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Mathematical models of transmission have become invaluable management tools in planning for the

control of emerging infectious diseases. A key variable in such models is the reproductive number

R. For new emerging infectious diseases, the value of the reproductive number can only be inferred

indirectly from the observed exponential epidemic growth rate r. Such inference is ambiguous as several

different equations exist that relate the reproductive number to the growth rate, and it is unclear which

of these equations might apply to a new infection. Here, we show that these different equations differ

only with respect to their assumed shape of the generation interval distribution. Therefore, the shape of

the generation interval distribution determines which equation is appropriate for inferring the

reproductive number from the observed growth rate. We show that by assuming all generation intervals

to be equal to the mean, we obtain an upper bound to the range of possible values that the reproductive

number may attain for a given growth rate. Furthermore, we show that by taking the generation interval

distribution equal to the observed distribution, it is possible to obtain an empirical estimate of the

reproductive number.
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1. INTRODUCTION

The past decade has seen a dramatic increase in the

attention paid to infectious disease epidemics as a

potential health threat. This is due in part to disease

outbreaks in domestic livestock (Keeling et al. 2001), the

fear of bioterrorist attacks with smallpox virus (Gani &

Leach 2001), the emergence of severe acute respiratory

syndrome (SARS) in 2003 (Lipsitch et al. 2003) and

the risk of an influenza pandemic among human

populations (Longini et al. 2004; Ferguson et al. 2005).

Planning for the mitigation and control of such health

threats relies increasingly on mathematical models of

infection transmission.

One of the key parameters inmathematical transmission

models is the reproductive number R0, defined as the

number of secondary infections that arise from a typical

primary case in a completely susceptible population.When

infection is spreading through a population that may be

partially immune, it is often more convenient to work with

an effective reproductive numberR, which is defined as the

number of secondary infections that arise from a typical

primary case. The magnitude of R is a useful indicator of

both the risk of an epidemic and the effort required to

control an infection (Anderson & May 1991; Roberts &

Heesterbeek 2003; Heffernan et al. 2005). Accurate

estimation of the value of the reproductive number is

crucial to planning for the control of an infection.
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For new emerging infections, such as SARS in 2003,

the available information about the transmissibility of a

new infectious disease epidemic is likely to be restricted to

daily counts of new cases. It is well known that these

counts increase exponentially in the initial phase of an

epidemic. The rate of exponential growth, r, is defined as

the per capita change in number of new cases per unit of

time. The observed value of the growth rate r can be

related to the value of reproductive number R through a

linear equation: RZ1CrTc (Anderson & May 1991;

Pybus et al. 2001; Ferguson et al. 2005). Here, Tc is the

mean generation interval, defined as the mean duration

between time of infection of a secondary infectee and the

time of infection of its primary infector (sometimes this is

called the serial interval or generation time).

Demographers, ecologists and evolutionary biologists

take a slightly different approach. They derive the growth

rate from fecundity rates, survival rates and the reproduc-

tive number R according to the so-called Lotka–Euler

equation (Dublin & Lotka 1925; Feller 1941; Metz &

Diekmann 1986; Keyfitz & Caswell 2005). Ecological

textbooks suggest simplifying this equation by ignoring

variability in generation time (Begon et al. 1996). The

result is, after rearranging, an exponential equation:

RZexp(rTc). Here, Tc is the cohort generation time, a

demographic analogue of the epidemiological mean

generation interval.

Having two alternative equations for relating the

desired value of reproductive number to the observed

value for growth rate, we face the difficulty of choosing the

most appropriate one. For example, the growth rate of the

Hepatitis C epidemic is estimated to be rZ0.96 per year,
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and the mean generation interval of this infection is

of the order of TcZ20 years (Pybus et al. 2001).

The value for the reproductive number by the linear

equation is RZ1C0.096!20Z2.9, whereas the value

that is obtained using the exponential equation is

RZexp(0.096!20)Z6.8. Such large discrepancies do

matter in planning for public health interventions. There

exist several other expressions that relate the reproductive

number to the growth rate (Dublin & Lotka 1925;

Lipsitch et al. 2003; Wearing et al. 2005) and expressions

for estimating the reproductive number from time-series

of case counts (Wallinga & Teunis 2004). How should we

choose the most appropriate equation for inferring the

reproductive number from observed growth rates for a

particular infection?

We start by recapitulating the Lotka–Euler equation in

terms of human demography, and we rephrase this

equation into more convenient terms for infectious disease

epidemiology, following Levin et al. (1996). We use the

rephrased Lotka–Euler equation to examine the assump-

tions that underlie the alternative relationships between

reproductive number and observed change in a number of

cases. We will illustrate our findings by estimating the

reproductive number R for influenza A infections. The key

variables and their interpretation in ecological, demogra-

phical and epidemiological terms are presented in the

electronic supplementary material.
2. INFERRING R FROM r
(a) Deriving the Lotka–Euler equation

We introduce the Lotka–Euler equation using the human

population as an example. For simplicity, we focus on

female individuals, assuming that there is always a sufficient

supply of males to ensure reproduction. We measure time

and age in years, and we will refer to the present time as

tZ0, such that events in the past occurred when time t is

negative and events in the future will occur when time t is

positive. We assume that the population displays exponen-

tial growth at a fixed growth rate and that the age

distribution of the population does not change over time.

The Lotka–Euler equation can be understood as the

combination of two concepts that can be explained

intuitively. First, if we add up the number of children

born to mothers of all ages at a particular time, we get the

total number of births at that time. The number of births

to mothers of age a at time t is equal to the number of

births at time tKa (the number of mothers, including

those who have not survived) multiplied by the expected

number of offspring per year for mothers of age a.

Summing these births over all possible mothers’ ages, we

obtain the total number of births in year t,

bðtÞZ

ðN
aZ0

bðtKaÞnðaÞda; ð2:1Þ

where b(t) refers to birth rate of the population at time t

and n(a) refers to the rate of production of female offspring

by a mother at age a. This equation is a specific case of the

renewal equation for the birth process (Feller 1941).

Second, because the population is growing exponen-

tially with a stable age distribution, the number of births at

any given time (say t) is equal to the number of births a

time units ago, multiplied by the exponential growth of the
Proc. R. Soc. B (2007)
population since then

bðtÞZ bðtKaÞera: ð2:2Þ

Combining these two equations, we obtain an

expression with b(t) on both sides

bðtÞZ

ðN
aZ0

bðtÞeKranðaÞda: ð2:3Þ

This equation has the intuitive interpretation that all the

births in the past, multiplied by the number of offspring

for individuals born at each time in the past, must add up

to the current births.

The composite parameter n(a) is more familiarly

known in demography as the product of the survivorship

and fecundity functions, n(a)Zl(a)m(a). Using this more

familiar parameterization and removing b(t) from both

sides of equation, we obtain the Lotka–Euler equation

1Z

ðN
aZ0

eKralðaÞmðaÞda: ð2:4Þ

(b) A moment generating function expression

for the reproductive number R

While the Lotka–Euler equation is a basic part of

demography, in which one may be interested in deriving

population growth rates from life tables, a related problem

in epidemiology is to estimate the reproductive number,R,

from growth rates of a disease. We have previously defined

n(a) as the rate of production of female offspring by a

mother at age a. It is readily seen that if we integrate n(a)

over the whole lifespan, we obtain the total number of

female offspring produced by a mother over her lifespan,

known as R

RZ

ðN
0
nðaÞda: ð2:5Þ

The rate n(a) can be normalized to a distribution g (a),

which is the distribution of age at child bearing (cf. Metz &

Diekmann 1986)

gðaÞZ
nðaÞÐN

0 nðaÞda
Z

nðaÞ

R
: ð2:6Þ

The generation interval distribution for an infectious

disease is the probability distribution function for the time

from infection of an individual to the infection of a

secondary case by that individual. If we take the ‘age’ of an

infection to be the time since infection, then in the

notation above, the generation interval distribution is

equivalent to g(a) above. Substituting this expression

for the generation interval distribution g(a) into the

Lotka–Euler equation (2.4), we obtain

1

R
Z

ðN
aZ0

eKragðaÞda: ð2:7Þ

The term that now appears in the right-hand side of this

equation is familiar to mathematicians as the so-called

Laplace transform of the function g(a).More specifically, it

is known to statisticians as themoment generating function

M(z) of the distribution g(a) (e.g. Mood et al. 1974)

MðzÞZ

ðN
aZ0

ezagðaÞda: ð2:8Þ

We use this moment generating function to simplify the

notation of the rephrased Lotka–Euler equation (2.7).
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Here, the argument z takes the value of minus the growth

rate,Kr:

RZ
1

MðKrÞ
; ð2:9Þ

provided that M(Kr) exists.

A moment generating function, if it exists, uniquely

characterizes the shape of the entire probability distri-

bution: M(z) determines g(a) and, conversely, g(a)

determines M(z). The biological corollary of this moment

generating function expression is then that a relationship

between growth rate r and reproductive number R

uniquely characterizes the shape of the generation interval

distribution and, conversely, the shape of the generation

interval distribution determines the appropriate relation-

ship between the reproductive number and the growth

rate. The electronic supplementary material provides

further mathematical details.
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Figure 1. Generation interval distributions uniquely charac-
terize the relationship between the reproductive number R
and the growth rate r: (a) generation interval distributions
g(a) with identical mean Tc and increasing coefficient of
variation s/Tc from 0.25 (long dashes), 0.5 (long and short
dashes), 0.75 (short dashes) to 1 (dots) and (b) the
corresponding relationships between growth rate r and
reproductive number R, the drawn curve indicates the
upper bound obtained for the delta distribution.
3. SPECIFIC GENERATION INTERVAL
DISTRIBUTIONS
(a) Epidemic models

An epidemic model implicitly specifies a generation

interval distribution. A simple epidemic model categorizes

the population of hosts according to their infection status

as either susceptible, infectious or recovered. This results

in the so-called susceptible–infectious–recovered (SIR)

class of epidemic models. The rate of leaving the infectious

stage is denoted by b, and this rate is assumed constant.

The rate of making contacts during this infectious stage is

also assumed constant. The duration of a generation

interval is thereby implicitly specified as an exponential

distribution with mean TcZ1/b. Such an exponential

distribution is illustrated in figure 1a, dotted line. We

substitute the moment generating function for the

exponential distribution M(z)Zb/(bKz) with zZKr (see

table 2 of the electronic supplementary material) into the

moment generating function expression (2.9). Simplifying

the result gives a linear relationship between growth rate r

and reproductive number R,

RZ 1C r=b; ð3:1Þ

provided that rOKb. This linear relationship between

growth rate and reproductive number is shown in

figure 1b, dotted line. The linear relationship is frequently

used in infectious disease epidemiology, with the term 1/b

interpreted as mean generation interval (Ferguson et al.

2005, 2006) or as duration of the infectious period

(Anderson & May 1991; Pybus et al. 2001).

To enhance realism of the epidemic models, we can add

an exposed (infected but not yet infectious) stage. This

results in the so-called susceptible–exposed–infectious–

recovered (SEIR) class of epidemic models. The rate of

leaving the exposed stage is b1, the rate of leaving the

infectious stage is b2 and both rates are assumed constant.

Thereby, the generation interval distribution is implicitly

specified as a convolution of two exponential distributions

with a mean TcZ1/b1C1/b2. Such a distribution has one

mode with a long right tail (see figure 1a, short-dashed

line). We substitute the moment generating function of

this distribution (see electronic supplementary material)

into the moment generating function expression (2.9).
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After rearranging, we obtain the relationship

RZ ð1C r=b1Þð1C r=b2Þ; ð3:2Þ

with the proviso that rOmin(Kb1,Kb2). This relationship

is a quadratic increasing curve (see figure 1b, short-dashed

line). The same equation has been derived by Lipsitch

et al. (2003), using a different approach.

More complicated epidemic models have incorporated

additional exposed and infectious stages. As an example,

we consider the epidemic model proposed by Wearing

et al. (2005) which has a number of x exposed stages, each

with a rate b1, and a number of y infectious stages, each

with a rate b2. We can compose the moment generating

function of the generation interval from the generating

functions of duration of each stage (see electronic

supplementary material). Substitution of the resulting

moment generating function into expression (2.9) gives

RZ
ð1C r=b1Þ

xPy
iZ1 ð1C r=b2Þ

Ki
; ð3:3Þ

with the proviso that rOmin(Kb1,Kb2). The same

equation has been presented by Wearing et al. (2005).
(b) Normal distributions

For infections with a mean generation interval Tc and a

standard deviation s, the generation intervals may

approximate a normal distribution (figure 1a, long-dashed

line). Assuming a normally distributed generation interval
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yields the following relationship between growth rate r and

reproductive number R (Dublin & Lotka 1925):

RZ erTcKð1=2Þr2s2 : ð3:4Þ

This relationship is a convex curve that approximates an

exponential curve (see figure 1b, long-dashed line).

This equation also shows that a distribution which is

more concentrated around the mean generation interval,

with a lower value for s, results in higher values for the

reproductive number R (see figure 1b: the long-dashed

line which corresponds to the more concentrated distri-

bution is above the long and short-dashed line which

corresponds to the more dispersed distribution).
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Figure 2. Observed generation intervals for influenza A virus
infections and the empirical relationship between reproduc-
tive number and growth rate: (a) histogram of observed
generation intervals between two subsequent influenza cases
in a household (after Hirotsu et al. 2004), the lighter shading
indicates observations that could be due to co-primary or
tertiary infections and (b) the corresponding empirical
relationship between R and r, according to equation (3.6).
(c) Delta distributions

For an infection where all secondary infections are exactly

equal to the mean generation interval Tc, the distribution

conforms to a so-called delta distribution. For this

distribution, the moment generating function expression

(2.9) reduces to a simple exponential relationship

RZ erTc : ð3:5Þ

This relationship is an exponentially increasing curve

(figure 1b, drawn line).

The exponential equation (3.5) can be intuitively

understood by realizing that the relative increase in the

number of cases over an interval of Tc time units is per

definition exp(rTc), and that, because in this specific case

all generation intervals are of equal length, this relative

increase is also exactly equal to R.

The delta distribution is the most concentrated

distribution possible. We expect to find that for a given

value of the growth rate and mean generation interval, the

reproductive number attains the highest possible value.

This can be illustrated by an example: if half of the cases

will produce secondary infections a bit earlier than the

average generation interval Tc and the other half will

produce secondary infections a bit later than average, the

additional number of secondary and tertiary cases which

are due to the faster infection will more than compensate

for the postponed cases that result from the slower

infection. Therefore, epidemics with some variation in

the duration of their generation intervals will increase at a

higher growth rate r for a given reproductive number R

than epidemics without any variation in generation

interval. And likewise, epidemics without variation in

generation interval will grow at higher reproductive

number R for a given growth rate r than epidemics with

variation in the duration of their generation intervals.

Our intuitive explanation of this upper bound is

supported by a rigorous mathematical argument that

invokes Jensen’s inequality (see electronic supplementary

material). Therefore, the exponential relationship in

equation (3.5) provides an exact upper bound to the

value that reproductive numbers can take. Hence, it is

possible to indicate the rangeof values that the reproductive

numbers R may attain for any shape of the generation

interval distribution, using only the observed values for

growth rate r and themean generation intervalTc (table 1).

We can even obtain a criterion for the relative

overestimation of the reproductive number by equation

(3.5). We take the ratio of equations (3.4) and (3.5), and

rearrange. The relative difference between the upper
Proc. R. Soc. B (2007)
bound and the actual value of the reproductive number

remains below 5% whenever the standard deviation for

generation intervals s is smaller than 46% of the doubling

time tdZln 2/r.
(d) Empirical distributions

We can observe the duration of generation intervals in a

period of exponential epidemic growth, and approximate

the generation interval distribution g(a) by a histogram of

the observed durations. We denote the category bounds in

such a histogram by a0, a1, ., an, and the observed

relative frequencies of observed generation intervals

within these bounds as y1, y2, ., yn. Substituting the

observed distribution into the moment generating func-

tion expression (2.9) and calculating the integral gives

RZ
rPn

iZ1 yiðe
KraiK1KeKrai Þ=ðaiKaiK1Þ

: ð3:6Þ

For an observed histogram of generation intervals

(figure 2a), this relationship is a convex increasing curve

(figure 2b).
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4. TRACKING REPRODUCTIVE NUMBERS
In a typical infectious disease management setting, such as

the initial phase of the SARS outbreak of 2003, one of the

important tasks of epidemiologists is to provide insight

into the change in reproductive number R after control

measures have been implemented. In such conditions, the

assumption of a constant environment and exponential

increase in new case counts is untenable.

Estimates for reproductive numbers can be obtained

from the renewal equation for the birth process (equation

(2.1)). We substitute observed birth rates b̂ðtÞ for b(t), and

a time-varying infection rate Rtg(a) for n(a). We assume

that g(a) is independent of time t. After rearranging,

we have an equation for the reproductive number Rt

(C. Fraser 2006, personal communication)

Rt Z
b̂ðtÞÐN

aZ0 b̂ðtKaÞgðaÞda
: ð4:1Þ

This reproductive number Rt assigns its value to the time t

at which the secondary cases are infected.

An alternative is to assign the value of the reproductive

number to the time u at which the primary cases are

infected. We find this value by integrating over all possible

times t,

Ru Z

ðN
tZu

gðtKuÞRtdt Z

ðN
tZu

b̂ðtÞgðtKuÞÐN
aZ0 b̂ðtKaÞgðaÞda

dt: ð4:2Þ

This equation has been used to estimate the time-varying

reproductive number for SARS (Wallinga & Teunis 2004).

Both estimators are generalizations of the moment

generating function expression (2.9): whereas the

expressions for R invoke an integral transformation of

the generation interval distribution by the exponential

growth curve, the estimators for Rt and Ru invoke an

integral transformation of the generation interval distri-

bution by the observed growth curve. In all the cases, the

value of the reproductive number depends on the shape of

the generation interval distribution.
5. APPLICATION TO INFLUENZA A
We use human infections with the influenza A virus to

illustrate the impact that various assumptions about the

shape of the generation interval distribution may have on

the estimated value of the reproductive numbers for a

given growth rate. Mills et al. (2004) analysed the

observed growth rates for influenza A during the initial

phase of the Spanish influenza pandemic in 1918 in 45

major cities in the USA. They found that the median of

initial growth rates of this influenza epidemic was rZ0.20

per day.

We focus on influenza within households and measure

generation intervals as the duration from symptom onset of

one household member back to the time of symptom onset

of the first infected householdmember.We have to exclude

observations where a household member developed

symptoms simultaneously with the first infected household

member (primary and co-primary cases), and observations

where the householdmemberwas unlikely to be infected by

the first infected household member (e.g. tertiary cases).

Observed generation intervals for influenza A in a Japanese

household study (Hirotsu et al. 2004), after exclusion of

possible co-primary and tertiary cases, yield an estimated
Proc. R. Soc. B (2007)
meanofTcZ2.85days andan estimated standarddeviation

of sZ0.93 days (see figure 2a).

Without specific assumptions about the shape of the

generation interval distribution (table 1), we find that the

reproductive number of influenzaA is larger thanRZ1, but

smaller than or equal to RZ1.77. Since the estimated

standard deviation of sZ0.93 days is less than the criterion

of 46% of the doubling time tdZln 2/0.20z3.5 days, we

know that the upper bound RZ1.77 gives only a slight

overestimation. We obtain a value of the reproductive

number for influenza A of RZ1.57 for the SIR epidemic

model (equation (3.1)), a value of RZ1.65 for the SEIR

epidemicmodel (equation (3.2)) and a value ofRZ1.66 for

themore complicated epidemicmodelwith one latent stage

and two infectious stages (equation (3.3), with xZ1, yZ2).

Perhaps, the most accurate estimate is obtained with the

empirical histogram (equation (3.6); figure 2a). This gives

a value for the reproductive number of influenza A of

RZ1.73 secondary cases per primary case.
6. DISCUSSION
New emerging diseases require inference of the reproduc-

tive number for an unknown infectious agent from the

observed increase in case counts over time.We have shown

that the existing relationships between observed epidemic

growth rate and a reproductive number differ only with

respect to their implicit presupposition about the precise

shape of the generation interval distribution. Therefore,

the agreement between the presupposed and the actual

shape of the generation interval distribution determines

the appropriateness of a relationship between observed

epidemic growth rate and reproductive number.

Often, we have a poor knowledge of the precise shape of

the generation interval distribution. Our results show that

it is nonetheless possible to estimate the value of the

reproductive number. Even in the absence of any

information regarding the shape, we can indicate the

upper bound to the possible values that a reproductive

number can take (table 1). And with a few observed

generation intervals, we can use the empirical relationship

between observed growth rate and reproductive numbers

(equation (3.6)).

The reproductive number has often been named as a

key concept in epidemic theory (Anderson & May 1991;

Roberts & Heesterbeek 2003; Heffernan et al. 2005).

Since inference of the value of the reproductive number

depends crucially on the generation interval distribution,

it is surprising that very little is known about this

distribution. There is potential for studying a variety of

basic epidemiological and ecological questions. We

address three of them here.

Firstly, the theoretical framework can be expanded to

include discrete generation times, which might be more

appropriate for diseases where the moment of infection is

tied to discrete times. Such an expanded framework allows

for estimation of reproductive numbers for a wide range of

infections and organisms, and it could draw on the existing

theory that has been developed for life-history analysis in

ecology (Caswell 2001).

Secondly, it is possible to estimate the key transmission

variables in epidemic models by fitting the modelled

generation interval distribution to the observed generation

interval distribution. We have followed this approach by
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fitting the epidemic models to the observed generation

intervals for influenza.

Thirdly, there will be benefit in collecting data to assess

distributions for generation intervals for various infec-

tions. It will be interesting to see whether generation

intervals within households differ from generation inter-

vals between households. Such a difference might explain

the discrepancies between the various reported values for

the mean generation interval of influenza A (Longini et al.

2004; Mills et al. 2004; Ferguson et al. 2005, 2006).

To conclude, the variety of equations that relate

observed growth rate to reproductive number can be

understood within the Lotka–Euler framework which

embraces both a description of the infection cycle and a

description of the change in number of new case counts.

The observed generation intervals and the observed

epidemic growth, when taken together, specify the

appropriate value of the reproductive number, and

therefore, the required control effort to contain the

epidemic. This means that infectious disease surveillance

systems which have an objective to inform health policy

makers on the required control effort should monitor

the symptom onset date of new cases as well as their

generation interval for new emerging infections.
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