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Abstract: This paper presents a survey of image synthesis and editing with Generative Adversarial Networks

(GANs). GANs consist of two deep networks, a generator and a discriminator, which are trained in a competitive

way. Due to the power of deep networks and the competitive training manner, GANs are capable of producing

reasonable and realistic images, and have shown great capability in many image synthesis and editing applications.

This paper surveys recent GAN papers regarding topics including, but not limited to, texture synthesis, image

inpainting, image-to-image translation, and image editing.
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1 Introduction

With the rapid development of Internet and digital
capturing devices, huge volumes of images have
become readily available. There are now widespread
demands for tasks requiring synthesizing and editing
images, such as removing unwanted objects in
wedding photographs, adjusting the colors of
landscape images, and turning photographs into
artwork or vice-versa. These and other problems have
attracted significant attention within both the computer
graphics and computer vision communities. A variety
of methods have been proposed for image/video
editing and synthesis, including texture synthesis[1–3],
image inpainting[4–6], image stylization[7, 8], image
deformation[9, 10], and so on. Although many methods
have been proposed, intelligent image synthesis
and editing remains a challenging problem. This
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is because these traditional methods are mostly
based on pixels[1, 4, 11], patches[8, 10, 12], and low-level
image features[3, 13], and lacking high-level semantic
information.

In recent years, deep learning techniques have made
a breakthrough in computer vision. Trained using
large-scale data, deep neural networks substantially
outperform previous techniques with regard to the
semantic understanding of images. They claim
state-of-the-art in various tasks, including image
classification[14–16], object detection[17, 18], image
segmentation[19, 20], etc.

Deep learning has also shown great ability in content
generation. In 2014 Goodfellow et al.[21] proposed
a generative model, called Generative Adversarial
Networks (GANs). GANs contain two networks,
a generator and a discriminator. The discriminator
tries to distinguish fake images from real ones; the
generator produces fake images but it tries to fool the
discriminator. Both networks are jointly trained in
a competitive way. The resulting generator is able
to synthesize plausible images. GAN variants have
now achieved impressive results in a variety of image
synthesis and editing applications.

In this survey, we cover recent papers that leverage
GANs for image synthesis and editing applications.
This survey discusses the ideas, contributions, and
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drawbacks of these networks. This survey is structured
as follows. Section 2 provides a brief introduction
to GANs and related variants. Section 3 discusses
applications in image synthesis, including texture
synthesis, image impainting, and face and human
image synthesis. Section 4 discusses applications in
constrained image synthesis, including general image-
to-image translation, text-to-image, and sketch-to-
image. Section 5 discusses applications in image
editing and video generation. Finally, Section 6
provides a summary discussion and current challenges
and limitations of GAN based methods.

2 Generative Adversarial Networks

GANs were proposed by Goodfellow et al.[21] in 2014.
They contain two networks, a generator G and a
discriminator D. The generator tries to create fake
but plausible images, while the discriminator tries to
distinguish fake images (produced by the generator)
from real images. Formally, the generator G maps a
noise vector z in the latent space to an image: G.z/! x,
and the discriminator is defined as D.x/ ! Œ0; 1�,
which classifies an image as a real image (i.e., close to
1) or as a fake image (i.e., close to 1).

To train the networks, the loss function is formulated
as

min
G

max
D

Ex2X ŒlogD.x/�C Ez2Z Œlog.1 �D.G.z///�
(1)

where X denotes the set of real images, Z denotes
the latent space. The above loss function (Eq. (1)) is
referred to as the adversarial loss. The two networks are
trained in a competitive fashion with back propagation.
The structure of GANs is illustrated as Fig. 1.

Compared with other generative models such as
Variational AutoEncoders (VAEs)[22], images generated
by GANs are usually less blurred and more realistic.
It is also theoretically proven that optimal GANs
exist, that is the generator perfectly produces images
which match the distributions of real images well, and

Fig. 1 Structure of GANs.

the discriminator always produces 1/2[21]. However,
in practice, training GANs is difficult because of
several reasons: firstly, networks converge is difficult
to achieve[23]; secondly, GANs often get into “mode
collapse”, in which the generator produces the same or
similar images for different noise vectors z. Various
extensions of GANs have been proposed to improve
training stability[23–27].

cGANs. Mirza and Osindero[28] introduced
conditional Generative Adversarial Networks (cGANs),
which extends GANs into a conditional model. In
cGANs, the generator G and the discriminator D
are conditioned on some extra information c. This is
done by putting c as additional inputs to both G and
D. The extra information could be class labels, text,
or sketches. cGANs provide additional controls on
which kind of data are being generated, while the
original GANs do not have such controls. It makes
cGANs popular for image synthesis and image editing
applications. The structure of cGANs is illustrated as
Fig. 2.

DCGANs. Radford et al.[23] presented Deep
Convolutional Generative Adversarial Networks
(DCGANs). They proposed a class of architecturally
constrained convolution networks for both generator
and discriminator. The architectural constraints
include: (1) replacing all pooling layers with strided
convolutions and fractional-strided convolutions; (2)
using batchnorm layers; (3) removing fully connected
hidden layers; (4) in the generator, using tan h as
the activation function and using Rectified Linear
Units (ReLU) activation for other layers; and (5) in
the discriminator, using LeakyReLU activation in
discriminator for all layers. DCGANs have shown to be
more stable in training and are able to produce higher
quality images, hence they have been widely used in
many applications.

LAPGAN. Laplacian Generative Adversarial
Networks (LAPGAN)[29] are composed of a cascade of
convolutional GANs with the framework of a Laplacian

Fig. 2 Structure of cGANs.
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pyramid withK levels. At the coarsest level,K, a GAN
is trained which maps a noise vector to an image with
the coarsest resolution. At each level of the pyramid
except the coarsest one (i.e., level k, 0 6 k < K), a
separate cGAN is trained, which takes the output image
in the coarser level (i.e., level k C 1) as a conditional
variable to generate the residual image at this level.
Due to such a coarse-to-fine manner, LAPGANs are
able to produce images with higher resolutions.

Other extensions. Zhao et al.[24] proposed
an Energy-Based Generative Adversarial Network
(EBGAN), which views the discriminator as an energy
function instead of a probability function. They
showed that EBGANs are more stable in training. To
overcome the vanishing gradient problem, Mao et
al.[25] proposed Least Squares Generative Adversarial
Networks (LSGAN), which replace the log function by
least square function in the adversarial loss. Arjovsky
et al.[26] proposed Wasserstein Generative Adversarial
Networks (WGANs). They first theoretically showed
that the Earth-Mover (EM) distance produces better
gradient behaviors in distribution learning compared
to other distance metrics. Accordingly, they made
several changes to regular GANs: (1) removing
the sigmoid layer and adding weight clipping in
the discriminator; (2) removing the log function
in the adversarial loss. They demonstrated that
WGANs generate images with comparable quality
compared to well designed DCGANs. Berthelot et
al.[27] proposed Boundary Equilibrium Generative
Adversarial Networks (BEGAN), trying to maintain an
equilibrium which can be adjusted for the trade-off
between diversity and quality.

Creswell et al.[30] provided an overview of GANs.
They mainly focused on GANs themselves, including
architectures and training strategies of GANs. Our
survey differs because it focuses on image synthesis and
editing applications with GANs.

3 Image Synthesis

This section discusses applications including texture
synthesis, image super-resolution, image inpainting,
face image synthesis, and human image synthesis.

3.1 Texture synthesis

Texture synthesis is a classic problem in both computer
graphics and computer vision. Given a sample texture,
the goal is to generate a new texture with identical
second order statistics.

Gatys et al.[31] introduced the first CNN-based
method for texture synthesis. To characterize a texture,
they defined a Gram-matrix representation. By feeding
the texture into a pre-trained VGG19[15], the Gram
matrices are computed by the correlations of feature
responses in some layers. The target texture is obtained
by minimizing the distance between the Gram-matrix
representation of the target texture and that of the input
texture. The target texture starts from random noise,
and is iteratively optimized through back propagation,
hence, its computational cost is expensive.

MGANs. Li and Wand[32] proposed a real-time
texture synthesis method. They first introduced
Markovian Deconvolutional Adversarial Networks
(MDANs). Given a content image xc (e.g., a face
image) and a texture image xt (i.e., a texture image of
leaves), MDANs synthesize a target image xs (e.g., a
face image textured by leaves). Feature maps of an
image are defined as feature maps extracted from a
pre-trained VGG19 by feeding the image into it[33],
and neural patches of an image are defined as patch
samples on the feature maps[15]. A discriminator is
trained to distinguish neural patches from real and fake
images. The objective function includes a texture loss
and a feature loss. The texture loss is computed from
the classification scores of neural patches of xs from the
discriminator. The feature loss considers the distance
between the feature maps of xs and xc. The target image
is initialized with random noise, and is iteratively
updated through back propagation by minimizing the
objective function. They further introduced Markovian
Generative Adversarial Networks (MGANs), which
take feature maps of a content image xc as input
to generate a texture image. MGANs are trained
using content and target image pairs synthesized by
MDANs. The objective function of MGANs is defined
similar to MDANs. MGANs are able to achieve real-
time performance for neural texture synthesis, which is
about 500 times faster than previous methods.

SGAN and PSGAN. Regular GANs map a random
vector to an image. Instead, Jetchev and Bergmann[34]

proposed Spatial GANs (SGAN), which extend to
map a spatial tensor to an image. The network
architecture follows DCGANs[23]. The architectural
properties of SGAN make it suitable for the task of
texture synthesis. Bergmann et al.[35] further extended
SGAN to Periodic Spatial GAN (PSGAN). In PSGAN,
the input spatial tensor contains three parts: a local
independent part, a spatially global part, and a periodic
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part. PSGAN is able to synthesize diverse, periodic, and
high-resolution textures.

3.2 Image super-resolution

Given a low-resolution image, the goal of super-
resolution is to upsample it to a high-resolution one.
Essentially, this problem is ill-posed because high
frequency information is lacking, especially for large
upscaling factors. Recently, some deep learning based
methods[36–38] were proposed to tackle this problem,
results are good for low upsampling factors, but less
satisfactory for larger scales. Below, we discuss GAN-
based super-resolution methods.

SRGAN. Ledig et al.[39] proposed Super-Resolution
Generative Adversarial Network (SRGAN), which
takes a low-resolution image as input, and generates
an upsampled image with 4� resolution. The network
architecture follows the guidelines of DCGAN[23], and
the generator uses very deep convolutional network
with residual blocks. The objective function includes
an adversarial loss and a feature loss. The feature loss
is computed as the distance between the feature maps
of the generated upsampled image and the ground truth
image, where the feature maps are extracted from a
pre-trained VGG19 network. Experiments show that
SRGAN outperforms the state-of-art approaches on
public datasets.

FCGAN. Based on Boundary Equilibrium
Generative Adversarial Networks (BEGANs)[27],
Huanget al.[40] proposed Face Conditional Generative
Adversarial Network (FCGAN), which specializes
on facial image super resolution. Within the network
architecture, both the generator and discriminator use
an encoder-decoder along with skip connections. For
training, the objective function includes a content loss,
which is computed by the L1 pixelwise difference
between the generated upsampled image and the
ground truth. FCGAN generates satisfactory results
with 4� scaling factor.

3.3 Image inpainting

The goal of image inpaiting is to fill holes in images.
It has been always a hot topic in computer graphics
and computer vision. Traditional approaches replicate
pixels or patches from the original image[4, 5, 10] or from
image library[6, 8] to fill the holes. GANs offer a new
way for image inpainting.

Context encoder. Pathak et al.[41] presented a
network called context encoder, which is the first image

inpainting method based on GANs. The network is
based on an encoder-decoder architecture. The input
is a 128 � 128 image with holes. The output is a
64 � 64 image content in the hole (when the hole is
central) or the full 128�128 inpainted image (when the
hole is arbitrary). The objective function includes an
adversarial loss and a content loss measuring L2 pixel-
wise difference between the generated inpainted image
and the ground truth image. Experiments used the Paris
StreetView dataset[42] and the ImageNet dataset[43]. It
achieves satisfactory inpainting results for central holes
but less satisfactory results for arbitrary holes.

Multiscale method. Yang et al.[44] presented a
multiscale synthesis method for high-resolution image
impainting. They first trained a context network which
is similar to context encoder[41] with minor changes on
some layers. To complete a 512 � 512 image with
a 256 � 256 hole, they first downsampled the image
by a factor of 4, then obtained an initial reconstructed
hole image x0 at resolution 64 � 64 through the trained
context network. The final reconstructed hole image (at
resolution 256�256) is then obtained in a coarse-to-fine
manner. At each scale, the reconstructed hole image
is iteratively updated by optimizing a joint objective
function, including a content loss, a texture loss, and a
Total Variation (TV) loss. The content loss measures
the L2 difference between the currently optimized
image and the resulting image from the coarser level.
The texture loss is computed by comparing the neural
patches inside the hole and the neural patches outside
the hole. The texture loss enforces the image content
inside and outside the hole to have similar texture
details. It shows nice image inpainting results with
512 � 512 resolution, but is slow due to the iterative
approach. Some results of this method and Context
Encoder are shown in Fig. 3.

Consistent completion. Iizuka et al.[45] proposed a

Input Context Encoder Yang et al. Ground truth

Fig. 3 Comparison between Context Encoder[41] and Yang
et al.[44]
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GAN-based approach for global and local consistent
image inpainting. The input is an image with an
additional binary mask to indicate the missing hole. The
output is an inpainted image with the same resolution.
The generator follows the encoder-decoder architecture
and uses dilated convolution layers[46] instead of
standard convolution layers for larger spatial support.
There are two discriminators, a global discriminator that
takes the entire image as input and a local discriminator
that takes a small region covering the hole as input. The
two discriminators ensure that the resulting image is
consistent at both global and local scale. This work
produces natural image inpainting results for high-
resolution images with arbitrary holes.

Other methods. Yeh et al.[47] proposed a GAN-
based iterative method for semantic image inpainting.
It first pre-trained a GAN, whose generator G maps
a latent vector z to an image. Given an image with
missing contents x0, they recover the latent vector
z� by minimizing an objective function including
an adversarial loss and a content loss. The content
loss is computed by a weighted L1 pixel-wise
distance between the generated image G.z�/ and x0

on uncorrupted regions, where pixels near the hole
are given higher weights. The objective function is
iteratively optimized through back propagation. Li et
al.[48] proposed a GAN-based specialized approach
for face image impainting. Following the network
architecture of Iizuka et al.[45], it incorporates a global
discriminator and a local discriminator to enforce
image consistency in both global and local scales. It
additionally includes a pre-trained parsing network to
enforce the harmony of the inpainted face image.

3.4 Face image synthesis

Face image synthesis is a specialized but important
topic. Because human vision is sensitive to facial
irregularities and deformations, it is not an easy task to
generate realistic synthesized face images. GANs have
shown a good ability in creating face images of high
perceptual quality and with detailed textures.

Face aging. Face aging methods transform a facial
image to another age, while still keeping identity.
Zhang et al.[49] presented a Conditional Adversarial
AutoEncoder (CAAE) for this problem, which consists
of an encoder E, a generator G, and two discriminators
Dz and Dimg. The encoder E maps a face image x to a
vector z indicating personal features. The output vector

z, together with a conditional vector c indicating a new
age, are fed into the generator G to generate a new face
image. Dz takes the vector z as input, and enforces z
to be uniformly distributed. Dimg forces the face image
generated by G to be realistic and to conform with the
given age. Besides the two adversarial losses of the
two discriminators, the objective function also includes
an L2 content loss and a Total Variation (TV) loss.
The content loss enforces the input face image and the
generated face image to be similar: x � G.E.x/; c/.
The TV loss is introduced to remove ghosting effects.
All the networks are jointly trained. CAAE is able to
generate map input face images to plausibly appear as a
different age.

Antipov et al.[50] proposed an Age-conditional
Generative Adversarial Network (Age-cGAN) for face
aging. Age-cGAN consists of an encoder and a cGAN.
Like CAAE, the encoder E maps a face image x to a
latent vector z, and the conditional generator G maps
a latent vector z with an age condition c to a new face
image. The cGAN is first trained, and the encoder is
trained using pairs of latent vectors and generated face
images of the cGAN. After training, given an input face
image x0 with age c0, face aging is achieved by: (1)
feeding x0 into the encoder to obtain an initial latent
vector z0; (2) iteratively updating z0 to a new latent
vector z� through an identity preserving optimization,
which enforces the reconstructed face image with the
same age to be close to the input image: G.z�; c0/ �

x0; and (3) feeding the optimized latent vector z� and
the target age into the generator to obtain the new face
image.

Face frontalization. Face frontalization aims to
transform a face image from rotated or perspective
views to frontal views. Tran et al.[51] proposed
Disentangled Representation learning-GAN (DR-
GAN) for face synthesis with new poses. The generator
G uses an encoder-decoder architecture. It learns a
disentangled representation for face images which are
the output of the encoder and also the input of the
decoder. Specifically, the encoder maps a face image
x to an identity feature f , and the decoder synthesizes
a new face image, given an identity feature f , a target
pose, and a noise vector. The discriminator D has two
parts, one for identity classification (i.e., also contains
an additional identity class for fake images), and the
other for pose classification. The goal ofD is to predict
both identity and pose correctly for real images and
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also to predict identity as fake for fake images. The
goal of G is to fool D to classify fake images to its
input identity and pose. The objective function for
training only contains the newly introduced adversarial
loss. Experiments show that DR-GAN is superior to
existing methods on pose invariant face recognition.

Yin et al.[52] proposed a Face Frontalization
Generative Adversarial Network (FF-GAN), which
incorporates 3D Morphable Model (3DMM)[53] into
the GAN structure. Since 3DMM provides geometry
and appearance priors for face images and the
representation of 3DMM is also compact, FF-GAN has
the advantage of fast convergence, and produces high-
quality frontal face images.

Huang et al.[54] proposed Two-Pathway Generative
Adversarial Network (TP-GAN) for frontal face image
synthesis. The network has a two-pathway architecture,
a global generator for generating global structures, and
a local generator for generating details around facial
landmarks. The objective function for training consists
of an L1 pixel-wise content loss which measures the
difference between the generated face image bx and the
ground truth, a symmetry loss which enforces bx to be
horizontally symmetric, an adversarial loss, an identity
preserving loss, and a TV loss.

3.5 Human image synthesis

Human image processing is important in computer
vision. Most existing works focused on problems
such as pose estimation, detection, and re-identification,
while generating novel human images attracted few
attention until GANs were presented. For the purpose
of improving person re-identification precision, Zheng
et al.[55] utilized GANs to generate human images as
extra training data. Other GANs are designed for human
image synthesis per se.

VariGAN. Variational GAN (VariGAN)[56] aims to
generate multi-view human images from a single-
view. It follows a coarse-to-fine manner and consists
of three networks: a coarse image generator, a fine
image generator, and a conditional discriminator. The
coarse image generator Gc uses a conditional VAE
architecture[57]. Given an input image x0 and a target
view t , it is separately trained to generate a low-
resolution image with the target view xt

LR. The
fine image generator Gf uses a dual-path U-Net[20]

architecture. It maps xt
LR to a high-resolution image

xt
HR conditioned on x0. The discriminator D examines

the high-resolution image xt
HR conditioned on the input

image x0. Gf andD are jointly trained with an objective
function consisting of an adversarial loss and a content
loss measuring L1 difference between xt

HR and ground
truth.

Pose guided generation PG2. Ma et al.[58] proposed
a pose guided human image generation method
(PG2). Given an input human image and a target pose,
it generates a new image with the target pose. They
also used a coarse-to-fine two-stage approach. In the
first stage, a generator G1 produces a coarse image xLR

from the input image x0 and the target pose, capturing
the global structure. In the second stage, a generator
G2 generates a high-resolution difference image �xHR

from the coarse image xLR and the input image x0.
The final image is obtained by summing up xLR and
�xHR. A conditioned discriminator is also involved.
Both G1 and G2 use the U-Net[20] architecture. It is
able to produce new 256 � 256 images.

4 Constrained Image Synthesis

This section discusses a constrained image synthesis,
which is synthesizing a new image with respect to
some specified constraints from users, such as another
image, text description, or sketches. We will discuss
applications on image-to-image translation, text-to-
image, and sketch-to-image.

4.1 Image-to-image translation

Image-to-image translation refers to a constrained
synthesis process which maps an input image to an
output image.

Pix2pix. Isola et al.[59] proposed a general image-
to-image translation framework pix2pix using cGANs.
Their network architecture follows the guidelines
of DCGANs[23] with some additional changes: (1)
applying modules of the form convolution-BatchNorm-
ReLU; and (2) adding skip connections between the
deep layers and the shallow layers for the generator.
The discriminator uses PatchGAN[32], which runs faster
and penalizes unreal structure at the patch scale. Since
the goal is not only to produce realistic images (which
fool the discriminator), but also require the generated
image to be close to ground truth; hence, besides the
adversarial loss, they additionally include a content loss
in the objective function. The content loss measures
the L1 distance between the output image and the
ground truth image. Pix2pix was demonstrated to be
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effective for a variety of image-to-image translation
tasks, including labels to cityscape, labels to façade,
edges to photo, day to night, etc. It produces convincing
results at the 256 � 256 resolution, as shown in Fig. 4.

CycleGAN. Pix2pix[59] requires paired images
(an image before translation and the corresponding
image after translation) as training data, however,
in many cases, such image pairs do not exist. To
address this issue, Zhu et al.[60] proposed an unpaired
image-to-image translation framework, named
cycle-consistent Generative Adversarial Networks
(cycleGAN). CycleGAN consists of two separate
GANs, one translates an image from one domain to
another (e.g., horse to zebra): xtrans D G.x/, the other
does the inverse translation (e.g., zebra to horse):
x D Ginv.xtrans/. Their network architecture follows
Johnson et al.[61] which has shown to be effective in
style transfer. Similar to pix2pix, the discriminators
use PatchGAN[32]. The two GANs are jointly trained.
Following LSGAN[25], the adversarial loss uses least
square function instead of a log function for more
stable training. Beside the two adversarial losses of
the two GANs, the objective function additionally
includes an L1 cycle consistency loss, which enforces
that an image translates to itself after the translation
cycle: x � Ginv.G.x//; xtrans � G.Ginv.xtrans//.
Their method has been successfully applied to several
translation tasks, including collection style transfer,
season transfer, etc., as shown in Fig. 5.

AIGN. The Adversarial Inverse Graphics Network
(AIGN)[62] also utilizes unpaired training. AIGN
consists of a generator G, a discriminator D, and
a task specific renderer P . Consider image-to-image
translation as example: the generator G maps an input
image x to an output image G.x/, and the renderer
maps the output of the generator back to its input. The
objective function for training includes an adversarial

Labels to Cityscape Labels to Facade Edges to Photo

Input

Output

Fig. 4 Results produced by pix2pix[59].

Apple → Orange

Orange → Apple

Horse → Zebra

Zebra → Horse

Fig. 5 Results produced by cycleGAN[60].

loss and a reconstruction loss enforcing x � P.G.x//.
Beside image-to-image translation, AIGN could be
also used for 3D human pose estimation, face super-
resolution, image inpainting, etc.

4.2 Text-to-image

Text-to-image refers to the process of generating an
image which corresponds to a given text description.
For example, we could imagine an image describing
“a red bird with a black tail” or “a white flower with a
yellow anther”. This is a difficult problem, but recently,
it is able to generate images depicting simple scenes
with the help of GANs.

GAN-INT-CLS. Reed et al.[63] proposed a text-to-
image synthesis method using GANs. The input text
is encoded into a text embedding vector ˚̊̊ .t/ using a
recurrent network. Conditioned on the text embedding
vector ˚̊̊ .t/, the generator maps a noise vector z
to a synthesized image. The discriminator is also
conditioned on ˚̊̊ .t/, and is designed to judge whether
the input image is real or fake, and that it matches the
texture description. The network architecture follows
the guidelines of DCGAN[23]. The objective function
only includes an adversarial loss. Note that the noise
vector z could be used to control styles of generated
images.

GAWWN. Reed et al.[64] introduced a Generative
Adversarial What-Where Network (GAWWN), which
considers location constraints in addition to text
descriptions. A location constraint could be given by
a bounding box, or by keypoints. Specifically, for
bounding box constraints, a bounding-box-conditional
GAN is proposed. The networks (both the generator
and the discriminator) are conditioned on the bounding
box and the text embedding vector which represents text
description. The networks have two pathways: a global
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pathway that operates on the full image, and a local
pathway that operates on the region inside the bounding
box. For keypoint constraints, a keypoint-conditional
GAN is also proposed. The keypoint constraints are
represented using binary mask maps.

Other methods. Stacked Generative Adversarial
Networks (StackGAN)[65] are able to generate
high-resolution images conditioned by given text
descriptions. This method has two stages of GANs.
Stage-1 GAN generates a low-resolution (64 � 64)
image from a noise vector conditioned to some text
description. The output 64 � 64 image from Stage-1
and the text descriptions are both fed into Stage-2 GAN
to generate a high-resolution (256 � 256) image. It
is the first work to generate images with 256 � 256
resolution from texts. A Text conditioned Auxiliary
Classifier GAN (TAC-GAN)[66] is another text-to-
image synthesis method. It is built upon Auxiliary
Classifier GAN (AC-GAN)[67], but replaces the class
label condition by a text description condition.

Current text-to-image synthesis approaches are
capable of generating plausible images of single object,
such as a bird or a flower. But they are still not well
adapted to complex scenes with multiple objects, which
is an important direction for future works.

4.3 Sketch-to-image

Sketches are a convenient way for users to draw
what they want, but they lack detail, e.g., color etc.
Therefore, automatically mapping the input sketches
to the user desired images is an attractive problem for
researchers. Sketch2Photo[68] provides a fantastic way
to synthesize images with sketch and text labels by
the composition of Internet images, but text labels are
necessary in their work. Recently, GAN-based methods
are able to generate images from sketches without text
labels, showing better flexibility.

Scribbler. Sangkloyet al.[69] proposed a GAN-based
synthesis method named Scribbler, which converts
sketch images with color strokes to realistic images.
The generator employs an encoder-decoder architecture
with residual blocks[16], and generates a new image with
the same resolution as the input sketch image. The
objective function consists of a content loss, a feature
loss, an adversarial loss, and a TV loss. The content
loss measures L2 pixel-wise difference between the
generated image bx and ground truth xG . Similar to
MDANs[32], the feature loss is defined as the feature
distance between bx and xG , where the features are

extracted from a pre-trained VGG19 network. The
TV loss is included to improve the smoothness of the
generated images[61]. It is able to generate realistic,
diverse, and controllable images.

TextureGAN. Xian et al.[70] proposed TextureGAN,
which converts sketch images to realistic images with
the additional control of object textures. The generator
takes a sketch image, a color image, and a texture
image xt as input to generate a new image bx. The
network structure follows Scribbler[69]. The objective
function consists of a content loss, a feature loss, an
adversarial loss, and a texture loss. The content loss,
feature loss, and adversarial loss are defined similar
to Scribbler[69]. Following the CNN based texture
synthesis method[31], the texture loss is computed as
the distance between the Gram-matrix representation of
patches in bx and xt, enforcing texture appearance of bx
close to xt. Segmentation masks are also introduced to
enforce computing texture loss and content loss only in
the foreground region.

Other methods. Magic Pencil[71] is another GAN-
based sketch-to-image synthesis method. Beside a
generator and a discriminator, it additionally includes
a classifier to enforce the generated image and the input
sketch in the same category. With the help of the newly
included classifier, it is able to achieve multi-category
image synthesis. Auto-painter[72] converts sketches to
cartoon images based on GANs. It adopts the network
architecture of pix2pix[59] and additionally includes
texture loss and TV loss into the objective function.

Sketch dataset is rare, so researchers often utilize
edge detection algorithm to extract sketches for
training. However, extracted sketches often contain
lots of details and their low level statistics are very
different from hand drawings. That is not the only
difference, there can be changes in geometry and
connectedness too. Additionally, while these methods
work on single sketched object well, GAN-based
generation of complex scenes from sketches is still a
challenging problem.

5 Image Editing and Videos

5.1 Image editing

Image editing is an important topic in computer
graphics, in which users manipulate an image through
color and (or) geometry interactions. A lot of works
have investigated tasks such as image warping[73, 74],
colorization[75–77], and blending[78, 79]. These works
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mainly work on pixels or patches, and do not
necessarily keep semantic consistency in editing.

iGAN. Zhu et al.[80] proposed iGAN, which uses
GAN as a manifold approximation and constrains the
edited images on the manifold. They pre-trained a
GAN from a large image collection, which maps a
latent vector z to a natural image. Given an original
image, the method works as follows: (1) The original
image x0 is projected to the latent space and a latent
representation vector z0 is obtained. The projection is
done through a hybrid method combining optimization
and a pre-trained encoder network. (2) After specifying
shape and color edits, they optimize for a new vector
z� minimizing an objective function containing a data
loss, a manifold smoothness loss, and an adversarial
loss. The data loss measures differences with user
edit constraints so as to enforce satisfying user edits.
The manifold smoothness loss is defined as the L2

difference between z� and z0, so that the image is not
changed too much. (3) By interpolating between z0

and z�, a sequence of continuous edited images are
generated. (4) Finally, the same amount of edits are
transferred to the original image x0 using optical flow to
obtain the final results. iGAN achieves realistic image
editing, on various edit operators such as coloring,
sketching, and geometric warping. Figure 6 shows the
interpolation between generated images of a bag and an
outdoor scene.

IAN. Brock et al.[81] proposed an Introspective
Adversarial Network (IAN) for image editing. IAN
consists of a generator G, a discriminator D, and
an encoder E. The network architecture follows
DCGAN[23]. The generatorG maps a noise vector z to a
generated image. The encoder E uses the discriminator
D as a feature vector, and is built on top of the final
convolutional layer of D. The discriminator D inputs
an image and determines whether it is real, fake, or
reconstructed. The networks are jointly trained with

Fig. 6 Results produced by iGAN[80].

respect to an objective function consisting of a content
loss, a feature loss, the ternary adversarial loss, and the
KL divergence of VAE[22]. The content loss measures
L1 pixel-wise difference between reconstructed and
original images. The feature loss measures L2 feature
difference between reconstructed and original images.
Such designs enforce high-quality reconstruction.

Other methods. Cao et al.[82] applied GAN for
imaged colorization. Its high-level network architecture
follows pix2pix[59]. It generates diverse colorization
results by feeding different input noise into the
generator. Gaussian-Poisson GAN (GP-GAN)[83]

applies GAN for high-resolution image blending.
It combines GAN with traditional gradient based
blending techniques. GAN is used to generate an initial
low-resolution blended image, and the final result is
obtained by optimizing the Gaussian-Poisson equation.

5.2 Video generation

Inspired by the success of GANs in image synthesis
applications, researchers have also applied GANs to
video generation. Compared to image synthesis, video
generation is more difficult since video has an extra
temporal dimension requiring much larger computation
and memory cost. It is also not trivial to keep temporal
coherence. We will discuss some important works for
such attempts.

VGAN. Vondrick et al.[84] proposed a Generative
Adversarial Network for Video (VGAN). They assumed
the whole video is combined by a static background
image and a moving foreground video. Hence, the
generator has two streams. The input to both streams
is a noise vector. The background stream generates
the background image with 2D convolutional layers,
and the foreground stream generates the 3D foreground
video cube and the corresponding 3D foreground mask,
with spatial-temporal 3D convolutional layers. The
discriminator takes the whole generated video as input,
and tries to distinguish it from real videos. Since VGAN
treats videos as 3D cubes, it requires large memory
space; it can generate tiny videos of about one second
duration.

TGAN. Saito et al.[85] proposed Temporal Generative
Adversarial Network (TGAN) for video generation.
TGAN consists of a temporal generator, an image
generator, and a discriminator. The temporal generator
produces a sequence of latent frame vectors Œz1

1; :::; z
K
1 �

from a random variable z0, where K is the number of
video frames. The image generator takes z0 and a frame
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vector zt
1 (1 6 t 6 K) as input, and produces the t -th

video frame. The discriminator takes the whole video
as input and tries to distinguish it from real ones. For
stable training, they follow WGAN[26], but further apply
singular value clipping instead of the weight clipping to
the discriminator.

MocoGAN. Tulyakov et al.[86] proposed Motion and
Content decomposed GAN (MoCoGAN) for video
generation. The basic idea is to use a motion and
content decomposed representation. Given a sequence
of random variables Œ�1; :::; �K �, a recurrent network
maps them to a sequence of motion vectors z1

M; :::;

zK
M , where K is the number of video frames. A

content vector zC, together with a motion vector zt
M

(1 6 t 6 K) are fed into the generator to produce the
t -th video frame. There are two discriminators, one for
distinguishing real from fake single frames, while the
other for distinguishing real from fake videos.

Video prediction. Video prediction refers to the
process of predicting one (or a few) future frames
conditioned by a few existing video frames. Various
GAN-based approaches[87–90] have been proposed for
this goal. With a multiscale architecture, Mathieu et
al.[87] generated future frames by minimizing an MSE
loss, an adversarial loss, and a gradient difference loss.
Zhou and Berg[88] learned temporal transformations
of specific phenomenon from videos, such as flower
blooming, ice melting, etc. Vondrick and Torralba[89]

learned pixel transformation and generated future
frames by transforming pixels from existing frames.
Liang et al.[90] proposed dual motion GAN, which
enforces predicted future frames to be consistent with
predicted optical flows.

6 Discussion and Conclusion

There have been great advances in image synthesis
and editing applications using GANs in recent years.
By exploring large amounts of images, GANs are
able to generate more reasonable, more semantically
consistent results than classical methods. Besides
that, GANs can produce texture details and realistic
content, which is beneficial to many applications,
such as texture synthesis, super-resolution, image
inpainting, etc. Comparisons between different GAN-
based methods are given in Table 1.

However, GANs are still facing many challenges.
Firstly, it is difficult to generate high-resolution images.
At present, most GAN-based applications are limited
to handle images with resolution not larger than 256 �
256. When applied to high-resolution images, blurry

artifacts usually occur. Although some approaches use
coarse-to-fine iterative approaches to generate high-
resolution images, but they are not end-to-end and are
usually slow. Recently, Chen and Koltun[91] introduced
cascaded refinement networks for photographic image
synthesis at 2-megapixel resolution, which gives us a
novel perspective for high-resolution image generation.

Secondly, the resolutions of input and output images
are usually required to be fixed. In comparison,
traditional image synthesis approaches are more flexible
and could be adapted to arbitrary resolution. Recently
proposed PixelRNN[92] draws images pixel to pixel and
allows arbitrary resolution, which gives a good insight.

Thirdly, as a common issue in deep learning, ground
truth data (for training) are crucial but hard to get. This
is more important in GAN-based image synthesis and
editing applications, because usually it is not easy to
find ground truth of synthesized or edited images (or
they simply do not exist). CycleGAN[60] and AIGN[62]

proposed to use unpaired data for training, which might
be a feasible solution for similar problems but this needs
more attention and exploration.

Finally, although GANs have been applied to video
generation and synthesis of 3D models[93–96], the results
are far from perfect. It is still hard to extract temporal
information from videos or decrease memory costs.
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