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Abstract— Whereas many results are known about thresholds
for ensembles of low-density parity-check codes under message-
passing iterative decoding, this is not the case for linear program-
ming decoding. Towards closing this knowledge gap, this paper
presents some bounds on the thresholds of low-density parity-
check code ensembles under linear programming decoding.

I. I NTRODUCTION

Message-passing iterative (MPI) decoding and linear pro-
gramming (LP) decoding are very efficient methods to achieve
excellent decoding performance of low-density parity-check
(LDPC) codes on a variety of channels. While an enormous
amount of work has been devoted to the understanding of
LDPC codes under MPI decoding (see e.g. [1], [2], [3], [4],
[5], [6] for results on thresholds), comparably few results
on the performance of LDPC codes using the more recent
LP decoding are known. In this paper we provide analytical
bounds on thresholds of LP decoding; these bounds establish
necessary conditions for the existence of LP decoding thresh-
olds.

We note that the existence of such thresholds is not cleara
priori . In contrast to [7], where we discuss cases where we can
guarantee a threshold under LP decoding, here we will show
cases where an LP decoding threshold does not exist. E.g., the
sequence of random codes where each entry in a parity-check
matrix is drawn independently from a Bernoulli distribution
with arbitrary nonzero parameterθ does not possess an SNR-
threshold (in the AWGNC case) or anε-threshold (in the
BSC case). Also, there are ensembles of codes that do not
show arbitrary low probability of decoding error for any SNR
(AWGNC) or any positiveε (BSC) even if the code rate is
allowed to approach zero and the variable degree is allowed
to grow exponentially fast in the block length.

Because LP decoding and MPI decoding are essentially
equivalent in the case of the binary erasure channel (BEC),
well-known results about MPI decoding for the BEC (see
e.g. [2], [3]) can be used for making statements about LP
decoding thresholds and therefore we will not deal any further
with the BEC case here.

The paper is structured as follows. After having concluded
this introduction with some remarks about our notation, we
will review ML and LP decoding in Sec. II. The main part

of the paper will be Sec. III where we present so-called0-
neighborhood-based bounds on the LP decoding threshold.
Finally, in Sec. IV we will present so-called2-neighborhood-
based bounds.

Let us fix some notation. We letR, R+, andR++ be the
set of real numbers, the set of non-negative real numbers, and
the set of positive real numbers, respectively. Moreover, we
will use the canonical embedding of the setF2 = {0, 1} into
R. The convex hull (see e.g [8]) of a setA ⊆ R

n is denoted
by conv(A). If A is a subset ofFn

2 then conv(A) denotes
the convex hull of the setA after A has been canonically
embedded inRn. Similarly, the conic hull (see e.g [8]) of a
setA ⊆ R

n will be denoted byconic(A) and if A is a subset
of Fn

2 thenconic(A) denotes the conic hull of the setA after
A has been canonically embedded inR

n. Thei-th component
of a vectorx will be called [x]i or xi and the element in the
j-th row andi-th column of a matrixA will be called [A]j,i.

Let C be a binary linear code defined by a parity-check
matrix H of size m by n. Based onH, we define the sets
I , I(H) , {1, . . . , n}, J , J (H) , {1, . . . ,m}, Ij ,

Ij(H) , {i ∈ I | [H]j,i = 1} for eachj ∈ J , andJi ,

Ji(H) , {j ∈ J | [H]j,i = 1} for eachi ∈ I. Moreover,
for eachj ∈ J we define the codesCj , Cj(H) , {x ∈
F
n
2 | hjx

T = 0 (mod 2)}, wherehj is thej-th row ofH. Note
that the codeCj is a code of lengthn where all positions not in
Ij are unconstrained. For simplicity of notation, we will never
indicate the parity-check matrix as an argument ofI, J , etc.;
it will be clear from the context to what parity-check matrix
we are referring to. Finally, by a family of codes we will mean
a sequence of (deterministicly or randomly generated) codes
where the block length goes to infinity.

II. ML AND LP DECODING

Let us use the above-mentioned codeC for data transmission
over a binary-input discrete memoryless channel with input
alphabetX , {0, 1}, output alphabetY, and channel law
PY |X(y|x). Because the channel is memoryless,PY|X(y|x) =
∏

i∈I PY |X(yi|xi), whereX , (X1, . . . , Xn), whereY ,

(Y1, . . . , Yn), where the random variableXi denotes the
channel input at time indexi, and where the random variable
Yi denotes the channel output at time indexi. Upon observing
Y = y, the maximum-likelihood (ML) decoding rule decides

http://arxiv.org/abs/cs/0602087v1


for

x̂(y) = argmax
x∈C

PY|X(y|x).

Let the i-th log-likelihood ratioΓi, i ∈ I, be the random
variable

Γi , Γi(Yi) , log

(

PY |X(Yi|0)
PY |X(Yi|1)

)

∈ R ∪ {±∞}

with realizationγi , γi(yi). Then, noting that

logPY |X(yi|xi) = −γixi + logPY |X(yi|0),

ML decoding can also be written as

x̂(y) = argmin
x∈C

∑

i∈I

γixi.

Because the cost function is linear, and a linear function attains
its minimum at the extremal points of a convex set, this is
essentially equivalent to

x̂(y) = arg min
x∈conv(C)

∑

i∈I

γixi.

Although this is a linear program, it can usually not be
solved efficiently because its description complexity is usually
exponential in the block length of the code.

However, one might try to solve a relaxation of the
above minimization problem. Noting thatconv(C) ⊆
⋂

j∈J conv(Cj) (which follows from the fact thatC =
⋂

j∈J Cj), Feldman, Wainwright, and Karger [9], [10] defined
the linear programming decoder (LP decoder) to be given by
the solution of the linear program

ω̂(y) = arg min
ω∈∩j∈J conv(Cj)

∑

i∈I

γiωi. (1)

Because of its importance, we will abbreviate the set
∩j∈J conv(Cj) by P , P(H) and call it the fundamental
polytope [11], [12]. The fundamental polytopeP can be
expressed using inequalities as follows [9], [10], [11], [12]

P =







ω ∈ R
n

∣

∣

∣

∣

∣

∣

∀i ∈ I : 0 ≤ ωi ≤ 1 and
∀j ∈ J , ∀I′

j ⊆ Ij , |I′
j | odd :

∑

i∈I′
j
ωi +

∑

i∈(Ij\I
′
j
)(1− ωi) ≤ |Ij | − 1







.

When analyzing the decoding performance of LP decoding
of a binary linear code that is used for data transmission
over a binary-input output-symmetric channel, we can without
loss of generality assume that the all-zeros codeword was
sent. (See also [9] and [10] that discuss this so-called “C-
symmetry” property.) We observe that a necessary (but usually
not sufficient) condition that one decides for the all-zeros
codeword in (1) is that1

∑

i∈I

γiωi ≥ 0 for all ω ∈ P \ {0}. (2)

1Actually, without changing the content of the statement in (2), we can
replaceω ∈ P \ {0} by ω ∈ P .

It can easily be seen that this condition is equivalent to the
condition that

∑

i∈I

γiωi ≥ 0 for all ω ∈ conic(P) \ {0}. (3)

The setconic(P), which is the conic hull of the fundamental
polytope, is called the fundamental coneK , K(H). In terms
of inequalities,K can be written as [9], [10], [11], [12]

K =







ω ∈ R
n

∣

∣

∣

∣

∣

∣

∀i ∈ I : 0 ≤ ωi and
∀j ∈ J , ∀i′ ∈ Ij :
ωi′ −

∑

i∈(Ij\{i′})
ωi ≤ 0







.

The condition in (3) can then be stated as
∑

i∈I

γiωi ≥ 0 for all ω ∈ K \ {0}. (4)

We will use the following definition for the block decoding
error event under LP decoding: it is the complement of the
event that the all-zeros vector is the unique solution in (1).

III. 0-NEIGHBORHOOD-BASED BOUNDS ON THE

THRESHOLD FORREGULAR LDPC CODES

We focus our attention on(wcol, wrow)-regular LDPC codes,
i.e. codes defined by parity-check matrices that have uniform
column weightwcol and uniform row weightwrow. For these
type of codes, we present a technique to obtain bounds
on the threshold under LP decoding which we will call0-
neighborhood-based bounds; the choice for this name will
become clear later on.

Assumption 1:In the following, we will always assume that
the all-zeros codeword was sent, i.e. we will not explicitly
write the conditioning onX = 0 when making statements
involving probabilities. �

Under this assumption, the log-likelihood ratiosΓ1, . . . ,Γn

are i.i.d. random variables and so there is a random variableΓ
such thatΓi ∼ Γ for all i ∈ I. Moreover, letG ⊆ (R∪{±∞})
be the support of the pdf ofΓ.

Example 2:Let us discuss the random variableΓ for three
channels: the binary-input additive white Gaussian channel
(AWGNC), the binary symmetric channel (BSC), and the
binary erasure channel (BEC).

• AWGNC (with modulation map0 7→ +
√
Ec, 1 7→ −√

Ec

and where the added noise has varianceσ2): G = R

andΓ is a continuous random variable that is normally
distributed with mean2Ec/σ

2 and variance4Ec/σ
2.

• BSC (with cross-over probabilityε): G = {±G} andΓ
is a discrete random variable that takes on the valueG
with probability1− ε and the value−G with probability
ε, whereG , log

(

1−ε
ε

)

.
• BEC (with erasure probabilityǫ): G = {0,+∞} andΓ

is a discrete random variable that takes on the value+∞
with probability1− ǫ and the value0 with probabilityǫ.

�

Definition 3: Let

Γpos , +
∑

i∈I
Γi≥0

Γi and Γneg , −
∑

i∈I
Γi<0

Γi



be random variables with realizationsγpos andγneg, respec-
tively. Note thatΓpos ≥ 0 andΓneg ≥ 0 w.p. 1. �

Lemma 4:With probability one we have

lim
n→∞

Γpos

n
= +E[Γ |Γ≥0] · Pr(Γ≥0) = +

∫ +∞

0−
γ pΓ(γ) dγ,

lim
n→∞

Γneg

n
= −E[Γ |Γ<0] · Pr(Γ<0) = −

∫ 0−

−∞

γ pΓ(γ) dγ.

Proof: Follows easily from the weak law of large numbers.�

Lemma 5:Consider a code with a(wcol, wrow)-regular
parity-check matrix. Letγ ∈ Gn. A necessary condition that
the LP decoder decides in favor of the all-zeros codeword is

γpos
γneg

≥ wrow − 1.

Proof: We saw in (4) that a necessary condition for LP
decoding to decide in favor of the all-zeros codeword is that
∑

i∈I γiωi ≥ 0 for all ω ∈ K \{0}. Let us construct a vector
ω ∈ R

n as follows:

ωi ,

{

1
wrow−1 if γi ≥ 0

1 if γi < 0
. (5)

It can easily be seen thatω ∈ K(H).2 We obtain the necessary
condition

0 ≤
∑

i∈I

γiωi = −1 · γneg +
1

wrow − 1
· γpos,

which is equivalent to the necessary condition in the lemma
statement. �

Theorem 6:Consider a family of codes that have
(wcol, wrow)-regular parity-check matrices. In the limitn →
∞, a necessary condition such that the LP decoder decides in
favor of the all-zeros codeword with probability one is

−E[Γ |Γ≥0]

E[Γ |Γ<0]
· Pr(Γ≥0)

Pr(Γ<0)
≥ wrow − 1,

or, equivalently,

−
∫+∞

0−
γ pΓ(γ) dγ

∫ 0−

−∞ γ pΓ(γ) dγ
≥ wrow − 1.

Proof: This follows upon combining Lemmas 4 and 5. �

Corollary 7: Consider the setup of Th. 6. If the memoryless
channel is a BSC with cross-over probabilityε then the
necessary condition in Th. 6 reads

ε ≤ 1

wrow
.

Proof: For a BSC with cross-over probabilityε we obtain

E[Γ |Γ≥0] · Pr(Γ≥0) = +G · (1 − ε),

−E[Γ |Γ<0] · Pr(Γ<0) = −(−G) · ε = +G · ε
whereG is defined as in Ex. 2. Therefore, the condition in
Th. 6 is thatG(1−ε)

Gε
≥ wrow − 1, i.e. ε ≤ 1

wrow
. �

2The vectorω can be seen as a generalization of the so-called canonical
completion [11], [12], however instead of assigning valuesaccording to the
graph distance with respect to a single node, we assign values according to
the graph distance with respect to the set of nodes whereγi is negative.
Moreover, we assign only the values1 and1/(wrow − 1).
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Fig. 1. The solid line shows the capacityCBSC(ε) of a BSC
as a function of the cross-over probabilityε. The circles have the
following meaning: the circle with label (wcol, wrow) shows the
point

(

R(wcol, wrow), εUB(wcol, wrow)
)

, where R(wcol, wrow) and
εUB(wcol, wrow) are the designed rate and the threshold upper bound from
Cor. 7, respectively, for(wcol, wrow)-regular LDPC codes.

Example 8:Fig. 1 tries to capture some of the implications
of Th. 6 / Cor. 7. The circles in the plot that are to the left of
the capacity curve yield non-trivial upper bounds on the error
correction capability of LP decoding. (Note that the designed
rate of a(wcol, wrow)-regular LDPC code is1− wcol

wrow
and that

the actual rate is lower bounded by this quantity.) �

Example 9: It is a surprising fact that the bounds in Th. 6
and Cor. 7 do not depend on the variable degreewcol at all.
In particular, this implies that decoding would fail even if
we choose extremely large variable degrees. For example we
might consider a sequence of codes defined by parity-check
matrices that containall rows of a given weightwrow. Clearly,
a specific codeCn of this sequence is a(

(

n − 1
wrow − 1

)

, wrow)-

regular code which contains either one (Cn = {0}) or two
codewords (Cn = {0,1}) depending onk being odd or even.
Thus, while the rate of this code sequence approaches zero,
LP decoding will not succeed forε > 1

wrow
. �

Example 10:Th. 6 and Cor. 7 can easily be extended to
families of codes where the row weight grows as a function
of n; let us call theses extensions Th. 6’ and Cor. 7’. It is clear
from Cor. 7’ that there cannot be an LP decoding threshold
for the BSC if the row weight grows unboundedly. Moreover,
coming back to the code family in Ex. 9, ifwrow is allowed
to grow with n, LP decoding will fail asn → ∞ despite
the variable degree being exponentially larger than the check
degree.

Example 11:Similarly, the family of random codes where
entries in a parity-check matrix are drawn independently from
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Fig. 2. The solid line shows the capacityCBSC(ε) of a BSC as a function
of the cross-over probabilityε. The circles have the following meaning: the
circle with labelq shows the point

(

R(q), εUB(q)
)

, whereR(q) is the rate
of thePG(2, q)-based code and whereεUB(q) is the threshold upper bound
from Cor. 7 for a family of(wcol(q), wrow(q))-regular LDPC codes. (See
also the main text for further explanations.)

a Bernoulli(θ) distribution will not only have poor threshold
performance under LP decoding but will fail with high proba-
bility as the code length approaches infinity foranysymmetric
channel for which the expression

−E[Γ |Γ≥0]

E[Γ |Γ<0]
· Pr(Γ≥0)

Pr(Γ<0)

is (upper) bounded. The result follows from the observation
that the weight of the rows inH is exponentially concentrated
aroundθn. Indeed, given a vector of log-likelihood ratios, the
vector with components 1

nθ−δ−1 in positions whereγi is non-
negative and1 in the remaining positions is insideK(H) with
high probability forδ > 0 andn → ∞. �

While the above considerations give some insight in the
asymptotic behavior of of decoding error for LP decoding, the
characterization and spirit of Th. 6 is essentially combinatorial.

Example 12:We saw in Ex. 10 that for any family of codes
where the row weight grows as a function ofn, Cor. 7’ implies
that there cannot be an LP decoding threshold for the BSC. A
special case, though, arises when the rate of the code family
under consideration goes to1 when n → ∞ because then
also the best code family under the best possible decoding
algorithm can only correct a vanishing fraction of bit flips as
n → ∞. A family were the rate goes to1 asn → ∞ is the
family of type-IPG(2, q)-based codes, cf. [13]; in the context
of LP decoding, these codes were analyzed in [14], [15]. A
code from this family is indexed byq (whereq , 2s for some
positive integers), has lengthn(q) , q2 + q+1, rateR(q) ,
1− (3s + 1)/(q2 + q + 1), andwcol(q) = wrow(q) = q + 1.

Fig. 2 shows the following: for eachq we plot the point
(R(q), εUB(q)), whereR(q) is the rate of thePG(2, q)-based
code and whereεUB(q) is the LP decoding threshold upper
bound from Cor. 7 for a(wcol(q), wrow(q))-regular family of
codes. Care must be taken when giving an interpretation to this
figure since thePG(2, q)-based codes are finite-length codes
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Fig. 3. The solid line shows the capacityCBSC(ε) of a BSC as a function of
the cross-over probabilityε. The circles have the same meaning as in Fig. 1.
The squares have the following meaning: the square with label q shows the
point

(

R(q), εUB(q)
)

, whereR(q) is the rate of thePG(2, q)-based code
and whereεUB(q) is the2-neighborhood-based threshold upper bound from
Sec. IV for a family of(wcol(q), wrow(q))-regular LDPC codes. (See also
the main text for further explanations.)

for finite q. �

We leave it as an exercise for the reader to generalize the
results in this section to irregular LDPC codes.

IV. 2-NEIGHBORHOOD-BASED BOUNDS ON THE

THRESHOLD FORREGULAR LDPC CODES

Because the assignment of a value toωi in (5) was only
based on the value ofγi, we call the resulting bound in Cor. 7 a
0-neighborhood-based bound. (Of course, the way we assigned
a value to everyωi in (5) can also be seen as a very simplistic,
and usually sub-optimal way, of solving the linear program
in (1).) It is natural to try to formulate more sophisticated
assignments of a value toωi. The next simplest approach
is to formulate a rule that does not depend onγi only, but
also onγi′ wherei′ ranges over all variable nodes at Tanner
graph distance2 from variable nodei. The resulting bounds
on the threshold will therefore be called2-neighborhood-based
bounds.

For i ∈ I let N (2)
i be the subset ofI that includes

all variable nodesi′ with Tanner graph distance at most2
from i. In the following, we assume that the Tanner graph
under consideration has girth at least six. In the case of a
(wcol, wrow)-regular LDPC codes, this implies that the set
N (2)

i has size|N (2)
i | = 1 + wcol(wrow − 1). (Fig. 4 (left)

shows part of a(3, 4)-regular code, i.e. nodei, all check nodes
at Tanner graph distance1 from i, and all variable nodes at
Tanner graph distance2 from i.)



i

i1

i4

i3

i2

Fig. 4. Left: 2-neighborhood. Right: overlapping2-neighborhoods. (See
Sec. IV for more explanations.)

Definition 13: Let Γ′
i be the vector that contains all the

random variables{Γi′}i′∈N
(2)
i

and let γ′
i be its realization.

Our new rule (that replaces (5)) for defining a vectorω ∈ R
n

is now ωi , αγ
′
i
, whereαγ

′
i
∈ R+ for all γ′

i ∈ G|N
(2)
i

| is
chosen such that for all possibleγ ∈ Gn we obtain a vector
ω that lies in the fundamental cone.

Lemma 14:Assume that we have such values{αγ
′
i
}γ′

i
as

defined in Def. 13. With probability one with have

lim
n→∞

1

n

∑

i∈I

γiωi =
∑

γ
′
i

pγ′
i
αγ

′
i
,

where

pγ′
i
, Pr

(

{Γi′}i′∈N
(2)
i

= {γi′}i′∈N
(2)
i

)

=
∏

i′∈N
(2)
i

Pr(Γ = γi′).

Proof: Follows from the fact thatγiωi depends only on finitely
manyγi′ from {γi′}i′∈I and from the use of the weak law of
large numbers. �

Consider a BSC with cross-over probabilityε. An upper
bound on the LP decoding threshold for the BSC is then given
by the infimum of allε were we are able to find an assignment
in Def. 13 such thatlimn→∞

1
n

∑

i∈I γiωi is negative with
probability one. Finding such assignments can e.g. be done
by solving a linear program that roughly looks as follows

min.
∑

γ
′
i

pγ′
i
αγ′

i

subj. to αγ̃
′
i
= 1,

and for eachγ the assignment always results in a

non-zero vector that lies in the fundamental cone,

whereγ̃′
i is an arbitrary assignment of values toγ′

i, e.g.γi′ =
−G for all i′ ∈ N (2)

i , whereG is defined as in Ex. 2.
The Tanner graph in Fig. 4 (left) has many symmetries that

can be used to simplify the above linear program. E.g. if there
is a graph isomorphism that maps an assignmentsγ

′
i to an

assignmentγ
′
i, then without loss of generality we can assume

that αγ
′
i
= α

γ
′

i
. In this way, the dimensionality of the above

linear program can be reduced significantly. Without going
into the details, the requirement that the resulting assignment
always results in a vector in the fundamental cone can be

simplified by introducing some auxiliary variables according
to overlapping2-neighborhoods as is sketched in Fig. 4 (right).

Example 15:Fig. 3 shows the improved upper bounds for
(wcol, wrow)-regular code families. �

Whereas the above approach results in relatively small linear
programs for smallwcol and wrow, similar 4-, 6-, 8-, etc.,
neighborhood-based approaches seem to be computationally
much more demanding. We leave it as an open question to
see if there are ways to handle also these cases in an efficient
numerical way.
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