
UPSNet: A Unified Panoptic Segmentation Network

Yuwen Xiong1,2∗ Renjie Liao1,2∗ Hengshuang Zhao3∗†,
Rui Hu1 Min Bai1,2 Ersin Yumer1 Raquel Urtasun1,2

1Uber ATG 2University of Toronto 3The Chinese University of Hong Kong
{yuwen, rjliao, rui.hu, mbai3, yumer, urtasun}@uber.com

hszhao@cse.cuhk.edu.hk

Abstract

In this paper, we propose a unified panoptic segmen-
tation network (UPSNet) for tackling the newly proposed
panoptic segmentation task. On top of a single backbone
residual network, we first design a deformable convolu-
tion based semantic segmentation head and a Mask R-CNN
style instance segmentation head which solve these two sub-
tasks simultaneously. More importantly, we introduce a
parameter-free panoptic head which solves the panoptic
segmentation via pixel-wise classification. It first lever-
ages the logits from the previous two heads and then in-
novatively expands the representation for enabling predic-
tion of an extra unknown class which helps better resolve
the conflicts between semantic and instance segmentation.
Additionally, it handles the challenge caused by the vary-
ing number of instances and permits back propagation to
the bottom modules in an end-to-end manner. Extensive
experimental results on Cityscapes, COCO and our inter-
nal dataset demonstrate that our UPSNet achieves state-
of-the-art performance with much faster inference. Code
has been made available at: https://github.com/
uber-research/UPSNet.

1. Introduction
Relying on the advances in deep learning, computer vi-

sion systems have been substantially improved, especially
in tasks such as semantic segmentation [39] and instance
segmentation [15]. The former focuses on segmenting
amorphous image regions which share similar texture or
material such as grass, sky and road, whereas the latter fo-
cuses on segmenting countable objects such as people, bi-
cycle and car. Since both tasks aim at understanding the
visual scene at the pixel level, a shared model or representa-
tion could arguably be beneficial. However, the dichotomy
∗Equal contribution.
†This work was done when Hengshuang Zhao was an intern at Uber

ATG.

of these two tasks lead to very different modeling strate-
gies despite the inherent connections between them. For
example, fully convolutional neural networks [26] are of-
ten adopted for semantic segmentation while proposal based
detectors [30] are frequently exploited for instance segmen-
tation.

As an effort to leverage the possible complementariness
of these two tasks and push the segmentation systems fur-
ther towards real-world application, Kirillov et al. [17] uni-
fied them and proposed the so-called panoptic segmentation
task. It is interesting to note that tasks with the same spirit
have been studied under various names before deep learning
became popular. Notable ones include image parsing [32],
scene parsing [32] and holistic scene understanding [35]. In
panoptic segmentation, countable objects (those that map to
instance segmentation tasks well) are called things whereas
amorphous and uncountable regions (those that map to se-
mantic segmentation tasks better) are called stuff. For any
pixel, if it belongs to stuff, the goal of a panoptic segmen-
tation system is simply to predict its class label within the
stuff classes. Otherwise the system needs to decide which
instance it belongs to as well as which thing class it belongs
to. The challenge of this task lies in the fact that the system
has to give a unique answer for each pixel.

In this paper, we propose a unified panoptic segmenta-
tion network (UPSNet) to approach the panoptic segmen-
tation problem as stated above. Unlike previous meth-
ods [17, 19] which have two separate branches designed for
semantic and instance segmentation individually, our model
exploits a single network as backbone to provide shared
representations. We then design two heads on top of the
backbone for solving these tasks simultaneously. Our se-
mantic head builds upon deformable convolution [9] and
leverages multi-scale information from feature pyramid net-
works (FPN) [22]. Our instance head follows the Mask R-
CNN [15] design and outputs mask segmentation, bounding
box and its associated class. As shown in experiments, these
two lightweight heads along with the single backbone pro-
vide good semantic and instance segmentations which are

1

ar
X

iv
:1

90
1.

03
78

4v
2

 [
cs

.C
V

]
 3

 A
pr

 2
01

9

https://github.com/uber-research/UPSNet
https://github.com/uber-research/UPSNet

comparable to separate models. More importantly, we de-
sign a panoptic head which predicts the final panoptic seg-
mentation via pixel-wise classification of which the number
of classes per image could vary. It exploits the logits from
the above two heads and adds a new channel of logits cor-
responding to an extra unknown class. By doing so, it pro-
vides a better way of resolving the conflicts between seman-
tic and instance segmentation. Moreover, our parameter-
free panoptic head is very lightweight and could be used
with various backbone networks. It facilitates end-to-end
training which is not the case for previous methods [17, 19].
To verify the effectiveness of our UPSNet, we perform ex-
tensive experiments on two public datasets: Cityscapes [6]
and COCO [23]. Furthermore, we test it on our internal
dataset which is similar in spirit to Cityscapes (i.e., images
are captured from ego-centric driving scenarios) but with
significantly larger (≈ 3×) size. Results on these three
datasets manifest that our UPSNet achieves state-of-the-art
performances and enjoys much faster inference compared
to recent competitors.

2. Related Work
Semantic Segmentation: Semantic segmentation is one

of the fundamental computer vision tasks that has a long
history. Earlier work [11, 27] focused on introducing
datasets for this task and showed the importance of global
context by demonstrating the gains in bayesian frameworks,
whether structured or free-form. Recent semantic segmen-
tation methods that exploit deep convolutional feature ex-
traction mainly approach this problem from either multi-
scale feature aggregation [39, 26, 5, 14], or end-to-end
structured prediction [2, 40, 1, 25, 4] perspectives. As con-
text is crucial for semantic segmentation, one notable im-
provement to most convolutional models emerged from di-
lated convolutions [36, 37] which allows for a larger recep-
tive field without the need of more free parameters. Pyra-
mid scene parsing network (PSPNet) [39] that uses dilated
convolutions in its backbone, and its faster variant [38] for
real-time applications are widely utilized in practical appli-
cations. Based on FPN and PSPNet, a multi-task framework
is proposed in [34] and demonstrated to be versatile in seg-
menting a wide range of visual concepts.

Instance Segmentation: Instance segmentation deals
not only with identifying the semantic class a pixel is as-
sociated with, but also the specific object instance that it be-
longs to. Beginning with the introduction of region-based
CNN (R-CNN) [12], many early deep learning approaches
to instance segmentation attacked the problem by casting
the solution to instance segmentation as a two stage ap-
proach where a number of segment proposals are made,
which is then followed by a voting between those propos-
als to choose the best [33, 7, 8, 13, 14, 41]. The com-
mon denominator for these methods is that the segmenta-

tion comes before classification, and are therefore slower.
Li et al. [21] proposed a fully convolutional instance-aware
segmentation method, where instance mask proposals [7]
are married with fully convolutional networks [26]. Most
recently, Mask R-CNN [15] introduced a joint approach to
both mask prediction and recognition where one of the two
parallel heads are dedicated to each task.

Panoptic Segmentation: Instance segmentation meth-
ods that focus on detection bounding box proposals, as men-
tioned above, ignore the classes that are not well suited for
detection, e.g., sky, street. On the other hand, semantic seg-
mentation does not provide instance boundaries for classes
like pedestrian and bicycle in a given image. Panoptic seg-
mentation task, first coined by Kirillov et al. [17] unifies
these tasks and defines an ideal output for thing classes
as instance segmentations, as well as for stuff classes as
semantic segmentation. The baseline panoptic segmenta-
tion method introduced in [17] processes the input inde-
pendently for semantic segmentation via a PSPNet, and for
instance segmentation utilizing a Mask R-CNN [15], fol-
lowed by simple heuristic decisions to produce a single
void, stuff, or thing instance label per pixel. Recently, Li et
al. [19] introduced a weakly- and semi-supervised panoptic
segmentation method where they relieve some of the ground
truth constraints by supervising thing classes using bound-
ing boxes, and stuff classes by utilizing image level tags.
De Gaus et al. [10] uses a single feature extraction back-
bone for the pyramid semantic segmentation head [39], and
the instance segmentation head [15], followed by heuristics
for merging pixel level annotations, effectively introducing
an end-to-end version of [17] due to the shared backbone for
the two task networks. Li et al. [20] propose the attention-
guided unified network (AUNet) which leverages proposal
and mask level attention to better segment the background.
Similar post-processing heuristics as in [17] are used to
generate the final panoptic segmentation. Li et al. [18]
propose things and stuff consistency network (TASCNet)
which constructs a binary mask predicting things vs. stuff
for each pixel. An extra loss is added to enforce the consis-
tency between things and stuff prediction.

In contrast to most of these methods, we use a single
backbone network to provide both semantic and instance
segmentation results. More importantly, we develop a sim-
ple yet effective panoptic head which helps accurately pre-
dict the instance and class label.

3. Unified Panoptic Sementation Network
In this section, we first introduce our model and then ex-

plain the implementation details. Following the convention
of [17], we divide the semantic class labels into stuff and
thing. Specifically, thing refers to the set of labels of in-
stances (e.g. pedestrian, bicycle), whereas stuff refers to the
rest of the labels that represent semantics without clear in-

Semantic
Head

Instance
Head

Class

Box

Mask logits

Panoptic
Head

Image FPN Feature

Semantic
logits

Panoptic
logits

Backbone Network

Figure 1: Overall architecture of our UPSNet.

stance boundaries (e.g. street, sky). We denote the number
of stuff and thing classes as Nstuff and Nthing respectively.

3.1. UPSNet Architecture

UPSNet consists of a shared convolutional feature ex-
traction backbone and multiple heads on top of it. Each
head is a sub-network which leverages the features from the
backbone and serves a specific design purpose that is ex-
plained in further detail below. The overall model architec-
ture is shown in Fig. 1.

Backbone: We adopt the original Mask R-CNN [15]
backbone as our convolutional feature extraction net-
work. This backbone exploits a deep residual network
(ResNet) [16] with a feature pyramid network (FPN) [22].

Instance Segmentation Head: The instance segmenta-
tion head follows the Mask R-CNN design with a bound-
ing box regression output, a classification output, and a seg-
mentation mask output. The goal of the instance head is
to produce instance aware representations that could iden-
tify thing classes better. Ultimately these representations
are passed to the panoptic head to contribute to the logits
for each instance.

Semantic Segmentation Head: The goal of the semantic
segmentation head is to segment all semantic classes with-
out discriminating instances. It could help improving in-
stance segmentation where it achieves good results of thing
classes. Our semantic head consists of a deformable con-
volution [9] based sub-network which takes the multi-scale
feature from FPN as input. In particular, we use P2, P3, P4

and P5 feature maps of FPN which contain 256 channels
and are 1/4, 1/8, 1/16 and 1/32 of the original scale re-
spectively. These feature maps first go through the same de-
formable convolution network independently and are sub-
sequently upsampled to the 1/4 scale. We then concatenate
them and apply 1 × 1 convolutions with softmax to predict
the semantic class. The architecture is shown in Fig. 2. As
will be experimentally verified later, the deformable convo-
lution along with the multi-scale feature concatenation pro-

vide semantic segmentation results as good as a separate
model, e.g., a PSPNet adopted in [17]. Semantic segmenta-
tion head is associated with the regular pixel-wise cross en-
tropy loss. To put more emphasis on the foreground objects
such as pedestrians, we also incorporate a RoI loss. During
training, we use the ground truth bounding box of the in-
stance to crop the logits map after the 1×1 convolution and
then resize it to 28 × 28 following Mask R-CNN. The RoI
loss is then the cross entropy computed over 28× 28 patch
which amounts to penalizing more on the pixels within in-
stances for incorrect classification. As demonstrated in the
ablation study later, we empirically found that this RoI loss
helps improve the performance of panoptic segmentation
without harming the semantic segmentation.

Panoptic Segmentation Head: Given the semantic and
instance segmentation results from the above described two
heads, we combine their outputs (specifically per pixel log-
its) in the panoptic segmentation head.

The logits from semantic head is denoted as X of which
the channel size, height and width are Nstuff +Nthing, H and
W respectively. X can then be divided along channel di-
mension into two tensors Xstuff and Xthing which are logits
corresponding to stuff and thing classes. For any image, we
determine the number of instances Ninst according to the
number of ground truth instances during training. During
inference, we rely on a mask pruning process to determine
Ninst which is explained in Section 3.2. Nstuff is fixed since
number of stuff classes is constant across different images,
whereas Ninst is not constant since the number of instances
per image can be different. The goal of our panoptic seg-
mentation head is to first produce a logit tensor Z which is
of size (Nstuff+Ninst)×H×W and then uniquely determine
both the class and instance ID for each pixel.

We first assign Xstuff to the first Nstuff channels of Z to
provide the logits for classifying stuffs. For any instance i,
we have its mask logits Yi from the instance segmentation
head which is of size 28× 28. We also have its box Bi and
class ID Ci. During training Bi and Ci are ground truth box
and class ID whereas during inference they are predicted by

1x1
Conv

Upsample
Concat

DC
Subnet

P2, P3, P4, P5
256-d FPN feature

P2, P3, P4, P5
128-d FCN feature

1/4 scale
512-d FCN feature

Semantic logits

Deformable Conv
3x3, 256

Deformable Conv
3x3, 128

Deformable Conv
3x3, 128

Deformable Conv Subnet (DC Subnet)

Figure 2: Architecture of our semantic segmentation head.

Mask R-CNN. Therefore, we can obtain another represen-
tation of i-th instance from semantic head Xmaski by only
taking the values inside box Bi from the channel of Xthing
corresponding to Ci. Xmaski is of size H ×W and its val-
ues outside box Bi are zero. We then interpolate Yi back
to the same scale as Xmaski via bilinear interpolation and
pad zero outside the box to achieve a compatible shape with
Xmaski , denoted as Ymaski . The final representation of i-th
instance is ZNstuff+i = Xmaski + Ymaski . Once we fill in Z
with representations of all instances, we perform a softmax
along the channel dimension to predict the pixel-wise class.
In particular, if the maximum value falls into the first Nstuff
channel, then it belongs to one of stuff classes. Otherwise
the index of the maximum value tells us the instance ID.
The architecture is shown in Fig. 3. During training, we
generate the ground truth instance ID following the order
of the ground truth boxes we used to construct the panoptic
logits. The panoptic segmentation head is then associated
with the standard pixel-wise cross entropy loss.

During inference, once we predict the instance ID fol-
lowing the above procedure, we still need to determine the
class ID of each instance. One can either use the class ID
Cinst predicted by Mask R-CNN or the one predicted by the
semantic head Csem. As shown later in the ablation study,
we resort to a better heuristic rule. Specifically, for any in-
stance, we know which pixels correspond to it, i.e., those of
which the argmax of Z along channel dimension equals to
its instance ID. Among these pixels, we first check whether
Cinst and Csem are consistent. If so, then we assign the class
ID as Cinst. Otherwise, we compute the mode of their Csem,
denoting as Ĉsem. If the frequency of the mode is larger
than 0.5 and Ĉsem belongs to stuff, then the predicted class
ID is Ĉsem. Otherwise, we assign the class ID as Cinst. In
short, while facing inconsistency, we trust the majority de-
cision made by the semantic head only if it prefers a stuff
class. The justification of such a conflict resolution heuris-
tic is that semantic head typically achieves very good seg-
mentation results over stuff classes.

Unknown Prediction: In this section, we explain a novel
mechanism to allow UPSNet to classify a pixel as the un-
known class instead of making a wrong prediction. To mo-
tivate our design, we consider a case where a pedestrian is
instead predicted as a bicycle. Since the prediction missed

𝑁inst 𝑁stuff

𝑋thing

𝑋stuff

H x W

1

max

𝑋mask/ max

𝑌1 resize/pad

Panoptic
logits

Figure 3: Architecture of our panoptic segmentation head.

the pedestrian, the false negative (FN) value of pedestrian
class will be increased by 1. On the other hand, predict-
ing it as a bicycle will be increasing the false positive (FP)
of bicycle class also by 1. Recall that, the panoptic quality
(PQ) [17] metric for panoptic segmentation is defined as,

PQ =

∑
(p,g)∈TP IoU(p, g)

|TP|︸ ︷︷ ︸
SQ

|TP|
|TP|+ 1

2 |FP|+ 1
2 |FN|︸ ︷︷ ︸

RQ

,

which consist of two parts: recognition quality (RQ) and
semantic quality (SQ). It is clear that increasing either FN
or FP degrades this measurement. This phenomena extends
to wrong predictions of the stuff classes as well. Therefore,
if a wrong prediction is inevitable, predicting such pixel as
unknown is preferred since it will increase FN of one class
by 1 without affecting FP of the other class.

To alleviate the issue, we compute the logits of the extra
unknown class as Zunknown = max (Xthing) − max (Xmask)
where Xmask is the concatenation of Xmaski of all masks
along channel dimension and of shape Ninst×H ×W . The
maximum is taken along the channel dimension. The ra-
tionale behind this is that for any pixel if the maximum of
Xthing is larger than the maximum of Xmask, then it is highly
likely that we are missing some instances (FN). The con-
struction of the logits is shown in Fig. 3. To generate the
ground truth for the unknown class, we randomly sample
30% ground truth masks and set them as unknown during
training. In evaluating the metric, any pixel belonging to
unknown is ignored, i.e., setting to void which will not con-
tribute to the results.

3.2. Implementation Details

In this section, we explain the implementation details of
UPSNet. We follow most of settings and hyper-parameters
of Mask R-CNN which will be introduced in the supple-
mentary material. Hereafter, we only explain those which
are different.

Training: We implement our model in PyTorch [28]
and train it with 16 GPUs using the distributed training

framework Horovod [31]. Images are preprocessed fol-
lowing [15]. Each mini-batch has 1 image per GPU. As
mentioned, we use ground truth box, mask and class la-
bel to construct the logits of panoptic head during training.
Our region proposal network (RPN) is trained end-to-end
with the backbone whereas it was trained separately in [15].
Due to the high resolution of images, e.g., 1024 × 2048 in
Cityscapes, logits from semantic head and panoptic head
are downsampled to 1/4 of the original resolution. Al-
though we do not fine-tune batch normalization (BN) layers
within the backbone for simplicity, we still achieve com-
parable results with the state-of-the-art semantic segmenta-
tion networks like PSPNet. Based on common practice in
semantic [4, 39] and instance segmentation [29, 24], we ex-
pect the performance to be further improved with BN lay-
ers fine-tuned. Our UPSNet contains 8 loss functions in
total: semantic segmentation head (whole image and RoI
based pixel-wise classification losses), panoptic segmen-
tation head (whole image based pixel-wise classification
loss), RPN (box classification, box regression) and instance
segmentation head (box classification, box regression and
mask segmentation). Different weighting schemes on these
multi-task loss functions could lead to very different train-
ing results. As shown in the ablation study, we found the
loss balance strategy, i.e., assuring the scales of all losses
are roughly on the same order of magnitude, works well in
practice.

Inference: During inference, once we obtained out-
put boxes, masks and predicted class labels from the in-
stance segmentation head, we apply a mask pruning pro-
cess to determine which mask will be used for construct-
ing the panoptic logits. In particular, we first perform the
class-agnostic non-maximum suppression with the box IoU
threshold as 0.5 to filter out some overlapping boxes. Then
we sort the predicted class probabilities of the remaining
boxes and keep those whose probability are larger than 0.6.
For each class, we create a canvas which is of the same size
as the image. Then we interpolate masks of that class to the
image scale and paste them onto the corresponding canvas
one by one following the decreasing order of the probabil-
ity. Each time we copy a mask, if the intersection between
the current mask and those already existed over the size of
the current mask is larger than a threshold, we discard this
mask. Otherwise we copy the non-intersecting part onto the
canvas. The threshold of this intersection over itself is set
to 0.3 in our experiments. Logits from the semantic seg-
mentation head and panoptic segmentation head are of the
original scale of the input image during inference.

4. Experiments

In this section, we present the experimental results on
COCO [23], Cityscapes [6] and our internal dataset.

Models PQ SQ RQ PQTh PQSt mIoU AP

JSIS-Net [10] 26.9 72.4 35.7 29.3 23.3 - -
RN50-MR-CNN 38.6 76.4 47.5 46.2 27.1 - -
MR-CNN-PSP 41.8 78.4 51.3 47.8 32.8 53.9 34.2

Ours 42.5 78.0 52.4 48.5 33.4 54.3 34.3

Multi-scale PQ SQ RQ PQTh PQSt mIoU AP

MR-CNN-PSP-M 42.2 78.5 51.7 47.8 33.8 55.3 34.2
Ours-M 43.2 79.2 52.9 49.1 34.1 55.8 34.3

Table 1: Panoptic segmentation results on COCO. Super-
scripts Th and St stand for thing and stuff. ‘-‘ means inap-
plicable.

COCO We follow the setup of COCO 2018 panoptic
segmentation task which consists of 80 and 53 classes for
thing and stuff respectively. We use train2017 and val2017
subsets which contain approximately 118k training images
and 5k validation images.

Cityscapes Cityscapes has 5000 images of ego-centric
driving scenarios in urban settings which are split into 2975,
500 and 1525 for training, validation and testing respec-
tively. It consists of 8 and 11 classes for thing and stuff.

Our Dataset We also use an internal dataset which is
similar to Cityscapes and consists of 10235 training, 1139
validation and 1186 test images of ego-centric driving sce-
narios. Our dataset consists of 10 and 17 classes for thing
(e.g., car, bus) and stuff (e.g., building, road) respectively.

Experimental Setup For all datasets, we report results
on the validation set. To evaluate the performance, we adopt
panoptic quality (PQ), recognition quality (RQ) and seman-
tic quality (SQ) [17] as the metrics. We also report average
precision (AP) of mask prediction, mean IoU of semantic
segmentation on both stuff and thing and the inference run-
time for comparison. At last, we show results of ablation
study on various design components of our model. Full re-
sults with all model variants are shown in the supplementary
material.

We set the learning rate and weight decay as 0.02 and
0.0001 for all datasets. For COCO, we train for 90K itera-
tions and decay the learning rate by a factor of 10 at 60K and
80K iterations. For Cityscapes, we train for 12K iterations
and apply the same learning rate decay at 9K iterations. For
our dataset, we train for 36K iterations and apply the same
learning rate decay at 24K and 32K iterations. Loss weights
of semantic head are 0.2, 1.0 and 1.0 on COCO, Cityscapes
and ours respectively. RoI loss weights are one fifth of those
of semantic head. Loss weights of panoptic head are 0.1,
0.5 and 0.3 on COCO, Cityscapes and ours respectively. All
other loss weights are set to 1.0.

We mainly compare with the combined method used
in [17]. For a fair comparison, we adopt the model which
uses a Mask R-CNN with a ResNet-50-FPN and a PSPNet
with a ResNet-50 as the backbone and apply the combine

Models backbone PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt

Megvii (Face++) ensemble model 53.2 83.2 62.9 62.2 85.5 72.5 39.5 79.7 48.5
Caribbean ensemble model 46.8 80.5 57.1 54.3 81.8 65.9 35.5 78.5 43.8
PKU 360 ResNeXt-152-FPN 46.3 79.6 56.1 58.6 83.7 69.6 27.6 73.6 35.6

JSIS-Net [10] ResNet-50 27.2 71.9 35.9 29.6 71.6 39.4 23.4 72.3 30.6
AUNet [20] ResNeXt-152-FPN 46.5 81.0 56.1 55.9 83.7 66.3 32.5 77.0 40.7

Ours ResNet-101-FPN 46.6 80.5 56.9 53.2 81.5 64.6 36.7 78.9 45.3
Table 2: Panoptic segmentation results on MS-COCO 2018 test-dev. The top 3 rows contain results of top 3 models taken
from the official leadboard.

Models PQ SQ RQ PQTh PQSt mIoU AP

Li et al. [19] 53.8 - - 42.5 62.1 71.6 28.6
MR-CNN-PSP 58.0 79.2 71.8 52.3 62.2 75.2 32.8
TASCNet [18] 55.9 - - 50.5 59.8 - -

Ours 59.3 79.7 73.0 54.6 62.7 75.2 33.3

TASCNet-COCO [18] 59.2 - - 56.0 61.5 - -
Ours-COCO 60.5 80.9 73.5 57.0 63.0 77.8 37.8

Multi-scale PQ SQ RQ PQTh PQSt mIoU AP

Kirillov et al. [17] 61.2 80.9 74.4 54.0 66.4 80.9 36.4
MR-CNN-PSP-M 59.2 79.7 73.0 52.3 64.2 76.9 32.8

Ours-M 60.1 80.3 73.5 55.0 63.7 76.8 33.3
Ours-101-M-COCO 61.8 81.3 74.8 57.6 64.8 79.2 39.0

Table 3: Panoptic segmentation results on Cityscapes. ’-
COCO’ means the model is pretrained on COCO. ‘-101‘
means the model uses ResNet-101 as the backbone. Unless
specified, all models use ResNet-50 as the backbone and are
pretrained on ImageNet.

heuristics to compute the panoptic segmentation. We denote
our implementation of the combined method as ‘MR-CNN-
PSP’ and its multi-scale testing version as ‘MR-CNN-PSP-
M’. Unless specified otherwise, the combined method here-
after refers to ‘MR-CNN-PSP’. For PSPNet, we use ‘poly’
learning rate schedule as in [3] and train 220K, 18K and
76K on COCO, Cityscapes and our dataset with mini-batch
size 16. We test all available models with the multi-scale
testing. Specifically, we average the multi-scale logits of
PSPNet for the combined method and the ones of seman-
tic segmentation head for our UPSNet. For simplicity, we
just use single scale testing on Mask R-CNN of the com-
bined method and our instance segmentation head. During
evaluation, due to the sensitivity of PQ with respect to RQ,
we predict all stuff segments of which the areas are smaller
than a threshold as unknown. The thresholds on COCO,
Cityscapes and our dataset are 4096, 2048 and 2048 re-
spectively. To be fair, we apply this area thresholding to
all methods.

4.1. COCO

We compare with several recent published methods in-
cluding JSIS-Net [10], RN50-MR-CNN 1 and the combined
method [17] on COCO. Since authors in [17] do not report
results on COCO, we use our MR-CNN-PSP model as the
alternative to do the experiments. JSIS-Net uses a ResNet-
50 wheres RN50-MR-CNN uses two separate ResNet-50-
FPNs as the backbone. Our UPSNet adopts a ResNet-50-
FPN as the backbone. In order to better leverage context in-
formation, we use a global average pooling over the feature
map of the last layer in the 5-th stage of ResNet (‘res5’),
reduce its dimension to 256 and add back to FPN before
producing P5 feature map. Table 7 shows the results of all
metrics. The mIoU metric is computed over the 133 classes
of stuff and thing in the COCO 2018 panoptic segmenta-
tion task which is different from previous 172 classes of
COCO-Stuff. We are among the first to evaluate mIoU on
this 133-class subset. From the table, we can see that our
UPSNet achieves better performance in all metrics except
the SQ. It is typically the case that the an increase in RQ
leads to the slight decrease of SQ since we include more TP
segments which could have possibly lower IoU. Note that
even with multi-scale testing, MR-CNN-PSP is still worse
than ours on PQ. Moreover, from the mIoU column, we can
see that the performance of our semantic head is even bet-
ter than a separate PSPNet which verifies its effectiveness.
With multi-scale testing, both MR-CNN-PSP and UPSNet
are improved and ours is still better. We also add the com-
parisons on the test-dev of MS-COCO 2018 in Table 2. Al-
though we just use ResNet-101 as the backbone, we achieve
slightly better results compared to the recent AUNet [20]
which uses ResNeXt-152. We also list the top three re-
sults on the leadboard which uses ensemble and other tricks.
It is clear from the table that we are on par with the sec-
ond best model without using any such tricks. In terms of
the model size, RN50-MR-CNN, MR-CNN-PSP and UP-
SNet consists of 71.2M, 91.6M and 46.1M parameters re-
spectively. Therefore, our model is significantly lighter.
We show visual examples of panoptic segmentation on this

1https://competitions.codalab.org/competitions/
19507#results

https://competitions.codalab.org/competitions/19507#results
https://competitions.codalab.org/competitions/19507#results

Models PQ SQ RQ PQTh PQSt mIoU AP

MR-CNN-PSP 45.5 77.1 57.6 40.1 48.7 70.5 29.6
Ours 47.1 77.1 59.4 43.8 49.0 70.8 30.4

Table 4: Panoptic segmentation results on our dataset.

dataset in the first two rows of Fig. 4. From the 1-st row of
the figure, we can see that the combined method completely
ignores the cake and other objects on the table whereas ours
successfully segments them out. This is due to the inher-
ent limitations of the combine heuristic which first pastes
the high confidence segment, i.e., table, and then ignores all
highly overlapped objects thereafter.

4.2. Cityscapes

We compare our model on Cityscapes with Li et al. [19],
the combined method [17] and TASCNet [18]. Note that the
method in [19] uses a ResNet-101 as the backbone whereas
all other reported methods use ResNet-50 within their back-
bones. We use 2 deformable convolution layers for the se-
mantic head. The results are reported in Table 8. It is clear
from the table that both our UPSNet and MR-CNN-PSP
significantly outperform the method in [19], especially on
PQTh. This may possibly be caused by the fact that their
CRF based instance subnetwork performs worse compared
to Mask R-CNN on instance segmentation. Under the same
single scale testing, our model achieves better performance
than the combined method. Although multi-scale testing
significantly improves both the combined method and UP-
SNet, ours is still slightly better. Results reported in [17]
are different from the ones of our MR-CNN-PSP-M since:
1) they use ResNet-101 as the backbone for PSPNet; 2)
they pre-train Mask R-CNN on COCO and PSPNet on ex-
tra coarsely labeled data. We also have a model variant,
denoting as ‘Ours-101-M’, which adopts ResNet-101 as the
backbone and pre-trains on COCO. As you can see, it out-
performs the reported metrics of the combined method. We
show the visual examples of panoptic segmentation on this
dataset in the 3-rd and 4-th rows of Fig. 4. From the 3-
rd row of the figure, we can see that the combined method
tends to produce large black area, i.e., unknown, whenever
the instance and semantic segmentation conflicts with each
other. In contrast, our UPSNet resolves the conflicts better.
Moreover, it is interesting to note that some unknown pre-
diction of our model has the vertical or horizontal bound-
aries. This is caused by the fact that instance head predicts
nothing whereas semantic head predicts something for these
out-of-box areas. The logits of unknown class will then
stand out by design to avoid contributing to both FP and
FN as described in section 3.1.

Model COCO Cityscapes Our Dataset

Img. Size 800× 1300 1024× 2048 1200× 1920

MR-CNN-PSP
188

(186 + 2)
1105

(583 + 522)
1016

(598 + 418)
Ours 171 236 264

Speedup 10% × 368% × 285% ×
Table 5: Run time (ms) comparison. Note the bracket below
the MR-CNN-PSP results contains their breakdown into the
network inference (left) and the combine heurisitc (right).

4.3. Our Dataset

Last but not least, we compare our model on our own
dataset with the combined method [17]. All reported meth-
ods use ResNet-50 within their backbones. We use 2 de-
formable convolution layers for the semantic head. The re-
sults are reported in Table 9. We can observe that similar
to COCO, our model performs significantly better than the
combined method on all metrics except SQ. We show the
visual examples of panoptic segmentation on this dataset in
the last two rows of Fig. 4. From the examples, similar ob-
servations as COCO and Cityscapes are found.

4.4. Run Time Comparison

We compare the run time of inference on all three
datasets in Table 5. We use a single NVIDIA GeForce
GTX 1080 Ti GPU and an Intel Xeon E5-2687W CPU
(3.00GHz). All entries are averaged over 100 runs on the
same image with single scale test. For COCO, the PSPNet
within the combined method uses the original scale. We
also list the image size on each dataset. It is clearly seen
in the table that as the image size increases, our UPSNet is
significantly faster in run time. For example, the combined
method takes about 3× time than ours.

4.5. Ablation Study

We perform extensive ablation studies on COCO dataset
to verify our design choices as listed in Table 6. Empty
cells in the table indicate the corresponding component is
not used. All evaluation metrics are computed over the out-
put of the panoptic head on the validation set.

Panoptic Head: Since the inference of our panoptic
head is applicable as long as we have outputs from both se-
mantic and instance segmentation heads, we can first train
these two heads simultaneously and then directly evaluate
the panoptic head. We compare the results with the ones
obtained by training all three heads. By doing so, we can
verify the gain of training the panoptic head over treating
it as a post processing procedure. From the first two rows
of Table 6, we can see that training the panoptic head does
improve the PQ metric.

Instance Class Assignment: Here, we focus on differ-

Image Ground truth Combined method [17] Ours
Figure 4: Visual examples of panoptic segmentation. 1-st and 2-nd rows are from COCO. 3-rd and 4-th rows are from
Cityscapes. 5-th and 6-th rows are from our internal dataset.

ent alternatives of assigning instance class. We compare our
heuristic as described in section 3.1 with the one which only
trusts the predicted class given by the instance segmentation
head. As you can see from the 2-nd and 3-rd rows of the Ta-
ble 6, our instance class assignment is better.

Loss Balance: We investigate the weighting scheme of
loss functions. Recall that without the proposed RoI loss,
our UPSNet contains 7 loss functions. In order to weight
them, we follow the principle of loss balance, i.e., making
sure their values are roughly on the same order of magni-

tude. In particular, with loss balance, we set the weights of
semantic and panoptic losses as 0.2 and 0.1 and the rest ones
as 1.0. Without loss balance, we set the weights of both se-
mantic and panoptic losses as 0.1 and the rest ones as 1.0.
The 3-rd and 4-th rows of Table 6 show that introducing the
loss balance improves the performance.

RoI Loss & Unknown Prediction: Here, we investigate
the effectiveness of our RoI loss function over the seman-
tic head and the unknown prediction. From 4-th and 5-th
rows of Table 6, one can conclude that adding such a new

Pano.
Our
ICA

Loss
Bal.

RoI
Loss Unk.

GT
Box

GT
ICA

GT
Seg. PQ PQTh PQSt

41.2 47.6 31.6
X 41.6 47.6 32.5
X X 41.7 47.7 32.8
X X X 42.3 48.4 33.1
X X X X 42.3 48.3 33.2
X X X X X 42.5 48.5 33.4
X X X X X X 46.7 55.3 33.6
X X X X X 53.0 64.6 35.5
X X X X X X 72.0 58.6 92.3

Table 6: Ablation study on COCO dataset. ‘Pano.’, ‘Loss
Bal.’, ‘Unk.’ and ‘ICA’ stand for training with panoptic loss,
loss balance, unknown prediction and instance class assign-
ment respectively.

loss function does slightly boost the PQSt. From 5-th and
6-th rows of Table 6, along with the RoI loss, predicting
unknown class improves the metrics significantly.

ORACLE Results: We also explore the room for im-
provement of the current system by replacing some infer-
ence results with the ground truth (GT) ones. Specifically,
we study the box, instance class assignment and semantic
segmentation results which correspond to GT Box, GT ICA
and GT Seg. columns in Table 6. It is clear from the table
that using GT boxes along with our predicted class proba-
bilities improves PQ which indicates that better region pro-
posals are required to achieve higher recall. On top of the
GT boxes, using the GT class assignment greatly improves
the PQ, e.g.,≈ +7.0. The imperfect PQTh indicates that our
mask segmentation is not good enough. Moreover, using the
GT semantic segmentation gives the largest gain of PQ, i.e.,
+29.5, which highlights the importance of improving se-
mantic segmentation. PQSt is imperfect since we resize im-
ages during inference which causes the misalignment with
labels. It is worth noticing that increasing semantic seg-
mentation also boosts PQTh for 10 points. This is because
our model leverages semantic segments while producing in-
stance segments. However, it is not the case for the com-
bined method as its predicted instance segments only relies
on the instance segmentation network.

5. Conclusion

In this paper, we proposed the UPSNet which provides a
unified framework for panoptic segmentation. It exploits a
single backbone network and two lightweight heads to pre-
dict semantic and instance segmentation in one shot. More
importantly, our parameter-free panoptic head leverages the
logits from the above two heads and has the flexibility to
predict an extra unknown class. It handles the varying num-
ber of classes per image and enables back propagation for
the bottom representation learning. Empirical results on

three large datasets show that our UPSNet achieves state-
of-the-art performance with significantly faster inference
compared to other methods. In the future, we would like
to explore more powerful backbone networks and smarter
parameterization of panoptic head.

References
[1] A. Arnab, S. Jayasumana, S. Zheng, and P. H. Torr. Higher

order conditional random fields in deep neural networks. In
ECCV, 2016. 2

[2] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and
A. L. Yuille. Semantic image segmentation with deep con-
volutional nets and fully connected crfs. arXiv preprint
arXiv:1412.7062, 2014. 2

[3] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and
A. L. Yuille. Deeplab: Semantic image segmentation with
deep convolutional nets, atrous convolution, and fully con-
nected crfs. IEEE TPAMI, 40(4):834–848, 2018. 6

[4] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam. Re-
thinking atrous convolution for semantic image segmenta-
tion. arXiv preprint arXiv:1706.05587, 2017. 2, 5

[5] L.-C. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille. At-
tention to scale: Scale-aware semantic image segmentation.
In CVPR, 2016. 2

[6] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,
R. Benenson, U. Franke, S. Roth, and B. Schiele. The
cityscapes dataset for semantic urban scene understanding.
In CVPR, pages 3213–3223, 2016. 2, 5

[7] J. Dai, K. He, Y. Li, S. Ren, and J. Sun. Instance-sensitive
fully convolutional networks. In ECCV, pages 534–549,
2016. 2

[8] J. Dai, K. He, and J. Sun. Convolutional feature masking for
joint object and stuff segmentation. In CVPR, 2015. 2

[9] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei.
Deformable convolutional networks. In ICCV, pages 764–
773, 2017. 1, 3

[10] D. de Geus, P. Meletis, and G. Dubbelman. Panoptic seg-
mentation with a joint semantic and instance segmentation
network. arXiv preprint arXiv:1809.02110, 2018. 2, 5, 6, 12

[11] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and
A. Zisserman. The pascal visual object classes (voc) chal-
lenge. IJCV, 88(2):303–338, 2010. 2

[12] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-
ture hierarchies for accurate object detection and semantic
segmentation. In CVPR, 2014. 2

[13] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Simul-
taneous detection and segmentation. In ECCV, 2014. 2

[14] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hyper-
columns for object segmentation and fine-grained localiza-
tion. In CVPR, 2015. 2

[15] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn.
In ICCV, 2017. 1, 2, 3, 5

[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, pages 770–778, 2016. 3

[17] A. Kirillov, K. He, R. Girshick, C. Rother, and P. Dollár.
Panoptic segmentation. arXiv preprint arXiv:1801.00868,
2018. 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15

[18] J. Li, A. Raventos, A. Bhargava, T. Tagawa, and A. Gaidon.
Learning to fuse things and stuff. arXiv preprint
arXiv:1812.01192, 2018. 2, 6, 7

[19] Q. Li, A. Arnab, and P. H. Torr. Weakly-and semi-supervised
panoptic segmentation. In ECCV, pages 102–118, 2018. 1,
2, 6, 7, 12

[20] Y. Li, X. Chen, Z. Zhu, L. Xie, G. Huang, D. Du, and
X. Wang. Attention-guided unified network for panoptic seg-
mentation. arXiv preprint arXiv:1812.03904, 2018. 2, 6

[21] Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei. Fully convolutional
instance-aware semantic segmentation. In CVPR, 2017. 2

[22] T.-Y. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and
S. J. Belongie. Feature pyramid networks for object detec-
tion. In CVPR, volume 1, page 4, 2017. 1, 3

[23] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollar, and C. L. Zitnick. Microsoft coco: Com-
mon objects in context. In ECCV, pages 740–755. Springer,
2014. 2, 5

[24] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia. Path aggregation
network for instance segmentation. In CVPR, pages 8759–
8768, 2018. 5

[25] Z. Liu, X. Li, P. Luo, C.-C. Loy, and X. Tang. Semantic im-
age segmentation via deep parsing network. In ICCV, 2015.
2

[26] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In CVPR, 2015. 1, 2

[27] R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fi-
dler, R. Urtasun, and A. Yuille. The role of context for object
detection and semantic segmentation in the wild. In CVPR,
2014. 2

[28] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-
Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Au-
tomatic differentiation in pytorch. In NIPS Workshop, 2017.
4

[29] C. Peng, T. Xiao, Z. Li, Y. Jiang, X. Zhang, K. Jia, G. Yu, and
J. Sun. Megdet: A large mini-batch object detector. arXiv
preprint arXiv:1711.07240, 7, 2017. 5

[30] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In
NIPS, pages 91–99, 2015. 1

[31] A. Sergeev and M. D. Balso. Horovod: fast and easy
distributed deep learning in TensorFlow. arXiv preprint
arXiv:1802.05799, 2018. 5

[32] Z. Tu, X. Chen, A. L. Yuille, and S.-C. Zhu. Image parsing:
Unifying segmentation, detection, and recognition. IJCV,
63(2):113–140, 2005. 1

[33] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W.
Smeulders. Selective search for object recognition. IJCV,
104(2):154–171, 2013. 2

[34] T. Xiao, Y. Liu, B. Zhou, Y. Jiang, and J. Sun. Unified per-
ceptual parsing for scene understanding. In ECCV, 2018. 2

[35] J. Yao, S. Fidler, and R. Urtasun. Describing the scene as
a whole: Joint object detection, scene classification and se-
mantic segmentation. In CVPR, pages 702–709. IEEE, 2012.
1

[36] F. Yu and V. Koltun. Multi-scale context aggregation by di-
lated convolutions. In ICLR, 2016. 2

[37] F. Yu, V. Koltun, and T. A. Funkhouser. Dilated residual
networks. In CVPR, 2017. 2

[38] H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia. Icnet for real-time
semantic segmentation on high-resolution images. In ECCV,
2018. 2

[39] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene
parsing network. In CVPR, 2017. 1, 2, 5

[40] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet,
Z. Su, D. Du, C. Huang, and P. H. Torr. Conditional ran-
dom fields as recurrent neural networks. In ICCV, 2015. 2

[41] M. Ren and R. S. Zemel. End-to-End Instance Segmentation
with Recurrent Attention. In CVPR, 2017. 2

6. Supplementary Material
We first explain the hyper-parameters and then provide

full experimental results on all three datasets.

6.1. Hyperparameters

For all our experiments, we exploit a 1500-iteration
warm-up phase where the learning rate gradually increases
from 0.002 to 0.02. We also initialize all models with Ima-
geNet pre-trained weights released by MSRA 2.

COCO: We resize the image such that the length of
the shorter edge is 800 and the length of the longer
edge does not exceed 1333. We do not utilize multi-
scale training. For testing, we feed multi-scale images
for all models. Specifically, we resize the images to
multiple scales of which the shorter edge equals to
{480, 544, 608, 672, 736, 800, 864, 928, 992, 1056, 1120}
respectively. We also add left-right flipping. Finally, we
average the semantic segmentation logits under different
scales. For PSPNet, we do sliding window test with
513× 513 cropped image.

Cityscapes: We do multi-scale training where we
resize the input image in a way that the length
of the shorter edge is randomly sampled from
[800, 1024]. For multi-scale testing, we use the
same protocol as COCO except the set of scales is
{704, 768, 832, 896, 960, 1024, 1088, 1152, 1216, 1280, 1344}.
For PSPNet, we do sliding window test with 713 × 713
cropped image.

Our Dataset: We utilize multi-scale training where the
length of the shorter edge is randomly sampled from
[800, 1200]. We do not perform multi-scale testing.

6.2. Full Experimental Results

We show the full experimental results including run time
in Table 7, Table 8 and Table 9. We also add two more vari-
ants of our model as baselines, i.e., UPSNet-C and UPSNet-
CP. UPSNet-C is UPSNet without the panoptic head. We

2https://github.com/KaimingHe/deep-residual-networks

train it with just semantic and instance segmentation losses.
During test, we use the same combine heuristics as in [17]
to generate the final prediction. UPSNet-CP has the same
model as UPSNet. We train it in the same way as UPSNet
as well. During test, we use the same combine heuristics as
in [17] to generate the final prediction.

6.3. Visual Examples

We show more visual examples of our panoptic segmen-
tation on COCO, Cityscapes and our dataset in Fig. 5, Fig.
6 and Fig. 7 respectively.

Models PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt mIoU APbox APmask Run Time (ms)

JSIS-Net [10] 26.9 72.4 35.7 29.3 72.1 39.2 23.3 73.0 30.4 - - - -
RN50-MR-CNN 38.6 76.4 47.5 46.2 80.2 56.2 27.1 70.8 34.5 - - - -
MR-CNN-PSP 41.8 78.4 51.3 47.8 81.3 58.0 32.8 74.1 41.1 53.9 38.1 34.2 186

UPSNet-C 41.5 79.1 50.9 47.5 81.2 57.7 32.6 76.1 40.6 54.5 38.2 34.4 153
UPSNet-CP 41.5 79.2 50.8 47.3 81.3 57.4 32.8 76.0 40.9 54.3 37.8 34.3 ∗

UPSNet 42.5 78.0 52.5 48.6 79.4 59.6 33.4 75.9 41.7 54.3 37.8 34.3 167

Multi-scale PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt mIoU APbox APmask Run Time (ms)

MR-CNN-PSP-M 42.2 78.5 51.7 47.8 81.3 58.0 33.8 74.3 42.2 55.3 38.1 34.2 3,624
UPSNet-M 43.0 79.1 52.8 48.9 79.7 59.7 34.1 78.2 42.3 55.7 37.8 34.3 2,433

Table 7: Panoptic segmentation results on COCO. Superscripts Th and St stand for thing and stuff. ‘-‘ means inapplicable.
‘∗‘ means the run time of UPSNet-CP is the same with the one of UPSNet-C.

Models PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt mIoU APbox APmask Run Time (ms)

Li et al. [19] 53.8 - - 42.5 - - 62.1 - - 71.6 - 28.6 -
MR-CNN-PSP 58.0 79.2 71.8 52.3 77.9 66.9 62.2 80.1 75.4 75.2 37.7 32.8 583

UPSNet-C 58.1 79.0 72.0 52.2 78.0 66.6 62.3 79.8 75.9 75.3 37.9 33.2 198
UPSNet-CP 58.7 79.1 72.8 53.1 77.7 68.1 62.7 80.0 76.3 75.2 39.1 33.3 ∗

UPSNet 59.3 79.7 73.0 54.6 79.3 68.7 62.7 80.1 76.2 75.2 39.1 33.3 202

Multi-scale PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt mIoU APbox APmask Run Time (ms)

Kirillov et al. [17] 61.2 80.9 74.4 54.0 - - 66.4 - - 80.9 - 36.4
MR-CNN-PSP-M 59.2 79.7 73.0 52.3 77.9 66.9 64.2 81.0 77.4 76.9 37.7 32.8 18,063

UPSNet-50-M 60.1 80.3 73.6 54.9 79.5 68.9 63.7 80.8 76.9 76.8 39.1 33.3 2,607
UPSNet-101-M 61.8 81.3 74.8 57.6 81.3 70.5 64.8 81.4 77.8 79.2 43.9 39.0 4,126

Table 8: Panoptic segmentation results on Cityscapes.

Models PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt mIoU APbox APmask Run Time

MR-CNN-PSP 45.5 77.1 57.6 40.1 77.2 52.1 48.7 77.1 60.9 70.5 32.2 29.6 598
UPSNet-C 46.4 76.7 58.8 43.1 77.2 55.4 48.3 76.4 60.8 70.6 33.0 30.5 224

UPSNet-CP 46.7 76.8 59.1 42.9 77.1 55.1 48.9 76.7 61.5 70.8 33.2 30.4 ∗
UPSNet 47.1 77.1 59.4 43.8 77.7 55.5 49.0 76.7 61.7 70.8 33.2 30.4 225

Table 9: Panoptic segmentation results on our dataset.

Image Ground truth Combined method [17] Ours

Figure 5: Visual examples of panoptic segmentation on COCO.

Image Ground truth Combined method [17] Ours

Figure 6: Visual examples of panoptic segmentation on Cityscapes.

Image Ground truth Combined method [17] Ours

Figure 7: Visual examples of panoptic segmentation on our internal dataset.

