
KPConv: Flexible and Deformable Convolution for Point Clouds

Hugues Thomas1 Charles R. Qi2 Jean-Emmanuel Deschaud1 Beatriz Marcotegui1

François Goulette1 Leonidas J. Guibas2,3

1Mines ParisTech 2Facebook AI Research 3Stanford University

Abstract

We present Kernel Point Convolution1 (KPConv), a new
design of point convolution, i.e. that operates on point
clouds without any intermediate representation. The convo-
lution weights of KPConv are located in Euclidean space by
kernel points, and applied to the input points close to them.
Its capacity to use any number of kernel points gives KP-
Conv more flexibility than fixed grid convolutions. Further-
more, these locations are continuous in space and can be
learned by the network. Therefore, KPConv can be extended
to deformable convolutions that learn to adapt kernel points
to local geometry. Thanks to a regular subsampling strat-
egy, KPConv is also efficient and robust to varying densities.
Whether they use deformable KPConv for complex tasks, or
rigid KPconv for simpler tasks, our networks outperform
state-of-the-art classification and segmentation approaches
on several datasets. We also offer ablation studies and
visualizations to provide understanding of what has been
learned by KPConv and to validate the descriptive power
of deformable KPConv.

1. Introduction

The dawn of deep learning has boosted modern computer
vision with discrete convolution as its fundamental building
block. This operation combines the data of local neighbor-
hoods on a 2D grid. Thanks to this regular structure, it can
be computed with high efficiency on modern hardware, but
when deprived of this regular structure, the convolution op-
eration has yet to be defined properly, with the same effi-
ciency as on 2D grids.

Many applications relying on such irregular data have
grown with the rise of 3D scanning technologies. For ex-
ample, 3D point cloud segmentation or 3D simultaneous
localization and mapping rely on non-grid structured data:
point clouds. A point cloud is a set of points in 3D (or
higher-dimensional) space. In many applications, the points

1Project page: https:// github.com/ HuguesTHOMAS/ KPConv

are coupled with corresponding features like colors. In this
work, we will always consider a point cloud as those two el-
ements: the pointsP ∈ RN×3 and the featuresF ∈ RN×D.
Such a point cloud is a sparse structure that has the property
to be unordered, which makes it very different from a grid.
However, it shares a common property with a grid which
is essential to the definition of convolutions: it is spatially
localized. In a grid, the features are localized by their in-
dex in a matrix, while in a point cloud, they are localized by
their corresponding point coordinates. Thus, the points are
to be considered as structural elements, and the features as
the real data.

Various approaches have been proposed to handle such
data, and can be grouped into different categories that we
will develop in the related work section. Several meth-
ods fall into the grid-based category, whose principle is to
project the sparse 3D data on a regular structure where a
convolution operation can be defined more easily [24, 29,
34]. Other approaches use multilayer perceptrons (MLP) to
process point clouds directly, following the idea proposed
by [49, 26].

More recently, some attempts have been made to design
a convolution that operates directly on points [2, 45, 20, 14,
13]. These methods use the spatial localization property of

Figure 1. KPConv illustrated on 2D points. Input points with a
constant scalar feature (in grey) are convolved through a KPConv
that is defined by a set of kernel points (in black) with filter weights
on each point.

ar
X

iv
:1

90
4.

08
88

9v
2 

 [
cs

.C
V

] 
 1

9 
A

ug
 2

01
9

https://github.com/HuguesTHOMAS/KPConv


a point cloud to define point convolutions with spatial ker-
nels. They share the idea that a convolution should define a
set of customizable spatial filters applied locally in the point
cloud.

This paper introduces a new point convolution operator
named Kernel Point Convolution (KPConv). KPConv also
consists of a set of local 3D filters, but overcomes previous
point convolution limitations as shown in related work. KP-
Conv is inspired by image-based convolution, but in place
of kernel pixels, we use a set of kernel points to define
the area where each kernel weight is applied, like shown
in Figure 1. The kernel weights are thus carried by points,
like the input features, and their area of influence is defined
by a correlation function. The number of kernel points is
not constrained, making our design very flexible. Despite
the resemblance of vocabulary, our work differs from [32],
which is inspired from point cloud registration techniques,
and uses kernel points without any weights to learns local
geometric patterns.

Furthermore, we propose a deformable version of our
convolution [7], which consists of learning local shifts ap-
plied to the kernel points (see Figure 3). Our network gen-
erates different shifts at each convolution location, meaning
that it can adapt the shape of its kernels for different re-
gions of the input cloud. Our deformable convolution is
not designed the same way as its image counterpart. Due
to the different nature of the data, it needs a regularization
to help the deformed kernels fit the point cloud geometry
and avoid empty space. We use Effective Receptive Field
(ERF) [22] and ablation studies to compare rigid KPConv
with deformable KPConv.

As opposed to [41, 2, 45, 20], we favor radius neighbor-
hoods instead of k-nearest-neighbors (KNN). As shown by
[13], KNN is not robust in non-uniform sampling settings.
The robustness of our convolution to varying densities is
ensured by the combination of radius neighborhoods and
regular subsampling of the input cloud [38]. Compared to
normalization strategies [13, 14], our approach also allevi-
ates the computational cost of our convolution.

In our experiments section, we show that KPConv can
be used to build very deep architectures for classification
and segmentation, while keeping fast training and infer-
ence times. Overall, rigid and deformable KPConv both
perform very well, topping competing algorithms on sev-
eral datasets. We find that rigid KPConv achieves better
performances on simpler tasks, like object classification, or
small segmentation datasets. Deformable KPConv thrives
on more difficult tasks, like large segmentation datasets of-
fering many object instances and greater diversity. We also
show that deformable KPConv is more robust to a lower
number of kernel points, which implies a greater descrip-
tive power. Last but not least, a qualitative study of KPConv
ERF shows that deformable kernels improve the network

ability to adapt to the geometry of the scene objects.

2. Related Work
In this section, we briefly review previous deep learning

methods to analyze point clouds, paying particular attention
to the methods closer to our definition of point convolutions.
Projection networks. Several methods project points to an
intermediate grid structure. Image-based networks are of-
ten multi-view, using a set of 2D images rendered from the
point cloud at different viewpoints [35, 4, 18]. For scene
segmentation, these methods suffer from occluded surfaces
and density variations. Instead of choosing a global pro-
jection viewpoint, [36] proposed projecting local neighbor-
hoods to local tangent planes and processing them with 2D
convolutions. However, this method relies heavily on tan-
gent estimation.

In the case of voxel-based methods, the points are pro-
jected on 3D grids in Euclidean space [24, 30, 3]. Using
sparse structures like octrees or hash-maps allows larger
grids and enhanced performances [29, 9], but these net-
works still lack flexibility as their kernels are constrained
to use 33 = 27 or 53 = 125 voxels. Using a permutohedral
lattice instead of an Euclidean grid reduces the kernel to
15 lattices [34], but this number is still constrained, while
KPConv allows any number of kernel points. Moreover,
avoiding intermediate structures should make the design of
more complex architectures like instance mask detector or
generative models more straightforward in future works.
Graph convolution networks. The definition of a convo-
lution operator on a graph has been addressed in different
ways. A convolution on a graph can be computed as a mul-
tiplication on its spectral representation [8, 48], or it can fo-
cus on the surface represented by the graph [23, 5, 33, 25].
Despite the similarity between point convolutions and the
most recent graph convolutions [39, 43], the latter learn fil-
ters on edge relationships instead of points relative posi-
tions. In other words, a graph convolution combines fea-
tures on local surface patches, while being invariant to the
deformations of those patches in Euclidean space. In con-
trast, KPConv combines features locally according to the
3D geometry, thus capturing the deformations of the sur-
faces.
Pointwise MLP networks. PointNet [26] is considered
a milestone in point cloud deep learning. This network
uses a shared MLP on every point individually followed
by a global max-pooling. The shared MLP acts as a set of
learned spatial encodings and the global signature of the in-
put point cloud is computed as the maximal response among
all the points for each of these encodings. The network’s
performances are limited because it does not consider local
spatial relationships in the data. Following PointNet, some
hierarchical architectures have been developed to aggregate
local neighborhood information with MLPs [27, 19, 21].



Figure 2. Comparison between an image convolution (left) and a KPConv (right) on 2D points for a simpler illustration. In the image, each
pixel feature vector is multiplied by a weight matrix (Wk)k<K assigned by the alignment of the kernel with the image. In KPConv, input
points are not aligned with kernel points, and their number can vary. Therefore, each point feature fi is multiplied by all the kernel weight
matrices, with a correlation coefficient hik depending on its relative position to kernel points.

As shown by [41, 20, 13], the kernel of a point convolu-
tion can be implemented with a MLP, because of its ability
to approximate any continuous function. However, using
such a representation makes the convolution operator more
complex and the convergence of the network harder. In our
case, we define an explicit convolution kernel, like image
convolutions, whose weights are directly learned, without
the intermediate representation of a MLP. Our design also
offers a straightforward deformable version, as offsets can
directly be applied to kernel points.
Point convolution networks. Some very recent works also
defined explicit convolution kernels for points, but KPConv
stands out with unique design choices.

Pointwise CNN [14] locates the kernel weights with
voxel bins, and thus lacks flexibility like grid networks.
Furthermore, their normalization strategy burdens their net-
work with unnecessary computations, while KPConv sub-
sampling strategy alleviates both varying densities and com-
putational cost.

SpiderCNN [45] defines its kernel as a family of poly-
nomial functions applied with a different weight for each
neighbor. The weight applied to a neighbor depends on the
neighbor’s distance-wise order, making the filters spatially
inconsistent. By contrast, KPConv weights are located in
space and its result is invariant to point order.

Flex-convolution [10] uses linear functions to model its
kernel, which could limit its representative power. It also
uses KNN, which is not robust to varying densities as dis-
cussed above.

PCNN [2] design is the closest to KPConv. Its definition
also uses points to carry kernel weights, and a correlation
function. However, this design is not scalable because it
does not use any form of neighborhood, making the convo-
lution computations quadratic on the number of points. In
addition, it uses a Gaussian correlation where KPConv uses
a simpler linear correlation, which helps gradient backprop-
agation when learning deformations [7].

We show that KPConv networks outperform all compa-
rable networks in the experiments section. Furthermore, to
the best of our knowledge, none of the previous works ex-
perimented a spatially deformable point convolution.

3. Kernel Point Convolution
3.1. A Kernel Function Defined by Points

Like previous works, KPConv can be formulated with
the general definition of a point convolution (Eq. 1), in-
spired by image convolutions. For the sake of clarity, we
call xi and fi the points from P ∈ RN×3 and their cor-
responding features from F ∈ RN×D. The general point
convolution of F by a kernel g at a point x ∈ R3 is defined
as:

(F ∗ g)(x) =
∑

xi∈Nx

g(xi − x)fi (1)

We stand with [13] advising radius neighborhoods to
ensure robustness to varying densities, therefore, Nx ={
xi ∈ P ‖xi − x‖ 6 r

}
with r ∈ R being the chosen

radius. In addition, [38] showed that hand-crafted 3D point
features offer a better representation when computed with
radius neighborhoods than with KNN. We believe that hav-
ing a consistent spherical domain for the function g helps
the network to learn meaningful representations.

The crucial part in Eq. 1 is the definition of the ker-
nel function g, which is where KPConv singularity lies. g
takes the neighbors positions centered on x as input. We
call them yi = xi − x in the following. As our neighbor-
hoods are defined by a radius r, the domain of definition
of g is the ball B3r =

{
y ∈ R3 | ‖y‖ 6 r

}
. Like image

convolution kernels (see Figure 2 for a detailed compari-
son between image convolution and KPConv), we want g
to apply different weights to different areas inside this do-
main. There are many ways to define areas in 3D space,
and points are the most intuitive as features are also local-



ized by them. Let {x̃k | k < K} ⊂ B3
r be the kernel points

and {Wk | k < K} ⊂ RDin×Dout be the associated weight
matrices that map features from dimension Din to Dout.
We define the kernel function g for any point yi ∈ B3r as :

g(yi) =
∑
k<K

h (yi, x̃k)Wk (2)

where h is the correlation between x̃k and yi, that should
be higher when x̃k is closer to yi. Inspired by the bilinear
interpolation in [7], we use the linear correlation:

h (yi, x̃k) = max

(
0, 1− ‖yi − x̃k‖

σ

)
(3)

where σ is the influence distance of the kernel points, and
will be chosen according to the input density (see Section
3.3). Compared to a gaussian correlation, which is used by
[2], linear correlation is a simpler representation. We advo-
cate this simpler correlation to ease gradient backpropaga-
tion when learning kernel deformations. A parallel can be
drawn with rectified linear unit, which is the most popular
activation function for deep neural networks, thanks to its
efficiency for gradient backpropagation.

3.2. Rigid or Deformable Kernel

Kernel point positions are critical to the convolution op-
erator. Our rigid kernels in particular need to be arranged
regularly to be efficient. As we claimed that one of the KP-
Conv strengths is its flexibility, we need to find a regular
disposition for any K. We chose to place the kernel points
by solving an optimization problem where each point ap-
plies a repulsive force on the others. The points are con-
strained to stay in the sphere with an attractive force, and
one of them is constrained to be at the center. We detail
this process and show some regular dispositions in the sup-
plementary material. Eventually, the surrounding points are
rescaled to an average radius of 1.5σ, ensuring a small over-
lap between each kernel point area of influence and a good
space coverage.

With properly initialized kernels, the rigid version of KP-
Conv is extremely efficient, in particular when given a large
enough K to cover the spherical domain of g. However it
is possible to increase its capacity by learning the kernel
point positions. The kernel function g is indeed differen-
tiable with respect to x̃k, which means they are learnable
parameters. We could consider learning one global set of
{x̃k} for each convolution layer, but it would not bring more
descriptive power than a fixed regular disposition. Instead
the network generates a set of K shifts ∆(x) for every con-
volution location x ∈ R3 like [7] and define deformable
KPConv as:

(F ∗ g)(x) =
∑

xi∈Nx

gdeform(x− xi,∆(x))fi (4)

Figure 3. Deformable KPConv illustrated on 2D points.

gdeform(yi,∆(x)) =
∑
k<K

h (yi, x̃k + ∆k(x))Wk (5)

We define the offsets ∆k(x) as the output of a rigid KP-
Conv mapping Din input features to 3K values, as shown
in Figure 3. During training, the network learns the rigid
kernel generating the shifts and the deformable kernel gen-
erating the output features simultaneously, but the learning
rate of the first one is set to 0.1 times the global network
learning rate.

Unfortunately, this straightforward adaptation of image
deformable convolutions does not fit point clouds. In prac-
tice, the kernel points end up being pulled away from the
input points. These kernel points are lost by the network,
because the gradients of their shifts ∆k(x) are null when
no neighbors are in their influence range. More details on
these “lost” kernel points are given in the supplementary. To
tackle this behaviour, we propose a “fitting” regularization
loss which penalizes the distance between a kernel point and
its closest neighbor among the input neighbors. In addition,
we also add a “repulsive” regularization loss between all
pair off kernel points when their influence area overlap, so
that they do not collapse together. As a whole our regular-
ization loss for all convolution locations x ∈ R3 is:

Lreg =
∑
x

Lfit(x) + Lrep(x) (6)

Lfit(x) =
∑
k<K

min
yi

(
‖yi − (x̃k + ∆k(x))‖

σ

)2

(7)

Lrep(x) =
∑
k<K

∑
l 6=k

h (x̃k + ∆k(x), x̃l + ∆l(x))
2 (8)

With this loss, the network generates shifts that fit the
local geometry of the input point cloud. We show this effect
in the supplementary material.

3.3. Kernel Point Network Layers

This section elucidates how we effectively put the KP-
Conv theory into practice. For further details, we have re-
leased our code using Tensorflow library.



Subsampling to deal with varying densities. As explained
in the introduction, we use a subsampling strategy to control
the density of input points at each layer. To ensure a spatial
consistency of the point sampling locations, we favor grid
subsampling. Thus, the support points of each layer, carry-
ing the features locations, are chosen as barycenters of the
original input points contained in all non-empty grid cells.
Pooling layer. To create architectures with multiple layer
scales, we need to reduce the number of points progres-
sively. As we already have a grid subsampling, we dou-
ble the cell size at every pooling layer, along with the other
related parameters, incrementally increasing the receptive
field of KPConv. The features pooled at each new location
can either be obtained by a max-pooling or a KPConv. We
use the latter in our architectures and call it “strided KP-
Conv”, by analogy to the image strided convolution.
KPConv layer. Our convolution layer takes as input the
points P ∈ RN×3, their corresponding features F ∈
RN×Din , and the matrix of neighborhood indices N ∈
[[1, N ]]

N ′×nmax . N ′ is the number of locations where the
neighborhoods are computed, which can be different from
N (in the case of “strided” KPConv). The neighborhood
matrix is forced to have the size of the biggest neighbor-
hood nmax. Because most of the neighborhoods comprise
less than nmax neighbors, the matrix N thus contains un-
used elements. We call them shadow neighbors, and they
are ignored during the convolution computations.
Network parameters. Each layer j has a cell size dlj from
which we infer other parameters. The kernel points influ-
ence distance is set as equal to σj = Σ× dlj . For rigid KP-
Conv, the convolution radius is automatically set to 2.5σj
given that the average kernel point radius is 1.5σj . For de-
formable KPConv, the convolution radius can be chosen as
rj = ρ × dlj . Σ and ρ are proportional coefficients set for
the whole network. Unless stated otherwise, we will use the
following set of parameters, chosen by cross validation, for
all experiments: K = 15, Σ = 1.0 and ρ = 5.0. The first
subsampling cell size dl0 will depend on the dataset and, as
stated above, dlj+1 = 2 ∗ dlj .

3.4. Kernel Point Network Architectures

Combining analogy with successful image networks and
empirical studies, we designed two network architectures
for the classification and the segmentation tasks. Diagrams
detailing both architectures are available in the supplemen-
tary material.
KP-CNN is a 5-layer classification convolutional network.
Each layer contains two convolutional blocks, the first one
being strided except for the first layer. Our convolutional
blocks are designed like bottleneck ResNet blocks [12] with
a KPConv replacing the image convolution, batch normal-
ization and leaky ReLu activation. After the last layer, the
features are aggregated by a global average pooling and pro-

cessed by the fully connected and softmax layers like in an
image CNN. For the results with deformable KPConv, we
only use deformable kernels in the last 5 KPConv blocks
(see architecture details in the supplementary material).
KP-FCNN is a fully convolutional network for segmenta-
tion. The encoder part is the same as in KP-CNN, and the
decoder part uses nearest upsampling to get the final point-
wise features. Skip links are used to pass the features be-
tween intermediate layers of the encoder and the decoder.
Those features are concatenated to the upsampled ones and
processed by a unary convolution, which is the equivalent of
a 1×1 convolution in image or a shared MLP in PointNet. It
is possible to replace the nearest upsampling operation by a
KPConv, in the same way as the strided KPConv, but it does
not lead to a significant improvement of the performances.

4. Experiments

4.1. 3D Shape Classification and Segmentation

Data. First, we evaluate our networks on two common
model datasets. We use ModelNet40 [44] for classification
and ShapenetPart [47] for part segmentation. ModelNet40
contains 12,311 meshed CAD models from 40 categories.
ShapenetPart is a collection of 16,681 point clouds from
16 categories, each with 2-6 part labels. For benchmark-
ing purpose, we use data provided by [27]. In both cases,
we follow standard train/test splits and rescale objects to fit
them into a unit sphere (and consider units to be meters for
the rest of this experiment). We ignore normals because
they are only available for artificial data.
Classification task. We set the first subsampling grid size
to dl0 = 2cm. We do not add any feature as input; each
input point is assigned a constant feature equal to 1, as op-
posed to empty space which can be considered as 0. This
constant feature encodes the geometry of the input points.
Like [2], our augmentation procedure consists of scaling,
flipping and perturbing the points. In this setup, we are able
to process 2.9 batches of 16 clouds per second on an Nvidia
Titan Xp. Because of our subsampling strategy, the input
point clouds do not all have the same number of points,
which is not a problem as our networks accept variable input
point cloud size. On average, a ModelNet40 object point
cloud comprises 6,800 points in our framework. The other
training parameters are detailed in the supplementary mate-
rial, along with the architecture details. We also include the
number of parameters and the training/inference speeds for
both rigid and deformable KPConv.

As shown on Table 1, our networks outperform other
state-of-the-art methods using only points (we do not take
into account methods using normals as additional input).
We also notice that rigid KPConv performances are slightly
better. We suspect that it can be explained by the task sim-
plicity. If deformable kernels add more descriptive power,



ModelNet40 ShapeNetPart

Methods OA mcIoU mIoU

SPLATNet [34] - 83.7 85.4
SGPN [42] - 82.8 85.8
3DmFV-Net [9] 91.6 81.0 84.3
SynSpecCNN [48] - 82.0 84.7
RSNet [15] - 81.4 84.9
SpecGCN [40] 91.5 - 85.4
PointNet++ [27] 90.7 81.9 85.1
SO-Net [19] 90.9 81.0 84.9
PCNN by Ext [2] 92.3 81.8 85.1
SpiderCNN [45] 90.5 82.4 85.3
MCConv [13] 90.9 - 85.9
FlexConv [10] 90.2 84.7 85.0
PointCNN [20] 92.2 84.6 86.1
DGCNN [43] 92.2 85.0 84.7
SubSparseCNN [9] - 83.3 86.0

KPConv rigid 92.9 85.0 86.2
KPConv deform 92.7 85.1 86.4

Table 1. 3D Shape Classification and Segmentation results. For
generalizability to real data, we only consider scores obtained
without shape normals on ModelNet40 dataset. The metrics are
overall accuracy (OA) for Modelnet40, class average IoU (mcIoU)
and instance average IoU (mIoU) for ShapeNetPart.

they also increase the overall network complexity, which
can disturb the convergence or lead to overfitting on sim-
pler tasks like this shape classification.
Segmentation task. For this task, we use KP-FCNN ar-
chitecture with the same parameters as in the classification
task, adding the positions (x, y, z) as additional features to
the constant 1, and using the same augmentation procedure.
We train a single network with multiple heads to segment
the parts of each object class. The clouds are smaller (2,300
points on average), and we can process 4.1 batches of 16
shapes per second. Table 1 shows the instance average, and
the class average mIoU. We detail each class mIoU in the
supplementary material. KP-FCNN outperforms all other
algorithms, including those using additional inputs like im-
ages or normals. Shape segmentation is a more difficult task
than shape classification, and we see that KPConv has better
performances with deformable kernels.

4.2. 3D Scene Segmentation

Data. Our second experiment shows how our segmenta-
tion architecture generalizes to real indoor and outdoor data.
To this end, we chose to test our network on 4 datasets of
different natures. Scannet [6], for indoor cluttered scenes,
S3DIS [1], for indoor large spaces, Semantic3D [11], for
outdoor fixed scans, and Paris-Lille-3D [31], for outdoor
mobile scans. Scannet contains 1,513 small training scenes
and 100 test scenes for online benchmarking, all annotated

with 20 semantic classes. S3DIS covers six large-scale in-
door areas from three different buildings for a total of 273
million points annotated with 13 classes. Like [37], we ad-
vocate the use of Area-5 as test scene to better measure the
generalization ability of our method. Semantic3D is an on-
line benchmark comprising several fixed lidar scans of dif-
ferent outdoor scenes. More than 4 billion points are an-
notated with 8 classes in this dataset, but they mostly cover
ground, building or vegetation and there are fewer object
instances than in the other datasets. We favor the reduced-8
challenge because it is less biased by the objects close to the
scanner. Paris-Lille-3D contains more than 2km of streets
in 4 different cities and is also an online benchmark. The
160 million points of this dataset are annotated with 10 se-
mantic classes.
Pipeline for real scene segmentation. The 3D scenes in
these datasets are too big to be segmented as a whole. Our
KP-FCNN architecture is used to segment small subclouds
contained in spheres. At training, the spheres are picked
randomly in the scenes. At testing, we pick spheres reg-
ularly in the point clouds but ensure each point is tested
multiple times by different sphere locations. As in a vot-
ing scheme on model datasets, the predicted probabilities
for each point are averaged. When datasets are colorized,
we use the three color channels as features. We still keep
the constant 1 feature to ensure black/dark points are not ig-
nored. To our convolution, a point with all features equal
to zero is equivalent to empty space. The input sphere ra-
dius is chosen as 50 × dl0 (in accordance to Modelnet40
experiment).
Results. Because outdoor objects are larger than indoor ob-
jects, we use dl0 = 6cm on Semantic3D and Paris-Lille-
3D, and dl0 = 4cm on Scannet and S3DIS. As shown in
Table 2, our architecture ranks second on Scannet and out-
performs all other segmentation architectures on the other
datasets. Compared to other point convolution architectures
[2, 20, 41], KPConv performances exceed previous scores
by 19 mIoU points on Scannet and 9 mIoU points on S3DIS.
SubSparseCNN score on Scannet was not reported in their
original paper [9], so it is hard to compare without knowing
their experimental setup. We can notice that, in the same ex-
perimental setup on ShapeNetPart segmentation, KPConv
outperformed SubSparseCNN by nearly 2 mIoU points.

Among these 4 datasets, KPConv deformable kernels
improved the results on Paris-Lille-3D and S3DIS while the
rigid version was better on Scannet and Semantic3D. If we
follow our assumption, we can explain the lower scores on
Semantic3D by the lack of diversity in this dataset. Indeed,
despite comprising 15 scenes and 4 billion points, it con-
tains a majority of ground, building and vegetation points
and a few real objects like car or pedestrians. Although
this is not the case of Scannet, which comprises more than
1,500 scenes with various objects and shapes, our validation



Methods Scannet Sem3D S3DIS PL3D

Pointnet [26] - - 41.1 -
Pointnet++ [27] 33.9 - - -
SnapNet [4] - 59.1 - -
SPLATNet [34] 39.3 - - -
SegCloud [37] - 61.3 48.9 -
RF MSSF [38] - 62.7 49.8 56.3
Eff3DConv [50] - - 51.8 -
TangentConv [36] 43.8 - 52.6 -
MSDVN [30] - 65.3 54.7 66.9
RSNet [15] - - 56.5 -
FCPN [28] 44.7 - - -
PointCNN [20] 45.8 - 57.3 -
PCNN [2] 49.8 - - -
SPGraph [17] - 73.2 58.0 -
ParamConv [41] - - 58.3 -
SubSparseCNN [9] 72.5 - - -

KPConv rigid 68.6 74.6 65.4 72.3
KPConv deform 68.4 73.1 67.1 75.9

Table 2. 3D scene segmentation scores (mIoU). Scannet, Se-
mantic3D and Paris-Lille-3D (PL3D) scores are taken from their
respective online benchmarks (reduced-8 challenge for Seman-
tic3D). S3DIS scores are given for Area-5 (see supplementary ma-
terial for k-fold).

studies are not reflected by the test scores on this bench-
mark. We found that the deformable KPConv outperformed
its rigid counterpart on several different validation sets (see
Section 4.3). As a conclusion, these results show that the
descriptive power of deformable KPConv is useful to the
network on large and diverse datasets. We believe KP-
Conv could thrive on larger datasets because its kernel com-
bines a strong descriptive power (compared to other simpler
representations, like the linear kernels of [10]), and great
learnability (the weights of MLP convolutions like [20, 41]
are more complex to learn). An illustration of segmented
scenes on Semantic3D and S3DIS is shown in Figure 4.
More results visualizations are provided in the supplemen-
tary material.

4.3. Ablation Study

We conduct an ablation study to support our claim that
deformable KPConv has a stronger descriptive power than
rigid KPConv. The idea is to impede the capabilities of the
network, in order to reveal the real potential of deformable
kernels. We use Scannet dataset (same parameters as be-
fore) and use the official validation set, because the test set
cannot be used for such evaluations. As depicted in Figure
5, the deformable KPConv only loses 1.5% mIoU when re-
stricted to 4 kernel points. In the same configuration, the
rigid KPConv loses 3.5% mIoU.

As stated in Section 4.2, we can also see that deformable

Figure 4. Outdoor and Indoor scenes, respectively from Seman-
tic3D and S3DIS, classified by KP-FCNN with deformable ker-
nels.

KPConv performs better than rigid KPConv with 15 kernel
points. Although it is not the case on the test set, we tried
different validation sets that confirmed the superior perfor-
mances of deformable KPConv. This is not surprising as we
obtained the same results on S3DIS. Deformable KPConv
seem to thrive on indoor datasets, which offer more diver-
sity than outdoor datasets. To understand why, we need to
go beyond numbers and see what is effectively learned by
the two versions of KPConv.

4.4. Learned Features and Effective Receptive Field

To achieve a deeper understanding of KPConv, we offer
two insights of the learning mechanisms.
Learned features. Our first idea was to visualize the fea-
tures learned by our network. In this experiment, we trained
KP-CNN on ModelNet40 with rigid KPConv. We added
random rotation augmentations around vertical axis to in-
crease the input shape diversity. Then we visualize each
learned feature by coloring the points according to their
level of activation for this features. In Figure 6, we chose
input point clouds maximizing the activation for different
features at the first and third layer. For a cleaner display, we

Figure 5. Ablation study on Scannet validation set. Evolution of
the mIoU when reducing the number of kernel points.



Figure 6. Low and high level features learned in KP-CNN. Each
feature is displayed on 2 input point clouds taken from Model-
Net40. High activations are in red and low activations in blue.

projected the activations from the layer subsampled points
to the original input points. We observe that, in its first layer,
the network is able to learn low-level features like verti-
cal/horizontal planes (a/b), linear structures (c), or corners
(d). In the later layers, the network detects more complex
shapes like small buttresses (e), balls (f), cones (g), or stairs
(h). However, it is difficult to see a difference between rigid
and deformable KPConv. This tool is very useful to un-
derstand what KPConv can learn in general, but we need
another one to compare the two versions.
Effective Receptive Field. To apprehend the differ-
ences between the representations learned by rigid and de-
formable KPConv, we can compute its Effective Receptive
Field (ERF) [22] at different locations. The ERF is a mea-
sure of the influence that each input point has on the result
of a KPConv layer at a particular location. It is computed
as the gradient of KPConv responses at this particular lo-
cation with respect to the input point features. As we can
see in Figure 7, the ERF varies depending on the object it
is centered on. We see that rigid KPConv ERF has a rel-
atively consistent range on every type of object, whereas
deformable KPConv ERF seems to adapt to the object size.
Indeed, it covers the whole bed, and concentrates more on
the chair that on the surrounding ground. When centered on
a flat surface, it also seems to ignore most of it and reach for

Figure 7. KPConv ERF at layer 4 of KP-FCNN, trained on Scan-
net. The green dots represent the ERF centers. ERF values are
merged with scene colors as red intensity. The more red a point is,
the more influence it has on the green point features.

further details in the scene. This adaptive behavior shows
that deformable KPConv improves the network ability to
adapt to the geometry of the scene objects, and explains the
better performances on indoor datasets.

5. Conclusion
In this work, we propose KPConv, a convolution that op-

erates on point clouds. KPConv takes radius neighborhoods
as input and processes them with weights spatially located
by a small set of kernel points. We define a deformable
version of this convolution operator that learns local shifts
effectively deforming the convolution kernels to make them
fit the point cloud geometry. Depending on the diversity
of the datasets, or the chosen network configuration, de-
formable and rigid KPConv are both valuable, and our net-
works brought new state-of-the-art performances for nearly
every tested dataset. We release our source code, hoping
to help further research on point cloud convolutional archi-
tectures. Beyond the proposed classification and segmenta-
tion networks, KPConv can be used in any other application
addressed by CNNs. We believe that deformable convolu-
tions can thrive in larger datasets or challenging tasks such
as object detection, lidar flow computation, or point cloud
completion.
Acknowledgement. The authors gratefully acknowledge
the support of ONR MURI grant N00014-13-1-0341, NSF
grant IIS-1763268, a Vannevar Bush Faculty Fellowship,
and a gift from the Adobe and Autodesk corporations.



References
[1] Iro Armeni, Ozan Sener, Amir R. Zamir, Helen Jiang, Ioan-

nis Brilakis, Martin Fischer, and Silvio Savarese. 3d seman-
tic parsing of large-scale indoor spaces. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 1534–1543, 2016. http:// buildingparser.
stanford.edu/ dataset.html .

[2] Matan Atzmon, Haggai Maron, and Yaron Lipman. Point
convolutional neural networks by extension operators. ACM
Transactions on Graphics (TOG), 37(4):71, 2018.

[3] Yizhak Ben-Shabat, Michael Lindenbaum, and Anath Fis-
cher. 3dmfv: Three-dimensional point cloud classification
in real-time using convolutional neural networks. IEEE
Robotics and Automation Letters, 3(4):3145–3152, 2018.

[4] Alexandre Boulch, Bertrand Le Saux, and Nicolas Audebert.
Unstructured point cloud semantic labeling using deep seg-
mentation networks. In Proceedings of the Workshop on 3D
Object Retrieval (3DOR), 2017.

[5] Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur
Szlam, and Pierre Vandergheynst. Geometric deep learning:
going beyond euclidean data. IEEE Signal Processing Mag-
azine, 34(4):18–42, 2017.

[6] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 5828–5839, 2017. http:
// kaldir.vc.in.tum.de/ scannet benchmark .

[7] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong
Zhang, Han Hu, and Yichen Wei. Deformable convolutional
networks. In Proceedings of the IEEE international Confer-
ence on Computer Vision, pages 764–773, 2017.

[8] Michaël Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. Convolutional neural networks on graphs with
fast localized spectral filtering. In Advances in Neural Infor-
mation Processing Systems, pages 3844–3852, 2016.

[9] Benjamin Graham, Martin Engelcke, and Laurens van der
Maaten. 3d semantic segmentation with submanifold sparse
convolutional networks. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
9224–9232, 2018.

[10] Fabian Groh, Patrick Wieschollek, and Hendrik P.A. Lensch.
Flex-convolution. In Asian Conference on Computer Vision,
pages 105–122. Springer, 2018.

[11] Timo Hackel, Nikolay Savinov, Lubor Ladicky, Jan D. Weg-
ner, Konrad Schindler, and Marc Pollefeys. Semantic3d.
net: A new large-scale point cloud classification bench-
mark. arXiv preprint arXiv:1704.03847, 2017. http:// www.
semantic3d.net .

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016.

[13] Pedro Hermosilla, Tobias Ristchel, Pere-Pau Vázquez,
Álvaro Vinacua, and Timo Ropinski. Monte carlo convo-
lution for learning on non-uniformly sampled point clouds.
ACM Transactions on Graphics (TOG), 37(6):235–1, 2018.

[14] Binh-Son Hua, Minh-Khoi Tran, and Sai-Kit Yeung. Point-
wise convolutional neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 984–993, 2018.

[15] Qiangui Huang, Weiyue Wang, and Ulrich Neumann. Re-
current slice networks for 3d segmentation of point clouds.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2626–2635, 2018.

[16] Roman Klokov and Victor Lempitsky. Escape from cells:
Deep kd-networks for the recognition of 3d point cloud mod-
els. In Proceedings of the IEEE International Conference on
Computer Vision, pages 863–872, 2017.

[17] Loic Landrieu and Martin Simonovsky. Large-scale point
cloud semantic segmentation with superpoint graphs. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4558–4567, 2018.

[18] Felix Järemo Lawin, Martin Danelljan, Patrik Tosteberg,
Goutam Bhat, Fahad Shahbaz Khan, and Michael Felsberg.
Deep projective 3d semantic segmentation. In International
Conference on Computer Analysis of Images and Patterns,
pages 95–107. Springer, 2017.

[19] Jiaxin Li, Ben M. Chen, and Gim Hee Lee. So-net: Self-
organizing network for point cloud analysis. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 9397–9406, 2018.

[20] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,
and Baoquan Chen. Pointcnn: Convolution on x-transformed
points. In Advances in Neural Information Processing Sys-
tems, pages 820–830, 2018.

[21] Xinhai Liu, Zhizhong Han, Yu-Shen Liu, and Matthias
Zwicker. Point2sequence: Learning the shape representa-
tion of 3d point clouds with an attention-based sequence to
sequence network. arXiv preprint arXiv:1811.02565, 2018.

[22] Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard Zemel.
Understanding the effective receptive field in deep convolu-
tional neural networks. In Advances in neural information
processing systems, pages 4898–4906, 2016.

[23] Jonathan Masci, Davide Boscaini, Michael Bronstein, and
Pierre Vandergheynst. Geodesic convolutional neural net-
works on riemannian manifolds. In Proceedings of the
IEEE international conference on computer vision work-
shops, pages 37–45, 2015.

[24] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d con-
volutional neural network for real-time object recognition.
In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ
International Conference on, pages 922–928. IEEE, 2015.

[25] Federico Monti, Davide Boscaini, Jonathan Masci,
Emanuele Rodola, Jan Svoboda, and Michael M. Bronstein.
Geometric deep learning on graphs and manifolds using
mixture model cnns. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages
5115–5124, 2017.

[26] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 652–660,
2017.

http://buildingparser.stanford.edu/dataset.html
http://buildingparser.stanford.edu/dataset.html
http://kaldir.vc.in.tum.de/scannet_benchmark
http://kaldir.vc.in.tum.de/scannet_benchmark
http://www.semantic3d.net
http://www.semantic3d.net


[27] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Point-
net++: Deep hierarchical feature learning on point sets in a
metric space. In Advances in Neural Information Processing
Systems, pages 5099–5108, 2017.

[28] Dario Rethage, Johanna Wald, Jurgen Sturm, Nassir Navab,
and Federico Tombari. Fully-convolutional point networks
for large-scale point clouds. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages 596–
611, 2018.

[29] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger.
Octnet: Learning deep 3d representations at high resolutions.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, volume 3, 2017.

[30] Xavier Roynard, Jean-Emmanuel Deschaud, and François
Goulette. Classification of point cloud scenes with multi-
scale voxel deep network. arXiv preprint arXiv:1804.03583,
2018.

[31] Xavier Roynard, Jean-Emmanuel Deschaud, and François
Goulette. Paris-lille-3d: A large and high-quality ground-
truth urban point cloud dataset for automatic segmentation
and classification. The International Journal of Robotics Re-
search, 37(6):545–557, 2018. http:// npm3d.fr .

[32] Yiru Shen, Chen Feng, Yaoqing Yang, and Dong Tian. Min-
ing point cloud local structures by kernel correlation and
graph pooling. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, volume 4, 2018.

[33] Martin Simonovsky and Nikos Komodakis. Dynamic edge-
conditioned filters in convolutional neural networks on
graphs. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3693–3702, 2017.

[34] Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji,
Evangelos Kalogerakis, Ming-Hsuan Yang, and Jan Kautz.
Splatnet: Sparse lattice networks for point cloud processing.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2530–2539, 2018.

[35] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik
Learned-Miller. Multi-view convolutional neural networks
for 3d shape recognition. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, pages 945–953,
2015.

[36] Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, and Qian-
Yi Zhou. Tangent convolutions for dense prediction in 3d.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3887–3896, 2018.

[37] Lyne Tchapmi, Christopher Choy, Iro Armeni, JunYoung
Gwak, and Silvio Savarese. Segcloud: Semantic segmen-
tation of 3d point clouds. In 2017 International Conference
on 3D Vision (3DV), pages 537–547. IEEE, 2017.

[38] Hugues Thomas, François Goulette, Jean-Emmanuel De-
schaud, and Beatriz Marcotegui. Semantic classification of
3d point clouds with multiscale spherical neighborhoods. In
2018 International Conference on 3D Vision (3DV), pages
390–398. IEEE, 2018.

[39] Nitika Verma, Edmond Boyer, and Jakob Verbeek. Feast-
net: Feature-steered graph convolutions for 3d shape anal-
ysis. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2598–2606, 2018.

[40] Chu Wang, Babak Samari, and Kaleem Siddiqi. Local spec-
tral graph convolution for point set feature learning. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 52–66, 2018.

[41] Shenlong Wang, Simon Suo, Wei-Chiu Ma, Andrei
Pokrovsky, and Raquel Urtasun. Deep parametric continu-
ous convolutional neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 2589–2597, 2018.

[42] Weiyue Wang, Ronald Yu, Qiangui Huang, and Ulrich Neu-
mann. Sgpn: Similarity group proposal network for 3d point
cloud instance segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 2569–2578, 2018.

[43] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,
Michael M. Bronstein, and Justin M. Solomon. Dynamic
graph cnn for learning on point clouds. ACM Transactions
on Graphics (TOG), 2019.

[44] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In
Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition, pages 1912–1920, 2015.

[45] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao.
Spidercnn: Deep learning on point sets with parameterized
convolutional filters. In Proceedings of the European Con-
ference on Computer Vision (ECCV), pages 87–102, 2018.

[46] Xiaoqing Ye, Jiamao Li, Hexiao Huang, Liang Du, and Xi-
aolin Zhang. 3d recurrent neural networks with context fu-
sion for point cloud semantic segmentation. In Proceedings
of the European Conference on Computer Vision (ECCV),
pages 415–430. Springer, 2018.

[47] Li Yi, Vladimir G. Kim, Duygu Ceylan, I Shen, Mengyan
Yan, Hao Su, Cewu Lu, Qixing Huang, Alla Sheffer,
Leonidas J. Guibas, et al. A scalable active framework for
region annotation in 3d shape collections. ACM Transactions
on Graphics (TOG), 35(6):210, 2016.

[48] Li Yi, Hao Su, Xingwen Guo, and Leonidas J. Guibas. Sync-
speccnn: Synchronized spectral cnn for 3d shape segmenta-
tion. In CVPR, pages 6584–6592, 2017.

[49] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barn-
abas Poczos, Ruslan R. Salakhutdinov, and Alexander J
Smola. Deep sets. In Advances in Neural Information Pro-
cessing Systems, pages 3391–3401, 2017.

[50] Chris Zhang, Wenjie Luo, and Raquel Urtasun. Efficient con-
volutions for real-time semantic segmentation of 3d point
clouds. In 2018 International Conference on 3D Vision
(3DV), pages 399–408. IEEE, 2018.

http://npm3d.fr


Supplementary Material for
KPConv: Flexible and Deformable Convolution for Point Clouds

Abstract

This supplementary document is organized as follows:

• Sec. A details our network architectures, the training
parameters, and compares the model sizes and speeds.

• Sec. B presents the kernel point initialization method.

• Sec. C describes how our regularization strategy tack-
les the “lost” kernel point phenomenon.

• Sec. D enumerates more segmentation results with
class scores.

• KPConv Method video1 illustrates KPConv principle
with animated diagrams, and shows some learned ker-
nel deformations.

• KPConv Results video2 shows indoor and outdoor
scenes segmented by KP-FCNN.

A. Network Architectures and Parameters
As explained in the main paper, our architectures are

built with convolutional blocks, designed like bottleneck
ResNet blocks [12]. This is the case whether we use a nor-
mal or strided KPConv, with rigid or deformable kernels.
Figure 8 describes these blocks, and Figure 9 our two net-
work architectures made from them. In Figure 9, we show
an example of point cloud from ModelNet40 dataset, sub-
sampled at every layer. It illustrates how the convolution
radius (red sphere) grows proportionally to the subsampling
grid size. In all our experiments with deformable KPConv,
we use deformable kernels in the last 5 convolutional blocks
(2nd block from layer 3, and both block from layer 4 and 5).
The green number above layers in Figure 9 are the feature
dimensions used in our blocks (D in Figure 8).

Our layers process point clouds of variable sizes, so we
cannot stack them along a new “batch” dimension. We thus
stack our point and feature tensors along their first dimen-
sion (number of points). As the neighbor and pooling in-
dices do not point from one input cloud to another, each

1https:// www.youtube.com/ watch?v=uwuvp9mc 0o&t=19s
2https:// www.youtube.com/ watch?v= cFQxJorSAI

batch element is processed independently without any im-
plementation trick. We only need to keep track of the batch
element indices in order to define the global pooling of KP-
CNN. Since the number of points can vary a lot, we use a
variable batch size by selecting as many elements as possi-
ble until a certain number of total of batch points is reached.
This limit is chosen so that the average batch size corre-
spond to the target batch size. A very similar batch strategy
has already been described by [13].
KP-CNN training. We use a Momentum gradient Descent
optimizer to minimize a cross-entropy loss, with a batch
size of 16, a momentum of 0.98 an initial learning rate of
10−3. Our learning rate is scheduled to decrease exponen-
tially, and we choose the exponential decay to ensure it is
divided by 10 every 100 epochs. A 0.5 probability dropout
is used in the final fully connected layers. The network con-
verges in 200 epochs. In the case of deformable kernels, the
regularization loss is added to the output loss with a multi-
plicative factor of 0.1.
KP-FCNN training. We also use a Momentum gradient
Descent optimizer to minimize a point-wise cross-entropy
loss, with a batch size of 10, a momentum of 0.98 an ini-
tial learning rate of 10−2. The same learning rate schedule
is used and no dropout is used. Among all experiments,
the network needs 400 epochs at most to converge. For

Figure 8. Convolutional blocks used in our architectures. Both
rigid (top) and deformable (bottom) KPConv use resnet con-
nections, batch normalization and leaky ReLU. Optional blocks:
shortcut max pooling(1) is only needed for strided KPConv, and
shortcut 1x1 convolution(2) is only needed when Din 6= 2D.

11

https://www.youtube.com/watch?v=uwuvp9mc_0o&t=19s
https://www.youtube.com/watch?v=_cFQxJorSAI


Figure 9. Illustration of our 2 network architectures for segmentation (top) and classification (bottom) of 3D point clouds. During a
forward pass, features are transformed by consecutive operations (represented by edge colors) while points are fed to each layer as a
support structure guiding the operations.

real scene segmentation, we can generate any number of in-
put spheres, so we define an epoch as 500 optimizer steps,
which is equivalent to 5000 spheres seen by the network.
The same deformable regularization loss is used.
Model sizes and speeds. Table 3 shows the statistics of
our models on different datasets. First we notice that KP-
FCNN and KP-CNN have similar number of parameters,
because the decoder part of KP-FCNN only involves light
1x1 convolution. We see that the running speeds are dif-
ferent from one dataset to another, which is not surprising.
Indeed, the number of operations performed during a for-
ward pass of our network depends on the number of points
of the current batch, and the maximum number of neigh-

MN40 SNP Scannet Sem3D

Avg pts/elem 6800 2370 8950 3800
Avg pts/batch 109K 38K 90K 38K

Params rigid 14.3M 14.2M 14.1M 14.1M
deform 15.2M 15.0M 14.9M 14.9M

Training rigid 3.5 5.5 4.3 8.8
(batch/s) deform 3.1 4.3 3.9 7.1

Inference rigid 8.7 16.7 9.3 17.5
(batch/s) deform 8.0 12.2 8.1 15.0

Table 3. Model statistics on 4 datasets: ModelNet40, ShapeNet-
Part, Scannet, Semantic3D.

bors of these points. Our models have been prototyped with
a RTX 2080Ti in this experiment, which explains the slight
difference with the Titan Xp used in the main paper.

B. Kernel Points Initialization
Our KPConv operates in a ball, and requires kernel

points regularly placed in this domain. There is no obvi-
ous regular disposition of points in a sphere, so we chose to
solve this issue by translating it into an optimization prob-
lem. The problem is simple, we want the K points x̃k to be
as far from each other as possible inside a given sphere. We
thus assign a repulsive potential to each point:

∀x ∈ R3, Erep
k (x) =

1

‖x− x̃k‖
(9)

And add an attractive potential to the sphere center to avoid
them diverging indefinitely:

∀x ∈ R3, Eatt(x) = ‖x‖2 (10)

The problem then consists of minimizing the global energy:

Etot =
∑
k<K

Eatt(x̃k) +
∑
l 6=k

Erep
k (x̃l)

 (11)

The solution is found by gradient descent with the points
initialized randomly and some optional constraints. In our



Figure 10. Illustration of the kernel points in stable dispositions.

case, we fix one of the points at the center of the sphere. For
some values of K (listed in Table 4), the points converge to
a unique stable disposition. Those stable dispositions are
in fact regular polyhedrons. Each polyhedron can be de-
scribed by grouping points sharing a plane perpendicular to
the polyhedron symmetrical axis. For a better understand-
ing, some of these dispositions are shown in Figure 10.

In every layer of KP-CNN and KP-FCNN, the points lo-
cations are rescaled from the chosen stable disposition to
the appropriate radius and randomly rotated. Note that Etot

can also be used as a regularization loss in KP-CNN, when
the kernel point positions are trained.

K
disposition groups along

name symmetrical axis

5 Tetrahedron
7 Octahedron 1-4-1
13 Icosahedron 1-5-5-1
15 - 1-6-6-1
18 - 1-5-5-5-1
19 - 1-4-4-4-4-1
21 - 1-6-6-6-1
25 - 4-4-4-4-4-4

Table 4. Stable dispositions of the kernel point positions when the
center point is fixed. If a disposition has an axis of symmetry,
we describe it by the successive groups of points sharing a plane
perpendicular to this axis.

C. Effect of the Kernel Point Regularization

When we designed deformable KPConv, we first used
a straightforward adaptation of image deformable convolu-
tions, but the network had very poor performances. We in-
vestigated the kernel deformations after the network conver-
gence and noticed that the kernel points were often pulled
away from the input points. This phenomenon comes from
the sparse nature of point clouds, there is empty space
around the points. We remind that the shifts are predicted
by the network, thus, they depend on the input shape.

For a particular input during training, if a kernel point
is shifted away from the input points, then the gradient of
its shift ∆k(x) is null. It is thus “lost” by the network
and remains away for similar input shapes. Because of the
stochastic nature of the network optimizer, this happens for
many input shapes during convergence.

Figure 11. Illustration of the deformations learned by a KPConv
network with or without regularization.



Figure 11 illustrates “lost” kernel points on the example
of a room floor. First we see the rigid kernel in red, its scale
gives an idea of the kernel points influence range. In the
middle, the purple points depict a deformed kernel predicted
by a network without any regularization loss. Most purple
points are far from the floor plane and thus “lost”.

Our regularization strategy, described in the main paper,
prevents this phenomenon, as shown in the bottom of Figure
11. We can notice that our regularization strategy does not
only prevent the “lost” kernel points. It also helps to max-
imize the number of active kernel points in KPConv (those
with input points in range). Almost every yellow point is
close to the floor plane.

D. More Segmentation Results
In this section, we provide more details on our seg-

mentation experiments, for benchmarking purpose with fu-
ture works. We give class scores for our experiments on
ShapeNetPart (Table 5) and S3DIS (Tables 6 and 7) dataset.
Scannet [6], Semantic3D [11] and NPM3D [31] are online
benchmarks, the class scores can be found on their respec-
tive website.

Method
class inst.

aero bag cap car chair ear guit knif lamp lapt moto mug pist rock skate table
avg. avg.

Kd-Net [16] 77.4 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3
SO-Net [19] 81.0 84.9 82.8 77.8 88.0 77.3 90.6 73.5 90.7 83.9 82.8 94.8 69.1 94.2 80.9 53.1 72.9 83.0
PCNN by Ext [2] 81.8 85.1 82.4 80.1 85.5 79.5 90.8 73.2 91.3 86.0 85.0 95.7 73.2 94.8 83.3 51.0 75.0 81.8
PointNet++ [27] 81.9 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
SynSpecCNN [48] 82.0 84.7 81.6 81.7 81.9 75.2 90.2 74.9 93.0 86.1 84.7 95.6 66.7 92.7 81.6 60.6 82.9 82.1
DGCNN [43] 82.3 85.1 84.2 83.7 84.4 77.1 90.9 78.5 91.5 87.3 82.9 96.0 67.8 93.3 82.6 59.7 75.5 82.0
SpiderCNN [45] 82.4 85.3 83.5 81.0 87.2 77.5 90.7 76.8 91.1 87.3 83.3 95.8 70.2 93.5 82.7 59.7 75.8 82.8
SubSparseCNN [9] 83.3 86.0 84.1 83.0 84.0 80.8 91.4 78.2 91.6 89.1 85.0 95.8 73.7 95.2 84.0 58.5 76.0 82.7
SPLATNet [34] 83.7 85.4 83.2 84.3 89.1 80.3 90.7 75.5 92.1 87.1 83.9 96.3 75.6 95.8 83.8 64.0 75.5 81.8
PointCNN [20] 84.6 86.1 84.1 86.5 86.0 80.8 90.6 79.7 92.3 88.4 85.3 96.1 77.2 95.3 84.2 64.2 80.0 83.0
FlexConv [10] 85.0 84.7 83.6 91.2 96.7 79.5 84.7 71.7 92.0 86.5 83.2 96.6 71.7 95.7 86.1 74.8 81.4 84.5

KPConv rigid 85.0 86.2 83.8 86.1 88.2 81.6 91.0 80.1 92.1 87.8 82.2 96.2 77.9 95.7 86.8 65.3 81.7 83.6
KPConv deform 85.1 86.4 84.6 86.3 87.2 81.1 91.1 77.8 92.6 88.4 82.7 96.2 78.1 95.8 85.4 69.0 82.0 83.6

Table 5. Segmentation mIoUs on ShapeNetPart.

Method mIoU mRec ceil. floor wall beam col. wind. door chair table book. sofa board clut.

Pointnet [26] 41.1 49.0 88.8 97.3 69.8 0.1 3.9 46.3 10.8 52.6 58.9 40.3 5.9 26.4 33.2
SegCloud [37] 48.9 57.4 90.1 96.1 69.9 0.0 18.4 38.4 23.1 75.9 70.4 58.4 40.9 13.0 41.6
Eff 3D Conv [50] 51.8 68.3 79.8 93.9 69.0 0.2 28.3 38.5 48.3 71.1 73.6 48.7 59.2 29.3 33.1
TangentConv [36] 52.6 62.2 90.5 97.7 74.0 0.0 20.7 39.0 31.3 69.4 77.5 38.5 57.3 48.8 39.8
RNN Fusion [46] 57.3 63.9 92.3 98.2 79.4 0.0 17.6 22.8 62.1 74.4 80.6 31.7 66.7 62.1 56.7
SPGraph [17] 58.0 66.5 89.4 96.9 78.1 0.0 42.8 48.9 61.6 84.7 75.4 69.8 52.6 2.1 52.2
ParamConv [41] 58.3 67.1 92.3 96.2 75.9 0.3 6.0 69.5 63.5 66.9 65.6 47.3 68.9 59.1 46.2

KPConv rigid 65.4 70.9 92.6 97.3 81.4 0.0 16.5 54.5 69.5 90.1 80.2 74.6 66.4 63.7 58.1
KPConv deform 67.1 72.8 92.8 97.3 82.4 0.0 23.9 58.0 69.0 91.0 81.5 75.3 75.4 66.7 58.9

Table 6. Semantic segmentation IoU scores on S3DIS Area-5. Additionally, we give the mean class recall, a measure that some previous
works call mean class accuracy.



Method mIoU mRec ceil. floor wall beam col. wind. door chair table book. sofa board clut.

Pointnet [26] 47.6 66.2 88.0 88.7 69.3 42.4 23.1 47.5 51.6 42.0 54.1 38.2 9.6 29.4 35.2
RSNet [15] 56.5 66.5 92.5 92.8 78.6 32.8 34.4 51.6 68.1 60.1 59.7 50.2 16.4 44.9 52.0
SPGraph [17] 62.1 73.0 89.9 95.1 76.4 62.8 47.1 55.3 68.4 73.5 69.2 63.2 45.9 8.7 52.9
PointCNN [20] 65.4 75.6 94.8 97.3 75.8 63.3 51.7 58.4 57.2 71.6 69.1 39.1 61.2 52.2 58.6

KPConv rigid 69.6 78.1 93.7 92.0 82.5 62.5 49.5 65.7 77.3 57.8 64.0 68.8 71.7 60.1 59.6
KPConv deform 70.6 79.1 93.6 92.4 83.1 63.9 54.3 66.1 76.6 57.8 64.0 69.3 74.9 61.3 60.3

Table 7. Semantic segmentation IoU scores on S3DIS k-fold. Additionally, we give the mean class recall, a measure that some previous
works call mean class accuracy.


