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Abstract. We describe our previous and current efforts towards achiev-
ing an unusual personal RoboCup goal: to train a full team of robots
directly through demonstration, on the field of play at the RoboCup
venue, how to collaboratively play soccer, and then use this trained
team in the competition itself. Using our method, HiTAB, we can train
teams of collaborative agents via demonstration to perform nontrivial
joint behaviors in the form of hierarchical finite-state automata. We
discuss HiTAB, our previous efforts in using it in RoboCup 2011 and
2012, recent experimental work, and our current efforts for 2014, then
suggest a new RoboCup Technical Challenge problem in learning from
demonstration.

Imagine that you are at an unfamiliar disaster site with a team of robots, and
are faced with a previously unseen task for them to do. The robots have only
rudimentary but useful utility behaviors implemented. You are not a program-
mer. Without coding them, you have only a few hours to get your robots doing
useful collaborative work in this new environment. How would you do this?

Our interest lies in rapid, real-time multi-robot training from demonstration.
Here a single human trainer teaches a team of robots, via teleoperation, how to
collectively perform tasks in previously unforeseen environments. This is difficult
for two reasons. First, nontrivial behaviors can present a high-dimensional space
to learn, yet one can only provide a few samples, as online training samples are
costly to collect. This is a worst case for the so-called “curse of dimensionality”.
Second, when training multiple interactive robots, even if you can quantify the
emergent macro-level group behavior you wish to achieve, in order to do learning,
each agent needs to know the micro-level behavior he is being asked to do. One
may have a micro→macro function (a simulator), but it is unlikely that one has
the inverse macro→micro function, resulting in what we call the “multiagent
inverse problem”. These two challenges mean that real-time multi-robot learning
from demonstration has proven very difficult and has a very sparse literature.

Over the past several years we have participated in the Kid-Size Humanoid
League with a single objective: to successfully do a personal RoboCup-style tech-
nical challenge of our own invention, independent of those offered at RoboCup:
can we train multiple generic robots, through demonstration on the
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field, how to play collaborative soccer at RoboCup solely within the
preparatory time prior to the competition itself?

This is a very high bar: but over the past four years we have made major
strides towards achieving it. In RoboCup 2011 we began by replacing a single
hard-coded behavior in one attacker with a behavior trained on the field at
the venue, and entered that robot into the competition. At RoboCup 2012 we
expanded on this by training an attacker to perform all of its soccer behaviors (17
automata, Fig. 1), again at the venue. This trained attacker scored our winning
goal against Osaka. This year we intend to train multiple robots, and ideally all
four robots on the team, to perform collaborative behaviors.

Our approach, HiTAB, applies supervised learning to train multiple agents to
perform behaviors in the form of decomposed hierarchical finite-state automata.
HiTAB uses several tricks, notably task decomposition both per-agent and within
a team, to break a complex joint behavior into smaller, very simple ones, and thus
radically reduce its dimensionality. Sufficient domain knowledge is involved that
HiTAB may fairly be thought of as a form of programming by demonstration.

This paper documents our past efforts at applying HiTAB on the field at
RoboCup. We also discuss related penalty-kick experiments using the technique,
and detail our success so far towards our 2014 goal. Finally, we propose a new
RoboCup Technical Challenge in multiagent learning from demonstration.

1 Related Work

Learning from demonstration (or LfD) has been applied to a huge range of
problems ranging from air hockey [2] to helicopter trajectory planning [14], but
rarely to the multi-robot case [1]. Most of the multi-robot learning literature
falls under agent modeling, where robots learn about one another rather than
about a task provided by a demonstrator. The most common multi-robot LfD
approach is to dismiss the macrophenomena entirely and issue separate micro-
level training directives to each individual agent [11]. Another approach is to
train individual robots only when they lack confidence about how to proceed [4].

1.1 Machine Learning at RoboCup

To put our “personal technical challenge problem” in context, it’s worthwhile to
survey how machine learning has been used at RoboCup in the past. Machine
learning has been applied to RoboCup since its inception, coming to slightly
less than 100 papers and demonstrations since 1997. We mention only a small
number of the papers here.

The bulk of the machine learning RoboCup literature has involved single
agents. This literature breaks down into three categories. First, learning algo-
rithms have been applied about a dozen times to sensor feature generation tasks
such as visual object recognition [13,31] and opponent behavior modeling and
detection (for example [8,29]). Second, a equal amount of literature has applied
machine learning to a robot’s kinematics, dynamics, or structure. The lion’s
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share of this work involves gait development (such as [18,19]), with some work
on kicking [6,32], head actuation [5] and omnidirectional velocity control [17].
Third, about sixteen papers have concerned themselves with learning higher-level
behaviors (for example [26,28]).

Cooperative Multiagent Learning. There have been approximately twenty five
cooperative multiagent learning papers at RoboCup. The area breaks down into
two categories. First, there is team learning, where a single learning algorithm is
used to optimize the behaviors of an entire team. Some of this work has involved
evolutionary computation methods to develop joint team behaviors (such as
[10,15]); reinforcement learning papers have instead usually developed a single
homogeneous behavior (for example [7,22]). In contrast the concurrent learning
literature, where separate learners are applied per-agent, has largely applied
multiagent reinforcement learning (such as [12,21]).

It is useful here to mention why this area is dominated by optimization meth-
ods (reinforcement learning, evolutionary computation): as mentioned before,
multiagent learning presents a difficult inverse problem, and optimization is
the primary way to solve such problems. However, optimization generally needs
many iterations for even moderately high-dimensional spaces, meaning realisti-
cally such methods must employ a simulator, and so are not optimal for real-time
training.

Training. Training differs from learning in that it involves a trainer, that is,
a person who iteratively teaches behaviors, observes agent performance, and
suggests corrections. This is a natural fit for soccer: but training is surprisingly
rare at RoboCup. RoboCup has long sponsored a related topic, coaching, but
the focus has more been on influencing players mid-game via a global view [27]
than on training. One exception has used a coach to train action sequences as
directed by human speech, then bind them to new speech directives [30]. This
work resembles our own in that it iteratively trained behaviors as compositions
of earlier ones. There is also work in imitation learning, whereby an agent learns
by observing a (not necessarily) human performer [9,16], though without any
trainer correction.

We know of two examples. besides our own, where training or related iterative
learning was done at RoboCup. The Austin Villa has fed the previous night’s
results into an optimization procedure to improve behaviors for the next day
[20]. Using corrective demonstration, the CMurfs coached a robot to select the
correct features and behaviors from a hard-coded set in an obstacle avoidance
task during the open technical challenge [3].

We also note that, like our own work, [27] does hierarchical decomposed
development of stateless policies, albeit built automatically and for single agents.

2 HiTAB: Hierarchical Training of Agent Behaviors

HiTAB is a multiagent LfD system which trains behaviors in the form of hier-
archical finite state automata (or HFA) represented as Moore machines. The
system is only summarized here: for a fuller description see [23].
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In the single-agent case, an automaton contains some number of states which
are each mapped to a unique behavior, plus a distinguished start state whose
behavior simply idles. A behavior may be atomic, that is, hard-coded, or it may
be another finite-state automaton trained earlier. Some atomic behaviors trigger
built-in features: for example, transitioning to the done (similarly failed) state
immediately transitions to start, and further signals to the grandparent automa-
ton that the parent HFA believes it is “done” with its task (or “failed”). Other
built-in behaviors increment or clear counters. Every state has an accompany-
ing transition function which tells HiTAB which state to transition to next time.
Each iteration, HiTAB queries the current state’s transition function, transitions
as directed, then pulses the new state’s behavior for an epsilon of time.

The trainer manually decomposes the desired task into a hierarchy of sub-
tasks, then iteratively trains the subtasks bottom-up. In our experience, an expe-
rienced trainer need decompose only once. Training an automaton only involves
learning its transition functions. In “training mode” the HFA transitions from
state to state only when told to by the demonstrator. When the demonstrator
transitions from state S to a new state S′ �= S, the automaton gathers the robot’s
current sensor feature vector �f , then stores a tuple 〈S, �f, S′〉 as a sample, and
in many cases a “default sample” 〈S′, �f , S′〉. A default sample says “as long as
the world looks like �f , continue doing S′ ”, and is added only when transitioning
to a continuous behavior (such as walk), as opposed to a one-shot behavior (like
kick).

When training has concluded, the robot enters a “testing mode”, at which
point it builds an automaton from the samples. To do this, for each i the robot
collects all tuples of the form 〈Si, �f , S′〉, then reduces them to 〈�f, S′〉. These
form data for a classifier Ci(�f) → S′ which defines the transition function Ti

accompanying state Si. We use decision trees (C4.5) to learn these classifiers.
The trainer then observes the performance of the automaton. If he detects

an incorrect behavior, he may correct it, adding a few new training samples,
and then re-build the classifiers. HiTAB can also perform unlearning: use the
corrective samples to determine which earlier samples had caused the erroneous
behavior (either due to sensor noise or user error), then delete them [25]. Finally,
the trainer can “undo” an incorrect sample he had just erroneously entered.
When he is satisfied with the automaton, he can save it to the behavior library,
at which point it becomes available as a behavior (and state) when training a
later, higher-level automaton. A behavior saved to the behavior library can be
revised in the future without retraining the entire HFA from scratch.

In HiTAB, both basic behaviors and sensor features may be parameterized:
thus we may say “go to X” rather than “go to the ball”; and similarly “angle to
X” rather than “angle to the nearest teammate”. Use of parameterized behaviors
or features in an automaton without binding them to ground values results in the
automaton itself being parameterized as well. Of course, ultimately each para-
meter must be bound to a ground value somewhere in the hierarchy: the set of
available ground values is, like basic behaviors, hard-coded by the experimenter.
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Fig. 1. Trained hierarchical finite-state automaton for RoboCup 2012. Unlabeled tran-
sitions are always executed. Note the significant repetition in pattern: part of this
is simply behavior similarity, but part is because the 2012 HFA interpreter did not
support parameterized behaviors or features (see Sect. 2).
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Table 1. Features in the Robocup 2011 and 2012 experiments

Is the ball visible? X coordinate of the ball on
the floor

Y coordinate of the ball on
the floor

Bearing to the ball Bearing to the attacker
goal

Counter value

Is an HFA done? Did an HFA fail?

Table 2. Basic behaviors in the Robocup 2011 and 2012 experiments

Continuously turn left Continuously turn right Continuously walk forward

Walk forward one step Sidestep one step left Sidestep one step right

Stop Re-calibrate gyros Increment counter

Pivot left Pivot right Reset counter

Kick left Kick right Signal “Done”

Signal “Failed” Wait for camera

HiTAB is adapted to multiagent scenarios in two ways. First, both homo-
geneous and heterogeneous interactive teams may be trained through a process
we call behavioral bootstrapping [24]. The demonstrator starts with robots with
empty behaviors, and iteratively selects a robot, trains it with a slightly more
sophisticated behavior in the context of the current (simpler) behaviors run-
ning on the other robots, then distributes this behavior to similar robots, and
repeats. Second, once sufficient joint interactive behaviors have been designed,
small teams of homogeneous or heterogeneous robots may be grouped together
under a controller agent whose atomic behaviors correspond to the joint trained
behaviors of its subordinates, and whose features correspond to useful statis-
tical information about the subordinates. The controller agent is then trained
using HiTAB. Homogeneous and heterogeneous controller agents may likewise
be trained together, then put under their own controller agent, and so on, thus
iteratively building entire swarms into a trained hierarchy of command. We have
used HiTAB to train groups of many hundreds of agents [23].

3 Our Previous Efforts at RoboCup

The RoboPatriots have been GMU’s entry in the RoboCup Humanoid League
from 2009 to present. Initially the RoboPatriots focused on issues related to robot
design, dynamic stability, and vision processing, and we exclusively used hand-
coded behaviors. Then at RoboCup 2011, we demonstrated a HiTAB-trained
robot as a proof-of-concept. The night before the competition, we deleted one
of the hard-coded behaviors (ball servoing) and trained a behavior in its place
through direct tele-operation of the robot on the field of play. We then saved
out the trained behavior, and during the competition, one attacker loaded this
behavior from a file and used it in an interpreter alongside the remaining hard-
coded behaviors. This trained behavior was simple and meant as a proof of
concept, but it worked perfectly.
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In 2012 we had a much more ambitious goal: to train the entire library of
behaviors of a single robot on the field immediately prior to the competition. Our
attacker robots in 2012 used a decomposition of 17 automata which collectively
defined a simple “child soccer” style of behaviors without localization: search
for the ball, approach the ball, align to the goal, align for kicking, kick, and
repeat. Two days before the competition, we deleted the entire behavior set and
proceeded to train an equivalent set of 17 automata in its place (Fig. 1), again
through tele-operation of the robot on the competition field. The final HFA was
saved to disk and run through an interpreter during game play.

The basic sensor features and robot behaviors we relied on to build these
automata are given in Tables 1 and 2 respectively: these were essentially the
same basic sensor features and behaviors used in the hard-coded version. Note
that not all features and behaviors were used in every HFA. The Wait for Cam-
era behavior ensured that we had new and complete vision information before
transitioning (our vision system was slower than the HFA).

The top-level HFA behavior,Main, performed “child soccer” by calling the fol-
lowing second-level behaviors, which triggered additional hierarchical behaviors:

– Search for Ball: Using the bearing to the ball, the robot did visual servoing
on the ball, with the additional constraint of performing a rotation if the ball
was missing for several frames. If the robot had rotated several times, it then
walked forward before resuming searching.

– Approach Ball: Using the bearing to the ball and distance to the ball, the
robot moved towards the ball while performing course corrections en route.

– Align to Goal: Using the bearing to the goal, the robot oriented toward the
goal while maintaining the ball near the robot’s feet. The robot pivoted around
the ball if it could not see the goal.

– Align for Kick: Using the 〈X,Y 〉 position of the ball, the robot took small
steps to get the ball in a box near its feet so a kick could be performed.

– Kick Ball: The robot kicked based on the X position of the ball. If after a
kick the ball was still there, then the robot would kick with its other foot. If
the ball was still there, the robot would take a step forward and repeat.

Issues such as referee box event response and recovery from falls were handled
with hard-coded logic (in the second case, resetting to Search for Ball). The
HFA included subroutines designed to handle high sensor noise: for example,
MoveToBallWithCounter would robustly handle the ball disappearing due to a
temporary camera error.

HiTAB can be used to rapidly retrain behaviors as needed. As an example,
we had to train an additional HFA after the first day of competition. During
our early matches, we observed that the Aim for Kick sub-behavior assumed
that the ball would consistently be near the robot’s feet. However, due to sensor
noise the robot might enter Align to Goal when the ball was far away, and so
when Aim for Kick was entered, it would take many, many baby steps towards
the ball. We then trained a new version, Aim for Kick With Ball Ahead to also
include a failure situation for when the ball was outside a box centered at the
robot’s feet. The new HFA was then used in our later matches.
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Table 3. Number of data samples for each HFA trained at RoboCup 2012. Provided
Samples are those directly provided by the user and do not include automatically
inserted “default samples” for continuous sub-behaviors. The data for ServoOnBall-
WithCounter was not saved, so the estimate is based on other HFAs which used a
counter.

Behavior Number of Samples Number of Provided Samples

ServoOnBall 11 11

ServoOnBallWithCounter (estimate) 10 (estimate) 9

SearchForBall 10 8

MoveToBall 9 9

MoveToBallWithCounter 10 9

ApproachBall 15 11

ServoOnGoal 9 9

ServoOnGoalWithCounter 12 11

ServoOnGoalWithPivot 9 7

AlignToGoal 12 9

AimForKick 9 9

AimForKickWithCounter 10 9

AlignForKickWithBallAhead 22 14

AlignForKick 42 35

TryToKick 10 10

KickBall 9 6

Main 34 19

Total 243 195

Table 3 shows the number of samples collected for all 17 trained HFAs. The
first column includes automatically inserted default samples while the second
column shows only the directly provided samples. Given the problem complexity,
we were able to train on a remarkably small number of samples.

Fig. 2. GMU’s trained Johnny-5 (magenta
#5) kicks the winning goal against Osaka.

During our second match versus
Team JEAP from Osaka University,
our trained robot scored the win-
ning goal. After discussion with col-
leagues at the competition, we believe
that, to the best of our knowledge, this
is the first time a competing robot at
RoboCup has used a full behavior set
trained in real time at the venue itself,
much less scored a goal using those
trained behaviors (Fig. 2).
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(a) Penalty kick experimental layout (b) Robot starts facing the goal

Fig. 3. Penalty kick experimental layout. The robot cannot initially see the ball.

4 Penalty Kick Experiments

One claimed benefit of LfD is that the trained behaviors perform as well as hand-
coded behaviors. After RoboCup 2012, we conducted experiments to verify this
claim by comparing our trained soccer behavior with the hand-coded behavior
deployed on our other attacker. The task was penalty kicks, similar to those used
during the RoboCup competition.

The robot was placed 40 cm away from the penalty kick mark with a neutral
head position and facing the goal. The ball was randomly placed within a 20 cm
diameter circle centered on the penalty kick mark (see Fig. 3(a)). Initially, the
robot could see the goal, but not the ball, as shown in Fig. 3(b). The metric was
time to kick the ball, independent of whether a goal was scored. Both behaviors
were run 30 times.

Figures 4(a)–(b) show histograms for the hard-coded and trained behaviors.
For both behaviors, sensor noise caused one run to take significantly longer than
the rest. The trained behavior had a mean execution time of 37.47 ± 5.51 sec.
(95 % confidence interval), while the hardcoded behavior had a mean of 35.85 ±
3.08. The means were not statistically significantly different.

5 Set Plays: A Multiagent Training Proof of Concept

For RoboCup 2014 our goal is to train not just a single robot but a full team of
humanoids to play interactive robot soccer. To that end we have begun with an
experiment in multi-robot training on the soccer field: set plays.

Multi-robot training is notionally difficult because of the interaction among
the robots and the challenges faced in coordinating them. To attack this problem
at scale, HiTAB relies on manual decomposition of a swarm of agents under a
hierarchy of trained “controller agents”. However for small groups (two to four
agents) we focus instead on developing joint behaviors among the agents. This
is the case for the set-play scenario, which typically involves two agents.

How might one use HiTAB to train an interactive joint behavior among two
robots without a controller agent coordinating them? We see three possibilities:
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Fig. 4. Penalty kick results. In both experiments, one run took longer than 60 seconds.

– Train the Robots Independently. We train one robot while tele-operating the
other (the dummy), and vice versa. This is the simplest approach, but to us it
does not intuitively feel like a match for multiagent training scenarios which
involve a significant degree of interaction.

– Bootstrap. We train one robot to perform a rudimentary version of its behav-
ior with the other robot doing nothing. We then train the second robot to do
a slightly more sophisticated version of its own behavior while the first robot
is performing its trained rudimentary behavior. This back-and-forth training
continues until the robots have been fully trained.

– Simultaneously Train. We use two HiTAB sessions, one per robot, to train
the robots at the same time while interacting with one another. This obvi-
ously requires much more effort on behalf of the demonstrator (or multiple
demonstrators working together).

For 2014 we have new robots (Darwin-OP humanoids) and so have decided to
base our system on a heavily modified version of the UPennalizers’s open-sourced
2013 champion software. This code provides localization and helpful behaviors
which we use as the foundation for basic behaviors and features in the set plays:

– GotoPosition(P,L) goes to location L on the field, facing the location of player
or object P , then broadcasts a “Ready” signal for five seconds.

– GotoBall goes to the ball position.
– AlignToTarget(R) orients around the ball until the robot is facing player or

object R.
– KickBall kicks the ball and broadcasts a “Kick” signal for five seconds.
– TurnLeft rotates to the left.

Each robot was also equipped with the robot sensor features Kicked(P) (did
P raise the Kick signal?), Ready(P) (did P raise the Ready signal?), Ball Lost
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Fig. 5. Trained hierarchical finite-state automata for the 2014 set-play experiments.
Passing and reception automata are shared among both robots, but each robot executes
a different top-level set play automata.

(has the ball been lost for over three seconds?), and Distance (to ball). Note that
the Goal, as a parameter, was considered to be always “Ready”.

Clearly these behaviors and features are higher-level than those used in 2012,
and the resulting automata are simple for a programmer to implement. We took
(and are continuing to take) such baby-steps on purpose: real-time training of
multirobot behaviors is notionally nontrivial, and previous examples for guidance
are few and far between. Our goal is to show that such a thing is even feasible.

Using this foundation, we trained the robots independently via dummies to
perform the joint set play behaviors shown in Fig. 5: Robot A would acquire the
ball while B moved to a preset position. When both were ready, Robot A would
then kick to B and move to a second preset position. Then Robot B would kick
to A, which would then kick to the goal.

Though we had imagined that we would need to perform simultaneous train-
ing or bootstrapping, in fact we have been perfectly successful in training set
plays separately using dummies. This surprising result is likely due to the small
number (two) of robots involved, but it has nonetheless forced us to question the
prevailing wisdom: does interaction necessarily complicate multi-robot learning?

Whether independent training will be sufficient for the remainder of the
behaviors for 2014 remains to be seen: and ultimately we will need to train a
virtual controller agent (likely residing on the goalie) to direct which behaviors
and joint actions should be undertaken by the team at any given time.
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6 Conclusion: A Technical Challenge Problem Proposal

In this paper we outlined our efforts so far towards an unusual and challenging
goal: to successfully train a full robot soccer team on the field of play at the
RoboCup competition. We think that a “personal technical challenge” like this
is not only a useful research pursuit, but it also has direct impact on robot
soccer. After all, coaching and training players is an integral part of the sport!
People are not born with, nor hard-coded, to play soccer: they learn it from
demonstration and explanation from coaches and through the imitation of other
players.

To this end, we propose a new yearly challenge problem for RoboCup involv-
ing collaborative multiagent LfD (beyond just an open challenge). RoboCup
teams would yearly be presented with a brand new task, and they would have
four hours to train their robots to collectively perform that task. The robots
might be asked to do a certain set play; or to collectively form a bucket brigade
to convey balls from one corner of the field to the other. In earlier years teams
might be informed of the task a month before; or the tasks might be restricted
to single agents. But eventually the task should require multiple interacting
agents and few clues provided beforehand except for the basic behaviors per-
mitted. Differences in robot hardware or software architectures might constrain
the available techniques, and so the challenge might need to be more a showcase
than a judged competition.

Acknowledgments. Research in this paper was done under NSF grant 1317813.
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