorem 4 and

the classical converse theorem of information theory [7].
Thus by (14) and (15)

H=H(u)

with probability one. Q.E.D.

The following definition has been proposed for the
complexity of a sequence [1].

Consider this rule for parsing 4] into distinct phrases.

1) A comma is inserted following u;.

2) Assume that the /ith comma comes after the letter u,,
1< k,<n~1. The next comma will be inserted after the
letter u,, where k, =k +L;+1<n and L; is the maxi-
mal length of a substring 4y~ % 41 such that there
exists an integer (or pointer) p, (where 1 < p, < k))for which
LR T RS R S R

As an example we parse a binary sequence of length 16:

k: 123456 789 10111213 141516
:0001,10,100, 1 0 00 1 01

where there is no comma after the last letter since
u 4U sty has appeared previously (ps=5).

The number of commas in the parsing of an n-sequence
is denoted by C(u[') and is called the complexity of uf [1].
Let the normalized complexity be defined by

oy Clul)
c(uf)= n/log,n
and let c(u)=lim,_, . sup c(u"). Then [1, Theorem 2]
c(u) <log,a.

By a simple generalization of Theorem 2 in [1], the
following lemma can be proved.

Lemma 3: c¢(u)< h(u) for any I=1,2,--
c(u) < h(u).

In fact it follows from the next theorem that c(u) is
upper bounded by H(u).

Theorem 6: c(u)< H(u).

Proof: It follows from the definition of H(u) that for
any arbitrary small positive ¢, there exists a sequence w
such that d(u,w)<e®* and hA(w)<H(u)+e. Hence there
exists an integer /, such that for any / >,

h(w)<h(w)+e<H(u)+2e.

Now apply the parsing rule to parse u into distinct
phrases

-, and hence

lisny

u=u111,u11‘2+1’ . ’ul+l’ ..
Clearly
C(“l)
limsup — D(u;";;’ w"'*”) d(u,w) <€
n—s>co i=0
Let

8(i)= { 0, if D(u,rp,wien) <e(ly—1),
1, otherwxse,
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for i=0,1,---. Then from the proof of Theorem 4
1 C(uf)
limsup — 3 8()(hyy— k) <e.
’ n—oe N j=p
Hence there exists an integer m such that for any n>m
the total length of vectors for which 8(/)=1 is bounded by
C(uf)

2 6(i)(li+l - lx) <2en,

i=0

nzm.

Let C, be the total number of commas that are con-
tained in the union of the vectors for which 8(i/)=1. Then
from [1, Theorem 2]

2en
€ <(1 —8,)log,(2en)
where lim,_, .8, =0. Delete from u" all the vectors u/¢yp
for which 8(i/)=1. All the other vectors in the parsed u]
have 8(i)=0. Hence for every /> ,, the total number of
distinct phrases of length / that can be found among the
undeleted phrases of u|' is upper-bounded by

log,a

21h,<w)( ! ) = DI WE] ¢ PIh(w)+ e+ QU ¢ JH(w)+2e+ B!
el

where 25¢ is the maximum number of /-vectors that are
within Hamming distance €/ of a given /-vector and 2/#™
is the number of /-vectors in w. It is easy to show that

E(e)= —elogye—(1—€)log,(1—€)+ elogy(a—1)+4,,

where lim, . 8,=0. Let C, be the total number of commas
in the undeleted portions of . By a simple generalization
of {1, Theorem 2]

C,< [H(u)+2e+E(e)+8 ]

where hrn,,_m8 0 Furthermore the total numbers of
commas in 4] is bounded by

Cu{)< C;+C,

It follows that c(u) < H(u)+4e+ E(¢). Since ¢ is an arbi-
trary small positive number c(u) < H(u). Q.E.D.

The following coding scheme, based on the above pars-
ing algorithm, was proposed in [2], [10]. The encoder
sequentially parses u] and generates a concatenation of
codewords c;, 1 <i <C(u}"). The first codeword consists of
the B-ary expansion of u,, the first letter of u{. The ith
codeword consists of three parts

G =Gy Gy

where c;; is the radix-f8 representation of the ith pointer
and the length /(c;)=loggn, c, is the radix-B representa-
tion of [, the ﬁlstance from the /ith comma to the last
letter before the (i + 1)th comma, and /(c;,))=[2log/;+4]
(8], [9]), and finally ¢ is the B-ary expansion of the last
letter prior to the (i + 1)th comma, and /(c;;)=logga. Thus

I(c;)=[loggn]|+[2log,/+4]+logsa.
The total length of the codeword is
c(uly c(uf)
2 Uc)< C(u)[loggn+5+logga]+ 3 2loggl.
i=1 i=1

j=
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Now
C(uf) C(uf) 1
2 2logl=2C(u}) 2 cr ——logl,
) g
<2C(uj)log igl C(;{,)
<2C(uf)log C( -

But C(uf)log(n/C(u]')) increases monotonically with
C(uf") for n>e-C(u]') and C(uf)<n/(1—¢)logzn where
lim,_, €, =0. Hence

C(ul) logglog,n
n_O8s0Bg" _ .
lgl 2log,l <7 Tog,n =n-,
where lim,_, 8, =0. Thus
C(uf")

.21 I(c;) <C(uf')loggn+né,

where lim,_, , §,=0.

In order to guarantee the existence of an error-free
block encoding version of the above variable-length en-
coding algorithm, it is enough to insure that

C(uf)
> c)<C(uf)loggn+ nd, <n.
i=1

Thus a sufficient condition for error-free block encoding
is

C(u
log, 8 > /§ ) +3,log, B
or as n— oo,
log, B > c(u).

The next theorem therefore follows from Theorems 5 and
6 and the classical converse theorem of information the-
ory [7].

Theorem 7: If u is drawn from an ergodic source with
an entropy H, then for any arbitrary ¢ >0

P[|c(u)— H>e]=0.

Thus by Theorems 6 and 7, ¢(«) = H(u)= H almost surely
if u is the output of an ergodic source. The fact that
c(u)—>H in probability for an ergodic source was first
established in [10].

From the proof of Theorem 6 it follows that if, among
all n-vectors that are at Hamming distance not larger than

e'n from ul/} ", the vector 471" has the smallest num-

ber of distinct /-vectors, say 24V then
C(ufid™) ...
n—/l'o—g'—— <h,(j)+8€+8,,
where lim, . 8,—0 and lim, 40, =0. It follows from the
proof of the Coding Theorem 4 that the block encoding
version of the proposed sequential encoding algorithm is
asymptotically optimal in the sense of Theorems 4 and 2.
It has been shown [9] that the instrumentation complexity

But p(u(-))=a'
vectors emerging from a memoryless source of a-letters.
Thus [7, Eq. (9.5.8)]

logya—e>R(d’) > log,a+ d'log,d’
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of this algorithm grows only linearly with the block length
n. Furthermore, as with sliding-block codes [11], this code
improves progressively as n grows, while the induced
changes in its structure are slight.

Theorem 8: Let u be the infinite series consisting of the
a-ry expansions of the natural numbers 1,2,3,:--. Then
H(u)=log,a.

Proof: Consider the segment u, of u where s= s(l) 1
+ 3 _gia’ 7Y, t=(y=Z"tLiai !, and = 0,1,2,---. The
segment u/ corresponds to the a-ry expansion of the
natural numbers aal+1,- - alt 1.

There are therefore a’ distinct /-vectors in u/. Let w be
a sequence such that A(w)=log,a —2e <log, a. Then there
exists an integer k such that for any / >k, h(w) <log,a —e.
Thus the number 2#¢) of distinct /-vectors in the seg-
ment w! is not larger than a’2~¢ for any / > k. Therefore
2 /o' tends to zero as / tends to infinity.

The sequence u, consists of (a’*!—a’) distinct (/+1)-
vectors. Let us parse ' and w/ into a’*!— a’ successive
(/+ 1)-blocks and consider the sequences # and W, of
(a'*'—a’) I-blocks that are formed by omitting the first
letter in each (/+ 1)-block in the parsed «, and w/, respec-
tively.

Let P(u(/)) denote the relative frequency of the /-vector
u(/) among the (a'*'—a') I-blocks that form 4/, and let
p(w(Dlu(l)) be the relative frequency of the /-vector w(/)
among the (a!*!— a’) I-blocks that form W/, given that the
corresponding /-block in &/ that pairs with w(/) is u(/).

By construction, p(u(!))=a ' and

7=5 D(ww)
733 D) D(u(1) (1))

l +1 100y aay
[
=Y
Let
11(u<1),w(1)>
223 S pu)pw(Dlu())
W(’) u(l)
o)
S p(w(D)]u()p(u(l))

u(l)

Since the number of distinct /-vectors in w/ is bounded by
2[logza-e]l then ([7])

logya—e > (/) > 7 Hw(1)) > L))

represents a probability measure of /-

+(1-d")log,(1—-d’)— d’logy(a—1),
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so as / tends to infinity
log,a—€>R(d)> log,a + dlog,d

+(1-d)log,(1—d)—dlogy(a—1).
Thus

lim —— D(u!,w) >d(€)>0

lsoo [— S

where d(e) is the solution of
—dlog,d—(1—d)log,(1-d)+dlog(a—1)=e.

1 1(2)

Therefore, since u= 1,3, -, u), -+, it follows that

d(u,w)>d(e).

CONCLUSION

1) The fixed-rate finite-state encoding that is discussed
in this paper might be considered to be a special case of
variable-rate encoding. However, it should be pointed out
that in variable-rate encoding there is usually a buffer at
the output of the encoder that converts the variable-rate
output into a fixed-rate data. Therefore if we restrict
ourselves to finite-memory buffers, the fixed-rate mode} of
this paper is the more appropriate one.

The variable-rate encoding case will be discussed in a
forthcoming paper with A. Lempel, where it is demon-
strated that the sequential data processing algorithm of [2]
which is described in Section III is also asymptotically
optimal for the variable-rate case, and that c(u) (Theorem
6) is also a lower bound on the compression ratio that can
be achieved by any finite-state variable-rate encoder. Fur-
thermore the sequence that is discussed in Theorem 8 is
incompressible by any finite-state encoder, even a vari-
able-rate one.

2) Assume that the sequence u is to be transmitted
through a noisy channel, for instance a memoryless
channel of capacity C. The natural generalization of the
converse Theorem 3 states that if H(u)>C, then there
exists an € >0 such that P[d(u,i)) >e]>e.

3) The case where some distortion between u and # can
be tolerated should lead to a version of the classical
rate-distortion theory and a rate-distortion function R(d)
for different fidelity criteria. These topics will be discussed
elsewhere.

4) Consider the case where the input sequence is finite.
By following the proofs of Theorems 1,2,3, and 4 it is
possible to state similar converse and coding theorems for

Q.ED.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-24, NO. 4, JULY 1978

a finite individual sequence u;". For example, let the
number of distinct /-vectors in u" be 2%®"), Then if
max, [h(u]")—(1/1)logS]> log, B, we bhave u"#a" for
any finite-state encoder and decoder with S or fewer
states. This is the equivalent of the converse Theorem 2,
and follows directly from the proof of Lemma 1 and
Theorem 2.
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