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ABSTRACT Object detection is one of the most important and challenging branches of computer vision,
which has been widely applied in people’s life, such as monitoring security, autonomous driving and so on,
with the purpose of locating instances of semantic objects of a certain class. With the rapid development of
deep learning algorithms for detection tasks, the performance of object detectors has been greatly improved.
In order to understand the main development status of object detection pipeline thoroughly and deeply,
in this survey, we analyze the methods of existing typical detection models and describe the benchmark
datasets at first. Afterwards and primarily, we provide a comprehensive overview of a variety of object
detection methods in a systematic manner, covering the one-stage and two-stage detectors. Moreover, we list
the traditional and new applications. Some representative branches of object detection are analyzed as well.
Finally, we discuss the architecture of exploiting these object detection methods to build an effective and
efficient system and point out a set of development trends to better follow the state-of-the-art algorithms and
further research.

INDEX TERMS Classification, deep learning, localization, object detection, typical pipelines.

I. INTRODUCTION
Object detection has been attracting increasing amounts of
attention in recent years due to its wide range of appli-
cations and recent technological breakthroughs. This task
is under extensive investigation in both academia and real
world applications, such as monitoring security, autonomous
driving, transportation surveillance, drone scene analysis, and
robotic vision. Among many factors and efforts that lead
to the fast evolution of object detection techniques, notable
contributions should be attributed to the development of deep
convolution neural networks and GPUs computing power.
At present, deep learning model has been widely adopted
in the whole field of computer vision, including general
object detection and domain-specific object detection. Most
of the state-of-the-art object detectors utilize deep learning
networks as their backbone and detection network to extract
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features from input images (or videos), classification and
localization respectively.

Object detection is a computer technology related to com-
puter vision and image processing which deals with detect-
ing instances of semantic objects of a certain class (such
as humans, buildings, or cars) in digital images and videos.
Well-researched domains of object detection include multi-
categories detection, edge detection, salient object detec-
tion, pose detection, scene text detection, face detection,
and pedestrian detection etc. As an important part of scene
understanding, object detection has been widely used in
many fields of modern life, such as security field, mili-
tary field, transportation field, medical field and life field.
Furthermore, many benchmarks have played an important
role in object detection field so far, such as Caltech [1],
KITTI [2], ImageNet [3], PASCAL VOC [4], MS COCO [5],
and Open Images V5 [6]. In ECCV VisDrone 2018 con-
test, organizers have released a novel drone platform-based
dataset [7] which contains a large amount of images and
videos.
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FIGURE 1. (a) Exhibits the basic architecture of two-stage detectors, which consists of region proposal network to feed region proposals into classifier
and regressor. (b) Shows the basic architecture of one-stage detectors, which predicts bounding boxes from input images directly. Yellow cubes are a
series of convolutional layers (called a block) with the same resolution in backbone network, because of down-sampling operation after one block,
the size of the following cubes gradually becoming small. Thick blue cubes are a series of convolutional layers contain one or more convolutional layers.
The flat blue cube demonstrates the RoI pooling layer which generates feature maps for objects of the same size.

A. TWO KINDS OF OBJECT DETECTORS
Pre-existing domain-specific image object detectors usually
can be divided into two categories, the one is two-stage
detector, the most representative one, Faster R-CNN [8]. The
other is one-stage detector, such as YOLO [9], SSD [10].
Two-stage detectors have high localization and object recog-
nition accuracy, whereas the one-stage detectors achieve
high inference speed. The two stages of two-stage detec-
tors can be divided by RoI (Region of Interest) pooling
layer. For instance, in Faster R-CNN, the first stage, called
RPN, a Region Proposal Network, proposes candidate object
bounding boxes. The second stage, features are extracted by
RoIPool (RoI Pooling) operation from each candidate box

for the following classification and bounding-box regression
tasks [11]. Fig.1 (a) shows the basic architecture of two-
stage detectors. Furthermore, the one-stage detectors propose
predicted boxes from input images directly without region
proposal step, thus they are time efficient and can be used
for real-time devices. Fig.1 (b) exhibits the basic architecture
of one-stage detectors.

B. CONTRIBUTIONS
This survey focuses on describing and analyzing deep learn-
ing based object detection task. The existing surveys always
cover a series of domain of general object detection and
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may not contain state-of-the-art methods which provide some
novel solutions and newly directions of these tasks due of the
rapid development of computer vision research.

(1) This paper lists very novel solutions proposed recently
but neglects to discuss the basics so that readers can see the
cutting edge of the field more easily.

(2) Moreover, different from previous object detection sur-
veys, this paper systematically and comprehensively reviews
deep learning based object detection methods and most
importantly the up to date detection solutions and a set of
significant research trends as well.

(3) This survey is featured by in-depth analysis and dis-
cussion in various aspects, many of which, to the best of our
knowledge, are the first time in this field.

Above all, it is our intention to provide an overview how
different deep learning methods are used rather than a full
summary of all related papers. To get into this field, we rec-
ommend readers refer to [12]–[14] for more details of early
methods.

The rest of this paper is organized as follows. Object
detectors need a powerful backbone network to extract rich
features. This paper discusses backbone networks in section 2
below. As is known to all, the typical pipelines of domain-
specific image detectors act as basics and milestone of the
task. In section 3, this paper elaborates the most representa-
tive and pioneering deep learning-based approaches proposed
before June 2019. Section 4 describes common used datasets
and metrics. Section 5 systematically explains the analysis of
general object detection methods. Section 6 details five typ-
ical fields and several popular branches of object detection.
The development trend is summarized in section 7.

II. BACKBONE NETWORKS
Backbone network is acting as the basic feature extractor for
object detection task which takes images as input and outputs
feature maps of the corresponding input image.Most of back-
bone networks for detection are the network for classification
task taking out the last fully connected layers. The improved
version of basic classification network is also available. For
instance, Lin et al. [15] add or subtract layers or replace some
layers with special designed layers. To better meet specific
requirements, someworks [9], [16] utilize the newly designed
backbone for feature extraction.

Towards different requirements about accuracy vs.
efficiency, people can choose deeper and densely con-
nected backbones, like ResNet [11], ResNeXt [17],
AmoebaNet [18] or lightweight backbones like
MobileNet [19], ShuffleNet [20], SqueezeNet [21], Xcep-
tion [22], MobileNetV2 [23]. When applied to mobile
devices, lightweight backbones can meet the requirements.
Wang et al. [24] propose a novel real-time object detection
system by combining PeleeNet with SSD [10] and optimizing
the architecture for fast processing speed. In order to meet
the needs of high precision and more accurate applications,
complex backbones are needed. On the other hand, real-time
acquirements like video or webcam require not only high

processing speed but high accuracy [9], which need well-
designed backbone to adapt to the detection architecture and
make a trade-off between speed and accuracy.

To explore more competitive detecting accuracy, deeper
and densely connected backbone is adopted to replace the
shallower and sparse connected counterpart. He et al. [11]
utilize ResNet [25] rather than VGG [26] to capture rich
features which is adopted in Faster R-CNN [8] for further
accuracy gain because of its high capacity.

The newly high performance classification networks can
improve precision and reduce the complexity of object detec-
tion task. This is an effective way to further improve network
performance because the backbone network acts as a feature
extractor. As is known to all, the quality of features deter-
mines the upper bound of network performance, thus it is
an important step that needs further exploration. Please refer
to [27] for more details.

III. TYPICAL BASELINES
With the development of deep learning and the continuous
improvement of computing power, great progress has been
made in the field of general object detection. When the first
CNN-based object detector R-CNN was proposed, a series of
significant contributions have been made which promote the
development of general object detection by a large margin.
We introduce some representative object detection architec-
tures for beginners to get started in this domain.

A. TWO-STAGE DETECTORS
1) R-CNN
R-CNN is a region basedCNNdetector. AsGirshick et al. [28]
propose R-CNN which can be used in object detection tasks,
their works are the first to show that a CNN could lead to dra-
matically higher object detection performance on PASCAL
VOC datasets [4] than those systems based on simpler
HOG-like features. Deep learningmethod is verified effective
and efficient in the field of object detection.

R-CNNdetector consists of fourmodules. The first module
generates category-independent region proposals. The sec-
ond module extracts a fixed-length feature vector from each
region proposal. The third module is a set of class-specific
linear SVMs to classify the objects in one image. The last
module is a bounding-box regressor for precisely bounding-
box prediction. For detailed, first, to generate region pro-
posals, the authors adopt selective search method. Then,
a CNN is used to extract a 4096-dimensional feature vector
from each region proposal. Because the fully connected layer
needs input vectors of fixed length, the region proposal fea-
tures should have the same size. The authors adopt a fixed
227 × 227 pixel as the input size of CNN. As we know,
the objects in various images have different size and aspect
ratio, which makes the region proposals extracted by the first
module different in size. Regardless of the size or aspect
ratio of the candidate region, the authors warp all pixels in
a tight bounding box around it to the required size 227×227.
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The feature extraction network consists of five convolutional
layers and two fully connected layers. And all CNN param-
eters are shared across all categories. Each category trains
category-independent SVM which does not share parameters
between different SVMs.

Pre-training on larger dataset followed by fine-tuning on
the specified dataset is a good training method for deep
convolutional neural networks to achieve fast convergence.
First, Girshick et al. [28] pre-train the CNN on a large scale
dataset (ImageNet classification dataset [3]). The last fully
connected layer is replaced by the CNN’s ImageNet specific
1000-way classification layer. The next step is to use SGD
(stochastic gradient descent) to fine-tune the CNNparameters
on the warped proposal windows. The last fully connected
layer is a (N+1)-way classification layer (N: object classes,
1: background) which is randomly initialized.

When setting positive examples and negative examples
the authors divide into two situations. The first is to define
the IoU (intersection over union) overlap threshold as 0.5 in
the process of fine-tuning. Below the threshold, region pro-
posals are defined as negatives while above it object proposals
are defined as positives. As well, the object proposals whose
maximum IoU overlap with a ground-truth class are assigned
to the ground-truth box. Another situation is to set parameters
when training SVM. In contrast, only the ground-truth boxes
are taken as positive examples for their respective classes and
proposals have less than 0.3 IoU overlap with all ground-truth
instances of one class as a negative proposal for that class.
These proposals with overlap between 0.5 and 1 and they
are not ground truth, which expand the number of positive
examples by approximately 30×. Therefore such a big set can
avoid overfitting during fine-tuning process effectively.

2) FAST R-CNN
R-CNN proposed a year later, Ross Girshick [29] proposed a
faster version of R-CNN, called Fast R-CNN [29]. Because
R-CNN performs a ConvNet forward pass for each region
proposal without sharing computation, R-CNN takes a long
time on SVMs classification. Fast R-CNN extracts features
from an entire input image and then passes the region of
interest (RoI) pooling layer to get the fixed size features as
the input of the following classification and bounding box
regression fully connected layers. The features are extracted
from the entire image once and are sent to CNN for clas-
sification and localization at a time. Compared to R-CNN
which inputs each region proposals to CNN, a large amount of
time can be saved for CNN processing and large disk storage
to store a great deal of features can be saved either in Fast
R-CNN. As mentioned above, training R-CNN is a multi-
stage process which covers pre-training stage, fine-tuning
stage, SVMs classification stage and bounding box regression
stage. Fast R-CNN is a one-stage end-to-end training process
using a multi-task loss on each labeled RoI to jointly train the
network.

Another improvement is that Fast R-CNN uses a RoI pool-
ing layer to extract a fixed size feature map from region

proposals of different size. This operation with no need
of warping regions and reserves the spatial information of
features of region proposals. For fast detection, the author
uses truncated SVD which accelerates the forward pass of
computing the fully connected layers.

Experiment results showed that Fast R-CNN had 66.9%
mAP while R-CNN of 66.0% on PASCAL VOC 2007
dataset [4]. Training time dropped to 9.5 hours as compared
to R-CNN with 84h, 9 times faster. For test rate (s/image),
Fast R-CNN with truncated SVD (0.32s) was 213× faster
than R-CNN (47s). These experiments were carried out on
an Nvidia K40 GPU, which demonstrated that Fast R-CNN
did accelerate object detection process.

3) FASTER R-CNN
Three months after Fast R-CNN was proposed, Faster
R-CNN [8] further improves the region-based CNN baseline.
Fast R-CNN uses selective search to propose RoI, which
is slow and needs the same running time as the detection
network. Faster R-CNN replaces it with a novel RPN (region
proposal network) that is a fully convolutional network to
efficiently predict region proposals with a wide range of
scales and aspect ratios. RPN accelerates the generating
speed of region proposals because it shares fully-image
convolutional features and a common set of convolutional
layers with the detection network. The procedure is simpli-
fied in Fig.3 (b). Furthermore, a novel method for different
sized object detection is that multi-scale anchors are used as
reference. The anchors can greatly simplify the process of
generating various sized region proposals with no need of
multiple scales of input images or features. On the outputs
(feature maps) of the last shared convolutional layer, sliding
a fixed size window (3× 3), the center point of each feature
window is relative to a point of the original input image
which is the center point of k (3 × 3) anchor boxes. The
authors define anchor boxes have 3 different scales and
3 aspect ratios. The region proposal is parameterized relative
to a reference anchor box. Then they measure the distance
between predicted box and its corresponding ground truth
box to optimize the location of the predicted box.

Experiments indicated that Faster R-CNN has greatly
improved both precision and detection efficiency.
On PASCAL VOC 2007 test set, Faster R-CNN achieved
mAP of 69.9% as compared to Fast R-CNN of 66.9% with
shared convolutional computations. As well, total running
time of Faster R-CNN (198ms) was nearly 10 times lower
than Fast R-CNN (1830ms) with the same VGG [26] back-
bone, and processing rate was 5fps vs. 0.5fps.

4) MASK R-CNN
Mask R-CNN [11] is an extending work to Faster R-CNN
mainly for instance segmentation task. Regardless of the
adding parallel mask branch, Mask R-CNN can be seen a
more accurate object detector. He et al. use Faster R-CNN
with a ResNet [25]-FPN [15] (feature pyramid network,
a backbone extracts RoI features from different levels of the
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feature pyramid according to their scale) backbone to extract
features achieves excellent accuracy and processing speed.
FPN contains a bottom-up pathway and a top-down pathway
with lateral connections. The bottom-up pathway is a back-
bone ConvNet which computes a feature hierarchy consisting
of feature maps at several scales with a scaling step of 2.
The top-down pathway produces higher resolution features
by upsampling spatially coarser, but semantically stronger,
feature maps from higher pyramid levels. At the beginning,
the top pyramid feature maps are captured by the output
of the last convolutional layer of the bottom-up pathway.
Each lateral connection merges feature maps of the same
spatial size from the bottom-up pathway and the top-down
pathway. While the dimensions of feature maps are different,
the 1×1 convolutional layer can change the dimension. Once
undergoing a lateral connection operation, there will form a
new pyramid level and predictions are made independently
on each level. Because higher-resolution feature maps are
important for detecting small objects while lower-resolution
feature maps are rich in semantic information, feature pyra-
mid network extracts significant features.

Another way to improve accuracy is to replace RoI pooling
with RoIAlign to extract a small feature map from each
RoI, as shown in Fig. 2. Traditional RoI pooling quantizes
floating-number in two steps to get approximate feature val-
ues in each bin. First, quantization is applied to calculate
the coordinates of each RoI on feature maps, given the
coordinates of RoIs in the input images and down sampling
stride. Then RoI feature maps are divided into bins to gen-
erate feature maps at the same size, which is also quantized
during the process. These two quantization operations cause
misalignments between the RoI and the extracted features.
To address this, at those two steps, RoIAlign avoids any
quantization of the RoI boundaries or bins. First it computes
the floating-number of the coordinates of each RoI feature
map followed by a bilinear interpolation operation to compute
the exact values of the features at four regularly sampled
locations in each RoI bin. Then it aggregates the results using
max or average pooling to get values of each bin. Fig. 2 is an
example of RoIAlign operation.

FIGURE 2. RoIAlign operation. The first step calculates floating number
coordinates of an object in the feature map. Next step utilizes bilinear
interpolation to compute the exact values of the features at four regularly
sampled locations in the separated bin.

Experiments showed that with the above two improve-
ments the precision got promotion. Using ResNet-FPN back-
bone improved 1.7 points box AP and RoIAlign operation
improved 1.1 points box AP on MS COCO detection dataset.

B. ONE-STAGE DETECTORS
1) YOLO
YOLO [9] (you only look once) is a one-stage object detector
proposed by Redmon et al. after Faster R-CNN [8]. The
main contribution is real-time detection of full images and
webcam. Firstly, it is due to this pipeline only predicts less
than 100 bounding boxes per image while Fast R-CNN using
selective search predicts 2000 region proposals per image.
Secondly, YOLO frames detection as a regression problem,
so a unified architecture can extract features from input
images straightly to predict bounding boxes and class prob-
abilities. YOLO network runs at 45 frames per second with
no batch processing on a Titan X GPU as compared to Fast
R-CNN at 0.5fps and Faster R-CNN at 7fps.

YOLO pipeline first divides the input image into an S × S
grid, where a grid cell is responsible to detect the object
whose center falls into. The confidence score is obtained by
multiplying two parts, where P(object) denotes the proba-
bility of the box containing an object and IOU (intersection
over union) shows how accurate the box containing that
object. Each grid cell predicts B bounding boxes (x, y,w, h)
and confidence scores for them and C-dimension conditional
class probabilities for C categories. The feature extraction
network contains 24 convolutional layers followed by 2 fully
connected layers. When pre-training on ImageNet dataset,
the authors use the first 20 convolutional layers and an aver-
age pooling layer followed by a fully connected layer. For
detection, the whole network is used for better performance.
In order to get fine-grained visual information to improve
detection precision, in detection stage double the input res-
olution of 224× 224 in pre-training stage.
The experiments showed that YOLO was not good at

accurate localization and localization error was the main
component of prediction error. Fast R-CNN makes many
background false positives mistakes while YOLO is 3 times
less than it. Training and testing on PASCAL VOC dataset,
YOLO achieved 63.4% mAP with 45 fps as compared
to Fast R-CNN (70.0% mAP, 0.5fps) and Faster R-CNN
(73.2% mAP, 7fps).

2) YOLOv2
YOLOv2 [30] is a second version of YOLO [9], which adopts
a series of design decisions from past works with novel
concepts to improve YOLO’s speed and precision.

a: BATCH NORMALIZATION
Fixed distribution of inputs to a ConvNet layer would
have positive consequences for the layers. It is impractical
to normalize the entire training set because the optimiza-
tion step uses stochastic gradient descent. Since SGD uses
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mini-batches during training, each mini-batch produces esti-
mates of themean and variance of each activation. Computing
the mean and variance value of the mini-batch of size m,
then normalize the activations of number m to have mean
zero and variance 1. Finally, the elements of each mini-
batch are sampled from the same distribution. This operation
can be seen as a BN layer [31] which outputs activations
with the same distribution. YOLOv2 adds a BN layer ahead
of each convolutional layer which accelerates the network
to get convergence and helps regularize the model. Batch
normalization gets more than 2% improvement in mAP.

b: HIGH RESOLUTION CLASSIFIER
In YOLO backbone, the classifier adopts an input resolution
of 224×224 then increases the resolution to 448 for detection.
This process needs the network adjust to a new resolution
inputs when switches to object detection task. To address
this, YOLOv2 adds a fine-tuning process to the classification
network at 448 × 448 for 10 epochs on ImageNet dataset
which increases the mAP at 4%.

c: CONVOLUTIONAL WITH ANCHOR BOXES
In original YOLO networks, coordinates of predicted boxes
are directly generated by fully connected layers. Faster
R-CNN uses anchor boxes as reference to generate offsets
with predicted boxes. YOLOv2 adopts this prediction mech-
anism and firstly removes fully connected layers. Then it
predicts class and objectness for every anchor box. This
operation increases 7% recall while mAP decreases 0.3%.

d: PREDICTING THE SIZE AND ASPECT RATIO OF ANCHOR
BOXES USING DIMENSION CLUSTERS
In Faster R-CNN, the size and aspect ratio of anchor boxes
is identified empirically. For easier learning to predict good
detections, YOLOv2 uses K-means clustering on the training
set bounding boxes to automatically get good priors. Using
dimension clusters along with directly predicting the bound-
ing box center location improves YOLO by almost 5% over
the above version with anchor boxes.

e: FINE-GRAINED FEATURES
For localizing smaller objects, high-resolution feature maps
can provide useful information. Similar to the identity map-
pings in ResNet, YOLOv2 concatenates the higher resolution
features with the low resolution features by stacking adjacent
features into different channels which gives a modest 1%
performance increase.

f: MULTI-SCALE TRAINING
For networks to be robust to run on images of different
sizes, every 10 batches the network randomly chooses a new
image dimension size from {320, 352, ..., 608}. This means
the same network can predict detections at different resolu-
tions. At high resolution detection, YOLOv2 achieves 78.6%
mAP and 40fps as compared to YOLO with 63.4% mAP and
45fps on VOC 2007.

TABLE 1. AP scores (%) on the MS COCO dataset, APS :AP of small
objects, APM :AP of medium objects, APL:AP of large objects.

As well, YOLOv2 proposes a new classification backbone
namely Darknet-19 with 19 convolutional layers and 5 max-
pooling layers which requires less operations to process an
image yet achieves high accuracy. The more competitive
YOLOv2 version has 78.6% mAP and 40fps as compared
to Faster R-CNN with ResNet backbone of 76.4% mAP and
5fps, and SSD500 has 76.8% mAP and 19fps. As mentioned
above, YOLOv2 can achieve high detecting precision while
high processing rate which benefit from 7 main improve-
ments and a new backbone.

3) YOLOv3
YOLOv3 [32] is an improved version of YOLOv2. First,
YOLOv3 uses multi-label classification (independent logistic
classifiers) to adapt to more complex datasets containing
many overlapping labels. Second, YOLOv3 utilizes three
different scale feature maps to predict the bounding box.
The last convolutional layer predicts a 3-d tensor encod-
ing class predictions, objectness, and bounding box. Third,
YOLOv3 proposes a deeper and robust feature extractor,
called Darknet-53, inspired by ResNet.

According to results of experiments on MS COCO dataset,
YOLOv3 (AP:33%) performs on par with the SSD vari-
ant (DSSD513:AP:33.2%) under MS COCO metrics yet
3 times faster than DSSD while quite a bit behind Reti-
naNet [33] (AP:40.8%). But uses the ‘‘old’’ detection metric
of mAP at IOU= 0.5 (or AP50), YOLOv3 can achieve 57.9%
mAP as compared to DSSD513 of 53.3% and RetinaNet
of 61.1%. Due to the advantages of multi-scale predictions,
YOLOv3 can detect small objects even more but has com-
paratively worse performance on medium and larger sized
objects.

4) SSD
SSD [10], a single-shot detector for multiple categories
within one-stage which directly predicts category scores and
box offsets for a fixed set of default bounding boxes of
different scales at each location in several feature maps with
different scales, as shown in Fig.4 (a). The default bounding
boxes have different aspect ratios and scales in each feature
map. In different feature maps, the scale of default bounding
boxes is computed with regularly space between the highest
layer and the lowest layer where each specific feature map
learns to be responsive to the particular scale of the objects.
For each default box, it predicts both the offsets and the
confidences for all object categories. Fig.3 (c) shows the
method. At training time, matching these default bounding
boxes to ground truth boxes where the matched default boxes
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FIGURE 3. Four methods utilize features for different sized object prediction. (a) Using an image pyramid to build a feature pyramid. Features are
computed on each of the image scales independently, which is slow. (b) Detection systems [8], [29] use only single scale features (the outputs of the
last convolutional layer) for faster detection. (c) Predicting each of the pyramidal feature hierarchy from a ConvNet as if it is a image pyramid like
SSD [10]. (d) Feature Pyramid Network (FPN) [15] is fast like (b) and (c), but more accurate. In this figure, the feature graph is represented by a
gray-filled quadrilateral. The head network is represented by a blue rectangle.

as positive examples and the rest as negatives. For the large
amount of default boxes are negatives, the authors adopt hard
negative mining using the highest confidence loss for each
default box then pick the top ones to make the ratio between
the negatives and positives at most 3:1. As well, the authors
implement data augmentation which is proved an effective
way to enhance precision by a large margin.

Experiments showed that SSD512 had a competitive result
on both mAP and speed with VGG-16 [26] backbone.
SSD512 (input image size: 512 × 512) achieved mAP
of 81.6% on PASCAL VOC 2007 test set and 80.0% on
PASCAL VOC 2012 test set as compared to Faster R-CNN
(78.8%, 75.9%) and YOLO (VOC2012: 57.9%). On MS
COCO DET dataset, SSD512 was better than Faster R-CNN
under all evaluation criteria.

5) DSSD
DSSD [34] (Deconvolutional Single Shot Detector) is a
modified version of SSD (Single Shot Detector) which adds
prediction module and deconvolution module also adopts
ResNet-101 as backbone. The architecture of DSSD is shown
in Fig.4 (b). For prediction module, Fu et al. add a residual

block to each predicting layer, then do element-wise addition
of the outputs of prediction layer and residual block. Decon-
volution module increases the resolution of feature maps to
strengthen features. Each deconvolution layer followed by
a prediction module is to predict a variety of objects with
different sizes. At training process, first the authors pre-train
ResNet-101 based backbone network on the ILSVRC CLS-
LOC dataset, then use 321× 321 inputs or 513× 513 inputs
training the original SSD model on detection dataset. Finally,
they train the deconvolution module freezing all the weights
of SSD module.

Experiments on both PASCAL VOC dataset and MS
COCO dataset showed the effectiveness of DSSD513 model,
while the added prediction module and deconvolution mod-
ule brought 2.2% enhancement on PASCAL VOC 2007 test
dataset.

6) RetinaNet
RetinaNet [33] is a one-stage object detector with focal loss
as classification loss function proposed by Lin et al. [33]
in February 2018. The architecture of RetinaNet is shown
in Fig.4 (c). R-CNN is a typical two-stage object detector.
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FIGURE 4. Networks of SSD, DSSD and RetinaNet on residual network. (a) The blue modules are the layers added in SSD framework whose
resolution gradually drop because of down sampling. In SSD the prediction layer is acting on fused features of different levels. Head module
consists of a series of convolutional layers followed by several classification layers and localization layers. (b) The red modules are the layers
added in DSSD framework denoting deconvolution operation. In DSSD, the prediction layer is following every deconvolution module. (c) RetinaNet
utilizes ResNet-FPN as its backbone network, which generates 5 level feature pyramid (P3-P7) corresponding to C3-C7 (the feature map of
conv3-conv7 respectively) to predict different sized objects.

The first stage generates a sparse set of region proposals and
the second stage classifies each candidate location. Owing
to the first stage filters out the majority of negative loca-
tions, two-stage object detectors can achieve higher precision
than one-stage detectors which propose a dense set of candi-
date locations. The main reason is the extreme foreground-
background class imbalance when one-stage detectors train
networks to get convergence. So the authors propose a loss
function, called focal loss, which can down-weight the loss
assigned to well-classified or easy examples. Focal loss con-
centrates on the hard training examples and avoids the vast
number of easy negative examples overwhelming the detector
during training. RetinaNet inherits the fast speed of previous
one-stage detectors while greatly overcomes the disadvantage

of one-stage detectors difficult to train unbalanced positive
and negative examples.

Experiments showed that RetinaNet with ResNet-101-FPN
backbone got 39.1% AP as compared to DSSD513 of 33.2%
AP on MS COCO test-dev dataset. With ResNeXt-101-FPN,
it made 40.8% AP far surpassing DSSD513. RetinaNet
improved the detection precision on small and medium
objects by a large margin.

7) M2Det
To meet a large variety of scale variation across object
instances, Zhao et al. [35] propose a multi-level feature
pyramid network (MLFPN) constructing more effective fea-
ture pyramids. The authors adopt three steps to obtain final
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enhanced feature pyramids. First, like FPN, multi-level fea-
tures extracted frommultiple layers in the backbone are fused
as the base feature. Second, the base feature is fed into a
block, composing of alternating joint Thinned U-shape Mod-
ules and Feature Fusion Modules, and obtains the decoder
layers of TUM as the features for next step. Finally, a feature
pyramid containing multi-level features is constructed by
integrating the decoder layers of equivalent scale. So far,
features with multi-scale and multi-level are prepared. The
remaining part is to follow the SSD architecture to obtain
bounding box localization and classification results in an end-
to-end manner.

ForM2Det is a one-stage detector, it achieves AP of 41.0 at
speed of 11.8 FPSwith single-scale inference strategy andAP
of 44.2 with multi-scale inference strategy utilizing VGG-16
on COCO test-dev set. It outperforms RetinaNet800
(Res101-FPN as backbone) by 0.9% with single-scale infer-
ence strategy, but is twice slower than RetinaNet800.

8) RefineDet
The whole network of RefineDet [36] contains two inter-
connected modules, the anchors refinement module and the
object detection module. These two modules are connected
by a transfer connection block to transfer and enhance fea-
tures from the former module to better predict objects in
the latter module. The training process is in an end-to-end
way, conducted by three stages, preprocessing, detection (two
inter-connected modules), and NMS.

Classical one-stage detectors such as SSD, YOLO,
RetinaNet all use one-step regression method to obtain the
final results. The authors find that use two-step cascaded
regression method can better predict hard detected objects,
especially for small objects and provide more accurate loca-
tions of objects.

C. LATEST DETECTORS
1) RELATION NETWORKS FOR OBJECT DETECTION
Hu et al. [37] propose an adapted attention module for object
detection called object relation module which considers the
interaction between different targets in an image including
their appearance feature and geometry information. This
object relation module is added in the head of detector before
two fully connected layers to get enhanced features for accu-
rate classification and localization of objects. The relation
module not only feeds enhanced features into classifier and
regressor, but replaces NMS post-processing stepwhich gains
higher accuracy thanNMS. By using Faster R-CNN, FPN and
DCN as the backbone network on the COCO test-dev dataset,
adding the relationship module increases the accuracy by 0.2,
0.6, and 0.2, respectively.

2) DCNv2
For learning to adapt to geometric variation reflected in
the effective spatial support region of targets, deformable
convolutional networks (DCN) [38] was proposed by

Dai et al. Regular ConvNets can only focus on features of
fixed square size (according to the kernel), thus the receptive
field does not properly cover the entire pixel of a target
object to represent it. The deformable ConvNets can produce
deformable kernel and the offset from the initial convolu-
tion kernel (of fixed size) are learned from the networks.
Deformable RoI Pooling can also adapt to part location
for objects with different shapes. On COCO test-dev set,
DCNv1 achieves significant accuracy improvement, which is
almost 4% higher than three plain ConvNets. The best mean
average-precision result under the strict COCO evaluation
criteria (mAP @[0.5:0.95]) is 37.5%.

Deformable ConvNets v2 [39] utilizes more deformable
convolutional layers than DCNv1 (from only the convolu-
tional layers in the conv5 stage to all the convolutional layers
in the conv3-conv5 stages) to replace the regular convolu-
tional layers. All the deformable layers are modulated by a
learnable scalar, which obviously enhance the deformable
effect and accuracy. The authors adopt feature mimicking
to further improve detection accuracy by incorporating a
feature mimic loss on the per-RoI features of DCN to be
similar to good features extracted from cropped images.
DCNv2 achieves 45.3% mAP under COCO evaluation crite-
ria on the COCO 2017 test-dev set, while DCNv1 with 41.7%
and regular Faster R-CNN with 40.1% on ResNext-101
backbone. On other strong backbones, DCNv2 surpasses
DCNv1 by 3% − 5% mAP and regular Faster R-CNN by
5%− 8%.

3) NAS-FPN
In recent days, the authors from Google Brain adopt neural
architecture search to find some new feature pyramid archi-
tecture, named NAS-FPN [18], consisting of both top-down
and bottom-up connections to fuse features with a variety
of different scales. By repeating FPN architecture N times
then concatenating them into a large architecture during the
search, the high level feature layers pick arbitrary level fea-
tures for them to imitate. All of the highest accuracy archi-
tectures have the connection between high resolution input
feature maps and output feature layers, which indicate that
it is necessary to generate high resolution features for small
targets detection. Stacking more pyramid networks, adding
feature dimension, adopting high capacity architecture all
increase detection accuracy by a large margin.

Experiments showed that adopting ResNet-50 as back-
bone of 256 feature dimension, on the COCO test-dev
dataset, the mAP of NAS-FPN exceeded the original FPN
by 2.9%. The superlative configuration of NAS-FPN uti-
lized AmoebaNet as backbone network and stacked 7 FPN
of 384 feature dimension, which achieved 48.0% on COCO
test-dev.

In conclusion, the typical baselines enhance accuracy by
extracting richer features of objects and adopting multi-level
and multi-scale features for different sized object detection.
To achieve higher speed and precision, the one-stage detec-
tors utilize newly designed loss function to filter out easy
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TABLE 2. Detection results on the MS COCO test-dev dataset of some typical baselines. AP , AP50, AP75 scores (%). APS :AP of small objects,
APM : AP of medium objects, APL:AP of large objects. *DCNv2+Faster R-CNN models are trained on the 118k images of the COCO 2017 train set.

samples which drops the number of proposal targets by a large
margin. To address geometric variation, adopting deformable
convolution layers is an effective way. Modeling the relation-
ship between different objects in an image is also necessary to
improve performance. Detection results on MS COCO test-
dev dataset of the above typical baselines are listed on table 2.

IV. DATASETS AND METRICS
Detecting an object has to state that an object belongs to a
specified class and locate it in the image. The localization
of an object is typically represented by a bounding box as
shown in Fig. 5. Using challenging datasets as benchmark
is significant in many areas of research, because they are
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FIGURE 5. The first two lines are examples from the MS COCO dataset [5]. The images show three different types of images sampled in the dataset,
including iconic objects, iconic scenes and non-iconic objects. In addition, the last two lines are annotated sample images from the PASCAL VOC
dataset [4].

able to draw a standard comparison between different algo-
rithms and set goals for solutions. Early algorithms focused
on face detection using various ad hoc datasets. Later, more
realistic and challenging face detection datasets were created.
Another popular challenge is the detection of pedestrians
for which several datasets have been created. The Caltech
Pedestrian Dataset [1] contains 350,000 labeled instances
with bounding boxes. General object detection datasets like
PASCAL VOC [4], MS COCO [5], ImageNet-loc [3] are the
mainstream benchmarks of object detection task. The official
metrics are mainly adopted to measure the performance of
detectors with corresponding dataset.

A. PASCAL VOC DATASET
1) DATASET
For the detection of basic object categories, amulti-year effort
from 2005 to 2012 was devoted to the creation and main-
tenance of a series of benchmark datasets that were widely
adopted. The PASCAL VOC datasets [4] contain 20 object
categories (in VOC2007, such as person, bicycle, bird, bottle,
dog, etc.) spread over 11,000 images. The 20 categories can
be considered as 4 main branches-vehicles, animals, house-
hold objects and people. Some of them increase semantic
specificity of the output, such as car and motorbike, different
types of vehicle, but not look similar. In addition, the visually

similar classes increase the difficulty of detection, e.g. ‘‘dog’’
vs. ‘‘cat’’. Over 27,000 object instance bounding boxes are
labeled, of which almost 7,000 have detailed segmentations.
Imbalanced datasets exist in the VOC2007 dataset, while the
class ‘‘person’’ is definitely the biggest one, which is nearly
20 times more than the smallest class ‘‘sheep’’ in the training
set. This problem is widespread in the surrounding scene and
how can detectors solve this well? Another issue is viewpoint,
such as, front, rear, left, right and unspecified, the detectors
need to treat different viewpoints separately. Some annotated
examples are showed in the last two lines of Fig. 5.

2) METRIC
For the VOC2007 criteria, the interpolated average precision
(Salton and McGill 1986) was used to evaluate both classifi-
cation and detection. It is designed to penalize the algorithm
for missing object instances, for duplicate detections of one
instance, and for false positive detections.

Recall(t) =

∑
ij 1[sij ≥ t]zij

N

Precision(t) =

∑
ij 1[sij ≥ t]zij∑
ij 1[sij ≥ t]

where t is threshold to judge the IoU between predicted box
and ground truth box. In VOC metric, t is set to 0.5. i is the
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TABLE 3. Comparison between ILSVRC object detection dataset and PASCAL VOC dataset.

index of the i-th image while j is the index of the j-th object.
N is the number of predicted boxes. The indicator function
1[sij ≥ t] = 1 if sij ≥ t is true, 0 otherwise. If one detection
is matched to a ground truth box according to the threshold
criteria, it will be seen as a true positive result.

For a given task and class, the precision/recall curve is
computed from a method’s ranked output. Recall is defined
as the proportion of all positive examples ranked above
a given rank. Precision is the proportion of all examples
above that rank which are from the positive class. The
mean average precision across all categories is the ultimate
results.

B. MS COCO BENCHMARK
1) DATASET
The Microsoft Common Objects in Context (MS COCO)
dataset [5] for detecting and segmenting objects found in
everyday life in their natural environments contains 91 com-
mon object categories with 82 of them having more than
5,000 labeled instances. These categories cover the 20 cat-
egories in PASCAL VOC dataset. In total the dataset has
2,500,000 labeled instances in 328,000 images. MS COCO
dataset also pays attention to varied viewpoints and all objects
of it are in natural environments which gives us rich contex-
tual information.

In contrast to the popular ImageNet dataset [3], COCO has
fewer categories but more instances per category. The dataset
is also significantly larger in the number of instances per cat-
egory (27k on average) than the PASCAL VOC datasets [4]
(about 10 more times less than MS COCO dataset) and
ImageNet object detection dataset (1k) [3]. MS COCO con-
tains considerably more object instances per image (7.7)
as compared to PASCAL VOC (2.3) and ImageNet (3.0).
Furthermore, MS COCO dataset contains 3.5 categories per
image as compared to PASCAL (1.4) and ImageNet (1.7)
on average. In addition, 10% images in MS COCO have
only one category, while in ImageNet and PASCAL VOC
all have more than 60% of images contain a single object
category. As we know, small objects need more contextual
reasoning to recognize. Images among MS COCO dataset
are rich in contextual information. The biggest class is also
the ‘‘person’’, nearly 800,000 instances, while the smallest
class is ‘‘hair driver’’, about 600 instances in the whole
dataset. Another small class is ‘‘hair brush’’ whose number is
nearly 800. Except for 20 classes with many or few instances,
the number of instances in the remaining 71 categories is
roughly the same. Three typical categories of images in MS
COCO dataset are showed in the first two lines of Fig. 5.

2) METRIC
MS COCO metric is under a strict manner and thor-
oughly judge the performance of detections. The threshold in
PASCAL VOC is set to a single value, 0.5, but is belong to
[0.5,0.95] with an interval 0.05 that is 10 values to calculate
the mean average precision in MS COCO. Apart from that,
the special average precision for small, medium and large
objects are calculated separately to measure the performance
of the detector in detecting targets of different sizes.

C. ImageNet BENCHMARK
1) DATASET
Challenging datasets can encourage a step forward of
vision tasks and practical applications. Another important
large-scale benchmark dataset is ImageNet dataset [3].
The ILSVRC task of object detection evaluates the abil-
ity of an algorithm to name and localize all instances of
all target objects present in an image. ILSVRC2014 has
200 object classes and nearly 450k training images, 20k val-
idation images and 40k test images. More comparisons with
PASCAL VOC are in Table 3.

2) METRIC
The PASCAL VOC metric uses the threshold t = 0.5.
However, for small objects even deviations of a few pixels
would be unacceptable according to this threshold. ImageNet
uses a loosen threshold calculated as:

t = min(0.5,
wh

(w+ 10)(h+ 10)
)

where w and h are width and height of a ground truth
box respectively. This threshold allows for the annotation to
extend up to 5 pixels on average in each direction around the
object.

D. VisDrone2018 BENCHMARK
Last year, a new dataset consists of images and videos cap-
tured by drones, called VisDrone2018 [7], a large-scale visual
object detection and tracking benchmark dataset. This dataset
aims at advancing visual understanding tasks on the drone
platform. The images and video sequences in the benchmark
were captured over various urban/suburban areas of 14 dif-
ferent cities across China from north to south. Specifically,
VisDrone2018 consists of 263 video clips and 10,209 images
(no overlap with video clips) with rich annotations, including
object bounding boxes, object categories, occlusion, trunca-
tion ratios, etc. This benchmark has more than 2.5 million
annotated instances in 179,264 images/video frames.
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Being the larger such dataset ever published, the bench-
mark enables extensive evaluation and investigation of visual
analysis algorithms on the drone platform. VisDrone2018 has
a large amount of small objects, such as dense cars, pedestri-
ans and bicycles, which will cause difficult detection about
certain categories. Moreover, a large proportion of the images
in this dataset have more than 20 objects per image, 82.4% in
training set, and the average number of objects per image is
54 in 6471 images of training set. This dataset contains dark
night scenes so the brightness of these images lower than
those in day time, which complicates the correct detection
of small and dense objects, as shown in Fig. 6. This dataset
adopts MS COCO metric.

FIGURE 6. A drone-based image with bounding box and category labels
of objects. Image from VisDrone 2018 dataset [7].

E. OPEN IMAGES V5
1) DATASET
Open Images [6] is a dataset of 9.2M images annotated with
image-level labels, object bounding boxes, object segmenta-
tion masks, and visual relationships. Open Images V5 con-
tains a total of 16M bounding boxes for 600 object classes on
1.9M images, which makes it theÂ largest existing dataset
with object location annotations. First, the boxes in this
dataset have been largely manually drawn by professional
annotators (Google-internal annotators) to ensure accuracy
and consistency. Second, the images in it are very diverse and
mostly contain complex scenes with several objects (8.3 per
image on average). Third, this dataset offers visual rela-
tionship annotations, indicating pairs of objects in particular
relations (e.g. ‘‘woman playing guitar’’, ‘‘beer on table’’).
In total it has 329 relationship triplets with 391,073 samples.

Fourth, V5 provides segmentation masks for 2.8M object
instances in 350 classes. Segmentation masks mark the out-
line of objects, which characterizes their spatial extent to a
much higher level of detail. Finally, the dataset is annotated
with 36.5M image-level labels spanning 19,969 classes.

2) METRIC
On the basis of PASCAL VOC 2012 mAP evaluation metric,
Kuznetsova et al.propose several modifications to consider
thoroughly of some important aspects of the Open Images
Dataset. First, for fair evaluation, the unannotated classes are
ignored to avoid wrongly counted as false negatives. Second,
if an object belongs to a class and a subclass, an object
detection model should give a detection result for each of
the relevant classes. The absence of one of these classes
would be considered a false negative in that class. Third,
in Open Images Dataset, there exists group-of boxes which
contain a group of (more than one which are occluding each
other or physically touching) object instances but unknown
a single object localization inside them. If a detection inside
a group-of box and the intersection of the detection and the
box divided by the area of the detection is larger than 0.5,
the detection will be counted as a true positive. Multiple
correct detections inside the same group-of box only count
one valid true positive.

F. PEDESTRIAN DETECTION DATASETS
Table 4 and table 5 list the comparison between several
people detection benchmarks and pedestrian detection
datasets, respectively.

V. ANALYSIS OF GENERAL IMAGE OBJECT DETECTION
METHODS
Deep neural network based object detection pipelines have
four steps in general, image pre-processing, feature extrac-
tion, classification and localization, post-processing. Firstly,
raw images from the dataset can’t be fed into the network
directly. Therefore, we need to resize them to any special sizes
and make them clearer, such as enhancing brightness, color,
contrast. Data augmentation is also available to meet some
requirements, such as flipping, rotation, scaling, cropping,
translation, adding Gaussian noise. In addition, GANs [59]
(generative adversarial networks) can generate new images
to enrich the diversity of input according to people’s needs.
For more details about data augmentation, please refer to [60]

TABLE 4. Comparison of person detection benchmarks, * Images in EuroCity Persons benchmark have day and night collections, which use ‘‘/’’ to split the
number of day and night. Table information from Markus Braun et al. IEEE TPAMI2019 [52].
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TABLE 5. Comparison of pedestrian detection datasets. Table information from Piotr et al. IEEE TPAMI2012 [1].

for more details. Secondly, feature extraction is a key step
for further detection. The feature quality directly determines
the upper bound of subsequent tasks like classification and
localization. Thirdly, the detector head is responsible to
propose and refine bounding box concluding classification
scores and bounding box coordinates. Fig. 1 illustrates the
basic procedure of the second and the third step. At last,
the post-processing step deletes any weak detecting results.
For example, NMS is a widely used method in which the
highest scoring object deletes its nearby objects with inferior
classification scores.

To obtain precise detection results, there exists several
methods can be used alone or in combination with other
methods.

A. ENHANCED FEATURES
Extracting effective features from input images is a vital
prerequisite for further accurate classification and localiza-
tion steps. To fully utilize the output feature maps of con-
secutive backbone layers, Lin et al. [15] aim to extract
richer features by dividing them into different levels to detect
objects of different sizes, as shown in Fig. 3 (d). Some works
[11], [33], [61], [62] utilize FPN as their multi-level feature
pyramid backbone. Furthermore, a series of improved FPN
[18], [35], [63] enriching features for detection task.
Kim et al. [64] propose a parallel feature pyramid (FP) net-
work (PFPNet), where the FP is constructed by widening
the network width instead of increasing the network depth.
The additional feature transformation operation is to generate
a pool of feature maps with different sizes, which yields
the feature maps with similar levels of semantic abstraction
across the scales. Li and Zhou [65] concatenate features from
different layers with different scales and then generates new
feature pyramid to feed into multibox detectors predicting the
final detection results. Chen et al. [66] introduce WeaveNet
which iteratively weaves context information from adjacent
scales together to enable more sophisticated context reason-
ing. Zheng et al. [67] extend better context information for
the shallow layers of one-stage detector [10].

Semantic relationships between different objects or regions
of an image can help detect occluded and small objects.
Bae [68] utilize the combined and high-level semantic fea-
tures for object classification and localization which combine
the multi-region features stage by stage. Zhang et al. [36]
combine a semantic segmentation branch and a global

activation module to enrich the semantics of object detection
features within a typical deep detector. Scene contextual rela-
tions [69] can provide some useful information for accurate
visual recognition. Liu et al. [70] adopt scene contextual
information to further improve accuracy. Modeling relations
between objects can help object detection. Singh et al. [71]
process context regions around the ground-truth object on an
appropriate scale. Hu et al. [37] propose a relation module
that processes a set of objects simultaneously considering
both appearance and geometry features through interaction.
Mid-level semantic properties of objects can benefit object
detection containing visual attributes [72].

Attention mechanism is an effective method for networks
focusing on the most significant region part. Some typi-
cal works [73]–[79] focus on attention mechanism so as to
capture more useful features what detecting objects need.
Kong et al. [80] design an architecture combining both global
attention and local reconfigurations to gather task-oriented
features across different spatial locations and scales.

Fully utilizing the effective region of one object can pro-
mote the accuracy. Original ConvNets only focus on features
of fixed square size (according to the kernel), thus the recep-
tive field does not properly cover the entire pixel of a target
object to represent it well. The deformable ConvNets can
produce deformable kernel and the offset from the initial con-
volution kernel (of fixed size) are learned from the networks.
Deformable RoI Pooling can also adapt to part location for
objects with different shapes. In [38], [39], network weights
and sampling locations jointly determine the effective support
region.

Above all, richer and proper representations of an object
can promote detection accuracy remarkably. Brain-inspired
mechanism is a powerful way to further improve detection
performance.

B. INCREASING LOCALIZATION ACCURACY
Localization and classification are two missions of object
detection. Under object detection evaluation metrics, the pre-
cision of localization is a vital measurable indicator, thus
increasing localization accuracy can promote detection per-
formance remarkably. Designing a novel loss function to
measure the accuracy of predicted boxes is an effective way to
increase localization accuracy. Considering intersection over
union (IoU) is the most commonly used evaluation metric of
object detection, estimating regression quality can judge the
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IoU between predicted bounding box and its corresponding
assignment ground truth box. For two bounding boxes, IoU
can be calculated as the intersection area divided by the union
area.

IoU =
bbox ∩ gt
bbox ∪ gt

A typical work [81] adopts IoU loss to measure the degree
of accuracy the network predicting. This loss function is
robust to varied shapes and scales of different objects and
can converge well in a short time. Rezatofighi et al. [82]
incorporate generalized IoU as a loss function and a new
metric into existing object detection pipeline which makes
a consistent improvement than the original smooth L1 loss
counterpart. Tychsen-Smith and Petersson [49] adopt a novel
bounding box regression loss for localization branch. IoU
loss in this research considers the intersection over union
between predicted box and assigned ground truth box which
is higher than a preset threshold but not concludes only the
highest one. He et al. [83] propose a novel bounding box
regression loss for learning bounding box localization and
transformation variance together. He et al. [84] introduce
a novel bounding box regression loss which has a strong
connection to localization accuracy. Pang et al. [63] propose a
novel balanced L1 Loss to further improve localization accu-
racy. Cabriel et al. [85] present Axially Localized Detection
method to achieve a very high localization precision at the
cellular level.

In general, researchers design new loss function of
localization branch to make the retained predictions more
accurate.

C. SOLVING NEGATIVES-POSITIVES IMBALANCE ISSUE
In the first stage, that networks produce proposals and filter
out a large number of negative samples are mainly well
designed steps of two-stage detectors. When feed into the
detector the proposal bounding boxes belong to a sparse set.
However, in a one-stage detector, the network has no steps to
filter out bad samples, thus the dense sample sets are difficult
to train. The proportion of positive and negative samples is
extremely unbalanced as well. The typical solution is hard
negative mining [86]. The popularized hard mining methods
OHEM [40] can help drive the focus towards hard samples.
Liu et al. [10] adopt hard negative mining method which
sorts all of the negative samples using the highest confidence
loss for each pre-defined boxes and picking the top ones to
make the ratio between the negative and positive samples
at most 3:1. Considering hard samples is more effective to
improve the detection performance when training an object
detector. Pang et al. [63] propose a novel hard mining method
called IoU-balanced sampling. Yu et al. [87] concentrate on
real-time requirements.

Another effective way is adding some items in classifica-
tion loss function. Lin et al. [33] propose a loss function,
called focal loss, which can down-weight the loss assigned
to well-classified or easy examples, focusing on the hard

training examples and avoiding the vast number of easy neg-
ative examples that overwhelm the detector during training.
Chen et al. [88] consider designing a novel ranking task
to replace the conventional classification task and a newly
Average-Precision loss for this task, which can alleviate the
extreme negative-positive class imbalance issue remarkably.

D. IMPROVING POST-PROCESSING NMS METHODS
Only one detected object can be successfully matched to
a ground truth object which will be preserved as a result,
while others matched to it are classified as duplicate. NMS
(non-maximum suppression) is a heuristic method which
selects only the object of the highest classification score,
otherwise the object will be ignored. Hu et al. [37] use the
intermediate results produced by relation module to better
determine which object will be saved while it does not
need NMS. NMS considers the classification score but the
localization confidence is absent, which causes less accu-
rate in deleting weak results. Jiang et al. [89] propose
IoU-Net learning to predict the IoU between each detected
bounding box and the matched ground-truth. Because of
its consideration of localization confidence, it improves the
NMS method by preserving accurately localized bounding
boxes. Tychsen-Smith and Petersson [49] present a novel fit-
ness NMS method which considers both greater estimated
IoU overlap and classification score of predicted bounding
boxes. Liu et al. [90] propose adaptive-NMS which applies
a dynamic suppression threshold to an instance decided by
the target density. Bodla et al. [46] adopt an improved NMS
method without any extra training and is simple to imple-
ment. He et al. [84] further improve soft-NMS method.
Hosang et al. [91] feed network score maps resulting from
NMS at multiple IoU thresholds. Hosang et al. [92] design
a novel ConvNets which does NMS directly without a sub-
sequent post-processing step. Yu et al. [87] utilize the final
feature map to filter out easy samples so the network concen-
trates on hard samples.

E. COMBINING ONE-STAGE AND TWO-STAGE
DETECTORS TO MAKE GOOD RESULTS
In general, pre-existing object detectors are divided into two
categories, the one is two-stage detector, the representative
one, Faster R-CNN [8]. The other is one-stage detector,
such as YOLO [9], SSD [10]. Two-stage detectors have high
localization and object recognition precision, while one-stage
detectors achieve high inference and test speed. The two
stages of two-stage detectors are divided by ROI (Region of
Interest) pooling layer. In Faster R-CNN detector, the first
stage, called RPN, a Region Proposal Network, proposes can-
didate object bounding boxes. The second stage, the network
extracts features using RoIPool from each candidate box and
performs classification and bounding-box regression.

To fully inherit the advantages of one-stage and two-
stage detectors while overcoming their disadvantages,
Zhang et al. [36] present a novel RefineDet which achieves
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FIGURE 7. To meet various scales of objects issue, there are three ways. (a) Multiple scaled images detector trains each of them. (b) Multiple sized filters
separately act on the same sized image. (c) Multiple pre-defined boxes are the reference of predicted boxes.

better accuracy than two-stage detectors and maintains com-
parable efficiency of one-stage detectors.

F. COMPLICATED SCENE SOLUTIONS
Object detection always meets some challenges like small
objects hard to detect and heavy occluded situation. Due
to low resolution and noisy representation, detecting small
objects is a very hard problem. Object detection pipelines
[10], [33] detect small objects through learning representa-
tions of objects at multiple scales. Some works [93]–[95]
improve detection accuracy on the basis of [10]. Li et al. [96]
utilize GAN model in which generator transfer perceived
poor representations of the small objects to super-resolved
ones that are similar enough to real large objects to fool a
competing discriminator. This makes the representation of
small objects similar to the large one thus improves accuracy
without heavy computing cost. Some methods [47], [97]
improve detection accuracy of small objects by enhancing
IoU thresholds to train multiple localization modules. Hu and
Ramanan [98] adopt feature fusion to better detect small faces
which is produced by image pyramid. Xu et al. [99] fuse
high level features with rich semantic information and low
level features via Deconvolution Fusion Block to enhance
representation of small objects.

Target occlusion is another difficult problem in the field of
object detection. Wang et al. [100] improve the recall of face
detection problem in the occluded case without speed decay.
Wang et al. [101] propose a novel bounding box regression
loss specifically designed for crowd scenes, called repulsion
loss. Zhang et al. [102] present a newly designed occlusion-
aware R-CNN (OR-CNN) to improve the detection accuracy
in the crowd. Baqué et al. [103] combine Convolutional Neu-
ral Nets and Conditional Random Fields that model potential
occlusions.

As for the size of different objects in a dataset varies
greatly, to address it, there are three commonly used methods.
Firstly, input images are resized at multiple specified scales
and feature maps are computed for each scale, called multi-
scale training. Typical examples [29], [48], [104], [105] use
this method. Singh et al. [71] adaptively sample regions from
multiple scales of an image pyramid, conditioned on the
image content. Secondly, researchers use convolutional filters
of multiple scales on the feature maps. For instance, in [106],
models of different aspect ratios are trained separately using
different filter sizes (such as 5 × 7 and 7 × 5). Thirdly, pre-
defined anchors with multi-scales and multiple aspect ratios
are reference boxes of the predicted bounding boxes. Faster
R-CNN [8] and SSD [10] use reference box in two-stage and
one-stage detectors for the first time, respectively. Fig. 7 is a
schematic diagram of the above three cases.

G. ANCHOR-FREE
While there are constellation anchor-based object detectors
being mainstream method which contain both one-stage
and two-stage detectors making significant performance
improvements, such as SSD, Faster R-CNN, YOLOv2,
YOLOv3, they still suffer some drawbacks.

(1) The pre-defined anchor boxes have a set of hand-crafted
scales and aspect ratios which are sensitive to dataset and
affect the detection performance by a large margin.

(2) The scales and aspect ratios of pre-defined anchor
boxes are kept fixed during training, thus the next step can’t
get adaptively adjust boxes. Meanwhile, detectors have trou-
ble handling objects of all sizes.

(3) For densely place anchor boxes to achieve high recall,
especially on large-scale dataset, the computation cost and
memory requirements bring huge overhead during processing
procedure.
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FIGURE 8. An anchor-based architecture requires heuristics to determine
each size level anchors are responsible for what scale range of objects.

(4) Most of pre-defined anchors are negative samples,
which causes great imbalance between positive and negative
sample during training.

To address that, recently a series of anchor-free methods
[51], [61], [62], [107]–[113] are proposed. CenterNet [108]
locates the center point, top-left and bottom-right point of an
object. Tian et al. [61] propose a localization method which
is based on the four distance values between the predicted
center point and four sides of a bounding box. It is still a novel
direction for further research.

H. TRAINING FROM SCRATCH
Almost all of the state-of-the-art detectors utilize off-the-
shelf classification backbone pre-trained on large scale
classification dataset [3] as their initial parameter set then
fine-tune parameters to adapt to the new detection task.
Another way to implement training procedure is that all
parameters are assigned from scratch. Zhu et al. [114] train
detector from scratch thus do not need pre-trained classi-
fication backbone because of stable and predictable gradi-
ent brought by batch normalization operation. Some works
[115]–[118] train object detectors from scratch by dense
layer-wise connections.

I. DESIGNING NEW ARCHITECTURE
Because of different propose of classification and localization
task, there exists a gap between classification network and
detection architecture. Localization needs fine-grained repre-
sentations of objects while classification needs high semantic
information. Li et al. [16] propose a newly designed object
detection architecture to specially focus on detection task
which maintains high spatial resolution in deeper layers and
does not need to pre-train on large scale classification dataset.

The two-stage detectors are always slower than one-stage
detectors. By studying the structure of two-stage network,
researchers find two-stage detectors like Faster R-CNN and
R-FCN have a heavy headwhich slows it down. Li et al. [119]
present a light head two-stage detector to keep time
efficiency.

J. SPEEDING UP DETECTION
For limited computing power and memory resource such as
mobile devices, real-time devices, webcam, automatic driv-
ing encourage research into efficient detection architecture
design. The most typical real-time detector is the [9], [30],
[32] series and [10], [34] and their improved architecture [66],
[67], [95], [120]. Some methods [24], [87], [121]–[124] are
aim to reach real-time detection.

K. ACHIEVING FAST AND ACCURATE DETECTIONS
The best object detector needs both high efficiency and high
accuracy which is the ultimate goal of this task. Lin et al. [33]
aim to surpass the accuracy of existing two-stage detec-
tors while maintain fast speed. Zhou et al. [125] combine
an accurate (but slow) detector and a fast (but less accu-
rate) detector adaptively determining whether an image is
easy or hard to detect and choosing an appropriate detector to
detect it. Liu et al. [126] build a fast and accurate detector by
strengthening lightweight network features using receptive
fields block.

VI. APPLICATIONS AND BRANCHES
A. TYPICAL APPLICATION AREAS
Object detection has been widely used in some fields to
assist people to complete some tasks, such as security field,
military field, transportation field, medical field and life field.
We describe the typical and recent methods utilized in these
fields in detail.

1) SECURITY FIELD
The most well known applications in the security field are
face detection, pedestrian detection, fingerprint identifica-
tion, fraud detection, anomaly detection etc.
• Face detection aims at detecting people faces in an

image, as shown in Fig. 9. Because of extreme poses, illu-
mination and resolution variations, face detection is still
a difficult mission. Many works focus on precise detector
designing. Ranjan et al. [127] learn correlated tasks (face
detection, facial landmarks localization, head pose estima-
tion and gender recognition) simultaneously to boost the
performance of individual tasks. He et al. [128] propose
a novel Wasserstein convolutional neural network approach
to learn invariant features between near-infrared (NIR) and
visual (VIS) face images. Designing appropriate loss func-
tions can enhance discriminative power of DCNNs based
large-scale face recognition. The cosine-based softmax losses
[129]–[132] achieve great success in deep learning based face
recognition. Deng et al. [133] propose an Additive Angular
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FIGURE 9. A challenging densely tiny human faces detection results.
Image from Hu et al. [98].

Margin Loss (ArcFace) to get highly discriminative features
for face recognition. Guo et al. [134] give a fuzzy sparse
auto-encoder framework for single image per person face
recognition. Please refer to [135] for more details.
• Pedestrian detection focuses on detecting pedestrians

in the natural scenes. Braun et al. [52] release an EuroCity
Persons dataset containing pedestrians, cyclists and other
riders in urban traffic scenes. Complexity-aware cascaded
pedestrian detectors [136]–[138] devote to real time pedes-
trian detection. Please refer to a survey [139] for more details.
• Anomaly detection plays a significant role in fraud

detection, climate analysis, and healthcare monitoring. Exist-
ing anomaly detection techniques [140]–[143] analyze the
data on a point-wise basis. To point the expert analysts to the
interesting regions (anomalies) of the data, Zhu et al. [144]
propose a novel unsupervised method called ‘‘Maximally
Divergent Intervals’’ (MDI), which searches for contiguous
intervals of time and regions in space.

2) MILITARY FIELD
Inmilitary field, remote sensing object detection, topographic
survey, flyer detection, etc. are representative applications.
• Remote sensing object detection aims at detecting

objects on remote sensing images or videos, which meets
some challenges. Firstly, the extreme large input size but
small targets makes the existing object detection procedure
too slow for practical use and too hard to detect. Secondly,
the massive and complex backgrounds cause serious false
detection. To address these issues, researchers adopt the
method of data fusion. Due to the lack of information and
small deviation, which caused great inaccuracy, they focused
on the detection of small targets. Remote sensing images
have some characteristics far from natural images, thus strong
pipelines such as Faster R-CNN, FCN, SSD, YOLO can’t
transfer well to the new data domain. Designing remote sens-
ing dataset adapted detectors remains a research hot spot in
this domain.

Cheng et al. [145] propose a CNN-based Remote
Sensing Image (RSI) object detection model dealing with
the rotation problem by designing a rotation-invariant layer.
Zhang et al. [146] present a rotation and scaling robust

structure to address lacking rotation and scaling invariance
in RSI object detection. Li et al. [147] raise a rotatable
region proposal network and a rotatable detection network
considering the orientation of vehicles. Deng et al. [148] put
forward an accurate-vehicle-proposal-network (AVPN) for
small object detection. Audebert et al. [149] utilize accurate
semantic segmentation results to obtain detection of vehicles.
Li et al. [150] address large range of resolutions of ships
(ranging from dozens of pixels to thousands) issue in ship
detection. Pang et al. [151] propose a real-time remote sens-
ing method. Pei et al. [152] present a deep learning frame-
work on synthetic aperture radar (SAR) automatic target
recognition. Long et al. [153] concentrate on automatically
and accurately locating objects. Shahzad et al. [154] propose
a novel framework containing automatic labeling and recur-
rent neural network for detection.

Typical methods [155]–[165] all utilize deep neural net-
works to achieve detection task on remote sensing datasets.
NWPU VHR-10 [166], HRRSD [146], DOTA [167], DLR
3KMunich [168] andVEDAI [169] are remote sensing object
detection benchmarks. We recommend readers refer to [170]
for more details on remote sensing object detection.

3) TRANSPORTATION FIELD
As we known that, license plate recognition, automatic driv-
ing and traffic sign recognition etc. greatly facilitate people’s
life.
•With the popularity of cars, license plate recognition is

required in tracking crime, residential access, traffic viola-
tions tracking etc. Edge information, mathematical morphol-
ogy, texture features, sliding concentric windows, connected
component analysis etc. can bring license plate recognition
systemmore robust and stable. Recently, deep learning-based
methods [171]–[175] provide a variety of solutions for license
plate recognition. Please refer to [176] for more details.
• An autonomous vehicle (AV) needs an accurate per-

ception of its surroundings to operate reliably. The percep-
tion system of an AV normally employs machine learning
(e.g., deep learning) and transforms sensory data into seman-
tic information which enables autonomous driving. Object
detection is a fundamental function of this perception system.
3D object detection methods involve a third dimension that
reveals more detailed object’s size and location information,
which are divided into three categories, monocular, point-
cloud and fusion. First, monocular image based methods pre-
dict 2D bounding boxes on the image then extrapolate them
to 3D, which lacks explicit depth information so limits the
accuracy of localization. Second, point-cloud based methods
project point clouds into a 2D image to process or generate
a 3D representation of the point cloud directly in a voxel
structure, where the former loses information and the latter
is time consuming. Third, fusion based methods fuse both
front view images and point clouds to generate a robust
detection, which represent state-of-the-art detectors while
computationally expensive. Recently, Lu et al. [177] utilize
a novel architecture contains 3D convolutions and RNNs
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to achieve centimeter-level localization accuracy in different
real-world driving scenarios. Song et al. [178] release a 3D
car instance understanding benchmark for autonomous driv-
ing. Banerjee et al. [179] utilize sensor fusion to obtain better
features. Please refer to a recently published survey [180] for
more details.
• Both unmanned vehicles and autonomous driving sys-

tems need to solve the problem of traffic sign recognition.
For the sake of safety and obeying the rules, real-time accu-
rate traffic sign recognition assists in driving by acquiring the
temporal and spatial information of the potential signs. Deep
learning methods [181]–[187] solve this problem with high
performance.

4) MEDICAL FIELD
In medical field, medical image detection, cancer detection,
disease detection, skin disease detection and healthcare mon-
itoring etc. have become a means of supplementary medical
treatments.
• Computer Aided Diagnosis (CAD) systems can help

doctors classify different types of cancer. In detail, after
an appropriate acquisition of the images, the fundamental
steps carried out by a CAD framework can be identified
as image segmentation, feature extraction, classification and
object detection. Due to significant individual differences,
data scarcity and privacy, there usually exists data distribu-
tion difference between source domain and target domain.
A domain adaptation framework [188] is needed for medical
image detection.
•Li et al. [77] incorporate the attentionmechanism inCNN

for glaucoma detection and establish a large-scale attention-
based glaucoma dataset. Liu et al. [189] design a bidirectional
recurrent neural network (RNN) with long short-term mem-
ory (LSTM) to detect DNA modifications called DeepMod.
Schubert et al. [190] propose cellular morphology neural
networks (CMNs) for automated neuron reconstruction and
automated detection of synapses. Codella et al. [191] orga-
nize a challenge of skin lesion analysis toward melanoma
detection. Please refer to two representative surveys
[192], [193] for more details.

5) LIFE FIELD
In life field, intelligent home, commodity detection, event
detection, pattern detection, image caption generation,
rain/shadow detection, species identification etc. are the most
representative applications.
• On densely packed scenes like retail shelf displays,

Goldman et al. [194] propose a novel precise object detector
and release a new SKU-110K dataset to meet this challenge.
• Event detection aims to discover real-world events from

the Internet such as festivals, talks, protests, natural disasters,
elections. With the popularity of social media and its new
characters, the data type of which are more diverse than
before. Multi-domain event detection (MED) provides com-
prehensive descriptions of events. Yang et al. [195] present
an event detection framework to dispose multi-domain data.

Wang et al. [196] incorporate online social interaction fea-
tures by constructing affinity graphs for event detection tasks.
Schinas et al. [197] design a multimodal graph-based system
to detect events from 100 million photos/videos. Please refer
to a survey [198] for more details.
• Pattern detection always meet some challenges such

as, scene occlusion, pose variation, varying illumination and
sensor noise. To better address repeated pattern or periodic
structure detection, researches design strong baselines in both
2D images [199], [200] and 3D point clouds [201]–[212].
• Image caption generation means that computers auto-

matically generate a caption for a given image. The most
important part is to capture semantic information of images
and express it to natural languages. Image captioning needs
to connect computer vision and natural language processing
technologies, which is a great challenge task. To address this
issue, multimodal embedding, encoder-decoder frameworks,
attention mechanism [75], [213], and reinforcement learning
[214], [215] are widely adopted in this field. Yao et al. [216]
introduce a new design to explore the connections between
objects by constructing Graph Convolutional Networks and
Long Short-Term Memory (dubbed as GCN-LSTM) archi-
tecture. This framework integrates both semantic and spa-
tial object relationships. Apart from LSTM (long short term
memory)-based methods, deep convolutional networks based
method [217] is verified effective and efficient. Please refer
to a survey [218] for more details.
• Yang et al. [219] present a novel rain model accompany

with a deep learning architecture to address rain detection in
a single image. Hu et al. [220] analyze the spatial image con-
text in a direction-aware manner and design a novel deep neu-
ral network to detect shadow. Accurate species identification
is the basis for taxonomic research, a recently work [221]
introduces a deep learning method for species identification.

B. OBJECT DETECTION BRANCHES
Object detection has a wide range of application scenar-
ios. The research of this domain contains a large variety of
branches. We describe some representative branches in this
part.

1) WEAKLY SUPERVISED OBJECT DETECTION
Weakly supervised object detection (WSOD) aims at utilizing
a few fully annotated images (supervision) to detect a large
amount of non-fully annotated ones. Traditionally models
are learnt from images labelled only with the object class
and not the object bounding box. Annotating a bounding box
for each object in large datasets is expensive, laborious and
impractical. Weakly supervised learning relies on incomplete
annotated training data to learn detection models.

Weakly supervised deep detection network in [222] is a
representative framework for weakly supervised object detec-
tion. Context information [223], instance classifier refine-
ment [224] and image segmentation [225], [226] are adopted
to tackle hardly optimized problems. Yang et al. [227] show
that the action depicted in the image can provide strong cues

VOLUME 7, 2019 128855



L. Jiao et al.: Survey of Deep Learning-Based Object Detection

FIGURE 10. Some examples from the salient object detection datasets. (a), (c) are images, (b), (d) ground truth. Image from Liu et al. [233] and
Wu et al. [232].

about the location of the associated object. Wan et al. [228]
design a min-entropy latent model optimized with a recurrent
learning algorithm for weakly supervised object detection.
Tang et al. [229] utilize an iterative procedure to generate
proposal clusters and learn refined instance classifiers, which
makes the network concentrate on the whole object rather
than part of it. Cao et al. [230] design a novel feedback
convolutional neural network for weakly supervised object
localization. Wan et al. [231] present continuation multiple
instance learning to alleviate the non-convexity problem in
WSOD.

2) SALIENT OBJECT DETECTION
Salient object detection utilizes deep neural network to pre-
dict saliency scores of image regions and obtain accurate
saliency maps, as shown in Fig. 10. Salient object detection
networks usually need to aggregate multi-level features of
backbone network. For fast speed without accuracy dropping,
Wu et al. [232] present that discarding the shallower layer
features can achieve fast speed and the deeper layer features
are sufficient to obtain precisely salient map. Liu et al. [233]
expand the role of pooling in convolutional neural networks.
Wang et al. [234] utilize fixation prediction to detect salient
objects. Wang et al. [235] adopt recurrent fully convolu-
tional networks and incorporate saliency prior knowledge for
accurate salient object detection. Feng et al. [236] design an
attentive feedback module to better explore the structure of
objects.

Video salient object detection datasets [237]–[243] provide
benchmarks for video salient object detection, and exist-
ing good algorithms [238], [244], [245] [241], [246]–[255]
devote to the development of this field.

3) HIGHLIGHT DETECTION
Highlight detection is to retrieve a moment in a short video
clip that captures a user’s primary attention or interest, which
can accelerate browsing many videos, enhance social video
sharing and facilitate video recommendation. Typical high-
light detectors [256]–[261] are domain-specific for they are
tailored to a category of videos. All object detection tasks
require a large amount of manual annotation data and high-
light detection is no exception. Xiong et al. [262] propose a
weakly supervised method on shorter user-generated videos
to address this issue.

4) EDGE DETECTION
Edge detection aims at extracting object boundaries and
perceptually salient edges from images, which is impor-
tant to a series of higher level vision tasks like segmenta-
tion, object detection and recognition. Edge detection meets
some challenges. First, the edges of various scales in an
image need both object-level boundaries and useful local
region details. Second, convolutional layers of different lev-
els are specialized to predict different parts of the final
detection, thus each layer in CNN should be trained by
proper layer-specific supervision. To address these issues,
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He et al. [263] propose a Bi-Directional Cascade Network to
let one layer supervised by labeled edges while adopt dilated
convolution to generate multi-scale features. Liu et al. [264]
present an accurate edge detector which utilizes richer con-
volutional features.

5) TEXT DETECTION
Text detection aims to identify text regions of given
images or videos which is also an important prerequisite for
many computer vision tasks, such as classification, video
analysis. There have been many successful commercial opti-
cal character recognition (OCR) systems for internet content
and documentary texts recognition. The detection of text in
natural scenes remains a challenge due to complex situations
such as blurring, uneven lighting, perspective distortion,
various orientation. Some typical works [265]–[267] focus
on horizontal or nearly horizontal text detection. Recently,
researchers find that arbitrary-oriented text detection
[268]–[272] is a direction that needs to pay attention to.
In general, deep learning based scene text detection methods
can be classified into two categories. The first category
takes scene text as a type of general object, following the
general object detection paradigm and locating scene text
by text box regression. These methods have difficulties to
deal with the large aspect ratios and arbitrary-orientation of
scene text. The second one directly segments text regions,
but mostly requires complicated post-processing step.
Usually, some methods in this category mainly involve two
steps, segmentation (generating text prediction maps) and
geometric approaches (for inclined proposals), which is
time-consuming. In addition, in order to obtain the desired
orientation of text boxes, some methods require complex
post-processing step, so it’s not as efficient as those archi-
tectures that are directly based on detection networks.

Lyu et al. [271] combine the ideas of the two categories
above avoiding their shortcomings by locating corner points
of text bounding boxes and dividing text regions in relative
positions to detect scene text, which can handle long ori-
ented text and only need a simple NMS post-processing step.
Ma et al. [272] develop a novel rotation-based approach and
an end-to-end text detection system in which Rotation Region
Proposal Networks (RRPN) generate inclined proposals with
text orientation angle information.

6) MULTI-DOMAIN OBJECT DETECTION
Domain-specific detectors always achieve high detection per-
formance on the specified dataset. So as to get a univer-
sal detector which is capable of working on various image
domains, recently many works focus on training a multi-
domain detector while do not require prior knowledge of
the newly domain of interest. Wang et al. [273] propose
a universal detector which utilizes a new domain-attention
mechanism working on a variety of image domains (human
faces, traffic signs and medical CT images) without prior
knowledge of the domain of interest.Wang et al. [273] release
a newly established universal object detection benchmark

consisting of 11 diverse datasets to better meet the challenges
of generalization in different domains.

To learn a universal representation of vision,
Bilen and Vedaldi [274] add domain-specific BN (batch
normalization) layers to a multi-domain shared network.
Rebuffi et al. [275] propose adapter residual modules which
achieve a high degree of parameter sharing while maintain-
ing or even improving the accuracy of domain-specific repre-
sentations. Rebuffi et al. [275] introduce theVisual Decathlon
Challenge, a benchmark contains ten very different visual
domains. Inspired by transfer learning, Rebuffi et al. [276]
empirically study efficient parameterizations and outperform
traditional fine-tuning techniques.

Another requirement for multi-domain object detection is
to reduce annotation costs. Object detection datasets need
heavily annotation works which is time consuming and
mechanical. Transferring pre-trained models from label-rich
domains to label-poor datasets can solve label-poor detection
works. One way is to use unsupervised domain adaptation
methods to tackle dataset bias problems. In recent years,
researchers have adopted adversarial learning to align the
source and target distribution of samples. Chen et al. [277]
utilize Faster R-CNN with a domain classifier trained to
distinguish source and target samples, like adversarial learn-
ing, where the feature extractor learns to deceive the domain
classifier. Saito et al. [278] propose a weak alignment model
to focus on similarity between different images from domains
with large discrepancy rather than aligning images that are
globally dissimilar. Only in the source domain manual anno-
tations are available, which can be addressed by using Unsu-
pervisedDomainAdaptationmethods. Haupmann et al. [279]
propose an Unsupervised Domain Adaptation method which
models both intra-class and inter-class domain discrepancy.

7) OBJECT DETECTION IN VIDEOS
Object detection in videos aims at detecting objects in videos,
which brings additional challenges due to degraded image
qualities such as motion blur and video defocus, leading
to unstable classifications for the same object across video.
Video detectors [280]–[289] exploit temporal contexts to
meet this challenge. Some static detectors [280]–[283] first
detect objects in each frame then check them by linking
detections of the same object in neighbor frames. Due to
object motion, the same object in neighbor frames may not
have a large overlap. On the other hand, the predicted object
movements are not accurate enough to link neighbor frames.
Tang et al. [290] propose an architecture which links objects
in the same frame instead of neighboring frames to address it.

8) POINT CLOUDS 3D OBJECT DETECTION
Compared to image based detection, LiDAR point cloud pro-
vides reliable depth information that can be used to accurately
locate objects and characterize their shapes. In autonomous
navigation, autonomous driving, housekeeping robots and
augmented/virtual reality applications, LiDAR point cloud
based 3D object detection plays an important role. Point
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FIGURE 11. Example 3D detection result from the KITTI validation set projected onto an image. Image from Sindagi et al. [297].

FIGURE 12. Some examples of multi-person pose estimation. Image from Chen et al. [306].

cloud based 3D object detection meets some challenges,
the sparsity of LiDAR point clouds, highly variable point
density, non-uniform sampling of the 3D space, effective
range of the sensors, occlusion, and the relative pose vari-
ation. Engelcke et al. [291] first propose sparse convolu-
tional layers and L1 regularization for efficient large-scale
processing of 3D data. Qi et al. [292] raise an end-to-end

deep neural network called PointNet, which learns point-
wise features directly from point clouds. Qi et al. [293]
improve PointNet which learns local structures at different
scales. Zhou and Tuzel [294] close the gap between RPN
and point set feature learning for 3D detection task. Zhou
and Tuzel [294] present a generic end-to-end 3D detection
framework called VoxelNet, which learns a discriminative
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feature representation from point clouds and predicts accurate
3D bounding boxes simultaneously.

In autonomous driving application, Chen et al. [295] per-
form 3D object detection from a single monocular image.
Chen et al. [296] take both LiDAR point cloud and RGB
images as input then predict oriented 3D bounding boxes
for high-accuracy 3D object detection. Example 3D detection
result is shown in Fig. 11.

9) 2D, 3D POSE DETECTION
Human pose detection aims at estimating the 2D or 3D
pose location of the body joints and defining pose classes
then returning the average pose of the top scoring class,
as shown in Fig. 12. Typical 2D human pose estimation
methods [298]–[304] utilize deep CNN architectures.
Rogez et al. [305] propose an end-to-end architecture for
joint 2D and 3D human pose estimation in natural images
which predicts 2D and 3D poses of multiple people simul-
taneously. Benefit by full-body 3D pose, it can recover
body part locations in cases of occlusion between different
targets. Human pose estimation approaches can be divided
into two categories, one-stage and multi-stage methods. The
best performing methods [11], [306]–[308] typically base
on one-stage backbone networks. The most representative
multi-stage methods are convolutional pose machine [309],
Hourglass network [300], and MSPN [310].

10) FINE-GRAINED VISUAL RECOGNITION
Fine-grained recognition aims to identify an exact category
of objects in each basic-level category, such as identifying
the species of a bird, or the model of an aircraft. This task
is quite challenging because the visual differences between
the categories are small and can be easily overwhelmed by
those caused by factors such as pose, viewpoint, and loca-
tion of the object in the image. To generalize across view-
points, Krause et al. [311] utilize 3D object representations
on the level of both local feature appearance and location.
Lin et al. [312] introduce bilinear models that consists of
two feature extractors (two CNN streams). The outputs of
these two feature extractors aremultiplied using outer product
at each location of the image and then pooled to obtain an
image descriptor. He et al. [313] introduce a fine-grained
discriminative localizationmethod via saliency-guided Faster
R-CNN. After that, He et al. [314] propose a weakly
supervised discriminative localization approach (WSDL)
for fast fine-grained image classification. Classical datasets
[315], [316] provide useful information on some interesting
categories. Please refer to a survey [317] for more details.

VII. CONCLUSIONS AND TRENDS
A. CONCLUSIONS
With the continuous upgrading of powerful computing equip-
ment, object detection technology based on deep learning has
been developed rapidly. In order to deploy on more accurate
applications, the need for high precision real-time systems

is becoming more and more urgent. Since achieving high
accuracy and efficiency detectors is the ultimate goal of this
task, researchers have developed a series of directions such
as, constructing new architecture, extracting rich features,
exploiting good representations, improving processing speed,
training from scratch, anchor-free methods, solving sophisti-
cated scene issues (small objects, occluded objects), combin-
ing one-stage and two-stage detectors to make good results,
improving post-processing NMS method, solving negatives-
positives imbalance issue, increasing localization accuracy,
enhancing classification confidence. With the increasingly
powerful object detectors in security field, military field,
transportation field, medical field, and life field, the appli-
cation of object detection is gradually extensive. In addition,
a variety of branches in detection domain arise. Although the
achievement of this domain has been effective recently, there
is still much room for further development.

B. TRENDS
1) COMBINING ONE-STAGE AND TWO-STAGE DETECTORS
On the one hand, the two-stage detectors have a densely
tailing process to obtain as many as reference boxes, which
is time consuming and inefficient. To address this issue,
researchers are required to eliminate so much redundancy
while maintaining high accuracy. On the other hand, the one-
stage detectors achieve fast processing speedwhich have been
used successfully in real-time applications. Although fast,
the lower accuracy is still a bottleneck for high precision
requirements. How to combine the advantages of both one-
stage and two-stage detectors remains a big challenge.

2) VIDEO OBJECT DETECTION
In video object detection, motion blur, video defocus, motion
target ambiguity, intense target movements, small targets,
occlusion and truncation etc. make it difficult for this task
to achieve good performance in real life scene and remote
sensing scene. Delving into moving goals and more complex
source data such as video is one of the key points for future
research.

3) EFFICIENT POST-PROCESSING METHODS
In the three (for one-stage detectors) or four (for two-stage
detectors) stage detection procedure, post-processing is an
initial step for the final results. On most of the detection
metrics, only the highest prediction result of one object can
be send to the metric program to calculate accuracy score.
The post-processingmethods like NMS and its improvements
may eliminate well located but high classification confidence
objects, which is detrimental to the accuracy of the measure-
ment. Exploiting more efficient and accurate post-processing
method is another direction for object detection domain.

4) WEAKLY SUPERVISED OBJECT DETECTION METHODS
Utilizing high proportion labelled images only with object
class but not with object bounding box to replace a large
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amount of fully annotated images to train the network is of
high efficiency and easy to get. Weakly supervised object
detection (WSOD) aims at utilizing a few fully annotated
images (supervision) to detect a large amount of non-fully
annotated ones. Therefore developing WSOD methods is a
significant problem for further study.

5) MULTI-DOMAIN OBJECT DETECTION
Domain-specific detectors always achieve high detection per-
formance on the specified dataset. So as to get a univer-
sal detector which is capable of working on various image
domains, multi-domain detectors can solve this problem
without prior knowledge of new domain. Domain transfer is
a challenging mission for further study.

6) 3D OBJECT DETECTION
With the advent of 3D sensors and diverse applications of 3D
understanding, 3D object detection gradually becomes a hot
research direction. Compared to 2D image based detection,
LiDAR point cloud provides reliable depth information that
can be used to accurately locate objects and characterize their
shapes. LiDAR enables accurate localization of objects in the
3D space. Object detection techniques based on LiDAR data
often outperform the 2D counterparts as well.

7) SALIENT OBJECT DETECTION
Salient object detection (SOD) aims at highlighting salient
object regions in images. Video object detection is to classify
and locate objects of interest in a continuous scene. SOD is
driven by and applied to a widely spectrum of object-level
applications in various areas. Given salient object regions
of interest in each frame can assist accurate object detec-
tion in videos. Therefore, for high-level recognition task and
challenging detection task, highlighting target detection is a
crucial preliminary process.

8) UNSUPERVISED OBJECT DETECTION
Supervised methods are time consuming and inefficient in
training process, which need well annotated dataset used for
supervision information. Annotating a bounding box for each
object in large datasets is expensive, laborious and impracti-
cal. Developing automatic annotation technology to release
human annotation work is a promising trend for unsupervised
object detection. Unsupervised object detection is a future
research direction for intelligent detection mission.

9) MULTI-TASK LEARNING
Aggregating multi-level features of backbone network
is a significant way to improve detection performance.
Furthermore, performing multiple computer vision tasks
simultaneously such as object detection, semantic segmenta-
tion, instance segmentation, edge detection, highlight detec-
tion can enhance performance of separate task by a large
margin because of richer information. Adopting multi-task
learning is a good way to aggregate multiple tasks in a

network, and it presents great challenges to researchers to
maintain processing speed and improve accuracy as well.

10) MULTI-SOURCE INFORMATION ASSISTANCE
Due to the popularity of social media and the development of
big data technology, multi-source information becomes easy
to access. Many social media information can provide both
pictures and descriptions of them in textual form, which can
help detection task. Fusing multi-source information is an
emerging research direction with the development of various
technologies.

11) CONSTRUCTING TERMINAL OBJECT DETECTION
SYSTEM
From the cloud to the terminal, the terminalization of artificial
intelligence can help people deal with mass information and
solve problems better and faster. With the emergence of
lightweight networks, terminal detectors are developed into
more efficient and reliable devices with broad application
scenarios. The chip detection network based on FPGA will
make real-time application possible.

12) MEDICAL IMAGING AND DIAGNOSIS
FDA (U.S. Food and Drug Administration) is promoting
‘‘AI-based Medical Devices’’. In April 2018, FDA first
approved an artificial intelligence software called IDx-DR,
a diabetic retinopathy detector with an accuracy of more than
87.4%. For customers, the combination of image recognition
systems and mobile devices can make cell phone a powerful
family diagnostic tool. This direction is full of challenges and
expectations.

13) ADVANCED MEDICAL BIOMETRICS
Utilizing deep neural network, researchers began to study
and measure atypical risk factors that had been difficult to
quantify previously. Using neural networks to analyze retinal
images and speech patterns may help identify the risk of heart
disease. In the near future, medical biometrics will be used for
passive monitoring.

14) REMOTE SENSING AIRBORNE AND REAL-TIME
DETECTION
Both military and agricultural fields require accurate analysis
of remote sensing images. Automated detection software and
integrated hardware will bring unprecedented development
to these fields. Loading deep learning based object detection
system to SoC (System on Chip) realizes real-time high-
altitude detection.

15) GAN BASED DETECTOR
Deep learning based systems always require large amounts of
data for training, whereas Generative Adversarial Network is
a powerful structure to generate fake images. How much you
need, how much it can produce. Mixing the real world scene
and simulated data generated by GAN trains object detector
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to make the detector grow more robust and obtain stronger
generalization ability.

The research of object detection still needs further study.
We hope that deep learningmethods will make breakthroughs
in the near future.
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