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Abstract

This paper provides several theoretical results for empirical game theory. Specifically, we
introduce bounds for empirical game theoretical analysis of complex multi-agent interactions.
In doing so we provide insights in the empirical meta game showing that a Nash equilibrium
of the estimated meta-game is an approximate Nash equilibrium of the true underlying meta-
game. We investigate and show how many data samples are required to obtain a close enough
approximation of the underlying game. Additionally, we extend the evolutionary dynamics
analysis of meta-games using heuristic payoff tables (HPTSs) to asymmetric games. The state-
of-the-art has only considered evolutionary dynamics of symmetric HPTs in which agents
have access to the same strategy sets and the payoff structure is symmetric, implying that
agents are interchangeable. Finally, we carry out an empirical illustration of the generalised
method in several domains, illustrating the theory and evolutionary dynamics of several
versions of the AlphaGo algorithm (symmetric), the dynamics of the Colonel Blotto game
played by human players on Facebook (symmetric), the dynamics of several teams of players
in the capture the flag game (symmetric), and an example of a meta-game in Leduc Poker
(asymmetric), generated by the policy-space response oracle multi-agent learning algorithm.

Keywords Empirical games - Asymmetric games - Replicator dynamics

1 Introduction

Using game theory to examine multi-agent interactions in complex systems is a non-trivial
task, especially when a payoff table or normal form representation is not directly available.
Works by Walsh et al. [39,40], Wellman et al. [43,44], and Phelps et al. [23], have shown
the great potential of using heuristic strategies and empirical game theory to examine such
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interactions at a higher strategic meta-level, instead of trying to capture the decision-making
processes at the level of the atomic actions involved. Doing this turns the interaction in a
smaller normal form game, or heuristic or meta-game, with the higher-level strategies now
being the primitive actions of the game, making the complex multi-agent interaction amenable
to game theoretic analysis.

Others have built on this empirical game theoretic methodology and applied these ideas to
no limit Texas hold’em Poker and various types of double auctions for example, see [16,22—
24.,30], showing that a game theoretic analysis at the level of meta-strategies yields novel
insights into the type and form of interactions in complex systems.

Major limitations of this empirical game theoretic approach are that it comes without
theoretical guarantees on the approximation of the true underlying meta-game (a model
of the actual game or interaction) by an estimated meta-game based on sampled data or
simulations, and that it is unclear how many data samples are required to achieve a good
approximation. Additionally, when examining the evolutionary dynamics of these games the
method remains limited to symmetric situations, in which the agents or players have access
to the same set of strategies, and are interchangeable. One approach is to ignore asymmetry
(types of players), and average over many samples of types resulting in a single expected
payoff to each player in each entry of the meta-game payoft table. Many real-world situations
though are asymmetric in nature and involve various roles for the agents that participate in
the interactions. For instance, buyers and sellers in auctions, or games such as Scotland
Yard [21], but also different roles in e.g. robotic soccer (defender vs striker) [29] and even
natural language (hearer vs speaker). This type of analysis comes without strong guarantees
on the approximation of the true underlying meta-game by an estimated meta-game based
on sampled data, and remains unclear about how many data samples are required to achieve
a good approximation.

In this paper we address these problems. We use the fact that a Nash equilibrium of the
estimated game is a 2e-Nash equilibrium of the underlying meta-game, showing that we can
closely approximate the real Nash equilibrium as long as we have enough data samples from
which to build the meta-game payoff table. Furthermore, we also examine how many data
samples are required to confidently approximate the underlying meta-game. We also show
how to generalise the heuristic payoff or meta-game method introduced by Walsh et al. to
two-population asymmetric games.

Finally, we illustrate the generalised method in several domains. We carry out an exper-
imental illustration on the AlphaGo algorithm [27], Colonel Blotto [17], Capture the Flag
(CTF) and an asymmetric Leduc poker game. In the AlphaGo experiments we show how
a symmetric meta-game analysis can provide insights into the evolutionary dynamics and
strengths of various versions of the AlphaGo algorithm while it was being developed, and
how intransitive behaviour can occur by introducing a non-related strategy. In the Colonel
Blotto game we illustrate how the methodology can provide insights into how humans play
this game, constructing several symmetric meta-games from data collected on Facebook. In
the CTF game we examine the dynamics of teams of two agents playing the Capture the Flag
game, show examples of intransitive behaviours occurring between these advanced agents and
illustrate how Elo rating ([8]) is incapable of capturing such intransitive behaviours. Finally,
we illustrate the method in Leduc poker, by examining an asymmetric meta-game, generated
by a recently introduced multiagent reinforcement learning algorithm, policy-space response
oracles (PSRO) [18]. For this analysis we rely on some theoretical results that connect an
asymmetric normal form game to its symmetric counterparts [32].
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2 Related work

The purpose of the first applications of empirical game-theoretic analysis (EGTA) was to
reduce the complexity of large economic problems in electronic commerce, such as con-
tinuous double auctions, supply chain management, market games, and automated trading
[39,44]. While these complex economic problems continue to be a primary application area
of these methods [5,37,38,41], the general technique has been applied in many different
settings. These include analysis interaction among heuristic meta-strategies in poker [24],
network protocol compliance [43], collision avoidance in robotics [11], and security games
[20,25,48]. Research that followed on Walsh’s [39] initial work branched off in two direc-
tions: the first strand of work focused on strategic reasoning for simulation-based games [44],
while the second strand focused on the evolutionary dynamical analysis of agent behavior
inspired by evolutionary game theory [31,33]. The initial paper of Walsh et al. contained
innovative ideas that resulted in both research strands taking off in slightly different direc-
tions. The current paper is situated in the second line of work focusing on the evolutionary
dynamics of empirical or meta-games.

Evolutionary dynamics (foremost replicator dynamics) have often been presented as a
practical tool for analyzing interactions among meta-strategies found in EGTA [2,11,39], and
for studying the change in policies of multiple learning agents [3], as the EGTA approach is
largely based on the same assumptions as evolutionary game-theory, viz. repeated interactions
among sub-groups sampled independently at random from an arbitrarily-large population of
agents. Also several approaches have investigated the use game-theoretic models, in combi-
nation with multi-agent learning, for understanding human learning in multi-agent systems,
see e.g. [9,26]. There have also been several uses of EGTA in the context of multiagent rein-
forcement learning. For example, reinforcement learning can be used to find a best response
using an succinct policy representation [15], which can be used to validate equilibria found in
EGTA [47], as a regularization mechanism to learn more general meta-strategies than inde-
pendent learners [18], or to determine the stability of non-adaptive trading strategies such as
zero intelligence [49].

A major component of the EGTA paradigm is the estimation of the meta-game that acts
as an approximation of the more complex underlying meta-game (like sequential games for
example). The quality of the analyses and strategies derived from these estimates depend cru-
cially on the quality of the approximation. The first preferential sampling scheme suggested
using an information-theoretic value of information criterion to focus the Monte Carlo sam-
ples [40]. Other initial approaches to efficient estimation, mentioned in [44], used regression
to generalize the payoff of several different complex strategy profiles [36]. Stochastic search
methods, such as simulated annealing, were also proposed as means to obtain Nash equi-
librium approximations from simulation-based games [35]. More recent work also suggests
player reductions that preserve deviations with granular subsampling of the strategy space to
get higher-quality information from a finite number of samples [46]. Finally, there is an online
tool that helps with managing EGTA experiments [6], which employs a sampling procedure
that prioritizes by the estimated regret of the corresponding strategies, which is known to
approach the true regret of the underlying game [34]. Despite this, the authors of [6] claim, to
the best of their knowledge, that “the construction of optimal sequential sampling procedures
for EGTA remains an open question”. This work addresses this question of sampling given
current estimates and their errors.
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3 Preliminaries

In this section, we introduce the necessary background to describe our game theoretic meta-
game analysis of the repeated interaction between p players. For the sake of completeness
we also provide some theoretical properties of heuristic payoff tables in the appendix of the
paper (see “Appendix A”), that have not been treated in the literature before, but point out
that this can be easily skipped as the main results can be understood without this section.

3.1 Normal form games

In a p-player Normal Form Game (NFG), players are involved in a single round strate-

gic interaction. Each player i € [p] = {l,..., p} chooses a ‘strategy’ 7' € [k;] from
a set of k; strategies and receives a payoff ' (z!, ..., 7”) € R. For the sake of simplic-
ity, we will write m for the joint strategy (', ..., nP) € [k]” and r(x) for the joint

reward (r!(x),...,rP(x)). Then a p-player NFG is a tuple G = ol . rP). Players
are also allowed to randomize in which case player i chooses a probability distribution

xl e A—1 = {x € [0, 1% - Z?:] xj = 1} over [k;] and the players receive the expected

payoff under the joint strategy x = (x', ..., x?). In particular, player i’s expected payoff is

ki kp
E [ri(T[l ”P)] - Z le xpri(i i )
T~X e = i X, Lse--slp)-

=1 ip=1

A symmetric NFG captures interactions where payoffs depend on what strategies are
played but not on who plays them. The first condition is therefore that the strategy sets are
the same for all players, (i.e. Vi, j k; = k; and will be written k). The second condition is that
if a permutation is applied to the joint strategy =, the joint payoff is permuted accordingly.
Formally, a game G is symmetric if for any permutation o of [p], we have r () = r (7),
where 71, = (WD, ..., 7°P) and ro () = °V(x), ..., r"P(x)). To repeat, for
a game to be symmetric there are two conditions, the players need to have access to the
same strategy set and the payoff structure needs to be symmetric, such that players are
interchangeable. If one of these two conditions is violated the game is asymmetric.

In the asymmetric case our analysis will focus on the two-player case (two roles) and thus
we introduce specific notations for the sake of simplicity. In a two-player normal-form game,
each player’s payoff can be seen as a k1 x kp matrix. We will write A = (ayy)ucik;],velks]
for the payoff matrix of player one (i.e. @y, = r'(u, v)) and B = (buv)uelky),velk,) for the
payoff matrix of player two (i.e. by, = r*(u, v)).

In the end, a two player NFG is defined by the tuple G = (A, B).

3.2 Nash equilibrium

In a two-player game, a pair of strategies (x, y) € Ag,—1 X Ag,—1 is a Nash equilibrium of
the game (A, B) if no player has an incentive to switch from their current strategy. In other
words, (x, y) is a Nash equilibrium if x T Ay = max Ay and x ' By = max x| B, where for
a vector u (row-, or column-vector), we define max 1 = max; u;.

Evolutionary game theory often considers a single strategy x that plays against itself. In
this situation, the game is said to have a single population. These situations are often called in
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the literature single population games. In a single population game, x is a Nash equilibrium
if x T Ax = max Ax.

3.3 Replicator dynamics

Replicator Dynamics are one of the central concepts from Evolutionary Game Theory [10,12,
19,42,50,51]. They describe how a population of replicators, or a strategy profile, evolves in
the midst of others through time under evolutionary pressure. Each replicator in the population
is of a certain type, and they are randomly paired in interaction. Their reproductive success
is determined by their fitness, which results from these interactions. The replicator dynamics
express that the population share of a certain type will increase if the replicators of this
type have a higher fitness than the population average; otherwise their population share will
decrease. This evolutionary process is described according to a first order dynamical system.
In a two-player NFG (A, B), the replicator equations are defined as follows:

fu=xu (A0 = xTAy) su =y (7B —xTBY) (M

withx € Ay, 1,y € Ag,—1. The dynamics defined by these two coupled differential equations
changes the strategy profile to increase the probability of the strategies that have the best return
or are the fittest.

In the case of a symmetric two-player game (A = BT), the replicator equations assume
that both players play the same strategy profile (i.e. player one and two play according to x)
and the dynamics are defined as follows:

X1 =x; ((Ax)z — xTAx> 2)

3.4 Meta games and heuristic payoff tables

A meta game (or empirical game) is a simplified model of a complex multi-agent interaction.
In order to analyze complex multi-agent systems like poker, we do not consider all possible
atomic actions but rather a set of relevant meta-strategies that are often played [24]. These
meta strategies (or sometimes styles of play), over atomic actions, are commonly played by
players such as for instance “passive/aggressive” or “tight/loose” in poker. A p-type meta
game is now a p-player repeated NFG where players play a limited number of meta strategies.
Following our poker example, the strategy set of the meta game will now be defined as the set
{“aggressive”, “tight”, “passive”} and the reward function as the outcome of a game between
p-players using different profiles.

When a NFG representation of such a complex multi-agent interaction is not available,
one can use the heuristic payoff table (HPT), as introduced in Walsh et al. [39,40]. The idea
of the HPT is to capture the expected payoff of high-level meta-strategies through simulation,
or from data of interactions, when the payoffs are not readily available (e.g. through a given
NFG). Note that the purpose of the HPT is not to directly apply it to simple known matrix
games - in that case one can just plug the normal form game directly in the replicator equations.
Continuous-time replicator dynamics assume an infinite population, which is approximated
in the HPT method by a finite population of p individuals to be able to run simulations. As
such, the HPT is only an approximation. The larger p gets, the more subtleties are captured
by the HPT and the resulting dynamics will be more accurately reflecting the underlying true
dynamics.
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Table 1 An example of a meta
game payoff table Ni1 Niz Ni3Ui1| Uip Uis

6 0 0 0 00

M=14 0 2 |-05 01

0 0 6 0 00

If we were to construct a classical payoff table for r we would require k? entries in the
NFG table and this becomes large very quickly. Since all players can choose from the same
strategy set and all players receive the same payoff for being in the same situation, we can
simplify our payoff table. This means we consider a game where the payoffs for playing a
particular strategy depend only on the other strategies employed by the other players, but not
on who is playing them. This corresponds to the setting of symmetric games.

‘We now introduce the HPT. Let N be a matrix, where each row N; is a vector of counts
(n1,...,n;) where Zj n; = p: n; indicates how many of the p players play strategy ;.
The number of such distinct count vectors (which we also view as a discrete distribution)
can be shown to be m = (” +kil), which is the number of rows of N. Each distribution over
strategies can be simulated (or derived from data), returning a vector of expected rewards
u(N;) (one for each of the k strategies). Let U be an m x k matrix which captures the payoffs
corresponding to the rows in N, i.e., U; = u(N;). We refer to an HPT as M = (N, U). Note
that normalizing a count vector (ny, ..., ng) by dividing it by p gives a probability vector
x = (n1/p, ..., nk/p), which we call a discrete strategy distribution.

Suppose we have a meta-game with 3 meta-strategies (k = 3) and 6 players (p = 6) that
interact in a 6-type game, this leads to a meta game payoff table of 28 entries (which is a good
reduction from 3° cells). An important advantage of this type of table is that it easily extends
to many agents, as opposed to the classical payoff matrix. Table 1 provides an example for
three strategies and three players. The left-hand side shows the counts and gives the matrix
N, while the right-hand side gives the payoffs for playing any of the strategies given the
discrete profile and corresponds to matrix U.

The HPT has one row per possible discrete distribution, for each row we usually run many
simulations (or collect many data samples) to determine the expected payoff of each type
present in the discrete distribution. There are p (finite) individuals present in the simulation
at all times. In other words we simulate populations of p agents, and record their expected
utilities in the HPT.

4 Method
There are now two possibilities, either the meta-game is symmetric, or it is asymmetric. We

will start with the simpler symmetric case, which has been studied in empirical game theory,
then we continue with asymmetric games, in which we consider two populations, or roles.

4.1 Symmetric meta games
We consider a set of agents or players A with |[A| = n that can choose a strategy from a set

S with |S| = k and can participate in one or more p-type meta-games with p < n. If the
game is symmetric then the formulation of meta strategies has the advantage that the payoff
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for a strategy does not depend on which player has chosen that strategy and consequently
the payoff for that strategy only depends on the composition of strategies it is facing in the
game and not on who is playing the strategy. This symmetry has been the main focus of the
use of empirical game theory analysis [22,24,39,44].

In order to analyse the evolutionary dynamics of high-level meta-strategies, we also need
to estimate the expected payoff of such strategies relative to each other. In evolutionary game
theoretic terms, this is the relative fitness of the various strategies, dependent on the current
frequencies of those strategies in the population.

In order to approximate the payoff for an arbitrary mix of strategies in an infinite
population of replicators distributed over the species according to X, p individuals are
drawn randomly from the distribution x. Let the set of all discrete profiles be denoted by
o = {(p,0,..,0),.,(0,.,0,p)} and let u; = {N € w|N; = 0} where strategy i is not
played, and it; = {N € w|N; # 0} its complement. The probability for selecting a specific

row N; can be computed from x and N; as (where ( Nit N,f N'k) is a multinomial coefficient)
[AREAY VAREEE] 1

k
14 Nij
P(N;|X) = A
(Mix) (Nil,Niz,-.-,Nik>JleJ

The expected payoff of strategy 7/, 7 (x), is then computed as the weighted combination of
the payoffs given in all rows:

2 oN;esi; PINiIX)Uij
T Yo, PN

We need to re-normalize (denominator) by ignoring rows that do not contribute to the payoff
of a strategy because it is not present in the distribution N; in the meta-game payoff table. This
expected payoff function can now be used in Eq. 2 to compute the evolutionary population
change according to the replicator dynamics by replacing (Ax); by r (x).

If the HPT approach were applied to capture simple matrix games (which is not its pur-
pose), one needs to take into account that in the single population replicator dynamics model,
two individuals are randomly matched to play the normal form game. For an infinite popula-
tion, sampling two individuals with or without replacement is identical. However, for finite
populations, and especially if n is small, there is an important difference between sampling
with and without replacement. The payoff calculation method shown above correctly repro-
duces the expected payoff of matrix games if 7 is sufficiently large for both sampling with
replacement and without, however, for smaller n sampling with replacement will result in
lower errors. See “Appendix A” for an example and more theoretical properties about HPTs.

rl(x) =

4.2 Asymmetric meta games

One can now wonder how the previously introduced method extends to asymmetric games,
which has not been considered in the literature. An example of an asymmetric game is the
famous battle of the sexes game illustrated in Table 2. In this game both players do have
the same strategy sets, i.e., go to the opera or go to the movies, however, the corresponding
payoffs for each are different, expressing the differences in preferences that both players
have.

If we aim to carry out a similar evolutionary analysis as in the symmetric case, restricting
ourselves to two populations or roles, we will need two meta game payoff tables, one for
each player over its own strategy set. We will also need to use the asymmetric version of the
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Table 2 Battle of the Sexes

(0) M
game: strategies O and M
correspond to going t(_) the Opera o) 3,2 0,0
and going to the Movies
respectively M 0,0 2.3
Table 3 General 3 x 3 normal c c c
form game ! 2 3
Ry 11, €11 12, €12 r13: €13
Ry 21, €21 122, €22 123, €23
R3 731, €31 r32, €32 r33, €33
Table4 An example of an N N N U U U
asymmetric meta game payoff i’]’ljl %12 ’%13 i1, j1 %12 l%ﬂ
table (1,1 (r115c11)

P=1 (1,00 (0,1) 0 | (r12,0) (0,c2) 0
O, 1) (1,00 0 | (0,c21) (r21,0) 0

0 0 (1D 0 0 (r33.033)
Table5 A decomposed
asymmetric meta payoff table for Nitji Nioja Nis j3|Uitj1 Uiz j2 Ui3,j3
Player 1 2 0 0 r 0 0
P= 1 1 0 | r2 rm1 O

0 0 2 0 0 r33

replicator dynamics as shown in Eq. 1. Additionally, in order to compute the right payoffs for
every situation we will have to interpret a discrete strategy profile in the meta-table slightly
different. Suppose we have a 2-type meta game, with three strategies in each player’s strategy
set. We introduce a generalisation of our meta-table for both players by means of an example
shown in Table 4, which corresponds to the general NFG shown in Table 3.

Let’s have a look at the first entry in Table 4, i.e., [(1, 1), 0, O]. This entry means that both
agents (i and j) are playing their first strategy, expressed by N;j j1, meaning the number
of agents N;; playing strategy 71'141 in the first population equals 1 and that the number of
agents N playing strategy njz in the second population equals 1 as well. The corresponding
payoff for each player U;;_ ;i equals (11, c11). Now lets have a look at the discrete profiles:
[(1,0), (0, 1), 0] and [(0, 1), (1, 0), 0]. The first one means that the first player is playing
its first strategy while the second player is playing their second strategy. The corresponding
payoffs are ry» for the first player and ¢ for the second player. The profile [(0, 1), (1, 0), 0]
shows the reverted situation in which the second player plays his first strategy and the first
player plays his second strategy, yielding payoffs 1 and c»; for the first player and second
player respectively. In order to turn the table into a similar format as for the symmetric case,
we can now introduce p meta-tables, one for each player. More precisely, we get Tables 5
and 6 for players 1 and 2 respectively.
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Table6 A decomposed

asymmetric meta payoff table for Ni1j1 Nio.jp Ni3.j3|Uirj1 Ui, ja U3 j3
Player 2 2 0 0 cl1 0 0
0= 1 1 0 c12 1 0

0 0 2 0 0 33

One needs to take care in correctly interpreting these tables. Let’s have a look at row
[1, 1, 0] for instance. This should now be interpreted in two ways: one, the first player plays
his first strategy while the other player plays his second strategy and he receives a payoff
of rq2, two, the first player plays his second strategy while the other player plays his first
strategy and receives a payoff of r1. The expected payoff 7! (x) can now be estimated in the
same way as explained for the symmetric case as we will be relying on symmetric replicator
dynamics by decoupling asymmetric games in their symmetric counterparts (explained in
the next section).

4.3 Linking symmetric and asymmetric games

Here we repeat an important result on the link between an asymmetric game and its symmetric
counterpart games. For a full treatment and discussion of these results see [32]. This work
proves that if x, y is a Nash equilibrium of the bimatrix game (A, B) (where x and y have the
same support!), then y is a Nash equilibrium of the single population, or symmetric, game A
and x is a Nash equilibrium of the single population, or symmetric, game B | . Both symmetric
games are called the counterpart games of the asymmetric game (A, B). The reverse is also
true: If y is a Nash equilibrium of the single population game A and x is a Nash equilibrium
of the single population game B (and if x and y have the same support), then x, y is a Nash
equilibrium of the game (A, B). In our empirical analysis, we use this property to analyze
an asymmetric games (A, B) by looking at the counterpart single population games A and
BT. Formally (from [32]):

Theorem 1 Strategies x and y constitute a Nash equilibrium of an asymmetric game G =
(A, B) with the same support (i.e. I, = I, ) if and only if x is a Nash equilibrium of the
single population game BT, y is a Nash equilibrium of the single population game A and
I, =1,. Where I, = {i | x; > O} and I, = {i | y; > O}.

The result we state here is limited to strategies with the same support, but this condition
can be softened (see [32]).

5 Theoretical insights

As illustrated in the previous section the procedure for empirical meta-game analysis consists
of two parts. Firstly, one needs to construct an empirical meta-game utility function for each
player. This step can be performed using logs of interactions between players, or by playing the
game sufficiently enough (simulations). Secondly, one expects that analyzing the estimated
empirical game will give insights in the true underlying empirical game itself (i.e. the game

I x and y have the same support if Iy = I, where Iy = {i | x; > 0} and Iy, = {i | y; > O}.
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from which we sample). This section provides insights in the following: how much data is
enough to generate a good approximation of the true underlying empirical game? Is uniform
sampling over actions or strategies the right method?

5.1 Mainlemma

Sometimes players receive a stochastic reward R’ (!, ..., 7”) for a given joint action .
The underlying game we study is ri(nl, .ol =E [Ri(nl, R np)] and for the sake
of simplicity the joint action of every player but player i will be written . In the next
two definitions we recall the concept of a Nash equilibria and e-Nash equilibria in p-player
games.

Definition A joint strategy x = (!, ..., xP) = (x', x ") is a Nash equilibrium if for all i:

Enpy [ri(n)] = max E iy [ri(ni, n_i)]

Definition A joint strategy x = (x', ..., x?) = (x/, x %) is an €-Nash equilibrium if for all
i

max B —i i [ri(ni, n”')] — Eq~x [ri(n)] <e€
7-[1

When running an analysis on a meta game, we do not have access to the average reward

function i (7!, ..., 7P) but to an empirical estimate P!, ..., wP). The following lemma
shows that a Nash equilibrium for the empirical game 7/ (!, ..., 7”) is an 2¢-Nash equi-
librium for the game r' (!, ..., 7P) where ¢ = sup, ; |/ () — r'(;)|. A more general

statement can be found in [34] (see comment below).

Lemma If x is a Nash equilibrium for #' (', ..., wP), then it is a 2€-Nash equilibrium for
the game ri(n', ..., wP) where ¢ = sup,, ; |r' () — 7' ()]

Proof Fix some player index 1 < i < p. We extend the notation so that r/ (7, x ™) =
En—i,\,x—iri (', ™) and ri(x) = Eg~cri(m). We use similar notation with 7. Note that it
follows from our conditions on 7/ and #! that for any 7/, ¥’ (!, x ™) — 7/ (7%, x ") < € and
#1(x) — ri(x) < e. Then,

maxr(n x~ )—maxr(n x~ )+maxr(n x~ )—r(n X~ )

i
<e
<F@x)+e
=r'(x) + 7 (x) —r'(x) +€ < r'(x) + 2.
<e
Since i was arbitrary, the result follows. O

This lemma shows that if one can control the difference between |r (71’) —Fl(m)| uniformly
over players and actions, then an equilibrium for the empirical game 7 (7!, .. ., 7) is almost
an equilibrium for the game defined by the average reward function r (71 s, mP) Ttis
worth mentioning that a related result [34] proves that the set of e-Nash equilibria of the
empirical game includes the set of Nash equilibria in the underlying game. Note that in [34]
they prove a general result that coincides with ours when § = 0 and €(r) = 0 in theorem 6.1.

@ Springer



Autonomous Agents and Multi-Agent Systems (2020) 34:7 Page110f30 7

5.2 Finite sample analysis

This section details some concentration results. In practice, we often have access to a batch
of observations of the underlying game. We will run our analysis on an empirical estimate
of the game denoted by 7 (7). The question then will be either with which confidence can
we say that a Nash equilibrium for 7 is a 2e-Nash equilibrium, or for a fixed confidence, for
which € can we say that a Nash equilibrium for 7 is a 2e-Nash equilibrium for r. In the case
we have access to game play, the question is how many samples n do we need to assess that
a Nash equilibrium for 7 is a 2¢-Nash equilibrium for r for a fixed confidence and a fixed e.
For the sake of simplicity, we will assume that the random payoffs are bounded in [0, 1].

5.2.1 The batch scenario

Here we assume that we are given n(i, &) independent samples to compute the empirical
average 7 (). For i, m fixed, Hoeffding’s inequality gives that outside of some failure event
&i.x.s Whose probability is bounded by 8, [P () —ri(m)| < \/log(2/8)/(2n (i, )). It follows
that outside of the event € = Uj xes&i x.s/(sip) With P(€) < [S|prg; =8,

log(2p|S]) 4 log(1/8)

max | (r) — r ()| < max :
i, i, 2n(l,]t)

5.2.2 Uniform sampling

Setting n(i, t) = n/(|S|p), the previous bound becomes

log(2p|S]) + log(1/9)

max |7 () — ri(r)| < \/|S|p
i, 27’!

It follows, that to guarantee a uniform error of size € with probability 1 — §, it is sufficient if

(log(2p|S]) +log(1/8)) p|S|
n > .
- 2¢2

Our bound is slightly better than the one of [34]. In our case, the probability of the
equilibrium of the meta-game to be worse than a 2e-Nash equilibrium is smaller than
2p|S| exp(—Zezn) (where n is the number of samples used) whilst [34] shows an upper-
bound of (K + 1) p|S| exp(—ZEzn) where K is the maximum number of strategies available
per players. In other words, our bound is better than the one from [34] by a multiplicative
factor K. That work is most closely related to this paper, but also other finite sample analyses
have been proposed in the literature in other contexts [14,45].

6 Experiments

This section presents experiments that illustrate the meta-game approach and its feasibility for
examining strengths and weaknesses of higher-level strategies in various domains, including
AlphaGo, Colonel Blotto, CTF and the meta-game generated by PSRO. Note that we restrict
the meta-games to three strategies here, as we can nicely visualise this in a phase plot, and
these still provide useful information about the dynamics in the full strategy spaces.
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Table 7 Meta-game payoff table

generated from Table 9 in [27] arup @op @rp| Uil Uiy Uis

for strategies ayvp, ctvp, orp ? 8 (1) (;)‘955 g 0%5
0O 2 0|0 05 0
1 1 01099001 0
0O 0 2|0 0 05
0 1 1|0 0.390.61

The first step of the analysis is always the derivation of the meta-game payoff table itself,
for which a sufficiently large data-set is required that allows for computing the relative
payoffs of the various strategies under study against each other. We start with the AlphaGo
data, continue with colonel Blotto and CTF, and end with examining the asymmetric PSRO
game. Also note that these tables are relatively small, as p = 2 and n = 3, so in these
cases we could also use the NFG representation in the replicator dynamics equations. In
fact the dynamics of zero-sum 2-player games give equivalent results for NFG and HPT
representations (and as such both representations lead to the same visualizations), see the
Appendix for more details and proofs. For consistency purposes we therefore stick to HPT
representations here.

6.1 AlphaGo

The data set under study consists of 7 AlphaGo variations and a number of different Go
strategies such as Crazystone and Zen (previously the state-of-the-art). « stands for the
algorithm and the indexes r, v, p for the use of respectively rollouts, value nets and policy
nets (e.g. ayyp uses all 3). For a detailed description of these strategies see [27]. The meta-
game under study here concerns a 2-type NFG with |S| = 9. We will look at various 2-faces
of the larger simplex. Table 9 in [27] summarises all wins and losses between these various
strategies (meeting several times), from which we can compute meta-game payoff tables.

6.1.1 Experiment 1: Strong strategies

This first experiment examines three of the strongest AlphaGo strategies in the data-set, i.e.,
Qryp, Qyp, &rp. As a first step we created a meta-game payoff table involving these three
strategies, by looking at their pairwise interactions in the data set (summarised in Table 9
of [27]). This set contains data for all strategies on how they interacted with the other 8
strategies, listing the win rates that strategies achieved against one another (playing either
as white or black) over several games. The meta-game payoff table derived for these three
strategies is described in Table 7.

In Fig. 1 we have plotted the directional field of the meta-game payoft table using the
replicator dynamics for a number of strategy profiles x in the simplex strategy space. From
each of these points in strategy space an arrow indicates the direction of flow, or change,
of the population composition over the three strategies. Figure 2 shows a corresponding
trajectory plot. From these plots one can easily observe that strategy o), is a strong attractor
and consumes the entire strategy space over the three strategies. This restpoint is also a
Nash equilibrium. This result is in line with what we would expect from the knowledge we
have of the strengths of these various learned policies. Still, the arrows indicate how the
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Qpyy
Fig. 1 Directional field plot for the 2-face consisting of strategies ayvp, ctvp, etrp

a,

AlphaGo

=

Qpyp

Fig.2 Trajectory plot for the 2-face consisting of strategies oyp, Qyp, Arp

strategy landscape flows into this attractor and therefore provides useful information as we
will discuss later.

6.1.2 Experiment 2: Evolution and transitivity of strengths

We start by investigating the 2-face simplex involving strategies e, &t,p and o, for which
we created a meta-game payoff table similarly as in the previous experiment (not shown).
The evolutionary dynamics of this 2-face can be observed in Fig. 4a. Clearly strategy o, is
a strong attractor and beats on average the two other strategies. We now replace this attractor
by strategy o), and plot its evolutionary dynamics in Fig. 4b. What can be observed from
both trajectory plots in Fig. 4 is that the curvature is less pronounced in plot 4b than it is
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Fig.3 AlphaGo evolutionary o
dynamics plots for oy, o, 0y,
and o,y
AlphaGo
/// // ==

(a) Trajectory plot for oy, ap, and o

AlphaGo

(b) Trajectory plot for ary, o, and ap

in plot 4a. The reason for this is that the difference in strength between o, and o, is less
obvious in the presence of an even stronger attractor than o, ,. This means that o, is now
pulling much stronger on both «;, and e, and consequently the flow goes more directly to
aryp. SO even when a strategy space is dominated by one strategy, the curvature (or curl) is
a promising measure for the strength of a meta-strategy.

What is worthwhile to observe from the AlphaGo dataset, and illustrated as a series in
Figs. 3 and 4, is that there is clearly an incremental increase in the strength of the AlphaGo
algorithm going from version o, to o, building on previous strengths, without any intran-
sitive behaviour occurring, when only considering a strategy space formed by the AlphaGo
versions.

Finally, as discussed in Sect. 5, we can now examine how good of an approximation an
estimated game is. In the AlphaGo domain we only do this analysis for the games displayed in
Fig. 4a, b, as it is similar for the other experiments. We know that «,, is a Nash equilibrium
of the estimated game analyzed in Fig. 4a (meta Table not shown). The outcome of o,
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Fig.4 AlphaGo evolutionary Qpy
dynamics plots for op, atyp, @y,
and ayyp

AlphaGo

(a) Trajectory plot for Opp, Oyp, and oy

AlphaGo

g~ e
e —

a,.l.’) al‘p

(b) Trajectory plot for Qryp, Qup, and ary

against o, was estimated with Napyory, = 63 games (for the other pair of strategies we have
Na,,.a, = 605 and ng,, o, = 133). Because of the symmetry of the problem, the bound in
Sect. 5.2.1 is reduced to:

1 -8 =1—exp(log(2p|S]) — 2€*nmin)

Therefore, we can conclude that the strategy o, is an 2e-Nash equilibrium (with e = 0.15)
for the real game with probability at least 0.29 .

The same calculation would also give a confidence of 0.35 for the RD studied in Fig. 4b for
an € = 0.15 (as the number of samples are (1g,,.a,, > Royp.crpp > Ratpp.ary) = (65,106, 91)).
For these two cases, € = 0.05 is too small to give any form of guarantee in probability. For
example, the number of samples necessary per joint strategy to provide an accurate estimation
for e = 0.05 with a confidence of 1 — & = 0.95 would be at least 1097 samples (819 samples
for (€, §) = (0.05,0.2) and 122 samples for (¢, §) = (0.15, 0.05)).
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2N

AlphaGo

Fig.5 Intransitive behaviour for oy, o P and Zen

6.1.3 Experiment 3: Cyclic behaviour

A final experiment investigates what happens if we add a pre-AlphaGo state-of-the-art algo-
rithm to the strategy space. We have observed that even though «;,, remains the strongest
strategy, beating all other AlphaGo versions and previous state-of-the-art algorithms, cyclic
behaviour can occur, something that cannot be measured or seen from Elo ratings.” More
precisely, we constructed a meta-game payoff table for strategies «,, «, and Zen (one of the
previous commercial state-of-the-art algorithms). In Fig. 5 we have plotted the evolutionary
dynamics for this meta-game, and as can be observed there is a mixed equilibrium in strat-
egy space, around which the dynamics cycle, indicating that Zen is capable of introducing
in-transitivity, as «, beats «p, ), beats Zen and Zen beats o,.

6.2 Colonel Blotto

Colonel Blotto is a resource allocation game originally introduced by Borel [4]. Two players
interact, each allocating m troops over n locations. They do this separately without commu-
nication, after which both distributions are compared to determine the winner. When a player
has more troops in a specific location, it wins that location. The player winning the most
locations wins the game. This game has many game theoretic intricacies, for an analysis
see [17]. Kohli et al. have run Colonel Blotto on Facebook (project Waterloo), collecting
data describing how humans play this game, with each player having m = 100 troops and
considering n = 5 battlefields. The number of strategies in the game is vast: a game with m
troops and n locations has (m:[fl_]) strategies.

Based on Kohli et al. we carry out a meta game analysis of the strongest strategies and
the most frequently played strategies on Facebook (here the meta-game analysis is simply a
restricted game). We have a look at several 3-strategy simplexes, which can be considered as
2-faces of the entire strategy space.

2 AnElo rating or score is a measure to express the relative strength of a player, or strategy [8]. It was named
after Arpad Elo and originally introduced to rate chess players. For an introduction see e.g. [7].
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Table 8 5 of the strongest

. Strongest strategies
strategies played on Facebook £ g

Strategy Frequency Win rate
[36, 35,24, 3,2] 1 74
[37,37,21,3,2] 17 73
[35, 35, 26,2,2] 1 73
[35, 34,25, 3, 3] 3 .70
35,35, 24,3, 3] 13 70
Table 9 Meta-game payoff table
generated for strategies s1$2 53| Uin Uiy U3
51 = [36, 35, 24, 3, 2], 200405 0 0
5y = [37,37,21,3,2], and 10 10.66 0 034
53 = 35, 35, 26, 2, 2] 0200 05 0
1 1 0]033067 0
0020 0 05
01 1| 0 0.750.25

An instance of a strategy in the game of Blotto will be denoted as follows: [#1, #2, 13, 14, #5]
with ) _; #; = 100. All permutations o; in this division of troops belong to the same strategy.
We assume that permutations are chosen uniformly by a player. Note that in this game there
is no need to carry out the theoretical analysis of the approximation of the meta-game, as
we are are not examining heuristics or strategies over Blotto strategies, but rather these
strategies themselves, for which the payoff against any other strategy will always be the
same (by computation). Nevertheless, carrying out a meta-game analysis reveals interesting
information.

6.2.1 Experiment 1: Top performing strategies

In this first experiment we examine the dynamics of the simplex consisting of the three
best scoring strategies from the study of [17]: [36, 35,24, 3, 2], [37, 37, 21, 3, 2], and
[35, 35, 26, 2, 2], see Table 8. In a first step we compute a meta-game payoff table for
these three strategies. The interactions are pairwise, and the expected payoff can be eas-
ily computed, assuming a uniform distribution for different permutations of a strategy. This
normalised payoff is shown in Table 9.

Using Table 9 we can compute evolutionary dynamics using the standard replicator equa-
tion. The resulting trajectory plot can be observed in Fig. 6a.

The first thing we see is that we have one strong attractor, i.e, strategy sp =
[37,37,21,3,2] and there is transitive behaviour, meaning that [36, 35, 24, 3, 2] beats
[35, 35,26, 2,2],[37,37, 21, 3, 2] beats [ 36, 35, 24, 3, 2],and [37, 37, 21, 3, 2] beats [35, 35,
26, 2, 2]. Although [37, 37, 21, 3, 2] is the strongest strategy in this 3-strategy meta-game,
the win rates (computed over all played strategies in project Waterloo) indicate that strategy
[36, 35, 24, 3, 2] was more successful on Facebook. The differences are minimal, and on
average it is better to choose [37, 37, 21, 3, 2], which was also the most frequently chosen
strategy from the set of strong strategies, see Table 8. We show a similar plot for the evo-
lutionary dynamics of strategies [35, 34, 25, 3, 3], [37, 37, 21, 3, 2], and [35, 35, 24, 3, 3] in
Fig. 6b, which are three of the most frequently played strong strategies from Table 8.
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Fig.6 a Dynamics of

[36, 35,24, 3,2],

[37,37,21, 3,2],and

[35, 35, 26, 2, 2]. b Dynamics of
[35, 34,25, 3, 3],

[37,37,21, 3,2], and
[35,35,24,3,3]

Table 10 The 8 most frequently
played strategies on Facebook

[[35. 35, 26, 2, 2]

Trajectory plot Blotto

36, 35, 24, 3, 2] [37,37,21,3,2]

(a)

[35, 35, 24, 3,3]

Trajectory plot Blotto

135, 34,25, 3, 3] [37,37,21,3,2]
(b)

Most played strategies
Strategy Frequency
[34,33,33,0,0] 271
[20, 20, 20, 20, 20] 235
[33,1,33,0,33] 127
[1,32,33,1,33] 97
[35, 30, 35,0,0] 68
[0, 100, 0,0, 0] 67
[10, 10, 35, 35, 10] 58
[25,25,25,25,0] 50

6.2.2 Experiment 2: Most frequently played strategies

We compared the evolutionary dynamics of the eight most frequently played strategies and
present here a selection of some of the results. The meta-game under study in this domain
concerns a 2-type repeated NFG G with |S| = 8. We will look at various 2-faces of the
8-simplex. The top eight most frequently played strategies are shown in Table 10.
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Table 11 Meta-game payoff

table generated for strategies s1$2 83|Uit Uiy Ui
51 = [20, 20, 20, 20, 20], 200405 0 0
sy = [1, 32,33, 1,33], and Lol 1 0 0
53 = [10, 10, 35, 35, 10] 02070050
110/0 1 0
0020 0 05
01 1|0 0109

(10, 10, 35, 35, 10] (10, 10, 35, 35, 10]

Trajectory plot Blotto Trajectory plot Blotto

(20, 20, 20, 20, 20] [1,32,33,1,33] [20, 20, 20, 20, 20] [1.32,33,1,33]

(35,30, 35,0, 0]

Trajectory plot Blotto

(34, 33,33,0,0] [1,32,33,1,33]
(c)

Fig. 7 Dynamics of 3 2-faces of the 8-simplex: a Nash eq. b Human play, ¢ another example of intransitive
behaviour

First we investigate the strategies [20, 20, 20, 20, 20], [1, 32, 33, 1, 33], and [10, 10, 35,
35, 10] from our strategy set. In Table 11 we show the resulting meta-game payoff table
of this 2-face simplex. Using this table we can again compute the replicator dynamics and
investigate the trajectory plots in Fig. 7a. We observe that the dynamics cycle around a mixed
Nash equilibrium (every interior rest point is a Nash equilibrium). This intransitive behaviour
makes sense by looking at the pairwise interactions between strategies and the correspond-
ing payoffs they receive from Table 9. The expected payoff for [20, 20, 20, 20, 20], when
playing against [1, 32, 33, 1, 33] will be lower than the expected payoff for [1, 32, 33, 1, 33].
Similarly, [1, 32, 33, 1, 33] will be beaten by [10, 10, 35, 35, 10] when they meet, and to
make the cycle complete, [10, 10, 35, 35, 10] will receive a lower expected payoff against
[20, 20, 20, 20, 20]. As such, the behaviour will cycle around a the Nash equilibrium.

An interesting question is where human players are situated in this cyclic behaviour
landscape. In Fig. 7b we show the same trajectory plot but added a red marker to indicate
the strategy profile based on the frequencies of these 3 strategies played by human players.
This is derived from Table 10 and the profile vector is (0.6, 0.25, 0.15). If we assume that
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(a) Example procedurally generated map. (b) Example first-person agent observation.

Fig. 8 Capture the Flag: teams of two agents (shown as blue and red spheres), must pick up the opposing
team’s flag and return it to their own base. a Shows the blue agent capturing the red team’s flag, and b is the
blue agent’s first-person observation where they can see their own flag in their base

Table 12 Meta-game payoff
table generated for strategies a130 a170 ago| Uit Uiz Ui

@130, @170, and argp ? 8 (1) (?%358 8 022
0 2 010 05 0
1 1 0 (0.220.78 0
0 0O 210 0 0.5
0 1 1 0 0.72 0.28

the human agents optimise their behaviour in a survival of the fittest style they will cycle
along the red trajectory. In Fig. 7c we illustrate similar intransitive behaviour for three other
frequently played strategies.

6.3 Capture the flag

CTF is a game involving multiple players competing to capture each other’s flags. We specifi-
cally consider the implementation introduced by Jaderberg et al. [13] featuring two opposing
teams consisting of two players which compete to capture each other’s flags by strategically
navigating, tagging, and evading opponents. Matches between two teams take place in a
procedurally generated map, and the team with the greatest number of flag captures within
five minutes is determined as the winner. In Fig. 8, we present an example map which the
agents play in, as well as an example first-person observation that the agents see.

The data set we study consists of the FTW strategy from [13] (which achieved human-level
performance in CTF) at various points in its training, as well as a set of rule-based strategies
across a number of skill levels. Teams are formed of two strategies, and for each team we
have a number of matches against each other team from which we can summarise the wins
and losses between strategies meeting several times. In the following experiments we restrict
each team to two of the same strategy, and henceforth refer to teams by their strategy.

6.3.1 Experiment 1: Strategies throughout training

In our first experiment, we examine the FTW strategy from [13] at various points in its
training, i.e. at training step 90e7, 130e7, and 170e7 (referred to as wgp, o¢130, and a170
respectively). To begin, we compute a meta-game payoff table for these strategies, with the
normalised payoff shown in Table 12.

Using Table 12, we can compute evolutionary dynamics using the standard replication
equation, with the resulting trajectory plot presented in Fig. 9a. As can be seen, there is one
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Table 13 Meta-game payoff

table generated for strategies a130 arpo Tauri| Uy Uiy Uiz

) 2 0 0 05 0 0

130 @170, and Tauri 1 0 1 (057 0 043
0 2 0 /0 05 0
1 1 0 (028072 0
0 0 20 0 05
0 1 1 |0 041059

strong attractor (i.e. @17¢), as well as transitive behaviour where o170 beats a3, @170 beats
a9g, and a13 beats agg.

We can now examine how good of an approximation the estimated game is. From the RD
studied in Fig. 9a, we know that o170 is a Nash equilibrium of the estimated game. Using the
formulation from Sect. 6.1.2, we can conclude that the strategy «17¢ is a 2e-Nash equilibrium
(with €=0.15) for the real game with probability at least 0.99, where the number of samples
are (Nagy,ay30> Nagg,a170+ Raze.arm) = (164, 174, 157). And again here, € = 0.05 is too small
to provide guarantees with that few samples.

6.3.2 Experiment 2: Cyclic behavior

We now investigate what happens if we add a rule-based algorithm to the strategy space
(referred to as Tauri). To begin, we construct a meta-game payoff table for strategies o130,
o170, and T'auri as shown in Table 13. We can then plot the evolutionary dynamics for this
meta-game. From the RD in Fig. 9b, we can see there is a mixed equilibrium in the strategy
space around which the dynamics cycle, indicating that Tauri is capable of introducing
in-transitivity as o179 beats 130, o130 beats Tauri, and Tauri beats o179.

As before, we can now examine how good of an approximation the estimated game is. With
the samples of (Ma139,a170» Bar70.a7auri » Perio.arawi) = (157, 80, 96), we can conclude that the
strategy o179 is a 2€-Nash equilibrium (with € = 0.15) for the real game with probability at
least 0.67 (We can’t guarantee anything with € = 0.05).

Figure 12 in the supplemental material additionally illustrates the mixed strategy dynam-
ics using Boltzmann Q-learning [33] dynamics for the three pairwise combinations of
(130, ®170, Tauri).

6.3.3 Experiment 3: Elo scores

In Experiment 2, we saw that while o170 remains the strongest strategy even with the addition
of Tauri, cyclic behaviour can now occur. This is a behavior which cannot be measured or
seen from Elo ratings. To show this, we first calculate the Elo ratings of all strategies. We
do this by iterating through the full data set of matches between the strategies severl times,
updating the Elo rating of each strategy based on the outcome of each match until they
converge.

Using this method, we determine the strategies «j30, ®170, and T'auri as having an Elo
rating of 1546, 1648, and 1520 respectively. We can then compute the probability of s; beating
sjusing p(s;) = (1+710m)’ where m is the rating difference between s; and s; divided by 400.
We summarize the win rates of these three strategies in Table 14, and show the resulting
computed evolutionary dynamics in Fig. 9c. As can be observed, there is no cyclic behavior
and o179 is the Nash equilibrium of the estimated game. In other words, the cyclic behavior
of the three strategies cannot be seen from Elo ratings as it assumes transitivity by design.
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al130 al70 al130 al70

(a) Trajectory plot for agg, a130, and (b)Intransitive behaviour for o130, o170,
«170. and Tauri.

al3o al70
(¢) Trajectory plot for o139, 170, and
Tauri.

Fig.9 Dynamics of 3 2-faces of the 8-simplex: a throughout training. b Intransitive behaviour by addition of
Tauri. ¢ Using Elo-calculated win probabilities

Table 14 Win rates calculated

from Elo ratings for strategies ai30 a7 Tauri| Uiy Ui Uss

; 2 0 0 (05 0 0

«130. @170. and Tauri I 0 1 054 0 046
0 2 0|0 05 0
110 |036064 0

0 0o 210 0 05

0 1 1 |0 068032

6.4 PSRO-generated meta-game

We now turn our attention to an asymmetric game. Policy Space Response Oracles (PSRO) isa
multiagent reinforcement learning process that reduces the strategy space of large extensive-
form games via iterative best response computation. PSRO can be seen as a generalized
form of fictitious play that produces approximate best responses, with arbitrary distributions
over generated responses computed by meta-strategy solvers. One application of PSRO was
applied to a commonly-used benchmark problem known as Leduc poker [28], except with
a fixed action space and penalties for taking illegal moves. Therefore PSRO learned to play
from scratch, without knowing which moves were legal. Leduc poker has a deck of 6 cards
(jack, queen, king in two suits). Each player receives an initial private card, can bet a fixed
amount of 2 chips in the first round, 4 chips in the second round, with a maximum of two
raises in each round. A public card is revealed before the second round starts.
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Table 15 Asymmetric PSRO meta game applied to Leduc poker

D E F
A —2.26,0.02 —2.06, —1.72 —1.65,—1.43
B —4.77, -0.13 —4.02, -3.54 —5.96, —2.30
C —2.71, -1.77 —2.52,-2.94 —6.10, 1.06

Table 16 Left: First counterpart game of the PSRO empirical game. Right: Second counterpart game of the
PSRO empirical game

A B C D E F
A —2.26 —2.06 —1.65 D 0.02 —-1.72 —1.43
B —4.77 —4.02 —5.96 E —0.13 —3.54 —2.30
C —2.71 —2.52 —6.10 F —-1.77 —2.94 1.06

In Table 15 we present such an asymmetric 3 x 3 2-player game generated by the first
few epochs of PSRO learning to play Leduc Poker. In the game illustrated here, each player
has three strategies that, for ease of the exposition, we call {A, B, C} for player 1, and
{D, E, F} for player 2. Each one of these strategies represents an approximate best response
to a distribution over previous opponent strategies. . In Table 16 we show the two symmetric
counterpart games (see Sect. 4.3) of the empirical game produced by PSRO.

Again we can now analyse the equilibrium landscape of this game, but now using the
asymmetric meta-game payoff table and the decomposition result introduced in Sect. 4.3.
Since the PSRO meta game is asymmetric we need two populations for the asymmetric
replicator equations. Analysing and plotting the evolutionary asymmetric replicator dynamics
now quickly becomes very tedious as we deal with two simplices, one for each player. More
precisely, if we consider a strategy profile for one player in its corresponding simplex, and
that player is adjusting its strategy, this will immediately cause the second simplex to change,
and vice versa. Consequently, it is not straightforward anymore to analyse the dynamics.

In order to facilitate the process of analysing the dynamics we can apply the counterpart
theorems to remedy the problem. In Figs. 10 and 11 we show the evolutionary dynamics of
the counterpart games. As can be observed in Fig. 10 the first counterpart game has only
one equilibrium, i.e., a pure Nash equilibrium in which both players play strategy A, which
absorbs the entire strategy space. Looking at Fig. 11 we see the situation is a bit more complex
in the second counterpart game, here we observe three equilibiria: one pure at strategy D,
one pure at strategy F', and one unstable mixed equilibrium at the 1-face formed by strategies
D and F. All these equilibria are Nash in the respective counterpart games>. By applying the
theory of Sect. 4.3 we now know that we only maintain the combination ((1, 0, 0), (1, 0, 0))
as a pure Nash equilibrium of the asymmetric PSRO empirical game, since these strategies
have the same support as a Nash equilibrium in the counterpart games. The other equilibria in
the second counterpart game can be discarded as candidates for Nash equilibria in the PSRO
empirical game since they do not appear as equilibria for player 1.

Finally, each joint action of the game was estimated with 100 samples. As the outcome of
the game is bounded in the interval [— 13, 13] we can only guarantee that the Nash equilibrium
of the meta game we studied is a 2¢-Nash equilibrium of the unknown underlying game. It

3 Banach solver (http://banach.Ise.ac.uk/) is used to check Nash equilibria [1].
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Fig. 10 Trajectory plot of the first CP game

PSRO game

Fig. 11 Trajectory plot of the 2nd CP game

turns out that with n = 100 and € = 0.05, the confidence can only be guaranteed to be above
1078. To guarantee a confidence of at least 0.95 for the same value of € = 0.05, we would
need at least n = 886 x 103 samples.

7 Conclusion

In this paper we have provided some bounds for empirical game theoretic analysis using the
heuristic payoff table method introduced by Walsh et al. [39] for both symmetric and 2-player
asymmetric games. We call such games meta-games as they consider complex strategies
instead of atomic actions as found in normal-form games. As such they are well suited to
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investigate real-world multi-agent interactions, as they summarize behaviour in terms of
high-level strategies rather than primitive actions. We use the fact that a Nash equilibrium of
the meta-game is a 2e-Nash equilibrium of the true underlying game to provide theoretical
bounds on how much data samples are required to build a reliable meta payoff table. As such
our method allows for an equilibrium analysis with a certain confidence that this game is a
good approximation of the underlying meta game. Finally, we have carried out an empirical
illustration of this method in four complex domains, i.e., AlphaGo, Colonel Blotto, CTF and
PSRO, showing the feasibility and strengths of the approach.
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Appendix: Supplemental material
A Theoretical properties of heuristic payoff tables

This section introduces some theoretical properties of HPTs that have not been closely
examined before, and which are useful as further background to understand some of the
experimental results in a wider game theoretic context. Furthermore, these are not typically
discussed in the EGTA literature and as such can be useful for newcomers to the area. This
section can also be skipped as these results are not necessary to understand the main theo-
retical results of this paper.

A.1 Equivalence with mixed strategy dynamics

Lemma 1 Let the number of players p = 2. Then infinite population replicator dynamics
is equivalently the evolutionary dynamics of mixed strategies, as defined by the replicator
equation.

Proof Denote the population composition by C = («q,...ax), with 0 < o; < 1 and
>_; a;i = 1. Equivalently view this as a mixed strategy M. Let E; be the expected payoff to
strategy i when 2-player matches are sampled according to the population composition C.
Let E; be the expected payoff to strategy i when played in a single 2-player match against
the mixed strategy M. It suffices to show that E; = E;.

Without loss of generality, we may assume that i is played by player 1. Indeed, either
the game is symmetric, in which case i can be swapped to the first slot, or it is asymmetric,
in which case the dynamics operate on prescribed slots. Then the payoff E; is the average
payoff of i against the pure strategies in the distribution given by C, which is identical to
the payoff E; of the i against the mixed strategy M, by definition. Since the population is
infinite, M is an arbitrary discrete distribution across strategies, completing the proof. O
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Fig. 12 2-dimensional replicator dynamics for Capture the Flag with Boltzmann Q-learning dynamics [33].
The pure strategy o179 dominates all mixes with 130, as one might expect given that the latter strategy has
benefited from longer training time. The equilibrium when playing the learned strategies against the bot are
mixed, with a low weight on «13( and a high weight on «17¢

Hence, the replicator dynamics of mixed strategies in a 2-player normal form is well
approximated by the replicator dynamics of a sufficiently large population of pure strategies
playing sufficiently many games according to the appropriate population composition.

A.2 Example: 2-dimensional plots for Capture The Flag

The results in A.1 have consequences for visualization. In particular, when n = k = 2 we
can plot the mixed strategy dynamics in 2 dimensions, since they are completely determined
by the probability of each player choosing the first strategy. More generally one could use
the asymmetric replicator dynamics for n-players to prove a similar equivalence result to
Lemma 1 and hence plot mixed strategy dynamics in this case. However, the dimensionality
of this data is n¥ — n, which limits the applicability of such a visualization.

As an example we show in Fig. 12 the directional field plots for the three pairwise com-
binations of the strategies (130, ®170, Tauri) in the Capture the Flag dataset discussed in
Sect. 6.3. This gives us further insight into the equilibria possible if agents were allowed to
mix their strategies in the meta-game. Indeed, such an analysis is important, since human
players are certainly adept at mixing different styles of play across repeated interactions.

A.3 Approximation of zero-sum NFGs by HPTs

In principle small populations of agents (often O (k), where k denotes the number of strategies)
do not generate a good approximation of the replicator dynamics of the underlying game.
Here we show that in the case of 2-player symmetric zero-sum games, the case we primarily
consider in this paper, that the approximation is a good one and one case use equally well
HPTs as NFGs.

Lemma 2 In a symmetric zero-sum 2-player game the single-population replicator dynamics
with population size 2 applied to the HPT representation of the game is the same as the

replicator dynamics of the true underlying game modulo a factor o = 2—2x,~'

Proof We compute an approximation to (Ax); using the HPT methodology outlined in Sect. 4,
and use the same notation as in that section. First we write U;; = W, ; with p < g where
p and g denote the strategies that each player plays given the distribution N;. Then, since
the game is zero-sum, W,,; = Aj, when j = p # q, Wp,j = Aj, when j = g # p and
Wpqj = 0 otherwise.
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Paper Paper

Rock Scissors Rock Scissors
(a) Evolutionary dynamics of the Rock- (b) Evolutionary dynamics of the Rock-
Paper-Scissors game using the NFG represen- Paper-Scissors game using the HPT represen-
tation. tation.

Fig. 13 Evolutionary dynamics of Rock-Paper-Scissors using the NFG and HPT representations

Now we must calculate P (N;|x) for those i for which Uj; is not identically zero. By the
above observation such i yield N; with support on two distinct strategies, so the multinomial
coefficient is % = 2. Therefore we may write

23,4 p<q WpaiXpXq _ 23 4 Ajgxjxg 2
1—(1—Xj)2 Xj(Z—Xj) 2—Xj

m}

Note that one can also use win probabilities for a zero-sum game. The same results holds
and the derivation of the lemma is analogous.

Corollary 1 In a zero-sum 2-player game, the replicator dynamics with population size 2 are

a good approximation of the replicator dynamics of the true underlying game.

Proof Since A is an antisymmetric matrix, the true replicator dynamics reduce to
Xi = xi(Ax); . 4

The replicator dynamics derived from the approximate expected payoffs are

. 2(Ax), 2x] kXK
i = Xi - 5
W=, Z 2-x) ©)
S (AX); X7 A jrxi
= [ Ay ¢ EADE 5 SRR ©)

2—)61' I (Z—Xj)

We go from Egs. 5 to 6 by using (2—2)(,') 1+ (2 . The first term in Eq. 6 gives the true
dynamics. The second term is a homogeneous scalmg of the first, so it has no significant
effect other than to change the evolution rate of the replicators. The third term could in
principle change the dynamics in a non-trivial way. When x; > x; for j # i, the third term
is dominated by the first two. When x; > x; for j # i the whole expression is very small,
due to the x; prefactor. Therefore, for the final term to contribute maximally, we would need
Xj R X~ % for some j. But then the final term is down by a factor of at least (%)2 % = %
compared with the first, which means it can be ignored. O
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An example illustrates the corollary. In Fig. 13 we show the dynamics of Rock-Paper-
Scissors using both the exact NFG and the HPT with population size 2. One can observe that
they are almost identical.
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