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Abstract

Entity recognition is an important but challenging research problem. In reality, many text 

collections are from specific, dynamic, or emerging domains, which poses significant new 

challenges for entity recognition with increase in name ambiguity and context sparsity, requiring 

entity detection without domain restriction. In this paper, we investigate entity recognition (ER) 

with distant-supervision and propose a novel relation phrase-based ER framework, called 

ClusType, that runs data-driven phrase mining to generate entity mention candidates and relation 

phrases, and enforces the principle that relation phrases should be softly clustered when 

propagating type information between their argument entities. Then we predict the type of each 

entity mention based on the type signatures of its co-occurring relation phrases and the type 

indicators of its surface name, as computed over the corpus. Specifically, we formulate a joint 

optimization problem for two tasks, type propagation with relation phrases and multi-view 

relation phrase clustering. Our experiments on multiple genres—news, Yelp reviews and tweets

—demonstrate the effectiveness and robustness of ClusType, with an average of 37% 

improvement in F1 score over the best compared method.
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1. Introduction

Entity recognition is an important task in text analysis. Identifying token spans as entity 

mentions in documents and labeling their types (e.g., people, product or food) enables 
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effective structured analysis of unstructured text corpus. The extracted entity information 

can be used in a variety of ways (e.g., to serve as primitives for information extraction [20] 

and knowledge base (KB) population [2]. Traditional named entity recognition systems [18, 

15] are usually designed for several major types (e.g., person, organization, location) and 

general domains (e.g., news), and so require additional steps for adaptation to a new domain 

and new types.

Entity linking techniques [21] map from given entity mentions detected in text to entities in 

KBs like Freebase [1], where type information can be collected. But most of such 

information is manually curated, and thus the set of entities so obtained is of limited 

coverage and freshness (e.g., over 50% entities mentioned in Web documents are unlinkable 

[11]). The rapid emergence of large, domain-specific text corpora (e.g., product reviews) 

poses significant challenges to traditional entity recognition and entity linking techniques 

and calls for methods of recognizing entity mentions of target types with minimal or no 

human supervision, and with no requirement that entities can be found in a KB.

There are broadly two kinds of efforts towards that goal: weak supervision and distant 

supervision. Weak supervision relies on manually-specified seed entity names in applying 

pattern-based bootstrapping methods [7, 9] or label propagation methods [24] to identify 

more entities of each type. Both methods assume the seed entities are unambiguous and 

sufficiently frequent in the corpus, which requires careful seed entity selection by human 

[10]. Distant supervision is a more recent trend, aiming to reduce expensive human labor by 

utilizing entity information in KBs [16, 11] (see Fig. 1). The typical workflow is: i) detect 

entity mentions from a corpus, ii) map candidate mentions to KB entities of target types, and 

iii) use those confidently mapped {mention, type} pairs as labeled data to infer the types of 

remaining candidate mentions.

In this paper, we study the problem of distantly-supervised entity recognition in a domain-

specific corpus: Given a domain-specific corpus and a set of target entity types from a KB, 

we aim to effectively and efficiently detect entity mentions from that corpus, and categorize 

each by target types or Not-Of-Interest (NOI), with distant supervision. Existing distant 

supervision methods encounter the following limitations when handling a large, domain-

specific corpus.

• Domain Restriction: They assume entity mentions are already extracted by 

existing entity detection tools such as noun phrase chunkers. These tools are 

usually trained on general-domain corpora like news articles (clean, grammatical) 

and make use of various linguistic features, but do not work well on specific, 

dynamic or emerging domains (e.g., tweets or restaurant reviews).

• Name Ambiguity: Entity names are often ambiguous—multiple entities may share 

the same surface name. In Fig. 1, for example, the surface name “Washington” can 

refer to either the U.S. government, a sport team, or the U.S. capital city. However, 

most existing studies [22, 9] simply output a type distribution for each surface 

name, instead of an exact type for each mention of the entity.
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• Context Sparsity: Previous methods have difficulties in handling entity mentions 

with sparse context. They leverage a variety of contextual clues to find sources of 

shared semantics across different entities, including keywords [24], Wikipedia 

concepts [22], linguistic patterns [16] and textual relations [11]. However, there are 

often many ways to describe even the same relation between two entities (e.g., 

“beat” and “won the game 34-28 over” in Fig. 1). This poses challenges on typing 

entity mentions when they are isolated from other entities or only share infrequent 

(sparse) context.

We address these challenges with several intuitive ideas. First, to address the domain 

restriction, we consider a domain-agnostic phrase mining algorithm to extract entity mention 

candidates with minimal dependence of linguistic assumption (e.g., part-of-speech (POS) 

tagging requires fewer assumptions of the linguistic characteristics of a domain than 

semantic parsing). Second, to address the name ambiguity, we do not simply merge the 

entity mention candidates with identical surface names but model each of them based on its 

surface name and contexts. Third, to address the context sparsity, we mine relation phrases 

co-occurring with the mention candidates, and infer synonymous relation phrases which 

share similar type signatures (i.e., express similar types of entities as arguments). This helps 

to form connecting bridges among entities that do not share identical context, but share 

synonymous relation phrases.

To systematically integrate these ideas, we develop a novel solution called ClusType. First, 

it mines both entity mention candidates and relation phrases by POS-constrained phrase 

segmentation; this demonstrates great cross-domain performance (Sec. 3.1). Second, it 

constructs a heterogeneous graph to faithfully represent candidate entity mentions, entity 

surface names, and relation phrases and their relationship types in a unified form (see Fig. 

2). The entity mentions are kept as individual objects to be disambiguated, and linked to 

surface names and relation phrases (Sec. 3.2-3.4). With the heterogeneous graph, we 

formulate a graph-based semi-supervised learning of two tasks jointly: (1) type propagation 

on graph, and (2) relation phrase clustering. By clustering synonymous relation phrases, we 

can propagate types among entities bridged via these synonymous relation phrases. 

Conversely, derived entity argument types serve as good features for clustering relation 

phrases. These two tasks mutually enhance each other and lead to quality recognition of 

unlinkable entity mentions. In this paper, we present an alternating minimization algorithm 

to efficiently solve the joint optimization problem, which iterates between type propagation 

and relation phrase clustering (Sec. 4). To our knowledge, this is the first work to integrate 

entity recognition with textual relation clustering.

The major novel contributions of this paper are as follows: (1) we develop an efficient, 

domain-independent phrase mining algorithm for entity mention candidate and relation 

phrase extraction; (2) we propose a relation phrase-based entity recognition approach which 

models the type of each entity mention in a scalable way and softly clusters relation phrases, 

to resolve name ambiguity and context sparsity issues; (3) we formulate a joint optimization 

problem for clustering-integrated type propagation; and (4) our experiments on three 

datasets of different genres—news, Yelp reviews and tweets— demonstrate that the 
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proposed method achieves significant improvement over the state-of-the-art (e.g., 58.3% 

enhancement in F1 on the Yelp dataset over the best competitor from existing work).

2. Problem Definition

The input to our proposed ER framework is a document collection , a knowledge base ψ 

with type schema Ѱ, and a target type set  ⊂ Ѱ. In this work, we use the type schema 

of Freebase [1] and assume  is covered by Freebase.

An entity mention, m, is a token span in the text document which refers to a real-world entity 

e. Let cm denote the surface name of m. In practice, people may use multiple surface names 

to refer to the same entity (e.g., “black mamba” and “KB” for Kobe Bryant). On the other 

hand, a surface name c could refer to different entities (e.g., “Washington” in Fig. 1). 

Moreover, even though an entity e can have multiple types (e.g., J.F.K. airport is both a 

location and an organization), the type of its specific mention m is usually unambiguous. We 

use a type indicator vector ym ∈ {0, 1}T to denote the entity type for each mention m, where 

T = | | + 1, i.e., m has type t ∈  or is Not-of-Interest (NOI). By estimating ym, one can 

predict type of m as type (m) = argmax1≤i≤T ym, i.

Extracting textual relations from documents has been previously studied [4] and applied to 

entity typing [16, 11]. A relation phrase is a phrase that denotes a unary or binary relation in 

a sentence [4] (see Fig. 3 for example). We leverage the rich semantics embedded in relation 

phrases to provide type cues for their entity arguments. Specifically, we define the type 

signature of a relation phrase p as two indicator vectors pL, pR ∈ ℝT. They measure how 

likely the left/right entity arguments of p belong to different types (  or NOI). A large 

positive value on pL, t (pR, t) indicates that the left/right argument of p is likely of type t.

Let ℳ = {m1, …, mM} denote the set of M candidate entity mentions extracted from . 

Suppose a subset of entity mentions ℳL ⊂ ℳ can be confidently mapped to entities in Ѱ. 

The type of a linked candidate m ∈ ℳL can be obtained based on its mapping entity κe (m) 

(see Sec. 4.1). This work focuses on predicting the types of unlinkable candidate mentions 

ℳU = ℳ\ℳL, where ℳU may consist of (1) mentions of the emerging entities which are 

not in Ѱ; (2) new names of the existing entities in Ѱ; and (3) invalid entity mentions. 

Formally, we define the problem of distantly-supervised entity recognition as follows

Definition 1 (Problem Definition)—Given a document collection , a target type set 

and a knowledge base Ѱ, our task aims to: (1) extract candidate entity mentions ℳ from ; 

(2) generate seed mentions ℳl with Ѱ; and (3) for each unlinkable candidate mention m ∈ 

ℳU, estimate its type indicator vector ym to predict its type.

In our study, we assume each mention within a sentence is only associated with a single type 

t ∈ . We also assume the target type set  is given (It is outside the scope of this study to 

generate ). Finally, while our work is independent of entity linking techniques [21], our 

ER framework output may be useful to entity linking.

Framework Overview—Our overall framework is as follows:
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1. Perform phrase mining on a POS-tagged corpus to extract candidate entity 

mentions and relation phrases, and construct a heterogeneous graph G to represent 

available information in a unified form, which encodes our insights on modeling 

the type for each entity mention (Sec. 3).

2. Collect seed entity mentions ℳL as labels by linking extracted candidate mentions 

ℳ to the KB Ѱ (Sec. 4.1).

3. Estimate type indicator y for unlinkable candidate mention m ∈ ℳU with the 

proposed type propagation integrated with relation phrase clustering on G (Sec. 4).

3. Construction of Graphs

We first introduce candidate generation in Sec. 3.1, which leads to three kinds of objects, 

namely candidate entity mentions ℳ, their surface names  and surrounding relation 

phrases . We then build a heterogeneous graph G, which consists of multiple types of 

objects and multiple types of links, to model their relationship. The basic idea for 

constructing the graph is that: the more two objects are likely to share the same label (i.e., t 

∈  or NOI), the larger the weight will be associated with their connecting edge.

Specifically, the constructed graph G unifies three types of links: mention-name link which 

represents the mapping between entity mentions and their surface names, entity name-

relation phrase link which captures corpus-level co-occurrences between entity surface 

names and relation phrase, and mention-mention link which models distributional similarity 

between entity mentions. This leads to three subgraphs Gℳ, , G ,  and Gℳ, respectively. 

We introduce the construction of them in Secs. 3.2–3.4.

3.1 Candidate Generation

To ensure the extraction of informative and coherent entity mentions and relation phrases, 

we introduce a scalable, data-driven phrase mining method by incorporating both corpus-

level statistics and syntactic constraints. Our method adopts a global significance score to 

guide the filtering of low-quality phrases and relies on a set of generic POS patterns to 

remove phrases with improper syntactic structure [4]. By extending the methodology used in 

[3], we can partition sentences in the corpus into non-overlapping segments which meet a 

significance threshold and satisfy our syntactic constraints. In doing so, entity candidates 

and relation phrases can be jointly extracted in an effective way.

First, we mine frequent contiguous patterns (i.e., sequences of tokens with no gap) up to a 

fixed length and aggregate their counts. A greedy agglomerative merging is then performed 

to form longer phrases while enforcing our syntactic constraints. Suppose the size of corpus 

 is N and the frequency of a phrase S is denoted by υ(S). The phrase-merging step selects 

the most significant merging, by comparing the frequency of a potential merging of two 

consecutive phrases, υ(S1 ⊕ S2), to the expected frequency assuming independence, 

. Additionally, we conduct syntactic constraint check on every potential 

merging by applying an entity check function Ie (·) and a relation check function Ip (·). Ie(S) 

returns one if S is consecutive nouns and zero otherwise; and Ip (S) return one if S (partially) 
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matches one of the patterns in Table 2. Similar to Student's t-test, we define a score function 

ρx (·) to measure the significance and syntactic correctness of a merging [3], where X can be 

e (entity mention) or p (relation phrase).

(1)

At each iteration, the greedy agglomerative algorithm performs the merging which has 

highest scores (ρe or ρp), and terminates when the next highest-score merging does not meet 

a pre-defined significance threshold. Relation phrases without matched POS patterns are 

discarded and their valid sub-phrases are recovered. Because the significance score can be 

considered analogous to hypothesis testing, one can use standard rule-of thumb values for 

the threshold (e.g., Z-score≥2) [3]. Overall the threshold setting is not sensitive in our 

empirical studies. As all merged phrases are frequent, we have fast access to their aggregate 

counts and thus it is efficient to compute the score of a potential merging.

Fig. 3 provides an example output of the candidate generation on New York Times (NYT) 

corpus. We further compare our method with a popular noun phrase chunker1 in terms of 

entity detection performance, using the extracted entity mentions. Table 1 summarizes the 

comparison results on three datasets from different domains (see Sec. 5 for details). Recall is 

most critical for this step, since we can recognize false positives in later stages of our 

framework, but no chance to later detect the misses, i.e., false negatives.

3.2 Mention-Name Subgraph

In practice, directly modeling the type indicator for each candidate mention may be 

infeasible due to the large number of candidate mentions (e.g., |ℳ| > 1 million in our 

experiments). This results in an intractable size of parameter space, i.e., (|M|T). Intuitively, 

both the entity name and the surrounding relation phrases provide strong cues on the type of 

a candidate entity mention. In Fig. 1, for example, the relation phrase “beat” suggests 

“Golden Bears” can mention a person or a sport team, while the surface name “Golden 

Bears” may refer to a sport team or a company. We propose to model the type indicator of a 

candidate mention based on the type indicator of its surface name and the type signatures of 

its associated relation phrases (see Sec. 4 for details). By doing so, we can reduce the size of 

the parameter space to (| | + | |)T) where | | + | | ≪ |ℳ| (see Table 3 and Sec 5.1). This 

enables our method to scale up.

Suppose there are n unique surface names  = {c1, …, cn} in all the extracted candidate 

mentions ℳ. This leads to a biadjacency matrix Π  ∈ {0, 1}M×n to represent the subgraph 

Gℳ, , where Π ,ij = 1 if the surface name of mj is cj, and 0 otherwise. Each column of Π

is normalized by its ℓ2-norm to reduce the impact of popular entity names. We use a T-

dimensional type indicator vector to measure how likely an entity name is subject to 

different types (  or NOI) and denote the type indicators for  by matrix C ∈ ℝn×T. 

Similarly, we denote the type indicators for ℳ by Y ∈ ℝM×T.

1TextBlob: http://textblob.readthedocs.org/en/dev/
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3.3 Name-Relation Phrase Subgraph

By exploiting the aggregated co-occurrences between entity surface names and their 

surrounding relation phrases across multiple documents collectively, we weight the 

importance of different relation phrases for an entity name, and use their connected edge as 

bridges to propagate type information between different surface names by way of relation 

phrases. For each mention candidate, we assign it as the left (right, resp.) argument to the 

closest relation phrase appearing on its right (left, resp.) in a sentence. The type signature of 

a relation phrase refers to the two type indicators for its left and right arguments, 

respectively. The following hypothesis guides the type propagation between surface names 

and relation phrases.

Hypothesis 1 (Entity-Relation Co-occurrences)—If surface name c often appears as 

the left (right) argument of relation phrase p, then c′s type indicator tends to be similar to the 

corresponding type indicator in p′s type signature.

In Fig. 4, for example, if we know “pizza” refers to food and find it frequently co-occurs 

with the relation phrase “serves up” in its right argument position, then another surface name 

that appears in the right argument position of “serves up” is likely food. This reinforces the 

type propagation that “cheese steak sandwich” is also food.

Formally, suppose there are l different relation phrases  = {p1, …, pl} extracted from the 

corpus. We use two biadjacency matrices ΠL, ΠR ∈ {0, 1}M×l to represent the co-

occurrences between relation phrases and their left and right entity arguments, respectively. 

We define ΠL, ij = 1 (ΠR, ij = 1) if mi occurs as the closest entity mention on the left (right) of 

pj in a sentence; and 0 otherwise. Each column of ΠL and ΠR is normalized by its ℓ2-norm to 

reduce the impact of popular relation phrases. Two bipartite subgraphs G ,  can be further 

constructed to capture the aggregated co-occurrences between relation phrases  and entity 

names  across the corpus. We use two biadjacency matrices WL, WR ∈ ℝn×l to represent 

the edge weights for the two types of links, and normalize them.

where SL and SR are normalized biadjacency matrices. For left-argument relationships, we 

define the diagonal surface name degree matrix  as  and the 

relation phrase degree matrix  as . Likewise, we define 

 and  based on WR for the right-argument relationships.

3.4 Mention Correlation Subgraph

An entity mention candidate may have an ambiguous name as well as associate with 

ambiguous relation phrases. For example, “White House” mentioned in the first sentence in 

Fig. 5 can refer to either an organization or a facility, while its relation phrase “felt” can 
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have either a person or an organization entity as the left argument. It is observed that other 

co-occurring entity mentions (e.g., “birth certificate” and “rose garden” in Fig. 5) may 

provide good hints to the type of an entity mention candidate. We propose to propagate the 

type information between candidate mentions of each entity name based on the following 

hypothesis.

Hypothesis 2 (Mention correlation)—If there exists a strong correlation (i.e., within 

sentence, common neighbor mentions) between two candidate mentions that share the same 

name, then their type indicators tend to be similar.

Specifically, for each candidate entity mention mi ∈ M, we extract the set of entity surface 

names which co-occur with mi in the same sentence. An n-dimensional TF-IDF vector f(i) ∈ 

ℝn is used to represent the importance of these co-occurring names for mi where 

 with term frequency in the sentence υs (cj) and document 

frequency υ  (cj) in . We use an affinity subgraph to represent the mention-mention link 

based on k-nearest neighbor (KNN) graph construction [8], denoted by an adjacency matrix 

Wℳ ∈ ℝM×M. Each mention candidate is linked to its k most similar mention candidates 

which share the same name in terms of the vectors f.

where we use the heat kernel function to measure similarity, i.e., sim(f(i), f(j)) = exp (− ‖f(i) − 

f(j)‖2/t) with t = 5 [8]. We use Nk (f) to denote k nearest neighbors of f and c(m) to denote the 

surface name of mention m. Similarly, we normalize Wℳ into  where 

the degree matrix Dℳ ∈ ℝM×M is defined by .

4. Clustering-Integrated Type Propagation on Graphs

This section introduces our unified framework for joint type propagation and relation phrase 

clustering on graphs.

A straightforward solution is to first perform hard clustering on the extracted relation 

phrases and then conduct type propagation between entity names and relation phrase 

clusters. Such a solution encounters several problems. One relation phrase may belong to 

multiple clusters, and the clusters so derived do not incorporate the type information of 

entity arguments. As such, the type prediction performance may not be best optimized by 

the mined clusters.

In our solution, we formulate a joint optimization problem to minimize both a graph-based 

semi-supervised learning error and a multi-view relation phrase clustering objective.
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4.1 Seed Mention Generation

We first collect type information for the extracted mention candidates ℳ by linking them to 

the KB. This yields a set of type-labeled mentions ℳL. Our goal is then to type the 

remaining unlinkable mention candidates ℳU = ℳ/ℳL.

We utilize a state-of-the-art entity name disambiguation tool2 to map each candidate 

mention to Freebase entities. Only the mention candidates which are mapped with high 

confidence scores (i.e., η ≥ 0.8) are considered as valid output. We denote the mapping 

entity of a linked mention m as κe (m), and the set of types of κe (m) in Freebase as (m). 

The linked mentions which associate with multiple target types (i.e., | (m) ∩ | > 1) are 

discarded to avoid type ambiguity. This finally leads to a set of labeled (seed) mentions ℳL. 

In our experiments, we found that only a very limited amount of extracted candidate entity 

mentions can be confidently mapped to Freebase entities (i.e., |ℳL|/|ℳ| < 7%). We define 

the type indicator ym for a linked mention m ∈ ℳL as ym, t = 1 if (m) ∩  = {t} and 0 

otherwise, for t ∈ . Meanwhile, ym, NOI is assigned with 1 if (m) ∩  = ∅ and 0 

otherwise.

4.2 Relation Phrase Clustering

In practice, we observe that many extracted relation phrases have very few occurrences in 

the corpus. This makes it hard to model their type signature based on the aggregated 

cooccurrences with entity names (i.e., Hypothesis 1). In our experimental datasets, about 

37% of the relation phrases have less than 3 unique entity surface names (in right or left 

arguments) in G , . Intuitively, by softly clustering synonymous relation phrases, the type 

signatures of frequent relation phrases can help infer the type signatures of infrequent 

(sparse) ones that have similar cluster memberships, based on the following hypothesis.

Hypothesis 3 (Type signature consistency)—If two relation phrases have similar 

cluster memberships, the type indicators of their left and right arguments (type signature) 

tend to be similar, respectively.

There has been some studies [6, 14] on clustering synonymous relation phrases based on 

different kinds of signals and clustering methods (see Sec. 6). We propose a general relation 

phrase clustering method to incorporate different features for clustering, which can be 

integrated with the graph-based type propagation in a mutually enhancing framework, based 

on the following hypothesis.

Hypothesis 4 (Relation phrase similarity)—Two relation phrases tend to have similar 

cluster memberships, if they have similar (1) strings; (2) context words; and (3) left and 

right argument type indicators.

In particular, type signatures of relation phrases have proven very useful in clustering of 

relation phrases which have infrequent or ambiguous strings and contexts [6]. In contrast to 

previous approaches, our method leverages the type information derived by the type 

2http://spotlight.dbpedia.org/
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propagation and thus does not rely strictly on external sources to determine the type 

information for all the entity arguments.

Formally, suppose there are ns (nc) unique words {w1, …, wns}  in all the 

relation phrase strings (contexts). We represent the strings and contexts of the extracted 

relation phrases  by two feature matrices Fs ∈ ℝl×ns and Fc ∈ ℝl×nc, respectively. We set 

Fs, ij = 1 if pi contains the word wj and 0 otherwise. We use a text window of 10 words to 

extract the context for a relation phrase from each sentence it appears in, and construct 

context features Fc based on TF-IDF weighting. Let PL, PR ∈ ℝl×T denote the type 

signatures of . Our solution uses the derived features (i.e., {Fs, Fc, PL, PR}) for multi-view 

clustering of relation phrases based on joint non-negative matrix factorization, which will be 

elaborated in the next section.

4.3 The Joint Optimization Problem

Our goal is to infer the label (type t ∈  or NOI) for each unlinkable entity mention 

candidate m ∈ ℳU, i.e., estimating Y. We propose an optimization problem to unify two 

different tasks to achieve this goal: (i) type propagation over both the type indicators of 

entity names C and the type signatures of relation phrases {PL, PR} on the heterogeneous 

graph G by way of graph-based semi-supervised learning, and (ii) multi-view relation phrase 

clustering. The seed mentions ℳL are used as initial labels for the type propagation. We 

formulate the objective function as follows.

(2)

The first term ℱ follows from Hypothesis 1 to model type propagation between entity names 

and relation phrases. By extending local and global consistency idea [8], it ensures that the 

type indicator of an entity name is similar to the type indicator of the left (or right) argument 

of a relation phrase, if their corresponding association is strong.

(3)

The second term ℒα in Eq. (2) follows Hypotheses 3 and 4 to model the multi-view relation 

phrase clustering by joint non-negative matrix factorization. In this study, we consider each 

derived feature as one view in the clustering, i.e., {F(0), F(1), F(2), F(3)} = {PL, PR, Fs, Fc} 

and derive a four-view clustering objective as follows.

(4)

The first part of Eq. (4) performs matrix factorization on each feature matrix. Suppose there 

exists K relation phrase clusters. For each view υ, we factorize the feature matrix F(υ) into a 
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cluster membership matrix  for all relation phrases  and a type indicator 

matrix  for the K derived clusters. The second part of Eq. (4) enforces the 

consistency between the four derived cluster membership matrices through a consensus 

matrix , which applies Hypothesis 4 to incorporate multiple similarity measures 

to cluster relation phrases. As in [13], we normalize {U(υ)} to the same scale (i.e., 

‖U(υ)Q(υ)‖F ≈ 1) with the diagonal matrices {Q(υ)}, where , so 

that they are comparable under the same consensus matrix. A tuning parameter α ∈ [0, 1] is 

used to control the degree of consistency between the cluster membership of each view and 

the consensus matrix. {β(υ)} are used to weight the information among different views, 

which will be automatically estimated. As the first part of Eq. (4) enforces {U(0), U(1)} ≈ 

U* and the second part of Eq. (4) imposes PL ≈ U(0)V(0)T and PR ≈ U(1)V(1)T, it can be 

checked that  implies both PL, i ≈ PL, j and PR, i ≈ PR, j for any two relation 

phrases, which captures Hypothesis 3.

The last term Ωγ,μ in Eq. (2) models the type indicator for each entity mention candidate, the 

mention-mention link and the supervision from seed mentions.

(5)

In the first part of Eq. (5), the type of each entity mention candidate is modeled by a 

function f(·) based on the the type indicator of its surface name as well as the type signatures 

of its associated relation phrases. Different functions can be used to combine the information 

from surface names and relation phrases. In this study, we use an equal-weight linear 

combination, i.e., f(X1, X2, X3) = X1+X2+X3. The second part follows Hypothesis 2 to 

model the mention-mention correlation by graph regularization, which ensures the 

consistency between the type indicators of two candidate mentions if they are highly 

correlated. The third part enforces the estimated Y to be similar to the initial labels from 

seed mentions, denoted by a matrix Y0 ∈ ℝM×T (see Sec. 4.1). Two tuning parameters γ, μ ∈ 

[0, 1] are used to control the degree of guidance from mention correlation in GM and the 

degree of supervision from Y0, respectively.

To derive the exact type of each candidate entity mention, we impose the 0-1 integer 

constraint Y ∈ {0, 1}M×T and Y1 = 1. To model clustering, we further require the cluster 

membership matrices {U(υ)}, the type indicator matrices of the derived clusters {V(υ)} and 

the consensus matrix U* to be non-negative. With the definition of , we define the joint 

optimization problem as follows.

(6)
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where  is used for avoiding trivial solution, i.e., solution which completely 

favors a certain view.

4.4 The ClusType Algorithm

The optimization problem in Eq. (6) is mix-integer programming and thus is NP-hard. We 

propose a two-step approximate solution: first solve the real-valued relaxation of Eq. (6) 

which is a non-convex problem with Y ∈ ℝM×T; then impose back the constraints to predict 

the exact type of each candidate mention mi ∈ ℳU by type (mi) = argmax Yi.

Directly solving the real-valued relaxation of Eq. (6) is not easy because it is non-convex. 

We develop an alternating minimization algorithm to optimize the problem with respect to 

each variable alternatively, which accomplishes two tasks iteratively: type propagation on 

the heterogeneous graph, and multi-view clustering of relation phrases.

First, to learn the type indicators of candidate entity mentions, we take derivative on  with 

respect to Y while fixing other variables. As links only exist between entity mentions 

sharing the same surface name in Wℳ, we can efficiently estimate Y with respect to each 

entity name c ∈ . Let Y(c) and  denote the sub-matrices of Y and Sℳ, which correspond 

to the candidate entity mentions with the name c, respectively. We have the update rule for 

Y(c) as follows:

(7)

where Θ = ΠcC + ΠLPL + ΠRPR. Similarly, we denote Θ(c) and  as sub-matrices of Θ 

and Y0 which correspond to the candidate mentions with name c, respectively. It can be 

shown that  is positive definite given μ > 0 and thus is invertible. Eq. 

(7) can be efficiently computed since the average number of mentions of an entity name is 

small (e.g., < 10 in our experiments). One can further parallelize this step to reduce the 

computational time.

Second, to learn the type indicators of entity names and the type signatures of relation 

phrases, we take derivative on  with respect to C, PL and PR while fixing other variables, 

leading to the following closed-form update rules.

(8)

where we define  and  respectively. Note 

that the matrix inversions in Eq. (8) can be efficiently calculated with linear complexity 

since both  and  are diagonal matrices.
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Finally, to perform multi-view clustering, we first optimize Eq. (2) with respect to {U(υ), 

V(υ)} while fixing other variables, and then update U* and {β(υ)} by fixing {U(υ), V(υ)} and 

other variables, which follows the procedure in [13].

We first take the derivative of  with respect to V(υ) and apply Karush-Kuhn-Tucker 

complementary condition to impose the non-negativity constraint on it, leading to the 

multiplicative update rules as follows:

(9)

where we define the matrix Δ(υ) = V(υ)U(υ)TU(υ)+F(υ)−U(υ). It is easy to check that {V(υ)} 

remains non-negative after each update based on Eq. (9).

We then normalize the column vectors of V(υ) and U(υ) by V(υ) = V(υ)Q(υ)−1 and U(υ) = 

U(υ)Q(υ). Following similar procedure for updating V(υ), the update rule for U(υ) can be 

derived as follows:

(10)

In particular, we make the decomposition F(υ) = F(υ)+ – F(υ)−, where 

and , in order to preserve the non-negativity of {U(υ)}.

The proposed algorithm optimizes {U(υ), V(υ)} for each view υ, by iterating between Eqs. 

(9) and (10) until the following reconstruction error converges.

(11)

Algorithm 1 The ClusType algorithm

Input: biadjacency matrices {Π , ΠL, ΠR, WL, WR, Wℳ}, clustering features {Fs, Fc}, seed labels Y0, number of 
clusters K, parameters {α, γ, μ}

1:

Initialize {Y, C, PL, PR} with {Y0, , , }, {Uυ), V(υ), β(υ)} and U* with 
positive values.

2: repeat

3:  Update candidate mention type indicator Y by Eq. (7)

4:  Update entity name type indicator C and relation phrase type signature {PL, PR} by Eq. (8)

5:  for υ = 0 to 3 do

6:   repeat

7:    Update V(υ) with Eq. (9)

8:    Normalize U(υ) = U(υ)Q(υ), V(υ) = V(υ)Q(υ)−1

9:    Update U(υ) by Eq. (10)
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10:   until Eq. (11) converges

11:  end for

12:  Update consensus matrix U* and relative feature weights {β(υ)} using Eq. (12)

13: until the objective  in Eq. (6) converges

14: Predict the type of mi ∈ ℳU by type(mi) = argmax Yi.

With optimized {U(υ), V(υ)}, we update U* and {β(υ)} by taking the derivative on  with 

respect to each of them while fixing all other variables. This leads to the closed-form update 

rules as follows:

(12)

Algorithm 1 summarizes our algorithm. For convergence analysis, ClusType applies block 

coordinate descent on the real-valued relaxation of Eq. (6). The proof procedure in [26] (not 

included for lack of space) can be adopted to prove convergence for ClusType (to the local 

minimum).

4.5 Computational Complexity Analysis

Given a corpus  with N  words, the time complexity for our candidate generation and 

generation of {Π , ΠL, ΠR, Fs, Fc} is (N ). For construction of the heterogeneous graph 

G, the costs for computing G ,  and Gℳ are (nl) and (MM d ), respectively, where 

M  denotes average number of mentions each name has and d  denotes average size of 

feature dimensions (M  < 10, d  < 5000 in our experiments). It takes (MT) and 

 time to initialize all the variables and pre-compute the constants in update 

rules, respectively.

We then study the computational complexity of ClusType in Algorithm 1 with the pre-

computed matrices. In each iteration of the outer loop, ClusType costs (MM T) to update 

Y, (nlT) to update C and (nT(K + l) to update {PL, PR}. The cost for inner loop is 

(tinlK(T + ns + nc)) supposing it stops after tin iterations (tin < 100 in our experiments). 

Update of U* and {β(υ)} takes (lK) time. Overall, the computational complexity of 

ClusType is (toutnlT + touttinlK(T + ns + nc)), supposing that the outer loop stops in tout 

iterations (tout < 10 in our experiments).

5. Experiments

5.1 Data Preparation

Our experiments use three real-world datasets3: (1) NYT: constructed by crawling 2013 

news articles from New York Times. The dataset contains 118,664 articles (57M tokens and 

480k unique words) covering various topics such as Politics, Business and Sports; (2) Yelp: 
We collected 230,610 reviews (25M tokens and 418k unique words) from the 2014 Yelp 

3Code and datasets used in this paper can be downloaded at: http://web.engr.illinois.edu/∼xren7/clustype.zip.
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dataset challenge; and (3) Tweet: We randomly selected 10,000 users in Twitter and 

crawled at most 100 tweets for each user in May 2011. This yields a collection of 302,875 

tweets (4.2M tokens and 157k unique words).

1. Heterogeneous Graphs—We first performed lemmatization on the tokens using 

NLTK WordNet Lemmatizer4 to reduce variant forms of words (e.g., eat, ate, eating) into 

their lemma form (e.g., eat), and then applied Stanford POS tagger [25] on the corpus. In 

candidate generation (see Sec. 3.1), we set maximal pattern length as 5, minimum support as 

30 and significance threshold as 2, to extract candidate entity mentions and relation phrases 

from the corpus. We then followed the introduction in Sec. 3 to construct the heterogeneous 

graph for each dataset. We used 5-nearest neighbor graphs when constructing the mention 

correlation subgraph. Table 3 summarizes the statistics of the constructed heterogeneous 

graphs for all three datasets.

2. Clustering Feature Generation—Following the procedure introduced in Sec. 4.2, we 

used a text window of 10 words to extract the context features for each relation phrase (5 

words on the left and the right of a relation phrase), where stop-words are removed. We 

obtained 56k string terms (ns) and 129k context terms (nc) for the NYT dataset, 58k string 

terms and 37k context terms for the Yelp dataset and 18k string terms and 38k context terms 

for the Tweet dataset, respectively all unique term counts. Each row of the feature matrices 

were then normalized by its ℓ-2 norm.

3. Seed and Evaluation Sets—For evaluation purposes, we selected entity types which 

are popular in the dataset from Freebase, to construct the target type set . Table 4 shows 

the target types used in the three datasets. To generate the set of seed mentions ℳL, we 

followed the process introduced in Sec. 4.1 by setting the confidence score threshold as η = 

0.8. To generate the evaluation sets, we randomly selected a subset of documents from each 

dataset and annotated them using the target type set  (each entity mention is tagged by one 

type). 1k documents are annotated for the NYT dataset (25,451 annotated mentions). 2.5k 

reviews are annotated for the Yelp dataset (21,252 annotated mentions). 3k tweets are 

annotated for the Tweet dataset (5,192 annotated mentions). We removed the mentions from 

the seed mention sets if they were in the evaluation sets.

5.2 Experimental Settings

In our testing of ClusType and its variants, we set the number of clusters K = {4000, 1500, 

300} for NYT, Yelp and Tweet datasets, respectively, based on the analyses in Sec. 5.3. We 

set {α, γ, μ} = {0.4, 0.7, 0.5} by five-fold cross validation (of classification accuracy) on the 

seed mention sets. For convergence criterion, we stop the outer (inner) loop in Algorithm 1 

if the relative change of  in Eq. (6) (reconstruction error in Eq. (11)) is smaller than 10−4, 

respectively.

Compared Methods—We compared the proposed method (ClusType) with its variants 

which only model part of the proposed hypotheses. Several state-of-the-art entity 

4http://www.nltk.org/
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recognition approaches were also implemented (or tested using their published codes): (1) 

Stanford NER [5]: a CRF classifier trained on classic corpora for several major entity 

types; (2) Pattern [7]: a state-of-the-art pattern-based bootstrapping method which uses the 

seed mention sets ℳL; (3) SemTagger [9]: a bootstrapping method which trains contextual 

classifiers using the seed mention set ℳL in a self-training manner; (4) FIGER [12]: 

FIGER trains sequence labeling models using automatically annotated Wikipeida corpora; 

(5) NNPLB [11]: It uses ReVerb assertions [4] to construct graphs and performs entity 

name-level label propagation; and (6) APOLLO [22]: APOLLO constructs heterogeneous 

graphs on entity mentions, Wikipedia concepts and KB entities, and then performs label 

propagation.

All compared methods were first tuned on our seed mention sets using five-fold cross 

validation. For ClusType, besides the proposed full-fledged model, ClusType, we compare 

(1) ClusType-NoWm: This variant does not consider mention correlation subgraph, i.e., set 

γ = 0 in ClusType; (2) ClusType-NoClus: It performs only type propagation on the 

heterogeneous graph, i.e., Eq. (4) is removed from ; and (3) ClusType-TwoStep: It first 

conducts multi-view clustering to assign each relation phrase to a single cluster, and then 

performs ClusType-NoClus between entity names, candidate entity mentions and relation 

phrase clusters.

Evaluation Metrics—We use F1 score computed from Precision and Recall to evaluate 

the entity recognition performance. We denote the #system-recognized entity mentions as J 

and the # ground truth annotated mentions in the evaluation set as A. Precision is calculated 

by  and Recall is calculated by . 

Here, tm and  denote the true type and the predicted type for m, respectively. Function ω(·) 

returns 1 if the predicted type is correct and 0 otherwise. Only mentions which have correct 

boundaries and predicted types are considered correct. For cross validation on the seed 

mention sets, we use classification accuracy to evaluate the performance.

5.3 Experiments and Performance Study

1. Comparing ClusType with the other methods on entity recognition—Table 5 

summarizes the comparison results on the three datasets. Overall, ClusType and its three 

variants outperform others on all metrics on NYT and Yelp and achieve superior Recall and 

F1 scores on Tweet. In particular, ClusType obtains a 46.08% improvement in F1 score and 

168% improvement in Recall compared to the best baseline FIGER on the Tweet dataset and 

improves F1 by 48.94% compared to the best baseline, NNPLB, on the Yelp dataset.

FIGER utilizes a rich set of linguistic features to train sequence labeling models but suffers 

from low recall moving from a general domain (e.g., NYT) to a noisy new domain (e.g., 

Tweet) where feature generation is not guaranteed to work well (e.g., 65% drop in F1 score). 

Superior performance of ClusType demonstrates the effectiveness of our candidate 

generation and of the proposed hypotheses on type propagation over domain-specific 

corpora. NNPLB also utilizes textual relation for type propagation, but it does not consider 

entity surface name ambiguity. APOLLO propagates type information between entity 
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mentions but encounters severe context sparsity issue when using Wikipedia concepts. 

ClusType obtains superior performance because it not only uses semantic-rich relation 

phrases as type cues for each entity mention, but also clusters the synonymous relation 

phrases to tackle the context sparsity issues.

2. Comparing ClusType with its variants—Comparing with ClusType-NoClus and 

ClusType-TwoStep, ClusType gains performance from integrating relation phrase clustering 

with type propagation in a mutually enhancing way. It always outperforms ClusType-

NoWm on Precision and F1 on all three datasets. The enhancement mainly comes from 

modeling the mention correlation links, which helps disambiguate entity mentions sharing 

the same surface names.

3. Comparing on different entity types—Fig. 6 shows the performance on different 

types on Yelp and Tweet. ClusType outperforms all the others on each type. It obtains larger 

gain on organization and person, which have more entities with ambiguous surface names. 

This indicates that modeling types on entity mention level is critical for name 

disambiguation. Superior performance on product and food mainly comes from the domain 

independence of our method because both NNPLB and SemTagger require sophisticated 

linguistic feature generation which is hard to adapt to new types.

4. Comparing with trained NER—Table 6 compares ours with a traditional NER 

method, Stanford NER, trained using classic corpora like ACE corpus, on three major types

—person, location and organization. ClusType and its variants outperform Stanford NER on 

the corpora which are dynamic (e.g., NYT) or domain-specific (e.g., Yelp). On the Tweet 

dataset, ClusType has lower Precision but achieves a 63.59% improvement in Recall and 

7.62% improvement in F1 score. The superior Recall of ClusType mainly comes from the 

domain-independent candidate generation.

5. Testing on sensitivity over the number of relation phrase clusters, K—Fig. 

7(a), ClusType was less sensitive to K compared with its variants. We found on the Tweet 

dataset, ClusType achieved the best performance when K=300 while its variants peaked at 

K=500, which indicates that better performance can be achieved with fewer clusters if type 

propagation is integrated with clustering in a mutually enhancing way. On the NYT and the 

Yelp datasets (not shown here), ClusType peaked at K=4000 and K=1500, respectively.

6. Testing on the size of seed mention set—Seed mentions are used as labels (distant 

supervision) for typing other mentions. By randomly selecting a subset of seed mentions as 

labeled data (sampling ratio from 0.1 to 1.0), Fig. 7(b) shows ClusType and its variants are 

not very sensitive to the size of seed mention set. Interestingly, using all the seed mentions 

does not lead to the best performance, likely caused by the type ambiguity among the 

mentions.

7. Testing on the effect of corpus size—Experimenting on the same parameters for 

candidate generation and graph construction, Fig. 7(c) shows the performance trend when 

varying the sampling ratio (subset of documents randomly sampled to form the input 

corpus). ClusType and its variants are not very sensitive to the changes of corpus size, but 
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NNPLB had over 17% drop in F1 score when sampling ratio changed from 1.0 to 0.1 (while 

ClusType had only 5.5%). In particular, they always outperform FIGER, which uses a 

trained classifier and thus does not depend on corpus size.

5.4 Case Studies

1. Example output on two Yelp reviews—Table 7 shows the output of ClusType, 

SemTagger and NNPLB on two Yelp reviews: ClusType extracts more entity mention 

candidates (e.g., “BBQ”, “ihop”) and predicts their types with better accuracy (e.g., “baked 

beans”, “pulled pork sandwich”).

2. Testing on context sparsity—The type indicator of each entity mention candidate is 

modeled in ClusType based on the type indicator of its surface name and the type signatures 

of its co-occurring relation phrases. To test the handling of different relation phrase sparsity, 

two groups of 500 mentions are selected from Yelp: mentions in Group A co-occur with 

frequent relation phrases (∼4.6k occurrences in the corpus) and those in Group B co-occur 

with sparse relation phrases (∼3.4 occurrences in the corpus). Fig. 8(a) compares their F1 

scores on the Tweet dataset. In general, all methods obtained better performance when 

mentions co-occurring with frequent relation phrases than with sparse relation phrases. In 

particular, we found that ClusType and its variants had comparable performance in Group A 

but ClusType obtained superior performance in Group B. Also, ClusType-TwoStep obtained 

larger performance gain over ClusType-NoClus in Group B. This indicates that clustering 

relation phrases is critical for performance enhancement when dealing with sparse relation 

phrases, as expected.

3. Testing on surface name popularity—We generated the mentions in Group A with 

high frequency surface names (∼2.7k occurrences) and those in Group B with infrequent 

surface names (∼1.5). Fig. 8(b) shows the degraded performance of all methods in both 

cases—likely due to ambiguity in popular mentions and sparsity in infrequent mentions. 

ClusType outperforms its variants in Group B, showing it handles well mentions with 

insufficient corpus statistics.

4. Example relation phrase clusters—Table 8 shows relation phrases along with their 

corpus frequency from three example relation phrase clusters for the NYT dataset (K = 

4000). We found that not only synonymous relation phrases, but also both sparse and 

frequent relation phrases can be clustered together effectively (e.g., “want hire by” and 

“recruited by”). This shows that ClusType can boost sparse relation phrases with type 

information from the frequent relation phrases with similar group memberships.

6. Related Work

1. Entity Recognition—Existing work leverages various levels of human supervision to 

recognize entities, from fully annotated documents (supervised), seed entities (weakly 

supervised), to knowledge bases (distantly supervised).
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Traditional supervised methods [18, 15] use fully annotated documents and different 

linguistic features to train sequence labeling model. To obtain an effective model, the 

amount of labeled data is significant [18], despite of semi-supervised sequence labeling [19].

Weakly-supervised methods utilize a small set of typed entities as seeds and extract more 

entities of target types, which can largely reduce the amount of required labeled data. 

Pattern-based bootstrapping [7, 23] derives patterns from contexts of seed entities and uses 

them to incrementally extract new entities and new patterns unrestricted by specific 

domains, but often suffers low recall and semantic drift [12]. Iterative bootstrapping, such as 

probabilistic method [17] and label propagation [24] softly assign multiple types to an entity 

name and iteratively update its type distribution, yet cannot decide the exact type for each 

entity mention based on its local context.

Distantly supervised methods [16, 11, 12] avoid expensive human labels by leveraging type 

information of entity mentions which are confidently mapped to entries in KBs. Linked 

mentions are used to type those unlinkable ones in different ways, including training a 

contextual classifier [16], learning a sequence labeling model [12] and serving as labels in 

graph-based semi-supervised learning [11].

Our work is also related to knowledge base population methods [22] which study entity 

linking and fine-grained categorization of unlinkable mentions in a unified framework, 

which shares the similar idea of modeling each entity mention individually to resolve name 

ambiguity. 2.

2. Open Relation Mining—Extracting textual relation between subjective and objective 

from text has been extensively studied [4] and applied to entity typing [11]. Fader et al. [4] 

utilize POS patterns to extract verb phrases between detected noun phrases to form relation 

assertion. Schmitz et al. [20] further extend the textual relation by leveraging dependency 

tree patterns. These methods rely on linguistic parsers that may not generalize across 

domains. They also do not consider significance of the detected entity mentions in the 

corpus (see comparison with NNPLB [11]).

There have been some studies on clustering and and canonicalizing synonymous relations 

generated by open information extraction [6]. These methods either ignore entity type 

information when resolving relations, or assume types of relation arguments are already 

given.

7. Conclusions

We have studied distantly-supervised entity recognition and proposed a novel relation 

phrase-based entity recognition framework. A domain-agnostic phrase mining algorithm is 

developed for generating candidate entity mentions and relation phrases. By integrating 

relation phrase clustering with type propagation, the proposed method is effective in 

minimizing name ambiguity and context problems, and thus predicts each mention's type 

based on type distribution of its string name and type signatures of its surrounding relation 

phrases. We formulate a joint optimization problem to learn object type indicators/signatures 

and cluster memberships simultaneously. Our performance comparison and case studies 
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show a significant improvement over state-of-the-art methods and demonstrate its 

effectiveness.
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Figure 1. An example of distant supervision
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Figure 2. The constructed heterogeneous graph
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Figure 3. Example output of candidate generation
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Figure 4. Example entity name-relation phrase links from Yelp reviews
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Figure 5. Example mention-mention links for entity surface name “White House” from Tweets
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Figure 6. Performance breakdown by types
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Figure 7. Performance changes in F1 score with #clusters, #seeds and corpus size on Tweets
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Figure 8. 
Case studies on context sparsity and surface name popularity on the Tweet dataset.
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Table 2
POS tag patterns for relation phrases

Pattern Example

V disperse; hit; struck; knock;

P in; at; of; from; to;

VP locate in; come from; talk to;

VW*(P) caused major damage on; come lately

V-verb; P-prep; W-{adv | adj | noun | det | pron}; * denotes multiple W; (P) denotes optional.
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Table 3
Statistics of the heterogeneous graphs

Data sets NYT Yelp Tweet

#Entity mention candidates (M) 4.88M 1.32M 703k

#Entity surface names (n) 832k 195k 67k

#Relation phrases (l) 743k 271k 57k

#Links 29.32M 8.64M 3.59M

Avg#mentions per string name 5.86 6.78 10.56
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Table 4
Target type sets  for the datasets

NYT person, organization, location, time_event

Yelp food, time_event, job_title, location, organization

Tweet Time_event, business_consumer_product, person, location, organization, business_job_title, time_year_of_day
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Table 6
F1 score comparison with trained NER

Method NYT Yelp Tweet

Stanford NER [5] 0.6819 0.2403 0.4383

ClusType-NoClus 0.9031 0.4522 0.4167

ClusType 0.9419 0.5943 0.4717
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Table 7
Example output of ClusType and the compared methods on the Yelp dataset

ClusType SemTagger NNPLB

The best BBQ:Food I've tasted in 
Phoenix:LOC ! I had the [pulled pork 
sandwich]:Food with coleslaw:Food and 
[baked beans]:Food for lunch. …

The best BBQ I've tasted in Phoenix:LOC ! 
I had the pulled [pork sandwich]:LOC with 
coleslaw:Food and [baked beans]:LOC for 
lunch. …

The best BBQ:Loc I've tasted in 
Phoenix:LOC ! I had the pulled pork 
sandwich:Food with coleslaw and baked 
beans:Food for lunch:Food. …

I only go to ihop:LOC for pancakes:Food 
because I don't really like anything else on the 
menu. Ordered [chocolate chip pan-
cakes]:Food and a [hot chocolate]:Food.

I only go to ihop for pancakes because I don't 
really like anything else on the menu. 
Ordered [chocolate chip pancakes]:LOC 
and a [hot chocolate]:LOC.

I only go to ihop for pancakes because I 
don't really like anything else on the menu. 
Ordered chocolate chip pancakes and a hot 
chocolate.
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Table 8
Example relation phrase clusters and their corpus frequency from the NYT dataset

ID Relation phrase

1 recruited by (5.1k); employed by (3.4k); want hire by (264)

2 go against (2.4k); struggling so much against (54); run for re-election against (112); campaigned against (1.3k)

3 looking at ways around (105); pitched around (1.9k); echo around (844); present at (5.5k);
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