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Abstract— Whereas many results are known about thresholds of the paper will be Sed Il where we present so-called
for ensembles of low-density parity-check codes under mesge- neighborhood-based bounds on the LP decoding threshold.

passing iterative decoding, this is not the case for linearnqegram- ; : : . ; _
ming decoding. Towards closing this knowledge gap, this pap E:insae”c)i/'bltr)lu?]?jzm we will present so-calletineighborhood

presents some bounds on the thresholds of low-density payit

check code ensembles under linear programming decoding. Let us fix some notation. We lék, R, andR, ; be the
set of real numbers, the set of nhon-negative real numbeds, an
. INTRODUCTION the set of positive real numbers, respectively. Moreover, w

will use the canonical embedding of the &t= {0,1} into

Message-passing iterative (MPI) decoding and linear pre: The convex hull (see e.g [8]) of a sét C R™ is denoted
gramming (LP) decoding are very efficient methods to achiey§ conv(A). If A is a subset off} then conv(.4) denotes
excellent decoding performance of low-density parityathe the convex hull of the se#d after A has been canonically
(LDPC) codes on a variety of channels. While an enormogmbedded irR™. Similarly, the conic hull (see e.g [8]) of a
amount of work has been devoted to the understanding ft 4 c R™ will be denoted byconic(A) and if A is a subset
LDPC codes under MPI decoding (see e.g. [1], [2], [3], [4f F7 thenconic(.A) denotes the conic hull of the set after
[5], [6] for results on thresholds), comparably few resulty{ has been canonically embeddedgin. Thei-th component
on the performance of LDPC codes using the more recejfta vectorx will be called [x]; or z; and the element in the
LP decoding are known. In this paper we provide analyticalth row andi-th column of a matrixA. will be called [A]; ;
bounds on thresholds of LP deCOdlng these bounds establlsnet C be a b|nary linear code defined by a panty Check
necessary conditions for the existence of LP decoding thresnatrix H of size m by n. Based onH, we define the sets
olds. T2IZH) 2 {1,....,n}, T2 JH) 2 {1,....m}, I; 2

We note that the existence of such thresholds is not @ear;(H) £ {i € 7 | [H];; = 1} for eachj € J, and J; £
priori. In contrast to [7], where we discuss cases where we cgnH) 2 {j € J | [H],; = 1} for eachz’ e 7. Moreover,
guarantee a threshold under LP decoding, here we will shewy eachj c J we define the codeéj 2 ¢;H )2 {x €
cases where an LP decoding threshold does not exist. Eeg. ]1113 | h;x" = 0 (mod2)}, whereh; is the j-th row of H. Note
sequence of random codes where each entry in a parity-chet the code€; is a code of Iengtm where all positions not in
matrix is drawn independently from a Bernoulli distributio 7; are unconstrained. For simplicity of notation, we will neve
with arbitrary nonzero parametérdoes not possess an SNRmdmate the parity-check matrix as an argumenfpf7, etc.;
threshold (in the AWGNC case) or anthreshold (in the it will be clear from the context to what parity-check matrix
BSC case). Also, there are ensembles of codes that do Wetare referring to. Finally, by a family of codes we will mean
show arbitrary low probability of decoding error for any SNRy sequence of (deterministicly or randomly generated) sode
(AWGNC) or any positives (BSC) even if the code rate iswhere the block length goes to infinity.
allowed to approach zero and the variable degree is allowed
to grow exponentially fast in the block length. Il. ML AND LP DECODING

Because LP decoding and MPI decoding are essentiallyLet us use the above-mentioned cadi®r data transmission
equivalent in the case of the binary erasure channel (BE®yer a binary input discrete memoryless channel with input
well-known results about MPI decoding for the BEC (sealphabetX £ {0,1}, output alphabefy, and channel law
e.g. [2], [3]) can be used for making statements about LR x (y|z). Because the channel is memoryleBg;x (y|x) =
decoding thresholds and therefore we will not deal any &mth[ ], Py x (y;|z;), whereX £ (Xi,...,X,), whereY £
with the BEC case here. (Y1,...,Y,), where the random variabl&; denotes the

The paper is structured as follows. After having concludathannel input at time indek and where the random variable
this introduction with some remarks about our notation, wE; denotes the channel output at time indek)pon observing
will review ML and LP decoding in Sedlll. The main partY =y, the maximume-likelihood (ML) decoding rule decides
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for It can easily be seen that this condition is equivalent to the

condition that
Z Yiw; > 0
i€l
The setconic(P), which is the conic hull of the fundamental
polytope, is called the fundamental cokie= KC(H). In terms
of inequalities,KC can be written as [9], [10], [11], [12]
VieZ:0<w;and
Vied, Yi'eZ;:
wir = Die\ iy @i <0
The condition in[[B) can then be stated as

D qiw; >0 forallwe K\ {0}.
ieT
We will use the following definition for the block decoding
Because the cost function is linear, and a linear functitairst  €'7Or €vent under LP decoding: it is the complement of the
its minimum at the extremal points of a convex set, this gvent that the all-zeros vector is the unique solutiordn (1)
essentially equivalent to 1.
> .
We focus our attention oftw..1, wyow )-regular LDPC codes,
o . _ i.e. codes defined by parity-check matrices that have umifor
Although this is a linear program, it can usually not b@olumn weightw., and uniform row weightu,.,,. For these
solved efficiently because its description complexity isally type of codes, we present a technique to obtain bounds

exponential in the block length of the code. on the threshold under LP decoding which we will cédl

However, one might try to solve a relaxation of theeighborhood-based bounds; the choice for this name will
above minimization problem. Noting thatonv(C) < pecome clear later on.

Njes conv(C;) (which follows from the fact thatC =  Assumption 1:In the following, we will always assume that
mJGJ C), Feldman Wainwright, and Karger [9], [10] definedhe all-zeros codeword was sent, i.e. we will not explicitly
the linear programming decoder (LP decoder) to be given Qitite the conditioning or’X = 0 when making statements
the solution of the linear program involving probabilities. O]
Under this assumption, the log-likelihood ratibs, . .., T’
Z Vi are i.i.d. random variables and so there is a random varlable
such thaf’; ~ T for all i € Z. Moreover, letg C (RU{+o00})

Because of its importance, we will abbreviate the sée the support of the pdf df.
Njes conv(C;) by P £ P(H) and call it the fundamental Example 2:Let us discuss the random varialilefor three
polytope [11], [12]. The fundamental polytopgB can be channels: the binary-input additive white Gaussian chianne
expressed using inequalities as follows [9], [10], [11R][1 (AWGNC), the binary symmetric channel (BSC), and the
binary erasure channel (BEC).

X(y) = arg max P y|x).
) vex Py for all w € conic(P)\ {0}.  (3)
Let the i-th log-likelihood ratiol';, ¢ € Z, be the random

variable

Py x (Yi]0)
Py x (Yi|1)

I 210,(Y;) 2 log < >€RU{:I:oo}

with realizationy; = ~;(y;). Then, noting that K={weR"

log Py x (yilxi) = —viz; + log Py x (:]0),

ML decoding can also be written as

x(y) = argmin > i

i€l

(4)

0-NEIGHBORHOOD-BASED BOUNDS ON THE

R THRESHOLD FORREGULAR LDPC CoDES
%(y) = arg min
x€Econv C)

min
w€ENjeg conv(C; )

w(y) = arg 1)

VieZ:0<w <1 and : .
p_dwerr v;ee 7, vfgwc fﬁ fzrh odd: o AWGNC (with modulation map — ++/E., 1 — —/E,
e wi +er(z \I,J)(l —w) <|Ti| -1 and where the added noise has variané® ¢ = R
J R A -

andT is a continuous random variable that is normally

When analyzing the decoding performance of LP decoding
of a binary linear code that is used for data transmission,
over a binary-input output-symmetric channel, we can witho
loss of generality assume that the all-zeros codeword was
sent. (See also [9] and [10] that discuss this so-called “
symmetry” property.) We observe that a necessary (but lysual .
not sufficient) condition that one decides for the all-zeros
codeword in[{ll) is that

> qiwi >0 forallwe P\ {0}.

i€l

)

1Actually, without changing the content of the statementHll, (ve can
replacew € P\ {0} by w € P.

distributed with mear2E, /o2 and variancetE, /o2

BSC (with cross-over probability): G = {+G} andT

is a discrete random variable that takes on the vdlue

with probability 1 — ¢ and the value-G with probability

e, whereG £ log(%).

BEC (with erasure probability): G = {0, +o0c} andT

is a discrete random variable that takes on the valoe

with probability 1 — ¢ and the valué) with probabilitye.
O

Definition 3: Let

pos—+zl—‘ £

i€T
;>0

and Ty 2 - > Ty
€T
r; <0



be random variables with realizationg,s andy,eq, respec-

tively. Note thatl'pos > 0 andyes > 0 W.p. 1. O o |
Lemma 4:With probability one we have
T os +oo 08 .
lim ===+ E[['|T>0] - Pr(I'>0) = + / ypr(y)dy,
n o0 0—
F 0 0.7 =
le %: —E[I'|T<0] - Pr(T'<0) = — [ ~pr(y)dy.

Proof: Follows easily from the weak law ofTaO?ge numbérs.

Lemma 5:Consider a code with &wcor, Wrow )-regular
parity-check matrix. Lety € G". A necessary condition that
the LP decoder decides in favor of the all-zeros codeword is
M Z Wrow — 1

'Yncg

Proof: We saw in [(#) that a necessary condition for LP
decoding to decide in favor of the all-zeros codeword is tha
> ierviwi > 0 forall w € £\ {0}. Let us construct a vector
w € R™ as follows:

Bsc(e), R(Wcol,wmw) [bits/channel use]

]

0.2

01

if v, >0 ;
C=r (5)
If’}/i<0

Ww; =

It can easily be seen that € C(H).? We obtain the necessary

condition

1
OSZ’Yiwi:_l"yneg'i_wi

* Vpos;
€T row — 1

Fig. 1. The solid line shows the capacit¢’ssc(e) of a BSC

as a function of the cross-over probability. The circles have the
following meaning: the circle with label(weo1, wrow) shows the
pOint (R(wcohwYOW)veUB(wcolyerW))r where R(wcolywrow) and
euB(weol, Wrow) are the designed rate and the threshold upper bound from
Cor.[, respectively, fofw,o), wrow )-regular LDPC codes.

which is equivalent to the necessary condition in the lemma

statement. (]
Theorem 6:Consider a family of codes that

(weol, Wrow )-regular parity-check matrices. In the limit —

have Example 8:Fig.[ tries to capture some of the implications

of Th.[@ / Cor[I. The circles in the plot that are to the left of

00, a necessary condition such that the LP decoder decidesha capacity curve yield non-trivial upper bounds on thererr

favor of the all-zeros codeword with probability one is
E[l'|T>0] Pr(I'>0)
TE[C|T<0] Pr(T<0) = “rov
or, equivalently,

-1,

et dy

0= >
Joooypr(y)dy
Proof: This follows upon combining Lemmds 4 ahH 5. O

Tow 1

Corollary 7: Consider the setup of Thl 6. If the memorylesg specific code,, of this sequence is &( "

channel is a BSC with cross-over probability then the
necessary condition in TRl 6 reads

1
e < .

Wrow
Proof: For a BSC with cross-over probabilitywe obtain
E[l|T>0]-Pr(T>0) =+G - (1 —¢),
—E[l'|I'<0]-Pr(I'<0) = —(—-G)-e =+G ¢
where G is defined as in EX12. Therefore, the condition i
Th.@ is that®C -2 > wye — 1, 10 e < L.

Wrow

correction capability of LP decoding. (Note that the desiijn
rate of a(weor, wrow)-regular LDPC code ig — 2« and that
the actual rate is lower bounded by this quantity.) O
Example 9:1t is a surprising fact that the bounds in Th. 6
and Cor[¥ do not depend on the variable degreg at all.
In particular, this implies that decoding would fail even if
we choose extremely large variable degrees. For example we
might consider a sequence of codes defined by parity-check
matrices that contaiall rows of a given weightv,.,. Clearly,
0;71 1) wrow)'
regular code which contains either ong, (= {0}) or two
codewords ,, = {0,1}) depending ork being odd or even.
Thus, while the rate of this code sequence approaches zero,
LP decoding will not succeed far > % O
Example 10:Th.[ and Cor[J7 can easily be extended to
families of codes where the row weight grows as a function
of n; let us call theses extensions Th. 6’ and Cbr. 7'. Itis clear
from Cor.[I’ that there cannot be an LP decoding threshold
for the BSC if the row weight grows unboundedly. Moreover,

r(]:oming back to the code family in EKl 9, if,.,, is allowed

to grow with n, LP decoding will fail asn — oo despite

2The vectorw can be seen as a generalization of the so-called canonitlle variable degree being exponentially larger than thelche

completion [11], [12], however instead of assigning valaesording to the
graph distance with respect to a single node, we assign sraoeording to
the graph distance with respect to the set of nodes wheris negative.
Moreover, we assign only the valuésand 1/(wrow — 1).

degree.
Example 11:Similarly, the family of random codes where
entries in a parity-check matrix are drawn independentynfr
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Fig. 2. The solid line shows the capacifyzsc(e) of a BSC as a function osl T )
of the cross-over probabilitg. The circles have the following meaning: the
circle with labelq shows the point(R(q), aUB(q)), where R(q) is the rate
of the PG(2, ¢)-based code and wheegyg(q) is the threshold upper bound o1r
from Cor.[0 for a family of (wco1(q), wrow (q))-regular LDPC codes. (See
also the main text for further explanations.)

CBSC(E), R(wcol,wmw) [bits/channel use]

. . . . Fig. 3. The solid line shows the capacifizsc(¢) of a BSC as a function of
a Bernoullif) distribution will not only have poor threShOIdthe cross-over probability. The circles have the same meaning as in Hig. 1.

performance under LP decoding but will fail with high probathe squares have the following meaning: the square with latshows the
bility as the code length approaches infinity fory symmetric  point (R(q), cus(q)), where R(q) is the rate of thePG(2, ¢)-based code

. . and wheresyg(q) is the 2-neighborhood-based threshold upper bound from
channel for which the expression Sec U for a family of (weey(q). 1w (a)).reqular LDPC codes. (See also
E[l'|T>0] Pr(I'>0) the main text for further explanations.)

" E[[T<0] Pr(I'<0)

is (upper) bounded. The result follows from the observation . .

that the weight of the rows iH is exponentially concentrated or finite g. ) _ D
arounddn. Indeed, given a vector of log-likelihood ratios, the we Ie_ave_lt as an exercise for the reader to generalize the
vector with components,-L— in positions wherey; is non- results in this section to irregular LDPC codes.

negative and in the remaining positions is insidé(H) with
high probability for§ > 0 andn — oo.

While the above considerations give some insight in the ] .
asymptotic behavior of of decoding error for LP decoding, th Because the assignment of a valueutoin (@) was only
characterization and spirit of TH. 6 is essentially comturial. Pased on the value of, we call the resulting bound in Call. 7 a

Example 12:We saw in Ex[ID that for any family of CodeSO—nelghborhood-b_ased bound. (Of course, the way we as_sgned
where the row weight grows as a functionigfCor.[I’ implies @ value to every; in () can also be seen as a very simplistic,
that there cannot be an LP decoding threshold for the BSC.8Rd usually sub-optimal way, of solving the linear program
special case, though, arises when the rate of the code fanffly@-) It is natural to try to formulate more sophisticated
under consideration goes towhenn — oo because then @ssignments of a value to;. The next simplest approach
also the best code family under the best possible decodifigo formulate a rule that does not depend -pnonly, but
algorithm can only correct a vanishing fraction of bit flips a@lS0 0Ny wherei’ ranges over all variable nodes at Tanner
n — co. A family were the rate goes tb asn — oo is the graph distance frqm variable node. The_ resulting bounds
family of type-1PG(2, ¢)-based codes, cf. [13]; in the contexf" the threshold will therefore be calleeheighborhood-based
of LP decoding, these codes were analyzed in [14], [15]. Bounds. @ _
code from this family is indexed by (whereq 2 2 for some ~ For i € I let N7 be the subset off that includes
positive integets), has length(q) £ ¢2 + ¢+ 1, rate R(q) 2 all variable nodes’ Wlth Tanner graph distance at moat
1— (35 +1)/(®+q+1), andweo(q) = Wrow(q) = g+ 1. from i. In the following, we assume that the Tanner graph

Fig. [ shows the following: for each we plot the point under consideration has girth at Iegst Six. In the case of a
(R(q),eus(q)), whereR(q) is the rate of the®G(2, ¢)-based (w(cﬁl,wrow)—regulgr) LDPC codes, this implies that the set
code and whereyg(q) is the LP decoding threshold uppe#V;  has sizelN;™| = 1 + weol(wrow — 1). (Fig. [4 (left)
bound from Cor17 for dwee1(q), wrow (¢))-regular family of shows part of 3, 4)-regular code, i.e. nodg all check nodes
codes. Care must be taken when giving an interpretatiorigo tAt Tanner graph distancefrom i, and all variable nodes at
figure since thePG(2, q)-based codes are finite-length code§anner graph distance from i.)

IV. 2-NEIGHBORHOOD-BASED BOUNDS ON THE
THRESHOLD FORREGULAR LDPC CoDES



simplified by introducing some auxiliary variables accardi
to overlappin@-neighborhoods as is sketched in FiD. 4 (right).
Example 15:Fig.[d shows the improved upper bounds for
(Weol, Wrow )-regular code families. O
Whereas the above approach results in relatively smakitine
programs for smalkv., and w,.y, Similar 4-, 6-, 8-, etc.,
neighborhood-based approaches seem to be computationally
much more demanding. We leave it as an open question to
see if there are ways to handle also these cases in an efficient

Fig. 4. Left: 2-neighborhood. Right: overlapping-neighborhoods.
Sec[I¥ for more explanations.)

(See

numerical way.
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Definition 13: Let T'; be the vector that contains all the
random variablegT';/ } N and let~; be its realization.
Our new rule (that repIaceE(S)) for defining a VEGIDE R”
is now w; £ ./, Wherea,, € R, for all 5] € GNPl s
chosen such that for all possmi;ee G"™ we obtain a vector
w that lies in the fundamental cone.

Lemma 14:Assume that we have such valugs, }, as
defined in Def[CIB. With probability one with have

(1]
(2]

(31

(4]

o Z UEEDI 5
1€L 7;
where
/ - Pr ({F } IEN(2) {’YZ—/}Z‘IEN@)) - H PI‘(F = ’Y’L’) [6]
i EN(2)

Proof: Follows from the fact thad;w; depends only on finitely [7]
many-y;, from {~;/ };sez and from the use of the weak law of
large numbers. O

Consider a BSC with cross-over probability An upper
bound on the LP decoding threshold for the BSC is then give
by the infimum of alls were we are able to find an assignmen
in Def. I3 such thatim, . £ Y, 7 7iw; is negative with
probability one. Finding such assignments can e.g. be do[n&
by solving a linear program that roughly looks as follows

Z DryjQy;
/

subj. to a5 =1,
and for eachy the assignment always results in a

non-zero vector that lies in the fundamental c;one[ls]

(8]
]

min. [11]

[12]

where¥; is an arbitrary assignment of values¥f e.g.v;r =
—G forall i € J\/i@), whereG is defined as in EX]2. [14]
The Tanner graph in Fi@l 4 (left) has many symmetries that
can be used to simplify the above linear program. E.g. ifaher
is a graph isomorphism that maps an assignm@&htso an
assignmenﬁ, then without loss of generality we can assumigs]
that oy, = = ag . In this way, the dimensionality of the above
Ilnear program can be reduced significantly. Without going
into the details, the requirement that the resulting assant
always results in a vector in the fundamental cone can be
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