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Abstract

This paper presents a novel approach to utilizing high
level knowledge for the problem of scene recognition in an
active vision framework, which we call active scene recog-
nition. In traditional approaches, high level knowledge
is used in the post-processing to combine the outputs of
the object detectors to achieve better classification perfor-
mance. In contrast, the proposed approach employs high
level knowledge actively by implementing an interaction be-
tween a reasoning module and a sensory module (Figure 1).

Following this paradigm, we implemented an active
scene recognizer and evaluated it with a dataset of 20
scenes and 100+ objects. We also extended it to the anal-
ysis of dynamic scenes for activity recognition with at-
tributes. Experiments demonstrate the effectiveness of the
active paradigm in introducing attention and additional
constraints into the sensing process.

1. Introduction
The paradigm of Active Vision [1, 2, 3, 17, 19] had in-

vigorated Computer Vision research in the early 1990s. The
ideas were inspired by the observation that in nature vi-
sion is used by systems that are active and purposive. By
studying visual perception in isolation, we often end up
with more complicated formulations and under-constrained
problems. Thus, the Active Vision paradigm proposed that
visual perception should be studied as a dynamic and pur-
posive process for active observers that can control their
imaging mechanism. Most previous work in this paradigm
was concerned with low level robot vision problems, and
applied the ideas to shape reconstruction and navigational
problems, such as motion estimation, obstacle avoidance,
surveillance and path planning. Higher level tasks of scene
understanding and recognition have not been sufficiently
studied in this framework. These problems require com-
bining high level knowledge and reasoning procedures with
low-level image processing and a systematic mechanism for
doing so.

In this paper we propose a new approach to scene under-

Figure 1. Overview of the active approach for scene recognition.

standing in the paradigm of active vision. Central to the ap-
proach is a bio-inspired attention mechanism. Human per-
ception is active and exploratory. We continuously shift our
gaze to different locations in the scene. After recognizing
objects, we will fixate again at a new location, and so on.
Humans interpret visual input by using their knowledge of
actions and objects, along with the language used for repre-
senting this information. It is clear that when we analyze a
complex scene, visual processes continuously interact with
our high-level knowledge, some of which is represented in
the form of language. In some sense, perception and lan-
guage are engaged in an interaction, as they exchange in-
formation that leads to meaning and understanding.

This idea is applied to the simplest interpretation prob-
lem, scene recognition, in this paper. The proposed system
consists of two modules: (1) the reasoning module, which
obtains higher level knowledge about scene and object rela-
tions, proposes attentional instructions to the sensory mod-
ule and draws conclusions about the contents of the scene;
(2) the sensory module, which includes a set of visual opera-
tors responsible for extracting features from images, detect-
ing and localizing objects and actions. The novelty of the
proposed active paradigm is that the sensory module does
not passively process the image; instead, it is guided by the
reasoning module, which decides what and where the sen-
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sory module should process next. Thus the sensory module
shifts the focus of attention to a small number of objects
at selected locations of the scene. This leads to faster and
more accurate scene recognition.

Figure 1 illustrates the interaction between the two mod-
ules, which is modeled as an iterative process. Within each
iteration, the reasoning module decides on what and where
to detect next and expects the sensory module to reply with
some results after applying the visual operators. The rea-
soning module thus provides a focus of attention for the
sensory module, which can be an object to be detected and
a place to be examined. For the problem of scene recog-
nition, the interaction between the two modules is simple.
(See Figure 6 for examples of the interaction over a given
image.) However, our framework is more general. In Sec-
tion 5 we discuss the extension of the framework to dynamic
scene understanding. In this case the goal is to interpret the
activity in the video. An activity is described by a set of
quantities: the human, the tools, the objects, the motion,
and the scene involved in the activity. Each of the quan-
tities has many possible instances which can be described
by their attributes (e.g., adjectives of nouns and adverbs of
verbs). Thus the reasoning module at every iteration has to
decide which quantity and which attribute to compute next.
This procedure can be implemented in a hierarchical model
of the proposed active scheme.

The rest of the paper is organized as follows: in the next
section, we review related work; Section 3 describes an im-
plementation of the proposed paradigm; in Section 4 we
experimentally evaluate the active scene recognizer; in Sec-
tion 5 we discuss how our framework can be generalized to
object recognition and dynamic scene interpretation, and we
demonstrate the ideas on the problem of recognizing hand
activities on a small dataset; finally we draw conclusions in
Section 6.

2. Related Works
Recognition by Components: The methodology for ob-

ject, scene and activity recognition in this paper follows the
idea of “recognition by components”, which can be traced
back to early work by Biederman [4]. In this methodology,
scenes are recognized by detecting the inside objects [13],
objects are recognized by detecting their parts or attributes
[11], and activities are recognized by detecting the motions,
objects and contexts involved in the activities [10]. How-
ever, all previous works employ passive approaches. As
a result, they need to run through all object/attribute de-
tectors over the testing images and videos before making
the final conclusion. In this paper we explore an active
approach, which aims at greatly reducing the number of
object/attribute detectors needed for recognition of objects,
scenes and activities.

Active Learning and Active Testing: Our work is a

type of active testing and is closely related to the visual
“20 question” game described in [5]. While the approach in
[5] needs human annotators to answer the questions posed
by the computer, our approach is fully automated without a
human in the loop.

To select the optimal objects/attributes, we use the cri-
terion of Maximum Information Gain, which have been
widely used for active learning of objects and scenes [21,
25]. Information theory also have been used for object lo-
calization in application of face detection [22].

Employing Ontological Knowledge in Computer Vi-
sion System for Scene Interpretation: Ontological knowl-
edge plays an important role in the reasoning and learning
system of human. For example, in the problem of scene
recognition, if we know that coast is a type of outdoor scene
and also know that it is unlikely to find bookshelves therein.
Hence, we do not need to apply the bookshelves detec-
tors in the possible coast scene image. The work in [23]
takes advantage of this type of knowledge in object detec-
tion. Similarly, the knowledge about objects and attributes
is employed in [11]. Extending the knowledge about ob-
ject hierarchy is employed in [15]. In this paper, we fur-
ther explore the ontological knowledge about activities and
attributes and present a pilot study using a hand activity
dataset.

3. The Approach
3.1. System Overview

The proposed active scene recognizer classifies a scene
by iteratively detecting the objects inside it. In the k-th
iteration, the reasoning module provides an attentional in-
struction to the sensory module to search for an object Ok

within a particular region Lk in the image. Then the sensory
module runs the corresponding object detector and returns
a response, which is the highest detection score dk and the
object’s location lk. The reasoning module receives this re-
sponse, analyses it and starts a new iteration. This iteration
continues until some terminating criteria are satisfied. To
implement such an active scene recognizer, we need to im-
plement the following components: (1)a sensory module for
object detection; (2) a reasoning module for predicting the
scene class based on the sensory module’s responses; (3) a
strategy for deciding which object and where in the scene
the sensory module should process in the next iteration; and
(4) a strategy for initializing and terminating the iteration.
We will describe these components in the rest of this sec-
tion.

3.2. Scene Recognition by Object Detection

In the proposed framework, the reasoning module de-
cides the scene class S based on the responses X from the
sensory module, which we call Scene Recognition by Ob-



ject Detection (SROD). The optimal scene class of the given
image belongs to the one that maximizes the probability:

S∗ = argmax
S∈[1:M ]

p(S|X), (1)

where M is the number of scene classes.
The responses from the sensory module are a detection

score and a detection bounding box. We only consider the
objects’ vertical positions, since they are more consistent
within the images of the same scene class [23]. An ob-
ject’s vertical position is represented by a profile of the
mask formed by the object’s bounding box (see Figure 2
for an example). The object’s mask formed by the object’s
bounding box is normalized to 256 × 256 pixels, and the
profile is the histogram of pixels within the object’s mask
along the vertical axis. By this compact representation, we
not only record the object’s vertical location, but also record
the object’s scales along the horizontal and vertical axes. In
the following, we denote this representation of an object’s
location as lk.

As described above, in each iteration, the sensory mod-
ule returns a detection score di and a detected location li
for the expected object Oi. Thus at step k, we have ac-
cumulated a list of detected score d1:k and corresponding
locations l1:k. Given X = (d1:k, l1:k), the probability of a
scene S is :

P (S|X) = p(S|d1:k, l1:k)
∝ p(d1:k, l1:k|S)
= p(d1:k|S)p(l1:k|S). (2)

In the above equation, we assume d1:k and l1:k are indepen-
dent given S. We approximate p(d1:k|S) by the inner prod-
uct of d1:k and d̃S1:k, where d̃S1:k is the mean d1:k of training
examples for scene class S. Similarly, p(l1:k|S) is approxi-
mated by the inner product of l1:k and l̃S1:k. The advantage
of this approximation is its simplicity and flexibility. We
need to update the list of selected object in each iteration.
If we adopt a parametric model for p(d1:k|S) and p(l1:k|S),
we would need to learn the parameters for all permutations
ofO1:k, k = 1, ..., N , whereN is the total number of object
categories in the dataset. For large N 1, such scheme would
not work simply because of the computational constraints.
Using a parameter-free approach, we avoid this difficulty.

3.3. Detecting Objects by The Sensory Module

The task of the sensory module is to detect the object
required by the reasoning module and return a response. In
this paper, we applied three object detectors: a Spatial Pyra-
mid Matching object detector [12], a latent SVM object de-
tector [8] and the texture classifier by Hoiem [9]. For each

1In our dataset, N > 100

(a) (b) (c)

Figure 2. Representation of the object’s location: (a) an object’s
bounding box; (b) the binary mask formed by the bounding box;
(a) the profile of the object’s binary mask along the vertical direc-
tion.

object class, we train all three object detectors and then se-
lect the one with the highest detection accuracy on a valida-
tion dataset to use in the test. Given a test image, the object
detector will find a few candidates with corresponding de-
tection scores. The one with the highest score is selected
and sent to the reasoning module. The detection scores are
normalized by Platt scaling [18] to obtain probabilistic esti-
mates.

3.4. Attentional Instructions by The Reasoning
Module

The interaction between the reasoning and sensory mod-
ules at iteration k starts from an attentional instruction is-
sued by the reasoning module, based on its observation his-
tory. In this paper, the attentional instruction in iteration k
includes what to look for, i.e., the object to detect (denoted
asOk) and where to look, i.e., the regions to detect (denoted
as Lk). The criterion to selectOk and Lk is to maximize the
expected information gain about the scene in the test image
due to the response of this object detector:

{O∗k, L∗k} = argmax
Ok∈Ñk−1,
Lk∈Lk

I(S; dk, lk|d1:k−1, l1:k−1), (3)

where Ñk−1 denotes the set of indices of objects that have
not been detected until iteration k, Lk denotes the search
space of Ok’s location. The global optimization procedure
is approximated by two local optimization procedures. In
the first step, we select Ok based on the maximum expected
information gain criterion:

O∗k = argmax
Ok∈Ñk−1

I(S; dk, lk|d1:k−1, l1:k−1). (4)

Then L∗k is selected by thresholding ES [l̃
S
O∗

k
], the expected

location of object O∗k across all scene classes.
The expected information gain of Ok given the previous



response d1:k−1 and l1:k−1 is defined as:

I(S;dk, lk|d1:k−1, l1:k−1)

=
∑

dk∈D,lk∈Lk

p(dk, lk|d1:k−1, l1:k−1)

× KL[p(S|d1:k, l1:k), p(S|d1:k−1, l1:k−1)]. (5)

The KL divergence on the right side of Equation 5 can easily
be computed after applying Equation 2. To compute the
first term on the right side of Equation 5, we factorize it as
follows:

p(dk, lk|d1:k−1, l1:k−1)
= p(dk|d1:k−1, l1:k−1)p(lk|d1:k, l1:k−1). (6)

The two terms on the right side of the above equation can be
efficiently computed by their conditional probability with
respect to S:

p(dk|d1:k−1, l1:k−1)

=

M∑
S=1

p(dk|S, d1:k−1, l1:k−1)p(S|d1:k−1, l1:k−1)

=

M∑
S=1

p(dk|S)p(S|d1:k−1, l1:k−1), (7)

where we assume dk is independent of d1:k−1 and l1:k−1
given S. p(dk|S) can be computed by introducing the bi-
nary variable ek, which indicates whether objectOk appears
in the scene or not:

p(dk|S) =
∑

ek∈{0,1}

p(dk|ek, S)p(ek|S) (8)

=
∑

ek∈{0,1}

p(dk|ek)p(ek|S). (9)

p(ek|S) encodes the high-level knowledge about the rela-
tionship between scene S and object Ok. One way to ob-
tain it is to count the object labels in the training image set.
Otherwise, we can obtain it from textual corpus. p(dk|ek)
encodes the information about the accuracy of different ob-
ject detectors. The method to estimate its value is discussed
in Section 4.1. The procedures described above are also em-
ployed to compute p(lk|d1:k, l1:k−1) in a similar fashion.

Finally, we note that the expectation in Equation (5)
needs to be computed at a set of sampling points of dk (de-
noted as D) and a set of sampling points of lk (denoted as
Lk). D is within a one dimensional space between 0 and 1
and we draw samples of dk uniformly. Lk can be parameter-
ized by three parameters: the center position of Ok, yk; the
horizontal extent of Ok, wk; and the vertical extent of Ok,

hk. We model these parameters by Gaussian distributions

yk ∼N (µyk
, σ2

yk
), (10)

hk ∼N (µhk
, σ2

hk
), (11)

wk ∼N (µwk
, σ2

wk
). (12)

The means and variances of these Gaussian distributions are
estimated from the training set. Thus the problem of draw-
ing a sample of lk becomes the problem of drawing a sample
of yk, hk, wk from three Gaussian distributions.

After drawing samples of dk and lk, we substitute them
into Equation 5 to compute the expected information gain
for Ok. Then among all possible Ok’s, we select the object
that yields the maximum expected information gain, O∗k.
The distribution of O∗k’s location in a particular scene S is
approximated by l̃SO∗

k
, which is computed as follows: first,

we aggregate lO∗
k

in all training samples of scene class S in
the training stage; then we normalize the accumulated val-
ues into [0, 1]. Thus the expectation of l̃SO∗

k
across all scene

classes, ES [l̃
S
O∗

k
], represents the distribution of O∗k’s loca-

tion in an image of any scene class. Finally, we threshold
this value by 0.5 and obtain a binary L∗k, which provides the
focus of attention for the sensory module in the next itera-
tion.

3.5. Initializing and Terminating the Iteration

The interaction between two modules starts from the first
object and its expected location, which are provided by the
reasoning module. We select the object O1 that maximizes
the mutual information

O∗1 = argmax
O1∈[1:N ]

I(S; d1, l1). (13)

To terminate the iteration, we can either stop after a fixed
number of iterations (e.g., the 20 question game), or stop
when the expected information gain at each iteration is be-
low a threshold. In our experiments, we followed the former
approach and found that 30 iterations are sufficient to pro-
duce competitive recognition results.

4. Experiments
4.1. Image Datasets

We evaluate the proposed approach using a subset of the
SUN image set from [7]. Overall, the SUN dataset[7] con-
tains 12K images, 1K scene classes and more than 200 ob-
ject classes. We sort the scene classes by the number of
examples and select the top 20 that have more than 50 ex-
amples per scene class. The remaining scene classes are
discarded since they do not have sufficient number of exam-
ples to evaluate our algorithms. For each of the 20 selected
scene classes, we randomly select 50 examples, where 30



of them are used for training and the rest 20 for testing. At
the end, there are 127 object classes within our subset of
SUN image set but only a handful of object classes appear
in a particular scene class. As discussed in [7], a typical
scene image contains seven object classes. The object de-
tectors are trained using an additional dataset of 26,000 ob-
jects that is disjoint from the training/testing scene images
as described in [7]. The obtained object detectors are then
evaluated in the 600 scene training examples. The detection
score, dk, is normalized into [0, 1] and evenly quantized into
10 discrete values. For each ek (0 or 1), we accumulate the
counts of dk for each of its 10 values. Due to its discrete na-
ture, p(dk|ek) can be modeled as a multinomial distribution.
Since Dirichlet is the conjugate prior for multinomial, we
use a Dirichlet distribution Dir(α) as the prior for p(dk|ek),
where α represents the number of prior observations of dk
given a particular ek. Through all experiments in this paper,
we set the parameter α = 1. We also tried other values of α
and found no significant performance impact.

4.2. Performance of the Scene Recognizer

In the first experiment, we evaluate the scene recognizer
(SROD) as described in Equation 2 while all objects are de-
tected. The “ideal” SROD, where we use the object ground
truths as the outputs of object detectors, is also evaluated
to illustrate the upper limit of the performance of SROD.
Three baseline algorithms are evaluated as listed below:
• SVM using GIST [16] features.
• SVM using Bag-of-Words (BoW). We used two types

of local features, SIFT [14] and opponent SIFT [24],
and the size of visual word dictionary is set as 500 for
each of them.
• Classification and Regression Tree (CART) [6] that

uses the object detection scores as attributes to predict
the scene classes of a given image. The “ideal” CART,
where the object ground truth is used as attributes, is
also evaluated to illustrate the upper limit of the per-
formance of CART.

Figure 3 compares the scene classification accuracy of
these baseline algorithms and the SROD approach. The
SROD approach significantly outperforms all the baseline
algorithms. This result confirms the effectiveness of object-
based approaches in interpreting complex scenes and the
robustness of the SROD approach to the errors in object de-
tection. It is worth to emphasize that there is still a lot of
room to improve the current object-based scene recognizer,
as suggested by the performance of the ideal SROD.

In addition, we evaluate the robustness of these scene
recognition approaches with respect to the size of training
samples. We randomly select a number of training exam-
ples from the training image set for each scene class and
repeat the experiments three times. The mean and standard
deviation of the average accuracy when using 5, 10, 15, 20,

Figure 3. Comparison of scene classification accuracy of different
approaches (GIST+SVM vs. BoW+SVM vs. CART vs. SROD).
We also illustrate the “ideal” performance of CART and SROD,
where we use the object ground truths as the outputs of object
detectors. They are represented as “(CART)” and “(SROD)” in
the figure respectively.

Figure 4. Classification accuracies of different approaches
(GIST+SVM vs. BoW+SVM vs. CART vs. SROD) with respect
to the number of training images.

25 and 30 training examples are reported in Figure 4. The
proposed SROD method achieves substantially better per-
formance than all baseline algorithms, including the CART
algorithm that uses the same outputs of object detectors.

4.3. Comparison of the Active Scene Recognizer vs.
the Passive Scene Recognizer

In this experiment, we compare the proposed active
scene recognizer with two baseline algorithms and the re-
sults are presented in Figure 5. Both baseline algorithms
recognize scene class by iterative object detection, which
is similar to the proposed SROD method. But they em-
ploy different strategies to select the to-be-detected object
in each iteration. The first baseline (denoted as “DT” in
Figure 5) follows a fixed object order, which is provided by
the CART algorithm; while the second baseline (denoted as
“Rand” in Figure 5) just randomly selects an object from
the remaining object pool. Object selection obviously has a
big impact on the performance of scene recognition, since



Figure 5. Comparison of classification accuracy among different
object selection strategies (active vs. passive vs. random) in
the object-based scene recognizers, with respect to the number of
training images.

both the proposed active approach and the “DT” approach
significantly outperform the “Rand” approach. The result
also shows that the active approach is superior to the “DT”
approach that is passive: the active approach can achieve
stable performance after selecting 30 objects while the pas-
sive “DT” approach needs 60 objects. Furthermore, the ob-
ject’s expected location provided by the reasoning module
in the active approach not only reduces the spatial search
space to be about 1/3 to 1/2 of the whole image but also re-
duces the false positives in the sensory module’s response.
As a result, the proposed active approach achieves 3% to
4% performance gain compared to the passive approaches.

4.4. Visualization of the Interaction between the
Sensory Module and the Reasoning Module

Figure 6 illustrates a few iterations of the active scene
recognizer performed on a test image. It shows that after
detecting twenty objects, the reasoning module is able to
decide the correct scene class with high confidence.

5. Dynamic Scene Recognition

There are two key premises in the proposed active
scheme: (1) a quantity can be recognized by accumulating
evidences from its components; (2) the components can be
assumed to be independent given the quantity. Given these
two premises, the active scheme can be applied to select a
small number of components to recognize the quantity with-
out impairing the performance. In the previous section, we
have applied this active scheme to recognize static scenes.
However, this active scheme can also be applied to recog-
nize objects by their parts and recognize activities by their
motion and object properties.

In this section, we will demonstrate the application of
the active scheme in an activity recognition problem. A big
challenge in this problem is that the components are hetero-

Figure 7. Hierarchical active scheme for dynamic scene recogni-
tion, where each iteration invokes four steps. Section 5 discusses
the details.

Quantity Attribute e = 1 e = 0

Tools

Color silver other colors
Texture bristle non-bristle
Elongation yes no
Convexity yes no

Motion

Frequency high low
Motion variation large small
Motion spectrum sparse non-sparse
Duration long short

Table 1. Activity attributes in the hand activity dataset.

geneous. While static scenes only involve a single quan-
tity, i.e., objects, activities are described by different quan-
tities, including motion, objects and tools, scenes, tempo-
ral properties, etc. To alleviate this problem, we propose a
hierarchical active scheme for dynamic scene recognition.
Figure 7 presents this method. In this scheme, each itera-
tion performs the following four steps: (1) using the max-
imum information gain criterion, the activity-level reason-
ing module sends an attentional instruction to the quantity-
level reasoning module that indicates the desired quantity
(e.g., motion or objects); (2) the quantity-level reasoning
module then sends an attentional instruction to the sen-
sory module that indicates the desired attributes (e.g., ob-
ject color/texture, motion properties); (3) the sensory mod-
ule applies the corresponding detectors and returns the de-
tector’s response to the quantity-level reasoning module; (4)
finally, the quantity-level reasoning module returns the like-
lihood of the desired quantity to the activity-level reasoning
module.

To demonstrate this idea, we used 30 short video se-
quences of 5 hand actions from a dataset collected from the
commercially available PBS Sprouts craft show for kids (the
hand activity data set). The activities are coloring, drawing,
cutting, painting, and gluing. 20 sequences were used for
training and the rest for testing. Two quantities are consid-
ered in recognizing an activity: the characteristics of tools
and the characteristics of motion. Four attributes are de-
fined for the characteristics of tools, including color, tex-
ture, elongation, and convexity; and four attributes are de-
fined for the characteristics of motion, including frequency,
motion variation, motion spectrum, and duration. The de-
tails of these quantities and attributes are described in Table
1.

The sensory module includes detectors for the 8 at-



O1 O2 O3 . . . O10 . . . O20 . . .Expected
Object Ok: wall person books . . . sink . . . toilet . . .

Expected
Location
Lk:

. . . . . . . . .

Sensory
Module’s
Response
(dk, lk):

. . . . . . . . .

Reasoning
module’s
Belief
P (S|d1:k, l1:k)
and S∗

. . . . . . . . .

Figure 6. Visualization of the iterations between the reasoning module and the sensory module in an active scene recognition process. The
detected regions with detection score greater than 0.5 are highlighted with a red bounding box.

tributes of tools/motion. To detect these attributes, we need
to segment the hand and tools from the videos. Figure 8
illustrates these procedures, which are described as follows:

1. Hand regions Sh are segmented by applying a variant
of the color segmentation approach based on Condi-
tional Random Fields (CRF) [20] using a trained skin
color model. Similarly, moving regions of hands and
tools, Sf , are segmented by applying another CRF
over the optical flow fields.

2. A binary XOR operation is applied on Sh and Sf to
remove the moving hand regions and produce a seg-
mentation of tools, ST .

3. Apply a threshold tf to remove regions with flows that
are different from the hand regions and obtain a candi-
date region for tool, Ŝr.

4. Detect edges in Ŝr.

5. Fitting a minimum volume ellipse over the edge map
of Ŝr, which estimates the region of the detected tool.

Figure 9 shows the estimated ellipse enclosing the de-
tected tool over some sample image frames from the dataset.
This ellipse, together with Ŝr, is then used as a mask to
compute object-related attributes. The color and texture
attributes were computed from histograms of color and
wavelet-filter outputs, and the shape attributes were derived

Figure 8. Procedures to extract hands and tools from the hand ac-
tivity video sequence. Please refer to the text for details.

Figure 9. Sample frames for 10 testing videos in the hand action
dataset: (from left to right) coloring, cutting, drawing, gluing,
painting. The detected tool is fit with an ellipse.

from region properties of the convex hull of the object and
the fitted ellipse. The motion attributes were computed from
the spectrum of the average optical flow over the sequence
and the variation of the flow.

Table 2 shows the interactions between the reasoning
modules and the sensory modules for one of the testing
videos. Here the sensory module only needed to detect two
attributes before the reasoning module arrived at the correct
conclusion. Overall, 8 out of 10 testing videos were recog-



Iteration 1 2 3 4
Expected quan-
tity

Tools Tools Tools Motion

Expected at-
tribute

Elongation Color Texture Duration

Sensory module’s
response

0.770 1.000 0.656 0.813

Reasoning mod-
ule’s conclusion

Coloring Painting Painting Painting

Reasoning mod-
ule’s confidence

0.257 0.770 0.865 0.838

Table 2. An example of interactions between the reasoning module
and the sensory module for hand activity recognition, where the
ground truth of the activity class is painting.

nized correctly after detecting two to three attributes, while
the remaining two testing videos could not be recognized
correctly even after detecting all the attributes. This is be-
cause of errors in the segmentation, the choice of attributes
and the small set of training samples.

6. Conclusion and Future Work
We proposed a new framework for scene recognition

within the active vision paradigm. In our framework, the
sensory module is guided by attentional instructions from
the reasoning module and employs detectors of a small set
of objects within selected regions. The attention mechanism
is realized using an information theoretic approach, with the
idea that every detected object should maximize the added
information for scene recognition. Our framework is evalu-
ated in a static scene dataset and shows the advantage over
the passive approach. Also we discussed how it can be gen-
eralized to object recognition and dynamic scene analysis,
and gave a proof of concept by implementing it for attribute
based activity recognition.

In the current implementation, we have assumed that ob-
jects are independent given the scene class. Though this
assumption simplifies the formulation, this is not necessar-
ily true in general. In the future, we plan to remove this
assumption and design a scene recognition model that bet-
ter represents the complex scenes in the real world. Also,
we will perform a comprehensive study of the proposed ap-
proach using larger image/video datasets to investigate the
impact of the active paradigm.
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