Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Attentional Factorization Machines:
Learning the Weight of Feature Interactions via Attention Networks™

Jun Xiao! Hao Ye! Xiangnan He?

Hanwang Zhang?

Fei Wu! Tat-Seng Chua®

!College of Computer Science, Zhejiang University
2School of Computing, National University of Singapore

{junx, wufei} @cs.zju.edu.cn

Abstract

Factorization Machines (FMs) are a supervised
learning approach that enhances the linear regres-
sion model by incorporating the second-order fea-
ture interactions. Despite effectiveness, FM can
be hindered by its modelling of all feature interac-
tions with the same weight, as not all feature inter-
actions are equally useful and predictive. For ex-
ample, the interactions with useless features may
even introduce noises and adversely degrade the
performance. In this work, we improve FM by
discriminating the importance of different feature
interactions. We propose a novel model named
Attentional Factorization Machine (AFM), which
learns the importance of each feature interaction
from data via a neural attention network. Extensive
experiments on two real-world datasets demon-
strate the effectiveness of AFM. Empirically, it is
shown on regression task AFM betters FM with a
8.6% relative improvement, and consistently out-
performs the state-of-the-art deep learning meth-
ods Wide&Deep [Cheng et al., 2016] and Deep-
Cross [Shan et al., 2016] with a much simpler struc-
ture and fewer model parameters. Our implementa-
tion of AFM is publicly available at: https://github.
com/hexiangnan/attentional factorization_machine

1 Introduction

Supervised learning is one of the fundamental tasks in ma-
chine learning (ML) and data mining. The goal is to in-
fer a function that predicts the target given predictor vari-
ables (aka. features) as input. For example, real valued
targets for regression and categorical labels for classifica-
tion. It has broad applications including recommendation
systems [Bayer et al., 2017; Zhao et al., 2016], online ad-
vertising [Shan et al., 2016; Juan et al., 2016], and image
recognition [Zhang et al., 2017; Wang et al., 2015].

When performing supervised learning on categorical pre-
dictor variables, it is important to account for the inter-
actions between them [He and Chua, 2017; Cheng et al.,
2016]. As an example, let us consider the toy problem

*The corresponding author is Xiangnan He.

3119

{xiangnanhe, haoyev, hanwangzhang} @gmail.com dcscts@nus.edu.sg

of predicting customers’ income with three categorical vari-
ables: 1) occupation = {bankerengineer,...}, 2) level =
{junior,senior}, and 3) gender = {male,female}. While ju-
nior bankers have a lower income than junior engineers, it
can be the other way around for customers of senior level —
senior bankers generally have a higher income than senior en-
gineers. If a ML model assumes independence between pre-
dictor variables and ignores the interactions between them, it
will fail to predict accurately, such as linear regression that
associates a weight for each feature and predicts the target as
the weighted sum of all features.

To leverage the interactions between features, one common
solution is to explicitly augment a feature vector with prod-
ucts of features (aka. cross features), as in polynomial re-
gression (PR) where a weight for each cross feature is also
learned. However, the key problem with PR (and other simi-
lar cross feature-based solutions, such as the wide component
of Wide&Deep [Cheng er al., 2016]) is that for sparse datasets
where only a few cross features are observed, the parameters
for unobserved cross features cannot be estimated.

To address the generalization issue of PR, factorization ma-
chines (FMs)! were proposed [Rendle, 20101, which param-
eterize the weight of a cross feature as the inner product of
the embedding vectors of the constituent features. By learn-
ing an embedding vector for each feature, FM can estimate
the weight for any cross feature. Owing to such general-
ity, FM has been successfully applied to various applications,
ranging from recommendation systems [Wang et al., 2017a;
Chen er al., 2016] to natural language processing [Petroni et
al., 2015]. Despite great promise, we argue that FM can be
hindered by its modelling of all factorized interactions with
the same weight. In real-world applications, different pre-
dictor variables usually have different predictive power, and
not all features contain useful signal for estimating the tar-
get, such as the gender variable for predicting customers’ in-
come in the previous example. As such, the interactions with
less useful features should be assigned a lower weight as they
contribute less to the prediction. Nevertheless, FM lacks such
capability of differentiating the importance of feature interac-
tions, which may result in suboptimal prediction.

In this work, we improve FM by discriminating the impor-

'Tn this paper, we focus on the second-order FM, which is the
most effective and widely used instance of FMs.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

tance of feature interactions. We devise a novel model named
AFM, which utilizes the recent advance in neural network
modelling — the attention mechanism [Chen et al., 2017a;
2017b] — to enable feature interactions contribute differently
to the prediction. More importantly, the importance of a
feature interaction is automatically learned from data with-
out any human domain knowledge. We conduct experiments
on two public benchmark datasets of context-aware predic-
tion and personalized tag recommendation. Extensive exper-
iments show that our use of attention on FM serves two ben-
efits: it not only leads to better performance, but also pro-
vides insight into which feature interactions contribute more
to the prediction. This greatly enhances the interpretability
and transparency of FM, allowing practitioners to perform
deeper analysis of its behavior.

2 Factorization Machines

As a general ML model for supervised learning, factorization
machines were originally proposed for collaborative recom-
mendation [Rendle, 2010; Rendle ef al., 2011]. Given a real
valued feature vector x € R™ where n denotes the number of
features, FM estimates the target by modelling all interactions
between each pair of features:

n n n
ZJFM(X) = W + Zwm + Z Z ﬁ/ijl’iZj s (1)
i=1

i=1 j=i+1

linear regression pair-wise feature interactions

where wy is the global bias, w; denotes the weight of the i-th
feature, and w;; denotes the weight of the cross feature x;x;,
which is factorized as: w;; = v;frvj, where v; € RF denotes
the embedding vector for feature ¢, and k£ denotes the size of
embedding vector. Note that due to the coefficient z;;, only
interactions between non-zero features are considered.

It is worth noting that FM models all feature interactions in
the same way: first, a latent vector v; is shared in estimating
all feature interactions that the ¢-th feature involves; second,
all estimated feature interactions 1;; have a uniform weight
of 1. In practice, it is common that not all features are rele-
vant to prediction. As an example, consider the problem of
news classification with the sentence “US continues taking
a leading role on foreign payment transparency”. It is obvi-
ous that the words besides “foreign payment transparency”
are not indicative of the topic of the (financial) news. Those
interactions involving irrelevant features can be considered
as noises that have no contribution to the prediction. How-
ever, FM models all possible feature interactions with the
same weight, which may adversely deteriorate its generaliza-
tion performance.

3 Attentional Factorization Machines
3.1 Model

Figure 1 illustrates the neural network architecture of our pro-
posed AFM model. For clarity purpose, we omit the linear
regression part in the figure, which can be trivially incorpo-
rated. The input layer and embedding layer are the same with
FM, which adopts a sparse representation for input features

3120

and embeds each non-zero feature into a dense vector. In the
following, we detail the pair-wise interaction layer and the
attention-based pooling layer, which are the main contribu-
tion of this paper.

Pair-wise Interaction Layer

Inspired by FM that uses inner product to model the interac-
tion between each pair of features, we propose a new Pair-
wise Interaction Layer in neural network modelling. It ex-
pands m vectors to m(m — 1)/2 interacted vectors, where
each interacted vector is the element-wise product of two dis-
tinct vectors to encode their interaction. Formally, let the set
of non-zero features in the feature vector x be X', and the out-
put of the embedding layer be £ = {v;x;};cx. We can then
represent the output of the pair-wise interaction layer as a set
of vectors:

fpi(€) ={(vi ©vj)zizj}ijer., 2

where © denotes the element-wise product of two vectors,
and R, = {(i,))}iex jex, j>i for short. By defining the
pair-wise interaction layer, we can express FM under the neu-
ral network architecture. To show this, we first compress
fpri1(€) with a sum pooling, and then use a fully connected
layer to project it to the prediction score:

y= pT Z (Vi © Vj)l‘il‘j + b, 3)
(1,4)ERS

where p € R* and b € R denote the weights and bias for the
prediction layer, respectively. Clearly, by fixing p to 1 and
b to 0, we can exactly recover the FM model. Note that our
recent work of neural FM has proposed a Bilinear Interaction
pooling operation [He and Chua, 20171, which can be seen as
using a sum pooling over the pair-wise interaction layer.

Attention-based Pooling Layer

Since the attention mechanism has been introduced to neural
network modelling, it has been widely used in many tasks,
such as recommendation [Chen et al., 2017al, information
retrieval [Xiong et al., 2017], and computer vision [Chen et
al., 2017b]. The idea is to allow different parts contribute
differently when compressing them to a single representation.
Motivated by the drawback of FM, we propose to employ the
attention mechanism on feature interactions by performing a
weighted sum on the interacted vectors:

Fan(frr(€) = D ay(vi ©vy)mia;, “)

(4,J)€ERx

where a;; is the attention score for feature interaction w;;,
which can be interpreted as the importance of w;; in predict-
ing the target. To estimate a,;, an intuitive solution to di-
rectly learn it by minimizing the prediction loss, which also
seems to be technically viable. However, the problem is that,
for features that have never co-occurred in the training data,
the attention scores of their interactions cannot be estimated.
To address the generalization problem, we further parameter-
ize the attention score with a multi-layer perceptron (MLP),
which we call the attention network. The input to the atten-
tion network is the interacted vector of two features, which

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

X1 | 0
= 0]
X4 (0.2 Vy " Xy
‘ez S womom
X5 0
o
X | 1 Ve " Xe
w0
2 J0a
Embedding Pair-wise Interaction
Sparse Input
Layer Layer

Attention Net

Z aij(viOv;)x;x; 4’@

i

Attention-based Pooling Prediction Score

Figure 1: The neural network architecture of our proposed Attentional Factorization Machine model.

encodes their interaction information in the embedding space.
Formally, the attention network is defined as:

al; = T ReLU(W(v; ® v;)a;a; + b),
_ explay) ®
Xiger. oxp(@;)’

aij

where W € R*** b € R* h € R? are model parameters, and
t denotes the hidden layer size of the attention network, which
we call attention factor. The attention scores are normalized
through the softmax function, a common practice by previous
work. We use the rectifier as the activation function, which
empirically shows good performance.

The output of the attention-based pooling layer is a &k di-
mensional vector, which compresses all feature interactions
in the embedding space by distinguishing their importance.
We then project it to the prediction score. To summarize, we
give the overall formulation of AFM model as:

Jarm(x) = wo+ Z wia; +p Z Z aij (Vi ©vj)ziz,
i=1 i=1 j=it1
(6)

where a;; has been defined in Equation (5). The model pa-
rameters are © = {wo, {w;}71, {vi}1=1,p, W,b,h}.

3.2 Learning

As AFM directly enhances FM from the perspective of data
modelling, it can also be applied to a variety of prediction
tasks, including regression, classification and ranking. Dif-
ferent objective functions should be used to tailor the AFM
model learning for different tasks. For regression task where
the target y(x) is a real value, a common objective function is
the squared loss:

L, = Z(@AFM(X) —y(x))?, @)

€T

where T denotes the set of training instances. For binary clas-
sification or recommendation task with implicit feedback [He
et al., 2017b], we can minimize the log loss. In this paper, we
focus on the regression task and optimize the squared loss.

To optimize the objective function, we employ stochastic
gradient descent (SGD) — a universal solver for neural net-
work models. The key to implement a SGD algorithm is to
obtain the derivative of the prediction model §4rps(x) w.rt.
each parameter. As most modern toolkits for deep learn-
ing have provided the functionality of automatic differenti-
ation, such as Theano and TensorFlow, we omit the details of
derivatives here.

Overfitting Prevention

Overfitting is a perpetual issue in optimizing a ML model.
It is shown that FM can suffer from overfitting [Rendle et
al., 2011], so the Lo regularization is an essential ingredient
to prevent overfitting for FM. As AFM has a stronger rep-
resentation ability than FM, it may be even easier to overfit
the training data. Here we consider two techniques to prevent
overfitting — dropout and L, regularization — that have been
widely used in neural network models.

The idea of dropout is randomly drop some neurons (along
their connections) during training [Srivastava et al., 2014]. It
is shown to be capable of preventing complex co-adaptations
of neurons on training data. Since AFM models all pair-
wise interactions between features while not all interactions
are useful, the neurons of the pair-wise interaction layer may
easily co-adapt with each other and result in overfitting. As
such, we employ dropout on the pair-wise interaction layer to
avoid co-adaptations. Moreover, as dropout is disabled during
testing and the whole network is used for prediction, dropout
has another side effect of performing model averaging with
smaller neural networks, which may potentially improve the
performance [Srivastava et al., 2014].

For the attention network component which is a one-layer
MLP, we apply Lo regularization on the weight matrix W to
prevent the possible overfitting. That is, the actual objective
function we optimize is:

L= (farm(x) —y(x)* + N|W|P?, (8)
zeT

where A controls the regularization strength. We do not em-
ploy dropout on the attention network, as we find the joint use
of dropout on both the interaction layer and attention network
leads to some stability issue and degrades the performance.

3121

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4 Related Work

FMs [Rendle, 2010] are mainly used for supervised learning
under sparse settings; for example, in situations where cat-
egorical variables are converted to sparse feature vector via
one-hot encoding. Distinct from the continuous raw features
found in images and audios, input features of the Web domain
are mostly discrete and categorical [He and Chua, 2017]. For
prediction with such sparse data, it is crucial to model the in-
teractions between features [Shan et al., 2016]. In contrast
to matrix factorization (MF) that models the interaction be-
tween two entities only [He er al., 2016b], FM is designed to
be a general machine learner for modelling the interactions
between any number of entities. By specifying the input fea-
ture vector, [Rendle, 2012] shows that FM can subsume many
specific factorization models such as MF, parallel factor anal-
ysis, and SVD++ [Koren, 2008]. As such, FM is recognized
as the most effective linear embedding method for sparse data
prediction. Many variants to FM have been proposed, such as
the neural FM [He and Chua, 2017] that deepens FM under
the neural framework to learn high-order feature interactions,
and the field-aware FM [Juan et al., 2016] that associates mul-
tiple embedding vectors for a feature to differentiate its inter-
action with other features of different fields.

In this work, we contribute improvements of FM by dis-
criminating the importance of feature interactions. We are
aware of a work similar to our proposal — GBFM [Cheng et
al., 2014], which selects “good” features with gradient boost-
ing and models only the interactions between good features.
For interactions between selected features, GBFM sums them
up with the same weight as FM does. As such, GBFM is
essentially a feature selection algorithm, which is fundamen-
tally different with our AFM that can learn the importance of
each feature interaction.

Along another line, deep neural networks (aka. deep learn-
ing) are becoming increasingly popular and have recently
been employed to prediction under sparse settings. Specif-
ically, [Cheng et al., 2016] proposes Wide&Deep for App
recommendation, where the Deep component is a MLP on
the concatenation of feature embedding vectors to learn fea-
ture interactions; and [Shan et al., 2016] proposes DeepCross
for click-through rate prediction, which applies a deep resid-
ual MLP [He er al., 2016a] to learn cross features. We point
out that in these methods, feature interactions are implicitly
captured by a deep neural network, rather than FM that ex-
plicitly models each interaction as the inner product of two
features. As such, these deep methods are not interpretable,
as the contribution of each feature interaction is unknown.
By directly extending FM with the attention mechanism that
learns the importance of each feature interaction, our AMF
is more interpretable and empirically demonstrates superior
performance over Wide&Deep and DeepCross.

S Experiments
We conduct experiments to answer the following questions:

RQ1 How do the key hyper-parameters of AFM (i.e., dropout
on feature interactions and regularization on the atten-
tion network) impact its performance?

RQ2 Can the attention network effectively learn the impor-
tance of feature interactions?

RQ3 How does AFM perform as compared to the state-of-the-
art methods for sparse data prediction?

5.1 Experimental Settings

Datasets. We perform experiments with two public datasets:
Frappe [Baltrunas et al., 2015] and MovieLens> [Harper
and Konstan, 2015]. The Frappe dataset has been used for
context-aware recommendation, which contains 96, 203 app
usage logs of users under different contexts. The eight context
variables are all categorical, including weather, city, daytime
and so on. We convert each log (user ID, app ID and context
variables) to a feature vector via one-hot encoding, obtaining
5,382 features. The MovieLens data has been used for per-
sonalized tag recommendation, which contains 668,953 tag
applications of users on movies. We convert each tag appli-
cation (user ID, movie ID and tag) to a feature vector and
obtain 90, 445 features.

Evaluation Protocol. For both datasets, each log is assigned
a target of value 1, meaning the user has used the app under
the context or applied the tag on the movie. We randomly pair
two negative samples with each log and set their target to —1.
As such, the final experimental data for Frappe and Movie-
Lens contain 288, 609 and 2, 006, 859 instances, respectively.
We randomly split each dataset into three portions: 70% for
training, 20% for validation, and 10% for testing. The vali-
dation set is only used for tuning hyper-parameters, and the
performance comparison is done on the test set. To evaluate
the performance, we adopt root mean square error (RMSE),
where a lower score indicates a better performance.
Baselines. We compare AFM with the following competitive
methods that are designed for sparse data prediction:

- LibFM [Rendle, 2012]. This is the official C++ imple-
mentation for FM. We choose the SGD learner as other meth-
ods are all optimized by SGD (or its variants).

- HOFM. This is the TensorFlow implementation® of the
higher-order FM [Blondel et al., 2016]. We set the order size
to 3, as the MovieLens data has only three types of predictor
variables (user, item, and tag).

- Wide&Deep [Cheng et al., 2016]. We implement the
method. As the structure (e.g., depth and size of each layer)
of a deep neural network is difficult to be fully tuned, we use
the same structure as reported in the paper. The wide part is
the same as the linear regression part of FM, and the deep part
is a three-layer MLP with the layer size 1024, 512 and 256.

- DeepCross [Shan er al., 2016]. We implement the
method with the same structure of the original paper. It stacks
5 residual units (each unit has two layers) with hidden dimen-
sion 512, 512, 256, 128 and 64, respectively.

All models are learned by optimizing the squared loss for
a fair comparison. Besides LibFM, all methods are learned
by the mini-batch Adagrad. The batch size for Frappe and
MovieLens is set to 128 and 4096, respectively. The em-
bedding size is set to 256 for all methods. Without special

Zgrouplens.org/datasets/movielens/latest
*https://github.com/geffy/tffm

3122

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Frappe Movielens
0.36 0.49
——AFM ——AFM
035 ——FM 048 4 e /
. — I
5 LibFM S
2034 - £ 047
= =
S o033 | 2 046
w w
g %)
2 032 W—T 2 045 "ﬂ\((\/a//
0.31 0.44 - — :

0 010.2030.4050.60.70.8
Dropout Ratio

0 0.10.2030.4 05060708
Dropout Ratio
Figure 2: Validation error of AFM and FM w.rt. different dropout
ratios on the pair-wise interaction layer

mention, the attention factor is also 256, same as the em-
bedding size. We carefully tuned the Lo regularization for
LibFM and HOFM, and the dropout ratio for Wide&Deep
and DeepCross. Early stopping strategy is used based on the
performance on validation set. For Wide&Deep, DeepCross
and AFM, we find that pre-training their feature embeddings
with FM leads to a lower RMSE than a random initialization.
As such, we report their performance with pre-training.

5.2 Hyper-parameter Investigation (RQ1)

First, we explore the effect of dropout on the pair-wise inter-
action layer. We set A to 0, so that no Lo regularization is
used on the attention network. We also validate dropout on
our implementation of FM by removing the attention compo-
nent of AFM. Figure 2 shows the validation error of AFM and
FM w.rt. different dropout ratios; the result of LibFM is also
shown as a benchmark. We have the following observations:

e By setting the dropout ratio to a proper value, both AFM
and FM can be significantly improved. Specifically, for
AFM, the optimal dropout ratio on Frappe and MovieLens
is 0.2 and 0.5, respectively. This verifies the usefulness of
dropout on the pair-wise interaction layer, which improves
the generalization of FM and AFM.

e Our implementation of FM offers a better performance
than LibFM. The reasons are twofold. First, LibFM op-
timizes with the vanilla SGD, which adopts a fixed learn-
ing rate for all parameters; while we optimize FM with
Adagrad, which adapts the learning rate for each parame-
ter based on its frequency (i.e., smaller updates for frequent
and larger updates for infrequent parameters). Second,
LibFM prevents overfitting via L, regularization, while we
employ dropout, which can be more effective due to the
model averaging effect.

o AFM outperforms FM and LibFM by a large margin. Even
when dropout is not used and the overfitting issue does ex-
ist to a certain extent, AFM achieves a performance sig-
nificantly better than the optimal performance of LibFM
and FM (c¢f. the result of dropout ratio equals to 0). This
demonstrates the benefits of the attention network in learn-
ing the weight of feature interactions.

We then study whether the Lo regularization on the attention
network is beneficial to AFM. The dropout ratio is set to the
optimal value for each dataset, as evidenced by the previous
experiment. As can be seen from Figure 3, when A is set to a
value larger than 0, AFM is improved (note that the result of

3123

Frappe Movielens
0.35 0.48
_ 034 1 047 -
5 5
£ 033 4 ——AFM & 0.46
el M ° ——AFM
S 032 LbfM| | € 045 —FM
z) =) LibFM
g (%)
2031 \M—ﬂﬁ E 0.44 \‘—%—Q—H—ﬁ\
0.30 — 0.43 —

Figure 3: Validation error of AFM w.r.t. different regularization
strengths on the attention network

Frappe Movielens

0.35 0.48

0.34 - 047
= =
2 S
5 033 S 046 -
= TAMM b ——AFM
S 032 i S ou4s —FM
> 0. E i q
o LibFM & LibFM
2 s) 2
2 031 Wﬁ S 044

030 e e Ty

1 4 8 16 32 64 128256 1 4 8 16 32 64 128256

Attention Factors Attention Factors

Figure 4: Validation error of AFM w.rt. different attention factors

A = 0 corresponds to the best performance obtained by AFM
in Figure 2). This implies that simply using dropout on the
pair-wise interaction layer is insufficient to prevent overfitting
for AFM. And more importantly, tuning the attention network
can further improve the generalization of AFM.

5.3 Impact of the Attention Network (RQ2)

We now focus on analyzing the impact of the attention net-
work on AFM. The first question to answer is how to choose
a proper attention factor? Figure 4 shows the validation error
of AFM w.r.t. different attention factors. Note that A has been
separately tuned for each attention factor. We can observe
that for both datasets, AFM’s performance is rather stable
across attention factors. Specifically, when the attention fac-
tor is 1, the W matrix becomes a vector and the attention net-
work essentially degrades to a linear regression model with
the interacted vector (i.e., v; ® v;) as input features. Despite
such restricted model capability of the attention component,
AFM remains to be very strong and significantly improves
over FM. This justifies the rationality of AFM’s design that
estimates the importance score of a feature interaction based
on its interacted vector, which is the key finding of this work.

Figure 5 compares the training and test error of AFM and
FM of each epoch. We observe that AFM converges faster
than FM. On Frappe, both the training and test error of AFM
are much lower than that of FM, indicating that AFM can
better fit the data and lead to more accurate prediction. On
MovieLens, although AFM achieves a slightly higher train-
ing error than FM, the lower test error shows that AFM gen-
eralizes better to unseen data.

Micro-level Analysis

Besides the improved performance, another key advantage of
AFM is that it is more explainable through interpreting the
attention score of each feature interaction. To demonstrate

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Frappe Movielens
0.60 0.60
—AFM(train)
050 - - AFM(test) 050 '<__- -
hN —FM(train) eI
0.40 + S~~o . |-~ FM(test) 0.40 -+
—AFM(train)
& 030 - - - AFM(test)
E 020 | —FM(train)
’ - - FM(test)
0.10 -
0.00 T T : - 0.00 T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Epoch Epoch

Figure 5: Training and test error of each epoch
this, we perform some micro-level analysis by investigating
the score of each feature interaction on MovieLens.

To allow a dedicated analysis on the attention network, we
first fix a;; to a uniform number 1/|R |, training the model
which simulates FM. We then fix feature embeddings, train-
ing the attention network only; upon convergence, the per-
formance is improved about 3%, which justifies the efficacy
of the attention network. We then select three test examples
of target value 1, showing the attention score and interaction
score of each feature interaction in Table 1. We can see that
among all three interactions, the item—tag interaction is the
most important. However, FM assigns the same importance
score for all interactions, resulting in a large prediction er-
ror. By augmenting FM with the attention network (cf: rows
FM+A), the item-tag interaction is assigned a higher impor-
tance score, and the prediction error is reduced.

Table 1: The attention_score*interaction_score of each feature inter-
action of three test examples on MovieLens.
[# | Model | User-Item | User-Tag | Item-Tag | ¢ |

1 FM 0.33*%-1.81 | 0.33*-2.65 | 0.33%*4.55 | 0.03
FM+A | 0.34%-1.81 | 0.27*-2.65 | 0.38%4.55 | 0.39
5 FM 0.33*%-1.62 | 0.33*-1.00 | 0.33%*3.32 | 0.24
FM+A | 0.38%-1.62 | 0.20*-1.00 | 0.42%3.32 | 0.56
3 FM 0.33*%-1.40 | 0.33*%-1.26 | 0.33%4.68 | 0.67
FM+A | 0.33*-1.40 | 0.29%-1.26 | 0.37%4.68 | 0.89

5.4 Performance Comparison (RQ3)

In this final subsection, we compare the performance of dif-
ferent methods on the test set. Table 2 summarizes the best
performance obtained on embedding size 256 and the number
of trainable parameters of each method.

e First, we see that AFM achieves the best performance
among all methods. Specifically, AFM betters LibFM with
a 8.6% relative improvement by using less than 0.1M ad-
ditional parameters; and AFM outperforms the second best
method Wide&Deep with 4.3%, while using much fewer
model parameters. This demonstrates the effectiveness of
AFM, which, despite being a shallow model, achieves bet-
ter performance than deep learning methods.

e Second, HOFM improves over FM, which is attributed to
its modelling of higher-order feature interactions. How-
ever, the slight improvements are based on the rather ex-
pensive cost of almost doubling the number of parameters,
as HOFM uses a separated set of embeddings to model the
feature interactions of each order. This points to a promis-
ing direction of future research — devising more effective
methods for capturing higher-order feature interactions.

3124

Table 2: Test error and number of parameters of different methods
on embedding size 256. M denotes “million”.

Frappe MovieLens
Method Param# | RMSE | Param# | RMSE
LibFM 1.38M | 0.3385 | 23.24M | 0.4735
HOFM 2.76M | 0.3331 | 46.40M | 0.4636
Wide&Deep | 4.66M | 0.3246 | 24.69M | 0.4512
DeepCross 8.93M | 0.3548 | 25.42M | 0.5130
[AFM [145M [0.3102 | 23.26M [0.4325 |

e Lastly, DeepCross performs the worst, due to the severe
problem of overfitting. We find that dropout does not work
well for DeepCross, which might be caused by its use of
batch normalization. Considering that DeepCross is the
deepest method (that stacks 10 layers above the embedding
layer) among all compared methods, it provides evidence
that deeper leaning is not always helpful, as deep networks
can suffer from overfitting and are more difficult to opti-
mize in practice [He and Chua, 2017].

6 Conclusion and Future Work

We have presented a simple yet effective model AFM for su-
pervised learning. Our AFM enhances FM by learning the
importance of feature interactions with an attention network,
which not only improves the representation ability but also
the interpretability of a FM model. This work is orthogo-
nal with our recent work on neural FM [He and Chua, 2017]
that develops deep variants of FM for modelling high-order
feature interactions, and it is the time that introduces the at-
tention mechanism to factorization machines.

In future, we will explore deep version for AFM by stack-
ing multiple non-linear layers above the attention-based pool-
ing layer and see whether it can further improve the perfor-
mance. As AFM has a relatively high complexity quadratic
to the number of non-zero features, we will consider im-
proving its learning efficiency, for example by using learn-
ing to hash [Zhang er al., 2016b; Shen et al., 2015] and
data sampling [Wang er al., 2017b] techniques. Another
promising direction is to develop FM variants for semi-
supervised and multi-view learning, for example by incor-
porating the widely used graph Laplacian [He et al., 2017a;
Wang et al., 2016] and co-regularization designs [He et al.,
2014; Yang et al., 2015]. Lastly, we will explore AFM
on modelling other types of data for different applications,
such as texts for question answering [Zhao et al., 2015] and
more semantic-rich multi-media content [Zhang et al., 2016a;
Yang et al., 2014].

Acknowledgment The work is supported by the Na-
tional Natural Science Foundation of China under Grant
No.U1611461 and No.61572431, Key Research and
Development Plan of Zhejiang Province under Grant
No0.2015C01027, Zhejiang Natural Science Foundation
under Grant No.LZ17F020001. NEXT research is supported
by the National Research Foundation, Prime Minister’s
office, Singapore under its IRC@SG Funding Initiative.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

References

[Baltrunas et al., 2015] Linas Baltrunas, Karen Church, Alexan-
dros Karatzoglou, and Nuria Oliver. Frappe: Understanding
the usage and perception of mobile app recommendations in-the-
wild. CoRR, abs/1505.03014, 2015.

[Bayer er al., 2017] Immanuel Bayer, Xiangnan He, Bhargav Kana-
gal, and Steffen Rendle. A generic coordinate descent framework
for learning from implicit feedback. In WWW, 2017.

[Blondel et al., 2016] Mathieu Blondel, Akinori Fujino, Naonori
Ueda, and Masakazu Ishihata. Higher-order factorization ma-
chines. In NIPS, 2016.

[Chen er al., 2016] Tao Chen, Xiangnan He, and Min-Yen Kan.
Context-aware image tweet modelling and recommendation. In
MM, 2016.

[Chen er al., 2017a] Jingyuan Chen, Hanwang Zhang, Xiangnan
He, Ligiang Nie, Wei Liu, and Tat-Seng Chua. Attentive collab-
orative filtering: Multimedia recommendation with feature- and
item-level attention. In SIGIR, 2017.

[Chen e al., 2017b] Long Chen, Hanwang Zhang, Jun Xiao,
Ligiang Nie, Jian Shao, and Tat-Seng Chua. SCA-CNN: spatial
and channel-wise attention in convolutional networks for image
captioning. In CVPR, 2017.

[Cheng er al., 2014] Chen Cheng, Fen Xia, Tong Zhang, Irwin
King, and Michael R Lyu. Gradient boosting factorization ma-
chines. In RecSys, 2014.

[Cheng er al., 2016] Heng-Tze Cheng, Levent Koc, Jeremiah
Harmsen, et al. Wide & deep learning for recommender systems.
In DLRS, 2016.

[Harper and Konstan, 2015] F. Maxwell Harper and Joseph A. Kon-
stan. The movielens datasets: History and context. ACM TIIS,
2015.

[He et al., 2016a] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and
Jian Sun. Deep residual learning for image recognition. In CVPR,
2016.

[He et al., 2016b] Xiangnan He, Hanwang Zhang, Min-Yen Kan,
and Tat-Seng Chua. Fast matrix factorization for online recom-
mendation with implicit feedback. In SIGIR, 2016.

[He et al., 2017a] Xiangnan He, Ming Gao, Min-Yen Kan, and
Dingxian Wang. BiRank: Towards ranking on bipartite graphs.
IEEE TKDE, 2017.

[He et al., 2017b] Xiangnan He, Lizi Liao, Hanwang Zhang,
Ligiang Nie, Xia Hu, and Tat-Seng Chua. Neural collaborative
filering. In WWW, 2017.

[Juan ef al., 2016] Yuchin Juan, Yong Zhuang, Wei-Sheng Chin,
and Chih-Jen Lin. Field-aware factorization machines for ctr pre-
diction. In RecSys, 2016.

[Koren, 2008] Yehuda Koren. Factorization meets the neighbor-
hood: A multifaceted collaborative filtering model. In KDD,
2008.

[Petroni et al., 2015] Fabio Petroni, Luciano Del Corro, and Rainer
Gemulla. Core: Context-aware open relation extraction with fac-
torization machines. In EMNLP, 2015.

[Rendle ef al., 2011] Steffen Rendle, Zeno Gantner, Christoph
Freudenthaler, and Lars Schmidt-Thieme. Fast context-aware
recommendations with factorization machines. In SIGIR, 2011.

[Rendle, 2010] Steffen Rendle. Factorization machines. In ICDM,
2010.

3125

[Rendle, 2012] Steffen Rendle. Factorization machines with libfm.
ACM TIST, 2012.

[He and Chua, 2017] Xiangnan He and Tat-Seng Chua. Neural fac-
torization machines for sparse predictive analytics. In SIGIR,
2017.

[He et al., 2014] Xiangnan He, Min-Yen Kan, Peichu Xie, and Xiao
Chen. Comment-based multi-view clustering of web 2.0 items.
In WWW, 2014.

[Shan er al., 2016] Ying Shan, T Ryan Hoens, Jian Jiao, Haijing
Wang, Dong Yu, and JC Mao. Deep crossing: Web-scale mod-
eling without manually crafted combinatorial features. In KDD,
2016.

[Shen et al., 2015] Fumin Shen, Chunhua Shen, Wei Liu, and Heng
Tao Shen. Supervised discrete hashing. In CVPR, 2015.

[Srivastava et al., 2014] Nitish Srivastava, Geoffrey E Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout:
a simple way to prevent neural networks from overfitting. JMLR,
2014.

[Wang et al., 2015] Meng Wang, Xueliang Liu, and Xindong Wu.
Visual classification by 11-hypergraph modeling. /EEE TKDE,
2015.

[Wang er al., 2016] Meng Wang, Weijie Fu, Shijie Hao, Dacheng
Tao, and Xindong Wu. Scalable semi-supervised learning by ef-
ficient anchor graph regularization. /[EEE TKDE, 2016.

[Wang er al., 2017a] Xiang Wang, Xiangnan He, Ligiang Nie and
Tat-Seng Chua Item Silk Road: Recommending Items from In-
formation Domains to Social Users SIGIR, 2017.

[Wang ez al., 2017b] Meng Wang, Weijie Fu, Shijie Hao,
Hengchang Liu, and Xindong Wu. Learning on big graph:
Label inference and regularization with anchor hierarchy. IEEE
TKDE, 2017.

[Xiong ef al., 2017] Chenyan Xiong, Jimie Callan, and Tie-Yen
Liu. Learning to attend and to rank with word-entity duets. In
SIGIR, 2017.

[Yang er al., 2014] Yang Yang, Zheng-Jun Zha, Yue Gao, Xiaofeng
Zhu, and Tat-Seng Chua. Exploiting web images for seman-
tic video indexing via robust sample-specific loss. IEEE TMM,
2014.

[Yang et al., 2015] Yang Yang, Zhigang Ma, Yi Yang, Feiping Nie,
and Heng Tao Shen. Multitask spectral clustering by exploring
intertask correlation. IEEE TCYB, 2015.

[Zhang et al., 2016al Hanwang Zhang, Xindi Shang, Huanbo Luan,
Meng Wang, and Tat-Seng Chua. Learning from collective intel-
ligence: Feature learning using social images and tags. TMM,
2016.

[Zhang et al., 2016b] Hanwang Zhang, Fumin Shen, Wei Liu, Xi-
angnan He, Huanbo Luan, and Tat-Seng Chua. Discrete collabo-
rative filtering. In SIGIR, 2016.

[Zhang et al., 2017] Hanwang Zhang, Zawlin Kyaw, Shih-Fu

Chang, and Tat-Seng Chua. Visual translation embedding net-
work for visual relation detection. In CVPR, 2017.

[Zhao et al., 2015] Zhou Zhao, Lijun Zhang, Xiaofei He, and Wil-
fred Ng. Expert finding for question answering via graph regu-
larized matrix completion. TKDE, 2015.

[Zhao et al., 2016] Zhou Zhao, Hanqing Lu, Deng Cai, Xiaofei He,
and Yueting Zhuang. User Preference Learning for Online Social
Recommendation. TKDE, 2016.

