WWW 2012 — Session: Ontology Representation and Querying: RDF and SPARQL

Template-based Question Answering over RDF Data

Christina Unger
Universitat Bielefeld, CITEC
UniversitatsstraBe 21-23,

33615 Bielefeld
cunger@cit-ec.uni-
bielefeld.de

Axel-Cyrille Ngonga
Ngomo
Universitét Leipzig, IFI/AKSW
PO 100920, D-04009 Leipzig

ngonga@informatik.uni-

Lorenz Bihmann
Universitat Leipzig, IFI/AKSW
PO 100920, D-04009 Leipzig

Jens Lehmann
Universitat Leipzig, IFI/AKSW
PO 100920, D-04009 Leipzig

buehmann@informatik.uni- lehmann@informatik.uni-

leipzig.de

Daniel Gerber
Universitat Leipzig, IFI/AKSW
PO 100920, D-04009 Leipzig

dgerber@informatik.uni-
leipzig.de

leipzig.de

Philipp Cimiano
Universitat Bielefeld, CITEC
Universitatsstra3e 21-23,

. 33615 Bielefeld
cimiano@cit-ec.uni-

April 16-20, 2012, Lyon, France

leipzig.de

ABSTRACT

As an increasing amount of RDF data is published as Linked
Data, intuitive ways of accessing this data become more
and more important. Question answering approaches have
been proposed as a good compromise between intuitiveness
and expressivity. Most question answering systems trans-
late questions into triples which are matched against the
RDF data to retrieve an answer, typically relying on some
similarity metric. However, in many cases, triples do not
represent a faithful representation of the semantic structure
of the natural language question, with the result that more
expressive queries can not be answered. To circumvent this
problem, we present a novel approach that relies on a parse
of the question to produce a SPARQL template that directly
mirrors the internal structure of the question. This template
is then instantiated using statistical entity identification and
predicate detection. We show that this approach is compet-
itive and discuss cases of questions that can be answered
with our approach but not with competing approaches.

Categories and Subject Descriptors

H.5.2 [Information systems|: User Interfaces—Natural
language, Theory and methods

General Terms
Algorithms, Experimentation, Theory

Keywords

Question Answering, Semantic Web, Natural Language Pat-
terns, SPARQL

1. INTRODUCTION

As more and more RDF data is published as Linked Data,
developing intuitive ways of accessing this data becomes in-
creasingly important. One of the main challenges is the
development of interfaces that exploit the expressiveness of

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.

WWW 2012, April 16-20, 2012, Lyon, France.

ACM 978-1-4503-1229-5/12/04.

639

bielefeld.de

the underlying data model and query language, while hiding
their complexity. As a good compromise between intuitive-
ness and expressivity, question answering approaches allow
users to express arbitrarilyE] complex information needs in
natural language without requiring them to be aware of the
underlying schema, vocabulary or query language. Several
question answering systems for RDF data have been pro-
posed in the past, for example, Aqualog [14] [23], Power-
Aqua [24], NLP-Reduce [6] and FREyA [1]. Many of these
systems map a natural language question to a triple-based
representation. For example, consider the simple question
Who wrote The Neverending Story?. PowerAqua|would map
this question to the triple representation

([person,organization], wrote, Neverending Story).

Then, by applying similarity metrics and search heuristics,
it would retrieve matching subgraphs from the RDF repos-
itory. For the above query, the following triples would be
retrieved from DBpedia, from which the answer “Michael
Ende” can be derived:

(Writer, IS_A, Person)
(Writer, author, The_Neverending Story)

While this approach works very well in cases where the
meaning of the query can be captured easily, it has a num-
ber of drawbacks, as in many cases the original semantic
structure of the question can not be faithfully captured us-
ing triples. For instance, consider the questions [Ta] and
below. PowerAqua would produce the triple representations
in and respectively. The goal, however, would be
SPARQL querief] like [Lc| and [2d] respectively.

1. (a) Which cities have more than three universities?
(b) ([cities], more than, universities three)
(c) SELECT 7y WHERE {

LAt least as complex as can be represented in the query
language.

2 Accessed via the online demo at http://poweraqua.open.
ac.uk:8080/poweraqualinked/jsp/index. jspl

JAssuming a DBpedia namespace with onto as prefix
<http://dbpedia.org/ontology/>.

http://poweraqua.open.
ac.uk:8080/poweraqualinked/jsp/index.jsp

WWW 2012 — Session: Ontology Representation and Querying: RDF and SPARQL

?x rdf:type onto:University .
?x onto:city 7y .

3

HAVING (COUNT(?x) > 3)

2. (a) Who produced the most films?

(b) ([person,organization], produced, most films)

(c) SELECT 7y WHERE {
?x rdf:type onto:Film .
7x onto:producer 7y .

3
ORDER BY DESC(COUNT(?x)) OFFSET O LIMIT 1

Such SPARQL queries are difficult to construct on the basis
of the above mentioned triple representations, as aggregation
and filter constructs arising from the use of specific quan-
tifiers are not faithfully captured. What would be needed
instead is a representation of the information need that is
much closer to the semantic structure of the original ques-
tion. Thus, we propose a novel approach to question an-
swering over RDF data that relies on a parse of the question
to produce a SPARQL template that directly mirrors the
internal structure of the question and that, in a second step,
is instantiated by mapping the occurring natural language
expressions to the domain vocabulary. For example, a tem-
plate produced for Question [2a] would be:

3. SELECT ?7x WHERE {
77X 7p 7y .
?y rdf:type 7c .

ORDER BY DESC(COUNT(?y)) LIMIT 1 OFFSET O

In this template, ¢ stands proxy for the URI of a class match-
ing the input keyword films and p stands proxy for a property
matching the input keyword produced. In a next step, c has
to be instantiated by a matching class, in the case of using
DBpedia onto:Film, and p has to be instantiated with a
matching property, in this case onto:producer. For instan-
tiation, we exploit an index as well as a pattern library that
links properties with natural language predicates.

We show that this approach is competitive and discuss
specific cases of questions that can be precisely answered
with our approach but not with competing approaches. Thus,
the main contribution of this paper is a domain-independent
question answering approach that first converts natural lan-
guage questions into queries that faithfully capture the se-
mantic structure of the question and then identifies domain-
specific entities combining NLP methods and statistical in-
formation.

In the following section we present an overview of the sys-
tem’s architecture, and in Sections and [B] we explain
the components of the system in more detail. In Section |§|
we report on evaluation results and then point to an online
interface to the prototype in Section[7} In Section[§we com-
pare our approach to existing question answering systems on
RDF data, before concluding in Section [J]

2. OVERVIEW

Figure [1| gives an overview of our approach. The input
question, formulated by the user in natural language, is first
processed by a POS tagger. On the basis of the POS tags,
lexical entries are created using a set of heuristics. These lex-
ical entries, together with pre-defined domain-independent

640

April 16-20, 2012, Lyon, France

lexical entries, are used for parsing, which leads to a seman-
tic representation of the natural language query, which is
then converted into a SPARQL query template. This pro-
cess is explained in Section [3] The query templates contain
slots, which are missing elements of the query that have to
be filled with URIs. In order to fill them, our approach
first generates natural language expressions for possible slot
fillers from the user question using WordNet expansion. In
a next step, sophisticated entity identification approaches
are used to obtain URIs for those natural language expres-
sions. These approaches rely both on string similarity as
well as on natural language patterns which are compiled
from existing structured data in the Linked Data cloud and
text documents. A detailed description is given in Section [4]
This yields a range of different query candidates as potential
translations of the input question. It is therefore important
to rank those query candidates. To do this, we combine
string similarity values, prominence values and schema con-
formance checks into a score value. Details of this mecha-
nism are covered in Section The highest ranked queries
are then tested against the underlying triple store and the
best answer is returned to the user.

3. TEMPLATE GENERATION

The main assumption of template generation is that the
overall structure of the target SPARQL query is (at least
partly) determined by the syntactic structure of the natural
language question and by the occurring domain-independent
expressions. Consequently, our goal is to generate a SPARQL
query template such as the one in Example [3]in the intro-
duction, which captures the semantic structure of the user’s
information need and leaves open only specific slots for re-
sources, classes and properties, that need to be determined
with respect to the underlying dataset.

3.1 SPARQL templates

SPARQL templates specify the query’s select or ask clause,
its filter and aggregation functions, as well as the number
and form of its triples. Subject, predicate and object of a
triple are variables, some of which stand proxy for appropri-
ate URIs. These proxy variables, called slots, are defined as
triples of a variable, the type of the intended URI (resource,
class or property), and the natural language expression that
was used in the user question, e.g. (?x, class, films).

For example, for the question in (taken from the QALD-
1 benchmark, cf. Section @ the two SPARQL templates

given in [4a] and [4b] are built.

4. How many films did Leonardo DiCaprio star in?

(a) SELECT COUNT(?y) WHERE {
7y rdf:type 7c .
?x 7p 7y .

Slots:

e (?x,resource, Leonardo DiCaprio)
e (?c,class, films)
e (?p, property, star)
(b) SELECT COUNT(?y) WHERE {
?x ?p 7y .
}
Slots:

WWW 2012 — Session: Ontology Representation and Querying: RDF and SPARQL

Tagged
Question
Domain Dependent
/ Lexicon
Natural
Language
; SPARQL LOD

Question ® Endpoint

I
Type Checking
and Prominence
\.
A

Answer

° ~.

——————— Uses -

4—@— Process Ranked SPARQL
State Queries

~

Apache

Solr

o

Entity and Query Ranking

April 16-20, 2012, Lyon, France

Semantic
Representaion
Domain Independent
Lexicon
@ SPARQL
Copora Query
. BOA Pattern J Templates

i -
N Library -

E) ~ o)
j Entity identification

- .
~-<._| Resources
and Classes

~.
-~

N

Templates
with URI slots

Figure 1: Overview of the template based SPARQL query generator.

e (7x,resource, Leonardo DiCaprio)
e (?p, property, films)

The reason for constructing two templates is that the noun
films could either correspond to a class (as in or to a
property (as in . Since we want the template generation
mechanism to use only domain-independent, linguistic in-
formation, such that it does not depend on how a particular
dataset is modelled, we start by generating all possible tem-
plates and later select the one that captures the structure of
the considered data.

3.2 Constructing SPARQL templates

In order to get from a natural language question to a
SPARQL template, we adopt the parsing and meaning con-
struction mechanism of the question answering system Pythia
[22]. The main reason for doing so is ease of adaption to our
purposes, but another parser, e.g. the Stanford parser, to-
gether with some semantic interpretation process could do
as well.

Pythia’s parsing process relies on a lexicon, which specifies
for each expression a syntactic and a semantic representa-
tion. The former are trees from Lexicalized Tree Adjoining
Grammar [16] and the latter are representations similar to
Underspecified Discourse Representation Theory (see [22]
for more details). Such a lexicon consists of two parts. One
part comprises domain-independent expressions, which were
specified manually and can be re-used across all domains.
This part contains 107 entries, mainly light verbs (to be, to
have, and imperatives like give me), question words (what,
which, how many, when, where) and other determiners (some,
all, no, at least, more/less than, the most/least), together with
negation words, coordination and the like. The other part
of the lexicon comprises domain-dependent expressions. But
since in our approach it is not known beforehand which URIs
these expressions should be mapped to, their lexical entries
cannot be fully specified. So instead, they contain slots and

641

are built on-the-fly while parsing, based on part-of-speech
information provided by the Stanford POS tagger [18|, and
a set of simple heuristics that specify which POS tag corre-
sponds to which syntactic and semantic properties, such as
the following;:

e Named entities are noun phrases and are usually mod-
elled as resources, thus a lexical entry is built compris-
ing a syntactic noun phrase representation together
with a corresponding semantic representation contain-
ing a resource slot.

e Nouns are often referring to classes, while sometimes
to properties, thus two lexical entries are built — one
containing a semantic representation with a class slot
and one containing a semantic representation with a
property slot.

e Verbs most often refer to properties, thus a lexical en-
try with a property slot is built. However, in some
cases, the verb does not contribute anything to the
query structure (like have in Which cities have more
than 2 million inhabitants?), thus an additional entry
is built, that does not contain a property slot corre-
sponding to the verb but assumes that the property
slot is contributed by a noun (inhabitants in this case).

The workflow of template generation thus is the follow-
ing: The input natural language question is first tagged
with part-of-speech information. Then all lexical entries for
domain-independent expressions are looked up in the pre-
defined lexicon, and for each expression not covered in this
lexicon are built based on its POS tag and a set of heuristics.
For example, processing the question [2a] (Who produced the
most films?) starts with the tagged input in The expres-
sions who and the most are domain-independent expressions
found in the lexicon, while for produced and films entries
need to be build on-the-fly.

WWW 2012 — Session: Ontology Representation and Querying: RDF and SPARQL

5. (a) who/WP produced/VBD the/DT most/JJS
films/NNS

(b) Covered tokens: who, the most, the, most

(¢) Building entries for: produced/VBD, £ilms/NNS
Now, all lexical entries are input to the parser, which con-
structs a set of syntactic and corresponding semantic repre-

sentations of the whole question. An example is given in |§|
and [7] respectively.

6. S
WP VP
who
VBD Dp
produced
DT NNS
the most films
Tz
£ Y (THE MOST y)
films(y) produced (x,y)

The semantic representations are finally translated into
SPARQL templates, in the case of Who produced the most
films? yielding the following two templates (one where the
property is contributed by the verb, corresponding to[7} and
one where the verb is assumed to be empty and the property
is contributed by the noun):

8. (a) SELECT ?x WHERE {
X 7p 7y .
7y rdf:type 7c .
}
ORDER BY DESC(COUNT(?7y)) LIMIT 1 OFFSET 0
Slots:

e (?c,class, films)
e (7p, property, produced)

(b) SELECT ?x WHERE {
77X 7p 7y .
}
ORDER BY DESC(COUNT(?y)) LIMIT 1 OFFSET 0
Slots:

e (?p, property, films)

In order to arrive at fully specified SPARQL queries, all
slots need to be replaced by appropriate URIs. The mech-
anism achieving this is explained in detail in the following
section.

4. ENTITY IDENTIFICATION

The entity identification problem can be formalized as fol-
lows: Given a string s and a knowledge base K, retrieve and
assign a score to entities (i.e., classes, instances or proper-
ties) that are similar to the input string s. This problem
is particularly complex when retrieving properties, as the
semantics of a property can be expressed by using a wide
variation of natural language expressions. Hence, we use
the following entity detection approach: We run our generic
approach to entity detection on all labels. In addition, if
s stands for a property label, we also compare s with the

642

April 16-20, 2012, Lyon, France

natural language expressions stored in the BOA pattern li-
brary. These two strategies return the highest ranking en-
tities which are then used to fill the query slots. In the
following we describe both approaches.

4.1 Generic approach

We begin by identifying the most common synonyms of s.
This is carried out by retrieving the union S(s) of all synsets
of s from WordNet. Given this synset, our goal is now to
retrieve all entities e with label label(e) from K that abide
by the restrictions of the slot which the entity is supposed
to fill. We then retrieve the set £(s) of entities e that are
such that their label is highly similar to the elements of the
synset S(s). Formally,

E(s) = argmax o (s, label(e)), (1)

s'eS(s)
where the string similarity function o is the average of the
trigram, Levenshtein and substring similarities.

4.2 Property Detection

While the detection of resources and classes can be re-
duced to a retrieval task, the detection of predicates from
natural language is a difficult task. This is mostly due to
the large number of expressions that can be used to denote
the same predicate. For example, the expressions X, the
creator of Yand Y is a book by X are difficult to match
by using synset expansion but they both imply that X is the
author of Y. To address this problem, we make use of the pat-
tern library extracted by the BOA frameworlﬁ [9] in addi-
tion to string matching to detect properties. The basic idea
behind BOA is to use the considerable amount of instance
knowledge available in the Linked Data cloud to compute
natural language expressions that stand for predicates from
the knowledge base K. By these means, expressions used
in natural language questions can be mapped to predicates
automatically.

Formally, BOA assumes a set P of predicates p for which
equivalent natural language expressions are to be detected
from an arbitrary input corpus (e.g., Wikipedia, or the Web).
For each p, BOA begins by computing the set of pairs Z(p) =
{(z,y) : (z p y) € K}. BOA searches through the input cor-
pus and retrieves all sentences that contains pairs (label(x),
label(y)) with (x,y) € Z(p), where label(r) denotes the la-
bel of any resource r. From these sentences, it extracts the
substrings that match the regular expressions “label(x) *
label(y)” or “label(y) * label(x)”. From these substrings,
BOA finally generates natural language expressions (NLE)
0 of the form ?D? representation 7R? or 7R? represen-
tation 7D?, where 7D? resp. 7R? are placeholders for the
labels of x resp. v, i.e., of the entities which matched the
domain resp. range of p. For example, the NLE 7D?, the
creator of 7R? and 7R? is a book by ?D? both express
the authorship relation.

The result of the NLE extraction process is a large number
of pairs (p,f), which we call BOA patterns. Distinguishing
the patterns that are specific to a given property p is carried
out by computing a score based on the following assump-
tions:

1. A good NLE 6 for p is used across several elements of

4BOA stands for BOotstrapping linked datA, see http://
boa.aksw.org

http://boa.aksw.org
http://boa.aksw.org

WWW 2012 — Session: Ontology Representation and Querying: RDF and SPARQL

Z(p). This characteristic is modeled by computing the
support of the pattern.

. A good NLE 6 for p allows to retrieve text segments
such that the placeholders ?D? resp. 7R? can be matched
to labels of entities whose rdf:type correspond with
rdfs:domain resp. rdfs:range of p. We call this char-
acteristic typicity.

. A good NLE 0 is used exclusively to express p, i.e, it
occurs in a small number of pattern mappings. We call
this last characteristic specificity.

To be able to compute these characteristics of good pat-
terns numerically, BOA collects the following supplementary
information during the NLE extraction process:

e the number of sentences that led to 6 and that con-
tained label(x) and label(y) with (x,y) € Z(p), which
we denote I(z,y,0,p), and

e Z(p,0), the subset of Z(p) which contains only pairs
(s,0) that led to 0.

4.2.1 Support

We calculate the support sup(6, p) of the pattern 6 for the
predicate p as the product of the number of subject-object
pairs the pattern has been learned from and the maximum
value for a single subject-object pair:

max

sup(6,p) = log ((s 0)€Z(p)

1(5.0.0,9)) loe((Z(p.0)). (2
Since both components of the support follow a long-tail dis-
tribution, we use the logarithm to reduce the boosting of
very popular patterns.

4.2.2 Typicity

A pattern 6 is considered to display a high typicity with re-
spect to a predicate p if its placeholders 7D? and ?7R? match
only labels of entities whose rdf:type matches the range
and domain restrictions of p in the reference corpus. Let d
resp. 7 be functions that map each p to its rdfs:domain
resp. rdfs:range. Furthermore, let d(6,s) resp. r(6,s) be
functions which map the class of the named entity used to
substitute ?7D? resp. 7R in the pattern 6 for the given sen-
tence s. Finally, let the function §(z, y) be Kronecker’s delta
function, which returns 1 if z = y and 0 in all other cases.
We define the typicity of 6 as

(
®3)

where S is the set of sentences used to evaluate the typicity
of 6. Note that the first term of the typicity is simply the
precision of the pattern. We multiply this factor with the
logarithm of (|S|4+1) to prevent overly promoting patterns
which have a low recall, i.e., patterns that return only a
small number of sentences.

4.2.3 Specificity

A NLE 0 is considered to be specific if it is used to ex-
pressed a small number of predicates p. We adapted the idea

5(d(p), d(0,5)) + 6(r(p), (0, 5))
2|5

typ(6,p) =)

seS

) log(|S|+1),

643

April 16-20, 2012, Lyon, France

of inverse document frequency (idf) as known from Informa-
tion Retrieval to capture this characteristic. The specificity
spec(0) is thus given by the following expression:

L)

spec(8) = log <|M(6)|

where M (0) is the set of predicates of which 6 is a NLE.
All three equations can now be combined to the global
confidence score ¢(6, p) used by BOA as shown in Equation

()

(4)

c(0,p) = sup(0,p) - typ(0, p) - spec(0).

S. QUERY RANKING AND SELECTION

After identifying entities that could fill the slots of a tem-
plate, we arrive at a range of possible SPARQL queries. The
task now is to rank these queries and to pick one, which is
then used to retrieve the answer to the input question.

The goal of the query ranking step is to provide a func-
tion for deciding on the order of execution of queries that
possibly match a question. Given a slot that is to be filled,
we compute two scores for each possible entity e that can be
used to fill a slot: a similarity score and a prominence score.
The similarity score o(e) is the string similarity used during
the entity detection phase. The prominence score p(e) is
given by

wle) = {

where x e y holds when this triple can be found in the ref-
erence knowledge base K. The final score score(e) of each
entity is then definded as

log, [{(x,y) : x e y}| if eis a property

log, {(x,y) : x y e} (6)

else,

score(e) = « /Helgii) a(s',label(e)) + (1 — a)ple), (7)
where a € [0,1] decides on the impact of similarity and
prominence on the final score of each entity.

The score of a query is computed as the average of the
scores of the entities used to fill its slots. In addition to
this, we perform type checks on queries: We first extract
all triple patterns of the form ?x rdf:type c in the query,
where 7x stands for a variable and c for a class. We com-
pute types(?z,q) = {c | (?z,rdf:type,c) € TP(q)} where
TP stands for the set of triple patterns in the considered
query ¢g. For each such variable, we search for triple pat-
terns ?x p e and e p ?x in the query. In the former case,
we check whether the domain of the property p is disjoint
with an element of types(?z,q). In the latter case, we per-
form the same check with the range of p. If any of these
type checks fails, the query is rejected. We perform this to
avoid queries, which do not follow the schema of the knowl-
edge base, but could still return results because of modelling
errors in the data.

Once a ranked list of SPARQL queries is available, we
need to decide which of those queries should be returned as
answer. If only the highest ranking query would be returned,
the problem arises that most of those queries actually do not
return a result. The reason for this is that the query ranking
method can only take limited information into account for
reasons of efficiency. It uses string similarity, prominence
of entities and the schema of the knowledge base to score
a query. However, this does not guarantee that the combi-
nation of triple patterns in a query is meaningful and leads
to a non-empty result. Therefore it is necessary to execute

WWW 2012 — Session: Ontology Representation and Querying: RDF and SPARQL

and test queries before returning a result to the user. Our
system returns the highest scored query with a non-empty
result. A special case are COUNT queries: In most of those
queries, a return value of 0 is also discarded in our method,
since this usually means that the WHERE clause of the cor-
responding SPARQL query does not yield a match in the
considered RDF graph.

6. EVALUATION AND DISCUSSION

The evaluation is based on the QAL]jEI benchmark on DB-
pedieﬂ [10]. It comprises two sets of 50 questions over DB-
pedia, annotated with SPARQL queries and answers. Each

question is evaluated w.r.t. precision and recall defined as
follows:

number of correct resources returned by system
number of resources in gold standard answer

Recall

number of correct resources returned by system
number of resources returned by system

Precision

Before we turn to the evaluation results, one important
preliminary remark: The reported results are results based
on natural language questions tagged with ideal part-of-
speech information. The reason is that questions often lead
to POS tagging errors. For example, in Which films did
Leonardo di Caprio star in, the infinitive verb form star is
tagged as a noun by the Stanford POS tagger as well as
the Apache OpenNle POS tagger, which leads to a parse
failure. The same holds for a range of infinitives such as
play, border, die, cross and start. In order to separate such
external errors from errors internal to our approach, we man-
ually corrected erroneous POS tags in seven questions, that
otherwise would not have been parsed. But this is only a
temporal solution, of course; the next step is to train a POS
tagger model on a corpus containing a sufficient amount of
questions.

6.1 Evaluation results

Of the 50 training questions provided by the QALD bench-
mark, 11 questions rely on namespaces which we did not
incorporate for predicate detection: FOAF’| and YAGqﬂ
Especially the latter poses a challenge, as YAGO categories
tend to be very specific and complex (e.g., FemaleHeads0f-
Government and HostCitiesOfTheSummer0lympicGames). We
did not consider these questions, thus only 39 questions are
processed by our approach. Of these 39 questions, 5 ques-
tions cannot be parsed due to unknown syntactic construc-
tions or uncovered domain-independent expressions. This
mainly concerns the noun phrase conjunction as well as and
ordinals (the 5th, the first). These constructions will be
added in the future; the only reason they were not imple-
mented yet is that they require significant additional effort
when specifying their compositional semantics.

Of the remaining 34 questions, 19 are answered exactly
as required by the benchmark (i.e. with precision and recall
1.0) and another two are answered almost correctly (with
precision and recall > 0.8). Figure|3|at the very end of the
paper lists the results of each of the 39 processed questions.

Shttp://www.sc.cit-ec.uni-bielefeld.de/qald
Shttp://dbpedia.org
"http://incubator.apache.org/opennlp/
8http://www.foaf-project.org/
%http://www.mpi-inf .mpg.de/yago-naga/yago/

644

April 16-20, 2012, Lyon, France

The mean of all precision scores is therefore 0.61 and the
mean of all recall scores is 0.63, leading to an F—measurdfl
of 0.62. These results are comparable with those of systems
such as FREyA and PowerAqua. The key advantage of our
system is that the semantic structure of the natural lan-
guage input is faithfully captured, thus complex questions
containing quantifiers, comparatives and superlatives pose
no problem, unlike in PowerAqua. Moreover, our system
does not need any user feedback, as FREyA does.

6.2 Discussion

In the following, we identify the main sources of errors
and discuss how they can be addressed in future work.

In the examples given in this section, we will use the fol-
lowing abbreviations for relevant DBpedia namespaces:

e res for <http://dbpedia.org/resource/>
e onto for <http://dbpedia.org/ontology/>
e prop for <http://dbpedia.org/property/>

Incorrect templates

It only very rarely happens that a parse is found but no sen-
sible template is constructed. However, it does happen that
none of the constructed templates captures the structure of
the data. One example is question 36 (Is there a video game
called Battle Chess?), where the generated template assumes
a property slot title or name corresponding to the participle
called; however, none such property exists in DBpedia. The
appropriate property rdfs:label, on the other hand, is not
part of the index and thus is not found by the predicate
detection algorithm.

Incorrect templates are most eminent when the semantic
structure of the natural language question does not coincide
with the triple structure of the target query. For example,
the phrase join the EU would lead to a template containing
a property slot join related to the resource EU; the appropri-
ate property in DBpedia, however, is prop:accessioneudate.
The same structural mismatch would arise with complex
YAGO caterogies. Cases like these suggest that the fixed
structure of the templates is sometimes too rigid. We are
currently working on two solutions to this problem, see Sec-
tion [below.

Another reason for incorrect templates is the sporadic fail-
ure of named entity recognition. E.g., if a phrase like Battle
of Gettysburg is not recognized as a named entity, no re-
source slot is built — instead the template would contain a
slot for a class battle related to an entity Gettysburg, which
does not lead to a meaningful result.

Entity identification

Errors due to entity identification occur when a resource,
class or property cannot be found on the basis of the slot.
These are the most frequent errors in our approach.

A particularly hard case for entity identification is when
a property in the intended target query does not have a cor-
respondent in the natural language question. This is the
case in questions 11 (Give me all soccer clubs in the Premier
League) and 29 (Give me all movies with Tom Cruise). The
templates constructed for these questions contain a prop-
erty slot that arises from the prepositions in and with; the
correct properties onto:league (for 11) and onto:starring

10(2 x precision x recall)/(precision + recall)

http://www.sc.cit-ec.uni-bielefeld.de/qald
http://dbpedia.org
http://incubator.apache.org/opennlp/
http://www.foaf-project.org/
http://www.mpi-inf.mpg.de/yago-naga/yago/

WWW 2012 — Session: Ontology Representation and Querying: RDF and SPARQL

(for 29), however, could be found only by inferences on the
basis of Premier League and films. This type of inferences is
not part of our approach at the moment.

Examples for entities which do have a correspondent in the
natural language input but are nevertheless hard to match
are the following;:

e inhabitants, the correct property being prop:population
or prop:populationTotal (question 9)

e owns, the property specified in the Gold query being
onto:keyPerson (question 10)

e higher, the target property being prop:elevationM
(question 33)

These cases would require the incorporation of additional se-
mantic similarity measures, such as FExplicit Semantic Anal-
ysis [8].

Query selection

Sometimes the correct entity is among the entity candidates,
but still a query with the wrong entity instantiating the
slot is picked. An example of this is question 32 (Who
wrote The pillars of the Earth?). The expression wrote is
matched with the property onto:writer, as this is higher
ranked than the property onto:author. Using the former,
the name The pillars of the Earth is incorrectly matched with
res:The_Pillars_of_the_Earth_(TV_Miniseries) because
it gives a non-empty result in combination with onto:writer.

Another case in which the wrong entity is picked is when
the slot contains too little information in order to decide
among candidates. E.g., there are three questions (24,41, 44)
containing the participle founded. There are several candi-
dates of properties that founded could correspond to, e.g.
prop:foundation, prop:foundingYear, prop:foundingDate,
onto:foundationPerson, onto:foundationPlace. Without
a hint about the intended range of the property, the decision
for one of these properties has to be quite arbitrary. In order
to capture these cases, slots would need to comprise more in-
formation, e.g. also specify the property’s range, in order to
distinguish constructions like founded in 1950, founded in Cal-
ifornia and founded by Goofy. A first step towards this goal
is already implemented: In case the argument is a numeral
or the question contains a wh-word like when or where, the
slot contains the information that a date or place is intended
(thus question 41 works fine and for question 24 a sensible
template is built, although it fails due to query ranking and
selection).

Other reasons

In some cases our approach is doing the right thing, how-
ever not, or only partially, matching the Gold query. One
example is question 13 (What languages are spoken in Es-
tonia?). The target query specified in the Gold standard
contains a union of countries related to Estonia via the prop-
erty onto:language and countries related to Estonia via
the property onto:spokenIn. Our approach finds the for-
mer property and stops, thus misses the latter and thereby
achieves 1.0 precision but a lower recall. The solution would
be to perform an exhaustive search, i.e. not stopping after
one successful query is found.

Another example is question 38, which asks for the coun-
try with the most official languages. Our approach choses
the property onto:officialLanguage, while the Gold query

645

April 16-20, 2012, Lyon, France

uses the more general (and arguably less appropriate) prop-
erty onto:language.

In general, question answering over DBpedia has to face
the challenge of two schemas — a manually created ontology
modelling mostly neat and consistent data in the ontology
namespace, and an automatically created one modelling a
large amount of quite noisy data in the property namespace.
The namespaces partly overlap and chosing one over the
other often leads to different results of different quality.

7. PROTOTYPE

A prototype for the described algorithm was implemented
and deployed, see Figure It is a freely accessible web
application, which allows a user to enter natural language
questions. The answers are shown in a tabular view if ap-
propriate. The view allows the user to enrich the generated
answers by displaying further appropriate property values
for the returned resources. Interesting queries can be saved
and reused by other users.

For the prototype, we used DBpedia as underlying knowl-
edge base. To be able to use the mentioned techniques,
some components were created offline: Separate Lucene in-
dices were created for resources, properties and classes by
querying for the labels of those elements in the used DB-
pedia triple store. Additionally, a BOA index was created
for properties, since it vastly improves the mapping of prop-
erties in natural language queries compared to using a text
index. The same approach can be applied to other knowl-
edge bases and we plan to evaluate this in future work.

8. RELATED WORK

Several approaches have been developed for the purpose
of question answering.

PowerAqua is a question answering system over Linked
Data that is not tailored towards a particular ontology; es-
pecially it does not make any assumptions about the vocab-
ulary or structure of datasets. The main focus of the system
is to combine and merge data from different sources, focusing
on scalability, and using iterative algorithms, filtering and
ranking heuristics to limit the search space. PowerAqua is
therefore very strong on large, heterogeneous datasets, al-
though it does struggle on complex mappings such as the
aforementioned YAGO categories. For a detailed explana-
tion of the system’s architecture and an evaluation see, e.g.,
|15 13]. The major shortcoming of PowerAqua is its limited
linguistic coverage. In particular, PowerAqua fails on ques-
tions containing the most (such as question 31), and more
than (such as question 12), which pose no problem for a sys-
tem with a deeper linguistic analysis of the input question.

Pythia [22] is such a system. It relies on a deep linguistic
analysis (on which the approach based in this paper is based)
and can therefore handle linguistically complex questions, in
particular questions containing determiners such as the most
and more than. Pythia’s major drawback is that it requires a
lexicon, which up to this moment has to be created manually.
It therefore fails to scale to very large datasets.

The approach proposed in this paper tries to combine both
a deep linguistic analysis with the flexibility of approaches
focusing on matching natural language questions to RDF
triples. The triple structure is derived from the semantic
structure of the question.

Another possibility to determine the triple structure is

WWW 2012 — Session: Ontology Representation and Querying: RDF and SPARQL

April 16-20, 2012, Lyon, France

AuteSPARQAL T8SL

[books written by Dan Brown

] (Submit Query| use Dpecia Live (1 ast approximate search (]

European Union Countries

books wiitten by Dan Brown

fims starring Brad Pitt soccer clubs in Premier League

Result
Ilabel
Deception Point

image comment author isbn

Deception Point Is a 2001 techno-hriller novel by
Dan Brown. The plot concems a meteorite found
within the Arctic Circle that may provide proof of
extraterrestrial Iife, and attempts by dark for.

Dan Brown

Digital Fortress Digital Fortress is a techno-thriller novel written
by American author Dan Brown and published in
1998 by St. Martin's Press. The book explores
the theme of govemment surveillance of
electronical

Dan Brown

The Da Vinci Code The Da Vinci Code is a 2003 mystery-detective
novel written by Dan Brown. It follows:
symbologist Robert Langdon and Sophie Neveu
as they Investigate a murder in Paris's Louvre
Museum and discover

Dan Brown

xX¢ K¢ %K<

Bpme

L-Learer

0-552-15176-4 (US) /
9780552159722 (UK)

ISBN 031218087X (first Techno-thriler
edition hardcover)

0-385-50420-9 (US) /
9780552159715 (UK)

uestion answeriny

literaryGenre:
Thriler %26genre%29

Conspiracy fiction

ocle
52012546

publisher subsequentWork author country

Transworid
%26company%29

The Da Vinci Code Dan Brown United States

55045760 St Martin%27s Press Angels & Demons Dan Brown United Kingdom

50020650 Bantam Books The Lost Symbol Dan Brown United States

CIT=C

Lacsw)

powered by D g engine and the DBpedia knowledge base
Christina Unger. Lorenz Buhmann, Jens Lehmann, Konrad Hoffner, Axel-Cyril Ngonga Ngomo. Daniel Gerber an

Philipp Cimiano

Figure 2: Screenshot of prototype available at http://autosparql-tbsl.dl-learner.org.

by exploration of the dataset, as in the question answering
system FREyA |2, 3]. However, FREyA partly relies on the
user’s help in selecting the entity that is most appropriate as
match for some natural language expression. The drawback
of such an approach is that the naive end-user is often not
informed about the modeling and vocabulary of the data
and thus is not able to help.

Further approaches related to question answering over
Linked Data include, e.g., Treo 7], which combines entity
search, semantic relatedness and spreading activation for
exploring RDF data, and Ontolook [12], which focuses on
relation-based search. In addition to question answering,
keyword-based approaches have been gaining momentum
over the past years. This led to semantic search engines,
such as Swoogle [5], Watson [4], Sigma [20] and Sindice [21],
which aim to index RDF across the Web and make it avail-
able for entity search. The approaches described in [17] and
[19] extend upon the paradigm of simple entity search and
try to generate interpretations of keyword queries which ex-
ploit the semantics available on the Linked Data Web. Es-
pecially, [19] implements a graph exploration approach to
detect subgraphs of the input knowledge base that can be
used to compute an answer to the user’s query. On the other
hand, [17] uses schema knowledge to infer SPARQL queries
that represent possible interpretations of the user-given key-
words.

9. CONCLUSION AND FUTURE WORK

We presented a novel approach to question answering over
Linked Data that relies on a deep linguistic analysis yielding
a SPARQL template with slots that need to be filled with
URIs. In order to fill those slots, possible entities were iden-
tified using string similarity as well as natural language pat-
terns extracted from structured data and text documents.
The remaining query candidates were then ranked and, on
the basis of scores attached to the entities, one of them was
selected as final result.

One of the strengths of this approach is that the gener-
ated SPARQL templates capture the semantic structure of
the natural language input. Therefore questions containing
quantifiers like the most and more than, comparatives like

646

higher than and superlatives like the highest do not pose a
problem — in contrast to most other question answering sys-
tems that map natural language input to purely triple-based
representations.

However, in some cases the semantic structure of the ques-
tion and the triple structure of the query do not coincide,
thus faithfully capturing the semantic structure of the in-
put question sometimes leads to too rigid templates. We
are currently exploring two approaches to solve this prob-
lem. The first one concentrates on more flexible processing.
On the one hand side, we are considering a preprocessing
step that can detect complex (especially YAGO) categories
before parsing the natural language question. On the other
hand side, we are investigating the relaxation of templates,
such that the triple structure is not completely fixed but is
discovered through exploration of the RDF data.

The second approach concerns incorporating a more flex-
ible fallback strategy in case no successful SPARQL query
is found. In particular, we are working on combining our
approach with active learning methods as described in [11].
Active learning allows the user to give feedback on the pre-
sented query results, i.e. the user can say whether particular
query results are incorrect and/or whether further results
should be returned. This will allow two enhancements over
the presented question answering system: First, if the re-
turned answers are incorrect or incomplete, then the user
can indirectly modify the query via his feedback. And sec-
ond, if our approach cannot generate a query at all, then the
system can still recover by allowing the user to specify one
or more query results. This procedure can be assisted with
standard search and disambiguation methods.

Once these enhancements are in place, i.e. once the short-
comings mentioned in Section[f.2]are addressed, we will eval-
uate our approach on a larger scale, for example using the
data provided by the second instalment of the QALD open
challenge, which comprises 100 training and 100 test ques-
tions on DBpedia, and a similar amount of questions on Mu-
sicBrainz. In particular, we will test how well our approach
carries over to different types of domains. Additionally, we
plan to conduct a small usability study.

Ultimately, our goal is to provide robust question answer-
ing for large scale heterogeneous knowledge bases. Our vi-

http://autosparql-tbsl.dl-learner.org

WWW 2012 — Session: Ontology Representation and Querying: RDF and SPARQL

sion is that this robustness can help to make the usage of
question answering systems a standard task in everyday life
in a similar but more powerful way as web search.

10.

1]

[10]

[11]

[12]

[13]

REFERENCES

H. Cunningham D. Damljanovic, M. Agatonovic.
Natural language interfaces to ontologies: Combining
syntactic analysis and ontology-based lookup through
the user interaction. In Proceedings of the 7th Extended
Semantic Web Conference (ESWC 2010), Heraklion,
Greece, May 31-June 3, 2010. Springer, 2010.

D. Damljanovic, M. Agatonovic, and H. Cunningham.
Natural language interfaces to ontologies: Combining
syntactic analysis and ontology-based lookup through
the user interaction. In ESWC 2010, volume 6088 of
LNCS, pages 106-120. Springer, 2010.

D. Damljanovic, M. Agatonovic, and H. Cunningham.
FREyA: An interactive way of querying Linked Data
using natural language. In Proceedings of the 1st
Workshop on Question Answering over Linked Data
(QALD-1), ESWC 2011, 2011.

M. d’Aquin, E. Motta, M. Sabou, S. Angeletou,

L. Gridinoc, V. Lopez, and D. Guidi. Toward a new
generation of Semantic Web applications. Intelligent
Systems, IEEE, 23(3):20-28, 2008.

L. Ding, T.W. Finin, A. Joshi, R. Pan, R. Scott Cost,
Y. Peng, P. Reddivari, V. Doshi, and J. Sachs.
Swoogle: a search and metadata engine for the
Semantic Web. In David A. Grossman, Luis Gravano,
ChengXiang Zhai, Otthein Herzog, and David A.
Evans, editors, CIKM, pages 652—659. ACM, 2004.

L. Fischer E. Kaufmann, A. Bernstein. NLP-Reduce:
A "naive” but domain-independent natural language
interface for querying ontologies. In Proceedings of the
4th European Semantic Web Conference (ESWC
2007), Innsbruck, Austria, 2007.

A. Freitas, J.G. de Oliveira, S. O’Riain, E. Curry, and
J.C. Pereira da Silva. Querying Linked Data using
semantic relatedness: A vocabulary independent
approach. In Proceedings of the 16th International
Conference on Applications of Natural Language to
Information Systems (NLDB), 2011.

E. Gabrilovich and S. Markovitch. Computing
semantic relatedness using Wikipedia-based Explicit
Semantic Analysis. In Proceedings of the 21st National
Conference on Artificial Intelligence (AAAI),
Hyperabad, India, 2007.

D. Gerber and A.-C. Ngonga Ngomo. Bootstrapping
the Linked Data Web. In WekEx@ISWC, 2011.

J. Lehmann, C. Bizer, G. Kobilarov, S. Auer,

C. Becker, R. Cyganiak, and S. Hellmann. DBpedia —
A crystallization point for the Web of Data. Journal
of Web Semantics, 7(3):154-165, 2009.

J. Lehmann and L. Bithmann. AutoSPARQL: Let
users query your knowledge base. In Proceedings of
ESWC 2011, volume 6643 of Lecture Notes in
Computer Science, pages 63—79, 2011.

Y. Li, Y. Wang, and X. Huang. A relation-based
search engine in Semantic Web. IEEE Trans. Knowl.
Data Eng., 19(2):273-282, 2007.

V. Lopez, M. Fernandez, E. Motta, and N. Stieler.
PowerAqua: Supporting users in querying and

647

(14]

(15]

(16]

(17]

(18]

(19]

20]

21]

(22]

23]

(24]

April 16-20, 2012, Lyon, France

exploring the Semantic Web. Semantic Web Journal,
In Press (2011).

V. Lopez and E. Motta. Ontology driven question
answering in Aqualog. In Proceedings of the 9th
International Conference on Applications of Natural
Language to Information Systems (NLDB 2004),
Manchester, England, 2004.

V. Lopez, A. Nikolov, M. Sabou, V. Uren, and

E. Motta. Scaling up question-answering to Linked
Data. In Proceedings of Knowledge Engineering and
Knowledge Management by the Masses (EKAW-2010),
Lisboa, Portugal, 2010.

Y. Schabes. Mathematical and Computational Aspects
of Lezicalized Grammars. PhD thesis, University of
Pennsylvania, 1990.

S. Shekarpour, S. Auer, A.-C. Ngonga Ngomo,

D. Gerber, S. Hellmann, and C. Stadler.
Keyword-driven SPARQL query generation leveraging
background knowledge. In International Conference
on Web Intelligence, 2011.

K. Toutanova, D. Klein, C. Manning, and Y. Singer.
Feature-rich part-of-speech tagging with a cyclic
dependency network. In Proceedings of HLT-NAACL
2003, pages 252-259, 2003.

Thanh Tran, Tobias Math&f3, and Peter Haase.
Usability of keyword-driven schema-agnostic search. In
Lora Aroyo, Grigoris Antoniou, Eero Hyvénen,
Annette ten Teije, Heiner Stuckenschmidt, Liliana
Cabral, and Tania Tudorache, editors, ESWC (2),
volume 6089 of Lecture Notes in Computer Science,
pages 349-364. Springer, 2010.

G. Tummarello, R. Cyganiak, M. Catasta,

S. Danielczyk, R. Delbru, and S. Decker. Sig.ma: Live
views on the Web of Data. Journal of Web Semantics,
8(4):355-364, 2010.

G. Tummarello, R. Delbru, and E. Oren. Sindice.com:
Weaving the Open Linked Data. pages 552-565, 2007.
C. Unger and P. Cimiano. Pythia: Compositional
meaning construction for ontology-based question
answering on the Semantic Web. In Proceedings of the
16th International Conference on Applications of
Natural Language to Information Systems (NLDB
2011), 2011.

E. Motta V. Lopez, V. Uren and M. Pasin. Aqual.og:
An ontology-driven question answering system for
organizational semantic intranets. Journal of Web
Semantics, 5(2):72-105, 2007.

V. Uren V. Lopez, M. Sabou and E. Motta.
Cross-ontology question answering on the Semantic
Web — an initial evaluation. In Proceedings of the
Knowledge Capture Conference, 2009, California,
20009.

WWW 2012 — Session: Ontology Representation and Querying: RDF and SPARQL April 16-20, 2012, Lyon, France

[id | question | precision | recall |
2 | Who has been the 5th president of the United States of America
4 | Who was Tom Hanks married to 1.0 1.0
5 | Which people were born in Heraklion 0.91 1.0
7 | Which companies work in the aerospace industry as well as on

nuclear reactor technology
8 | Which people have as their given name Jimmy

9 | Who developed the video game World of Warcraft 1.0 1.0
10 | Who was the wife of president Lincoln 1.0 1.0
12 | Which caves have more than 3 entrances 1.0 1.0
13 | Which cities have more than 2000000 inhabitants 0.04 0.26
14 | Who owns Aldi

16 | Give me all soccer clubs in the Premier League 0.5 0.86
17 | In which programming language is GIMP written 1.0 1.0
18 | What languages are spoken in Estonia 1.0 0.14
20 | Which country does the Airedale Terrier come from 1.0 1.0
21 | What is the highest mountain 1.0 1.0
24 | Which organizations were founded in 1950 0.0 0.0
25 | Which genre does DBpedia belong to 1.0 1.0
26 | When was DBpedia released 1.0 1.0
27 | Who created English Wikipedia 1.0 1.0
28 | Which companies are located in California USA 0.8 0.76
30 | How many films did Leonardo DiCaprio star in 1.0 1.0
31 | Who produced the most films 1.0 1.0
32 | Is Christian Bale starring in Batman Begins 1.0 1.0
33 | Which music albums contain the song Last Christmas

34 | Give me all films produced by Hal Roach 1.0 1.0
35 | Give me all actors starring in Batman Begins 1.0 0.86
36 | Give me all movies with Tom Cruise 0.08 0.75

37 | List all episodes of the first season of the HBO television series
The Sopranos

38 | Which books were written by Danielle Steel 1.0 1.0
39 | Who wrote the book The pillars of the Earth 0.5 1.0
40 | Which mountains are higher than the Nanga Parbat 0.0 0.0
41 | When was Capcom founded 1.0 1.0
42 | Which software has been published by Mean Hamster Software 1.0 1.0
43 | Is there a video game called Battle Chess 0.0 0.0
44 | Which software has been developed by organizations founded in
California

45 | Which country has the most official languages 0.0 0.0
47 | Is Natalie Portman an actress 1.0 1.0
48 | Who produced films starring Natalie Portman 1.0 1.0

49 | In which films did Julia Roberts as well as Richard Gere play

Figure 3: This table shows precision and recall values for each processed question (i.e. all questions that do
not require the YAGO or FOAF namespace). For questions with no precision and recall specified, no query

was constructed. Questions printed in cells with red background were not parsed, questions in white cells
succeeded and for questions in lightgray cells queries with quality equal or close to the Gold query were

built, while questions in yellow cells fail due to a query selection problem and questions in orange cells fail
due to some entity identification problem.

648

	Introduction
	Overview
	Template Generation
	SPARQL templates
	Constructing SPARQL templates

	Entity Identification
	Generic approach
	Property Detection
	Support
	Typicity
	Specificity

	Query Ranking and Selection
	Evaluation and discussion
	Evaluation results
	Discussion

	Prototype
	Related Work
	Conclusion and Future Work
	References

