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Abstract—Log-linear models are a promising approach for
speech recognition. Typically, log-linear models are trained ac-
cording to a strictly convex criterion. Optimization algorithms
are guaranteed to converge to the unique global optimum of
the objective function from any initialization. For large-scale
applications, considerations in the limit of infinite iterations
are not sufficient. We show that log-linear training can be
a highly ill-conditioned optimization problem, resulting in ex-
tremely slow convergence. Conversely, the optimization problem
can be preconditioned by feature transformations. Making use
of our convergence analysis, we improve our log-linear speech
recognition system and achieve a strong reduction of its training
time. In addition, we validate our analysis on a continuous
handwriting recognition task.

Index Terms—convergence analysis, log-linear models

I. INTRODUCTION

Conventional speech recognition systems rely on hidden

Markov models with Gaussian mixture models serving as

models for the emission probabilities (GHMMs). The training

of the acoustic model starts with a maximum likelihood

training with the expectation maximization (EM) algorithm.

In state-of-the-art systems, the acoustic model is further opti-

mized according to discriminative criteria, e.g. the minimum

phone error (MPE) or maximum mutual information (MMI)

criterion. Recently, the interest in direct models, i.e. models

for posterior probabilities, has greatly increased. In particular

log-linear models are promising, because they fit into the

probabilistic framework of hidden Markov models (HMMs).

Log-linear models have been successfully applied to phoneme

recognition [1], [2], [3]. Promising results have also been ob-

tained on large vocabulary speech recognition tasks (LVCSR),

e.g. in [4] or in our previous work [5]. Furthermore, log-linear

models are of general interest, because they are widely used

in natural language processing, e.g. [6], [7], and many other

applications.

An important property of log-linear models is that their

training according to the regularized MMI criterion is a strictly

convex optimization problem. This property guarantees that

apart from the global optimum no other local optima exist.

Algorithms with guaranteed convergence, e.g. steepest descent

and other more sophisticated gradient-based optimization algo-

rithms, converge to the global optimum from any initialization.

For large-scale applications as speech recognition, consid-

erations in the limit of infinite iterations of the optimization

algorithm are not sufficient. With a restricted amount of

computation time, the result of the optimization is only an

approximation to the unique global optimum. The quality of

the approximation depends on the initialization, on the choice

of the optimization algorithm, and on the difficulty of the

optimization problem.

A number of papers are concerned with the choice of

optimization algorithms for log-linear training. Often, the

quasi-Newton algorithm L-BFGS is considered as the best

optimization algorithm for log-linear training [8], [7]. Good

results have also been reported for Rprop [9], which we also

used in our previous work.

The analysis of the optimization problem itself is quite

limited. Experimentally, it has been observed that the use of

correlated features slows down convergence, e.g. by Minka

[10]. From optimization theory it is known that the conver-

gence rate of gradient-based optimization algorithms can be

described by the condition number of the Hessian matrix at the

optimum, i.e. the ratio of its largest and smallest eigenvalue.

The dependence on the condition number is very strong for

steepest descent. For high condition numbers, steepest descent

is useless in practice [11, Chapter 9.3]. It can be shown

that more sophisticated gradient-based optimization algorithms

as conjugate gradient and L-BFGS depend on the condition

number as well [12, Chapter 5.1], [12, Chapter 9.1].

In this paper, we derive an estimate for the condition

number of the optimization problem encountered in log-linear

training. We show that in extreme cases, log-linear training

can be highly ill-conditioned. Conversely, our analysis also

shows that log-linear training can be accelerated by feature

transformations. A more detailed analysis of the optimization

problem and an experimental evaluation on a handwriting

task has been given by us in another paper [13]. In this

paper, we focus more on the experimental results and perform

experiments on a speech recognition task. We compare the

results to our previous work on log-linear acoustic models

for LVCSR [5]. Furthermore, we compare the effect of the

condition number on the behavior of different optimization

algorithms.

II. MODEL DEFINITION AND TRAINING CRITERION

Let X ⊂ R
D denote the observation space and S =

{1, . . . , S} a finite set of classes. A log-linear model with
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parameters Λ = (λs,n)s,n ∈ R
S×N is a model for class

posterior probabilities of the form

pΛ(s|x) =
exp

( N∑
n=1

λs,nfn(x)
)

∑
s̃

exp
( N∑

n=1

λs̃,nfn(x)
) , (1)

where the components of

f : X → R
N , x �→ (f1(x), . . . , fN (x)) (2)

are called feature functions.

The regularized MMI criterion is often regarded as the

natural training criterion for log-linear models. In this work,

we consider the MMI criterion with �2-regularization:

F : RS×N → R,Λ �→ − 1

T

T∑
t=1

ln pΛ(st|xt) +
C

2
‖Λ‖22. (3)

Here (xt, st)t=1,...,T is the training sample and C > 0 is the

regularization constant. We refer to the minimization of F as

log-linear training.

For the optimization of log-linear models, iterative opti-

mization algorithms have to be employed, which require the

evaluation of the gradient of the objective function. The first

and second partial derivatives of the objective function are:

∂F
∂λs,n

(Λ) =
1

T

T∑
t=1

(pΛ(s|xt)− δ(s, sn)) fn(xt) + λs,n, (4)

and

∂2F
∂λs,n∂λs̄,n̄

(Λ) =
1

T

T∑
t=1

pΛ(s|xt)(δ(s, s̄)− pΛ(s̄|xt))

· fn(xt)fn̄(xt) + α δ(s, s̄)δ(n, n̄) ,

(5)

where 1 ≤ s, s̄ ≤ S and 0 ≤ n, n̄ ≤ N and δ denotes the

Kronecker delta. It can be shown that the Hessian matrix of

F is positive semidefinite, and strictly positive definite for

α > 0. Thus, the optimization problem is convex, respectively

strictly convex, see e.g. [14].

For speech recognition, the log-linear model can either be

defined on frame level or on sequence level. In the latter

case the log-linear model is a conditional random field [15].

For simplicity, we assume here, that the log-linear model is

defined on frame-level, i.e. st denotes an HMM state and xt an

acoustic observation. The resulting estimates for the posterior

probabilities can be used in HMM-based speech recognizers

via the hybrid approach. The class-conditional probabilities

required in HMMs are derived via Bayes rule:

pΛ(x|s) = pΛ(s|x)p(x)/p(s) . (6)

The prior probabilities p(s) can be estimated easily as relative

frequencies, and p(x) can be discarded in recognition without

changing the maximizing word sequence.

There are numerous possibilities for the definition of appro-

priate feature functions for speech recognition. Widely used

are polynomial feature functions. A polynomial feature of

order k is a function

φ : X → R, x �→ xd1
· . . . · xdk

, (7)

where 1 ≤ di ≤ D for all 1 ≤ i ≤ k. In our previous work

[5], we applied in addition sparse posterior features:

φ : X → R, x �→ p(l|x) = p(l)p(x|l)∑
l′ p(l

′)p(x|l′) , (8)

where (p(l))1≤l≤L and (p(x|l))1≤l≤L are obtained by esti-

mating a Gaussian mixture model (GMM) for the marginal

probability p(x).

III. CONVERGENCE ANALYSIS OF LOG-LINEAR MODEL

TRAINING

In [13] we showed that for the unregularized objective

function, the condition number of the Hessian matrix of

the objective function can be approximated by the condition

number of the uncentered covariance matrix

X =
1

T

T∑
t=1

f(xt)f(xt)
T . (9)

The idea for this derivation is to approximate the Hessian at the

unknown optimum Λ� by the Hessian at Λ = 0. The Hessian

at zero has a Kronecker product structure (see e.g. [16]), which

allows for the analytic derivation of the eigenvalues.

For large regularization constants, the optimization behavior

of the regularized criterion is dominated by the regularization

term. Since the regularization term is a well-conditioned

quadratic function, the convergence behavior is strongly ac-

celerated in this case. However, for large-scale problems as

speech recognition, the regularization constant is typically very

small, because the problem of overfitting is less severe with

large amounts of training data. In this case, the regularized

training criterion behaves similar to the unregularized one and

is determined by the eigenvalue distribution of X .

The dependence of the convergence behavior on the prop-

erties of X is in accordance to experimental observations.

Other researchers have noted before, that the use of correlated

features leads to slower convergence [7]. Minka [10] noted

that convergence slows down when adding a constant to the

features, because this “introduces correlation, in the sense that”

X “has significant off-diagonals.”. How can we verify these

findings formally? The following theorem concerns the case

of uncorrelated features. The proof is an application of Weyl’s

inequalities (see [17, Theorem 4.3.7]).

Theorem 1. Suppose the features fn(x), 1 ≤ n ≤ N , are
uncorrelated with respect to the empirical distribution. Let μn

and σ2
n denote the empirical mean and variance of fi(x) for

1 ≤ i ≤ N . Without loss of generality, we assume that the
features are ordered such that σ2

1 ≤ . . . ≤ σ2
N . Then the

condition number of X = 1
T

∑T
t=1 f(xt)f(xt)

T is bounded
by

max{σ2
N + μ2

N , σ2
1 + ‖μ‖22}

min{σ2
1 + μ2

1, σ
2
2}

≤ κ(X) ≤ σ2
N + ‖μ‖22

σ2
1

. (10)
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Proof of Theorem 1: Since the features are uncorrelated,

we have

X = diag(σ2
1 , . . . , σ

2
N) + μμT def

= A+B . (11)

A lower bound on the condition number is obtained by using

the fact that the diagonal elements X1,1 = σ2
1 + μ2

1 and

XN,N = σ2
N + μ2

N of X are upper bounds for the smallest

eigenvalue and lower bounds for the largest eigenvalue (see

[17, p181]).

A tighter lower bound and an upper bound to the condition

number are obtained by the application of Weyl’s inequalities.

Let λj(M) denote the j-th eigenvalue in ascending order of a

Hermitian N×N -matrix M . Weyl’s inequalities state that for

all Hermitian N×N -matrices A,B and all j, k:

λj+k−N (A+B) ≤ λj(A) + λk(B) , (12)

λj+k−1(A+B) ≥ λj(A) + λk(B) . (13)

The eigenvalues of A are the diagonal elements λj(A) = σ2
j .

B is a rank-one matrix with the eigenvalues λN (B) = ‖μ‖22
and λj(B) = 0 for 1 ≤ j ≤ N − 1. The bounds for κ(X)
follow with the application of (13) and (12) to the smallest

and largest eigenvalue. For instance, the upper bound on the

condition number follows from the application of (12) with

j = k = N to the largest eigenvalue and (13) with j = k = 1
to the lowest eigenvalue. The proof of the lower bound is

analogous.

Theorem 1 shows that even for uncorrelated features, the

matrix X can be ill-conditioned, only because the features

have a non-zero mean and the variances have a wide range.

In particular, the norm ‖μ‖22 can get very large for high-

dimensional features. Conversely, Theorem 1 shows that con-

vergence of log-linear training can be accelerated by feature

transformations. Centering the features and normalizing their

variances are only simple preprocessing steps and result in a

preconditioning of the optimization problem.

Analyzing the general case of correlated and unnormalized

features is more difficult. The idea of the following theorem is

regarding the off-diagonals as a perturbation of the diagonal

matrix. This case can be analyzed with Geršgorin’s circle

theorem [17, Theorem 6.1.1], which states that all eigenvalues

lie in circles around the diagonal entries of the matrix.

Theorem 2. Let μn and σ2
n denote the empirical mean and

variance of fi(x) for 1 ≤ i ≤ N and assume that σ2
1 ≤ . . . ≤

σ2
N . Let

Ri =
∑
j,j �=i

|Cov (fj(x), fi(x)) | (14)

denote the radius of the i-th Geršgorin circle. Then, the largest
and smallest eigenvalues of X = 1

T

∑T
t=1 f(xt)f(xt)

T are
bounded by

σ2
1 −R1 ≤ λ1(X) ≤ min{σ2

1 + μ2
1, σ

2
N +RN} , (15)

and

max{σ2
N+μ2

N , σ2
1 −R1 + ‖μ‖22}

≤ λN (X) ≤ σ2
N +RN + ‖μ‖22 .

(16)

TABLE I
CORPUS AND BASELINE MODEL STATISTICS FOR THE IAM HANDWRITING

DATABASE USING A RECOGNITION LEXICON WITH 50K ENTRIES.

Train Dev Test LM data

Words 53,884 8,717 25,472 3,363,402
Characters 219,749 31,724 96,637 13,871,031
Writers 283 57 162 -

Out-of-vocabulary words (%) - 3.94 3.42 -
WER baseline model (%) - 32.8 39.4 -

The proof of Theorem 2 is a direct generalization of

Theorem 1. In contrast to Theorem 1, only the bounds for

the eigenvalues of A obtained by Geršgorin’s theorem are

known instead of the exact eigenvalues. For strongly correlated

features corresponding to large values of Ri, the eigenvalues

can be distributed almost arbitrarily according to the bounds

(15) and (16). For weakly correlated features, the bounds are

tighter. In particular, for normalized features and R1 < 1,

Theorem 2 implies:

1 ≤ κ(X) ≤ 1 +RN

1−R1
. (17)

This shows that the best conditioning of the optimization

problem is obtained for decorrelated and normalized features.

IV. EXPERIMENTAL RESULTS

In this section, we validate our theoretical result on two

recognition tasks. The first one is the continuous handwriting

recognition task IAM. The second is the Wall Street Journal

(WSJ) task for English read speech.

A. Continuous Handwriting Recognition

The IAM database [18] is a continuous handwriting recog-

nition task with open vocabulary. This task is of interest for

us, because it requires the same techniques as an LVCSR

system. The main difference of the handwriting and the

speech recognition system is the feature extraction. We can

use exactly the same software for speech recognition as for

handwriting recognition. The corpus has a predefined subdi-

vision into training, development and testing folds, see Table

I. The amount of training data is quite small in comparison

to a speech recognition system, roughly corresponding to

seven hours of speech. In comparison to other handwriting

recognition tasks it is considered as a large dataset.

We used the maximum likelihood GHMM system of [19]

as our baseline system. In the feature extraction of this

system, only elementary preprocessing steps (deslanting and

size normalization) are used, which are commonly employed

in image recognition. An image slice was extracted at every

position. Seven features in a sliding window were concatenated

and projected to a thirty dimensional vector by a principal

component analysis (PCA). The 78 characters were modeled

by context-independent five-state left-to-right HMMs, result-

ing in 390 distinct states plus one state for the whitespace

model. The emission probabilities are modeled by GMMs

with a pooled diagonal covariance matrix and trained with the
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Fig. 1. Plot of the objective function versus iteration number for experiments
on the IAM database with second-order features, zero initialization, and
different preprocessings. Note that the objective function for the unnormalized
features remains constant for the first iterations, because L-BFGS performs a
backtracking.

EM algorithm with a splitting procedure. Best results were

obtained with 25k mixture components in total. A Kneser-

Ney smoothed trigram language model has been trained on

the text data which is commonly used for this corpus. A

recognition lexicon with 50k entries has been chosen on the

same data. The baseline system achieves a WER of 32.8%

on the development corpus and 39.4% on the test corpus. A

more detailed description of the baseline system can be found

in [19].

We generated a state alignment with our baseline system,

and then trained the log-linear models on the resulting training

sample (xt, st)t=1,...,T . We used the L-BFGS algorithm for

training, because, it is considered as the best optimization

algorithm for log-linear training in literature. We set the history

length of L-BFGS to ten, which is a standard value given

in literature [8], [7]. For comparison with our previous work

[5], we also performed trainings with the improved Rprop

algorithm proposed by [20]. For all configurations, we stopped

training after 200 training iterations. At this point, the change

in the objective function is small for all models.

For the log-linear models, we used polynomial features of

degree one (N = 30), two (N = 495) and three (N =
5455). In preliminary experiments, we obtained almost no

improvements by regularization. The reason for this is that

with our choice of features, the frame-classification error on

the training data ranges from forty to sixty percent and benefits

from regularization can only be expected, when the training

error is small. Therefore, we only report the results without

regularization.

The results on the IAM database are summarized in Table

II. Our theoretical analysis predicted the convergence behavior

very well. The first-order features are already decorrelated,

but without mean and variance normalization, the convergence

is slower, resulting in a worse WER on development and

TABLE II
RESULTS ON THE IAM DATABASE FOR TRAINING WITH L-BFGS WITH

POLYNOMIAL FEATURE SPACES OF DEGREE m ∈ {1, 2, 3} AND DIFFERENT

INITIALIZATIONS AND PREPROCESSINGS (“-” CORRESPONDS TO NO

PREPROCESSING, “M” TO MEAN NORMALIZATION, “V” TO VARIANCE

NORMALIZATION, AND “D” TO DECORRELATION).

m Preprocessing Initialization WER/dev (%) WER/test (%)

1 - zero / random 49.9 / 68.3 60.1 / 75.5
1 mv zero / random 49.7 / 48.9 58.9 / 58.5

2 - zero / random 32.4 / >100.0 40.2 / >100.0
2 mv zero / random 30.2 / 34.4 38.5 / 41.3
2 mv 1st order 26.8 33.1
2 dmv zero / random 25.1 / 25.9 31.6 / 32.3

3 mv 2nd order 23.0 27.4

test set. The difference is moderate, when the parameters are

initialized with zero, corresponding to a uniform distribution.

In a next experiment, we initialized all parameters randomly

with plus or minus one. This results in a huge degradation for

the unnormalized features and – with exactly the same random

initialization – has only a minor impact when normalized fea-

tures are used. The differences are even larger for the second-

order experiments. This can be expected, since mean and

variance take on more extreme values when the features are

squared. Furthermore, projecting the observations to second-

order polynomials introduces correlation among the features.

For the zero initialization, the improvement from mean and

variance normalization is only moderate in WER, although

convergence is already strongly accelerated (see Figure 1).

For the unnormalized features and random initialization, the

optimization did not lead to a usable model for recognition

at all. Fastest convergence and best results are obtained after

decorrelation by means of a principal component analysis

(PCA) and mean and variance normalization of the features.

In addition, the influence of the initialization is the smallest

in this case. Because of the high dimension of the third-order

features, the estimation of the decorrelation matrix itself is

already computationally very expensive. Therefore, we only

performed a mean and variance normalization of the third-

order features, but initialized the models incrementally from

first to second to third-order features. In this manner, we obtain

our best result of 27.4% WER, which is a drastic improvement

over the maximum likelihood GHMM baseline system (39.4%

WER).

Qualitatively, we observed the same effect of the condi-

tion number and the initialization in the experiments with

Rprop. With Rprop, we obtained 31.4% WER with decorre-

lated second-order features and zero initialization, and 36.5%

WER with normalized features and random initialization. That

means, for a well-conditioned problem and a reasonable initial-

ization, the quality of the final model is almost independent

of the choice of the optimization algorithm. For the worse-

conditioned problem the RProp-result is better than the L-

BFGS-result. This is surprising, because L-BFGS uses an

approximation to the full Hessian matrix. We suspect that the

simple diagonal scaling of Rprop is more reliable for high-
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TABLE III
RESULTS ON THE WSJ CORPUS FOR MONOPHONE LOG-LINEAR SYSTEMS

WITH POLYNOMIAL FEATURES OF DEGREE m ∈ {1, 2, 3} WITH DIFFERENT

PREPROCESSINGS (SEE TABLE II) AND FOR THE TRIPHONE SYSTEMS WITH

ADDITIONAL SPARSE POSTERIOR FEATURES.

m sparse feat. dim. HMM states Preprocessing WER/test (%)

1 - 130 - 21.7
1 - 130 mv 21.2

2 - 130 - 9.7
2 - 130 mv 9.3
2 - 130 dmv 8.8

3 - 130 - 8.6
3 - 130 mv 7.0

2 9216 1500 - 3.6
2 9216 1500 dmv 3.3

dimensional problems than the Hessian approximation used in

L-BFGS.

Our log-linear system outperforms other systems based on

HMMs with comparable preprocessing. Bertolami and Bunke

[21] obtain 32.9% WER by a ROVER-combination of different

HMM systems. Especially interesting is the comparison to

the results obtained by methods which are commonly used

in speech recognition. Dreuw et al. [19] obtain 31.6% WER

with GHMMs with lattice-based MMI training and 30.0%

with MPE training. Their system is further improved with

an additional discriminative adaptation method (29.0% WER).

The system of Graves [22], which has a completely different

architecture based on recurrent neural networks, outperforms

our system with 25.9% WER. The best published result of

21.2% WER on the IAM database is by España-Boquera

et al. [23], who use several specialized neural networks for

preprocessing.

B. Wall Street Journal

In order to validate our theoretical analysis on a speech

recognition task, we conducted experiments on the Wall Street

Journal corpus (WSJ0). The Wall Street Journal corpus con-

sists of 15h training data and half an hour of evaluation data.

Since the official corpus does not provide a development set,

we extracted 410 sentences from the North American Business

(NAB) task and used it as a development set.

The experimental setup is the same as in our previous work

[5]. We trained a standard GHMM system according to the

maximum likelihood criterion with the EM algorithm, and

a log-linear system in the same manner as the handwriting

recognition system on IAM. In both systems, MFCC features

with vocal tract length normalization and a voicedness feature

are used. Acoustic context is incorporated by using a sliding

window of nine frames. The dimension of the resulting feature

vector is reduced to 33 by means of a linear discriminant

analysis. 1500 generalized triphones are modeled, which are

obtained by a hierarchical clustering. The GMM has a pooled,

diagonal covariance matrix and a total of 223k mixture

components. The GHMM system achieves a WER of 3.6%

WER with a trigram language model on the evaluation set.

For the log-linear system, we used polynomial features and

9 ·210 sparse posterior features, which are derived as posterior

probabilities of a GMM with 210 components and context

expansion by nine frames. The WER of the log-linear system

on the evaluation set is 3.6% as well.

Considering our previous work, our results on the IAM

database are surprising. In this work, we were not aware

of the possible ill-conditioning of log-linear training. In our

experiments, we observed that after 50 to 100 iterations with

Rprop, the objective function only decreased very slowly.

Therefore, we stopped the optimization at the point where

the decrease in the objective function became very small. We

neither applied normalizations to the polynomial features nor

to the sparse posterior features. In addition, we initialized

all parameters randomly, which had a very negative effect in

the experiments on IAM. Nevertheless, all our experiments

behaved reasonable and we could obtain competitive results

on this task.

In order to further investigate this different behavior, we re-

peated a number of illustrative experiments from our previous

work with varied optimization. We used L-BFGS for training

and initialized all parameters with zero. We stopped training

after 100 iterations. First, we performed experiments with

polynomial features and different feature preprocessings on

the monophone system. The results are summarized in Table

III. The effect of the feature transformations is weaker than on

the handwriting task, but well observable for all polynomial

degrees. For first-order features, the WER is improved from

21.7% to 21.2% WER, and for second-order features from

9.7% to 9.3% (mean and variance normalization) and 8.8%

WER (decorrelation and mean and variance normalization).

As expected, the effect is strongest for third-order features.

Here, the WER is improved from 8.6% to 7.0% by mean and

variance normalization and initialization with the second-order

model.

The explanation for the better convergence behavior on WSJ

is simple. In our feature extraction, we used mean and variance

normalization of the MFCC features on segment level (but

not for the voicedness feature), which is a common technique

in speech recognition for improving generalization of the

models. The normalization of the basic features partly carries

over to the higher-order polynomial features. For this reason,

unintentionally, the condition of the optimization problem was

strongly improved. Nevertheless, additional gains are obtained

by the application of feature transformations.

For our final triphone system, we used sparse posterior

features in addition to the polynomial features. According to

our convergence analysis, the use of sparse posterior features is

not only advantageous because of the lower costs per iteration,

but also because they result in a better convergence behavior.

First, the features are only weakly correlated. Second, because

of their definition as posterior probabilities of clusters with

similar prior probabilities, their means are close to zero and

their variances are similar. Therefore, convergence is fast,

when sparse posterior features are used. Further accelerating

convergence by shifting the mean or decorrelation is not
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possible without loosing the sparsity of the features. Therefore,

we applied the feature transformations only to the polynomial

features. Surprisingly, for the setups with sparse features,

Rprop converged much faster than L-BFGS. We obtained our

best result of 3.3% WER on the evaluation set after only

20 Rprop iterations. This is a slight improvement over the

log-linear system without decorrelation of the second-order

features after 75 Rprop iterations and the GHMM baseline

system (3.6% WER both) as well. More importantly, the

reduced training time allows for the application of the log-

linear training on larger datasets.

V. DISCUSSION

In this paper, we presented a convergence analysis for

the optimization of the parameters of log-linear models. We

showed that the convergence behavior of log-linear training

depends on the mean and variance of the features and the

correlation among the features. In extreme cases, the optimiza-

tion problem can be highly ill-posed. Conversely, our analysis

shows that log-linear training can be preconditioned by feature

transformations.

We verified our findings on a continuous handwriting

recognition task and a large vocabulary continuous speech

recognition task. We found that the theoretical analysis is in

accordance to the experimental observations. The effect of

the feature normalizations was very strong on the handwriting

recognition task IAM, where the improvement of the condition

number of the optimization problem was essential for obtain-

ing a competitive result. On the speech recognition task WSJ,

the effect was less pronounced, because common normaliza-

tion techniques in speech recognition already alleviate the ill-

conditioning of the optimization problem. Furthermore, the use

of sparse posterior features on the WSJ setup was beneficial

for the convergence behavior. Still, we could improve our

log-linear speech recognition system on WSJ and strongly

reduce training time. The log-linear speech recognition system

now slightly outperforms the conventional maximum likeli-

hood GHMM system on WSJ. In contrast to other methods

for accelerating log-linear training, e.g. feature selection, the

acceleration of training is achieved by a transformation to

an equivalent optimization problem and therefore does not

require any approximation or heuristic. In future work, we

want to evaluate log-linear models on larger tasks, which is

now tractable with the accelerated training.

We found that for experiments with sparse features, Rprop

converges much faster than L-BFGS, which is commonly

regarded as the best optimization algorithm for log-linear

training. This may be due to the much higher feature di-

mension when sparse features are used. A detailed analysis

of the convergence properties of Rprop and a comparison to

numerical optimization algorithms with a better theoretical

foundation as L-BFGS would therefore be valuable.
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