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ABSTRACT

We present CVMHAPLO, a probabilistic method for haplotyping in general pedigrees with many markers.
CVMHAPLO reconstructs the haplotypes by assigning in every iteration a fixed number of the ordered
genotypes with the highest marginal probability, conditioned on the marker data and ordered genotypes
assigned in previous iterations. CVMHAPLO makes use of the cluster variation method (CVM) to efficiently
estimate the marginal probabilities. We focused on single-nucleotide polymorphism (SNP) markers in the
evaluation of our approach. In simulated data sets where exact computation was feasible, we found that the
accuracy of CVMHAPLO was high and similar to that of maximum-likelihood methods. In simulated data
sets where exact computation of the maximum-likelihood haplotype configuration was not feasible, the
accuracy of CVMHAPLO was similar to that of state of the art Markov chain Monte Carlo (MCMC) maximum-
likelihood approximations when all ordered genotypes were assigned and higher when only a subset of the
ordered genotypes was assigned. CVMHAPLO was faster than the MCMC approach and provided more
detailed information about the uncertainty in the inferred haplotypes. We conclude that CVMHAPLO is a
practical tool for the inference of haplotypes in large complex pedigrees.

THE problem of haplotyping is to infer for each
individual the paternally inherited alleles and the

maternally inherited alleles from the unordered ge-
notype data. Haplotyping is an important tool for map-
ping disease-susceptibility genes, especially of complex
diseases. It is an essential step in the analyses used for
the mapping of quantitative trait loci (QTL) in animal
pedigrees. As genotyping methods become increasingly
cheaper, efficient and accurate algorithms for inferring
haplotypes are desirable.

Since the marker data are generally not informative
enough to unambiguously infer the ordered genotypes,
a probabilistic modeling approach can be used to deal
with the uncertainties. The computer programs MERLIN
(Abecasis et al. 2002), GENEHUNTER (Kruglyak et al.
1996), and SUPERLINK (Fishelson and Geiger 2002;
Fishelson et al. 2005) reconstruct exact maximum-
likelihood haplotype configurations in general pedi-
grees. Due to the exponential increase of computation
time and memory usage with pedigree size (MERLIN,
GENEHUNTER) or the tree width of the graphical
model associated with the likelihood function (SUPER-
LINK), application of these programs to large pedigrees
and many markers typical of QTL-mapping studies may

not be feasible, especially when some of the individuals
have missing genotypes or no genotype information at
all. Approximate statistical approaches based on Mar-
kov chain Monte Carlo (MCMC) sampling (Thompson

1994; Lange and Sobel 1996; Jensen and Kong 1999;
Thompson and Heath 1999; Thomas et al. 2000;
George and Thompson 2003) use the same likelihood
function as the exact probabilistic approaches and con-
sequently may achieve very high accuracy. MCMC
methods can be generally applied and have modest
memory requirements. Although in theory computa-
tion time does not scale exponentially with the problem
size, in practice it can be very long and convergence of
the Markov chain can be difficult to assess. An efficient
statistical approach based on a heuristic approximation
of conditional probabilities was proposed by Gao et al.
(2004); however, it has been tested only on data sets with
no missing genotypes.

To overcome problems of efficiency several nonstatis-
tical approaches have been developed. Wijsman (1987)
proposed a zero-recombinant haplotyping method that
is linear in the number of markers and individuals.
Recently, efficient algorithms were described by Zhang

et al. (2005; Baruch et al. 2006). Application of these
approaches is limited to data sets without forced re-
combination events. Qian and Beckmann (2002) pre-
sented a six-rule algorithm to reconstruct minimum
recombinant haplotypes. Since computation time is
quadratic in pedigree size and cubic in the number of
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markers, application to large data sets may not be
practical. Li and Jiang (2004) proposed an expectation-
maximization (EM) approach that approximately min-
imizes the number of recombination events. They also
proposed an integer linear programming approach that
minimizes the number of recombination events. Al-
though computation time of the latter scales linearly with
the rate of missing genotypes, it scales exponentially with
the number of individuals. Windig and Meuwissen

(2004) described an efficient haplotype reconstruction
algorithm for general pedigrees. In spite of the improved
efficiency of these methods, imputation of missing geno-
types can be problematic due to the lack of a statistical
treatment of missing data.

We present a statistical approach, implemented in the
computer program CVMHAPLO, that combines the
general applicability and accuracy of MCMC approaches
with high efficiency. Our haplotype inference algorithm is
an iterative procedure where each iteration consists of the
following two operations: (1) Estimation of the marginal
probabilities of all unassigned ordered genotypes condi-
tioned on the assigned ordered genotypes and the marker
data and (2) assignment of a number of the ordered geno-
types with the highest conditional marginal probabilities.

Like SIMWALK2, it can be applied to any pedigree
and any number of markers. It provides detailed infor-
mation about the uncertainty in the inferred haplotypes.
Computation time of CVMHAPLO scales approximately
linearly with the number of markers and individuals.

Step 1 of the assignment procedure is generally
intractable. Therefore we use the cluster variation method
(CVM) (Kikuchi 1951; Morita 1990; Yedidia et al. 2005)
to approximately compute the marginal probability dis-
tributions of ordered genotypes. The CVM is a variational
approximation designed for efficient estimation of mar-
ginal probabilities in complex probability models for
which exact computation is not feasible. The CVM esti-
matesmarginalprobabilitiesbyoptimizingmarginaldistri-
butions on overlapping subsets of variables for which
exact probability calculus is feasible. The CVM was intro-
duced as a method for estimation of equilibrium proper-
ties of materials consisting of interacting magnetic spins
(Kikuchi 1951) and has been used mainly for this pur-
pose by physicists. Yedidia et al. (2005) established a con-
nection between the most basic approximation of the
CVM and the belief propagation algorithm (Pearl 1988),
sparking interest in the computer science community.
The CVM has been applied to problems in the fields
of image restoration (Tanaka and Morita 1995), com-
puter vision (Freeman et al. 2000), interference in two-
dimensional channels (Shental et al. 2004), medical diag-
nosis (Kappen 2002), decoding of error-correcting codes
(Gallager 1963; Mceliece et al. 1998; Kabashima and
Saad 2004), predicting protein structure (Pelizzola

2005; Kamisetty et al. 2007), and language processing
(Croft and Turtle 1989). We refer to Pelizzola (2005)
for a recent review of the CVM.

In previous work (Albers et al. 2006) we showed that
the CVM may be used to obtain accurate approxima-
tions of parametric LOD scores in pedigrees without
loops, comparing favorably with those of the MCMC
program MORGAN (Thompson 1994; Thompson and
Heath 1999; George and Thompson 2003). The algo-
rithm we propose here does not provide parametric
linkage scores, but infers a single consistent haplotype
configuration. It is an extension of our previous ap-
proach in that it can be applied to general pedigrees,
allowing for inbreeding.

Our procedure to iteratively assign ordered genotypes
is similar to that of Gao et al. (2004), who applied it to
pedigrees without missing data. Gao et al. used a deter-
ministic procedure to approximate conditional proba-
bilities of ordered genotypes given a subset of the
observations, whereas we use the CVM to approximate
conditional probabilities given all observations in the
pedigree. We show that our approach yields accurate
reconstructions in problems with substantial amounts
of missing data and that it also provides accurate es-
timates of posterior marginal probabilities of ordered
genotypes.

We evaluate our approach in simulated and real data
sets. We restrict the evaluation to single-nucleotide poly-
morphisms (SNPs) and discuss extension to markers
with more than two alleles. We compare CVMHAPLO
with exact maximum-likelihood approaches and the
state of the art MCMC maximum-likelihood approxima-
tion of SIMWALK2.

MATERIALS AND METHODS

Notation and definitions: We explain the notation that we
use with the small pedigree example in Figure 1. For each
person i and marker l there is a pair of ordered genotype
variables fGl ;p

i ; Gl ;m
i g, which are the paternal and maternal

alleles. For each nonfounder i in the pedigree and each
marker l there are the paternal and maternal segregation
indicators fvl ;p

i ; vl ;m
i g. The founder and nonfounder individ-

uals are denoted by F and NF, respectively. We denote the
vector of all ordered genotype variables by G and the vector of
all segregation indicators by v. Both G and v are unobserved
experimentally. Instead, the observed genotypes consist of
unordered pairs of alleles M l

i for a subset of persons and
markers. We denote by M the vector of all observed allele
pairs. The marker map is assumed to be known; the recom-
bination frequency between marker l and l � 1 is denoted by
ul, l�1 and ml denotes the prior allele frequencies for marker l.

Given the marker data M, one can compute the probability
distribution over the ordered genotype variables G (and the
segregation indicators v). If the pedigree and the number
of markers are large, such a computation is intractable and
cannot be done in a practical amount of time. When we can
perform an exact computation, we denote the resulting
marginal probabilities as P(� j �) and when we are not specific
about whether the marginals are exact or approximate, we
denote the resulting marginal probabilities as Q(� j �).

The algorithm CVMHAPLO: Algorithm 1 shows CVMHA-
PLO in pseudocode. The ordered genotypes and segregation
indicators are assigned to a specific value in a number of
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iterations, labeled by n. Lines 1–3 represent the initialization
of the algorithm. Lines 4–17 represent the iterative assign-
ment procedure.

In iteration n of the algorithm, we use the CVM to compute
the approximate marginal probability of all unassigned or-
dered genotypes, conditioned on all observed genotypes M
and conditioned on all ordered genotypes that have been
assigned in all previous iterations, which we denote by Gðn�1Þ

assigned.
The resulting conditional probability is denoted by
Q ðGl ;p

i ; Gl ;m
i jM; Gðn�1Þ

assignedÞ (line 5 in Algorithm 1). This is the
computationally intensive step of the algorithm. It can be
performed either exactly or approximately using the CVM.
The latter approach is explained in the appendix.

Subsequently, a number of ordered genotypes are assigned.
All ordered genotypes for which Q ðGl ;p

i ; Gl ;m
i jM; G

ðn�1Þ
assignedÞ ¼ 1

for some value of G
l ;p
i ; Gl ;m

i are assigned, as well as an addi-
tional number of ordered genotypes in the following way. For
each marker and person we compute

qi;l
map ¼ max

G
l ;p
i ;Gl ;m

i

Q ðGl ;p
i ; Gl ;m

i jM; G
ðn�1Þ
assignedÞ

and record the ordered genotype that yields the maximum
(line 7 in Algorithm 1). This is a trivial computation. For
instance, if

Q ðG1;p
1 ¼ A; G1;m

1 ¼ A jM; G
ðn�1Þ
assignedÞ ¼ 0:9;

Q ðG1;p
1 ¼ A; G1;m

1 ¼ B jM; G
ðn�1Þ
assignedÞ ¼ 0:1;

Q ðG1;p
1 ¼ B; G1;m

1 ¼ A jM; G
ðn�1Þ
assignedÞ ¼ 0:0;

Q ðG1;p
1 ¼ B; G1;m

1 ¼ B jM; G
ðn�1Þ
assignedÞ ¼ 0:0;

then q1;1
map ¼ 0.9 and it is obtained when fG1;p

1 ; G1;m
1 gmap ¼ {A,

A}. We sort the qi;l
map in descending order (line 8) and select the

pNL ordered genotypes with the highest value (line 9) (N
denotes the number of individuals in the pedigree and L the

number of markers and p is a percentage that is specified by
the user).

In line 6 the partial haplotype configuration Gðn�1Þ
assigned of the

previous iteration is checked for consistency as described in
the appendix. The consistency check verifies that the partial
haplotype configuration has a nonzero likelihood under the
probabilistic model. When an inconsistency is detected, it is
assumed that too many ordered genotypes have been assigned
per iteration, and the algorithm is reinitialized in lines 12–14
with a lower value of p.

In line 10, GðnÞassigned is updated so that it contains all assigned
ordered genotypes. The procedure of estimating marginal
distributions and assigning ordered genotypes is repeated
either until all ordered genotypes have been assigned or until
a stopping criterion has been reached.

Confidence in the assignment: When there are many
missing values, there is a large uncertainty about the value of
the ordered genotypes. In this case, maybe some ordered
genotypes can be assigned with a relatively high confidence
but others not. This is signaled by the conditional marginal
probabilities computed above. For instance, in the above
example it is clear that if the four probabilities are all 0.25, no
reliable assignment can be made. In this case, it is clear that a
full reconstruction of all ordered genotypes is likely to pro-
duce many errors and it is important to monitor the quality of
the iterative assignment procedure. We suggest to use the
values of the qi;l

map as an indication of the reliability of the as-
signment procedure, in the following way. Denote by {i, l } the
set of all ordered genotypes that have been assigned up to
iteration n, and qi;l ;ni;l

map is the probability of the assignment at
the time that it was made. We define the confidence in the total
assignment up to iteration n as the average of these assignment
probabilities:

ConfidenceðnÞ ¼ 100% 3
1

jfi; lgj
X
fi;lg

qi;l ;ni;l
map : ð1Þ

We demonstrate numerically that this confidence measure is a
good indicator of the accuracy of the assigned ordered ge-
notypes. Therefore, one can use this measure to monitor the
quality of the assignment procedure and stop when it reaches a
prespecified value.

Application of the cluster variation method: Exact
inference of the conditional marginal probabilities
PðGl ;p

i ; Gl ;m
i jM; Gðn�1Þ

assignedÞ requires a summation over an expo-
nential number of configurations of the unassigned ordered
genotypes and segregation indicators compatible with the
marker data and previous assignments. This computation
scales exponentially with problem size and is not feasible in
practice for complex pedigrees and a large number of markers.
Therefore we apply the CVM to compute these probabilities
approximately. The idea of the cluster variation method is to
avoid the exponential sum by optimizing marginal distribu-
tions of overlapping subsets of variables, i.e., the clusters. The
subsets of variables must be chosen such that exact probability
calculus on the corresponding cluster marginal distributions
Qa(xa j �), where a labels a cluster, is feasible. In essence, the
CVM exactly models correlations between variables that are
contained in the same cluster and approximates correlations
between variables that are contained in different clusters. In
the appendix we provide mathematical details of the CVM;
here we focus on the practical aspects of applying the CVM.

Obtaining approximations of the marginal distributions of
the ordered genotypes with the CVM proceeds along the
following lines. First the probabilistic model must be defined.
We make use of the standard pedigree likelihood assuming
Hardy–Weinberg equilibrium and linkage equilibrium; the
specific form of the distribution is given in the appendix. As a

Figure 1.—Illustration of the basic variables in the probabi-
listic model and the cluster choice. G

l ;p
i is the paternal allele of

individual i and marker l, and Gl ;m
i is the maternal allele. Pater-

nal and maternal segregation indicators are, respectively, de-
noted by v

l ;p
i and vl ;m

i . The variables for the observed
genotype variables M l

i (dashed lines) are shown only for indi-
vidual 1, but apply for every individual/marker for which a ge-
notype was observed. A basic cluster consists of the genotype
variables of the parents (i¼ 1, i¼ 2) of one child (i¼ 3), as well
as the genotype variables and the paternal and maternal segre-
gation indicators of the child, for a pair of adjacent markers (l¼
1, 2). These variables are shown as open circles. For every indi-
vidual that is not a founder and every pair of adjacent markers
such a cluster is defined. The observed genotype variables M l

i

(dashed lines) are not explicitly included in the clusters since
their value is observed (see text).
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preprocessing step we eliminate a number of symmetries from
the model, such as the unknown phase in the ordered
genotypes of the founders (see the appendix for details).
Second, the CVM requires specification of the set of clusters
B ¼ {a1, a2, . . .} that determines the approximation. Below we
describe our choice of clusters for the problem of haplotype
inference; this is the default cluster choice of CVMHAPLO.

Third, given the set of clusters and the probabilistic model,
the cluster variation method prescribes that the so-called free
energy FCVMðfQ̃agÞ must be minimized with respect to the
cluster marginal distributions to obtain the optimal approxi-
mation; i.e., fQag ¼ arg minfQ̃agFCVMðfQ̃agÞ. The minimiza-
tion must be performed under the constraint that the clusters
have identical marginal distributions on variables that are
contained in more than one cluster. The CVM does not
prescribe how this minimization must be performed; it
provides only the analytic form of the functional FCVMðfQ̃agÞ
in terms of the marginal distributions fQ̃ag, the parameters of
the probabilistic model, the marker data, and the assigned
ordered genotypes. The assumption is that the specific form,
which is given in the appendix, yields accurate approxima-
tions. We apply the provably convergent double-loop algo-
rithm described by Heskes et al. (2003) to perform the
numerical minimization of the CVM free energy.

Finally, after the numerical minimization procedure has
converged, the marginal distribution of an ordered genotype
can be obtained by straightforward marginalization of the
marginal probability distribution of one of the clusters, e.g., a,
that contains the ordered genotype of interest:

Q ðGl ;p
i ; Gl ;m

i jM; G
ðn�1Þ
assignedÞ ¼

X

xan G
l ;p
i ;Gl ;m

if g
Qaðxa jM; G

ðn�1Þ
assignedÞ

� PðGl ;p
i ; Gl ;m

i jM; G
ðn�1Þ
assignedÞ:

Specification of the clusters for CVMHAPLO: For the
purpose of haplotype inference we have chosen the clusters
such that the corresponding CVM approximation can be
applied to any pedigree, regardless of inbreeding and size, and
the numerical minimization can be performed within a
reasonable time and a reasonable amount of memory usage
for large problems. Computation time and memory usage of
the CVM increase exponentially with cluster size, but approx-
imately linearly with the number of clusters. The accuracy of
the CVM approximation generally increases with cluster size,
resulting in a trade-off between accuracy and efficiency.

For every nonfounder individual i and each pair of adjacent
markers l and l 1 1, we define the cluster

Bl ;l11
i ¼ G

l ;p
i ; Gl ;m

i ; v
l ;p
i ; vl ;m

i ; G
l ;p
faðiÞ; Gl ;m

faðiÞ; G
l ;p
moðiÞ; Gl ;m

moðiÞ;
n

G
l11;p
i ; Gl11;m

i ; v
l11;p
i ; vl11;m

i ; G
l11;p
faðiÞ ; Gl11;m

faðiÞ ; G
l11;p
moðiÞ ; Gl11;m

moðiÞ

o
:

ð2Þ

This basic cluster is illustrated in Figure 1. Each cluster
contains the genotype variables of the child and both its
parents for two adjacent markers. It also contains the paternal
and maternal segregation indicators of the child for these two
adjacent markers. As a result, the CVM treats the inheritance
of the child from its parents for two adjacent markers with
exact probability calculus. The observed genotypes M l

i are not
explicitly included in the cluster. Because their value depends
only on the unobserved genotype variables through the con-
ditional probability tables PðM l

i jG
l ;p
i ; Gl ;m

i Þ (see the appendix

for details), as a preprocessing step we integrate over M l
i be-

fore applying the CVM. With this choice the number of clus-
ters scales linearly with both the number of individuals and the

number of markers, irrespective of the pedigree structure. As
we will show, computation time and memory usage for this
choice of clusters are acceptable, while the accuracy of the
approximation is high.

Illustration of CVMHAPLO: Here we demonstrate the pro-
cedures with a simple example. We consider a family consist-
ing of a father, a mother, a daughter, and a son. Genotype data
are simulated for three markers with recombination fractions
of 0.05. The true ordered genotypes are

We now apply CVMHAPLO to this data set. With the choice
of clusters given by (2), we have four clusters for this example:

B1;2
da ¼ G

1;p
da ; G1;m

da ; G
1;p
fa ; G1;m

fa ; G1;p
mo ; G1;m

mo ; v
1;p
da ; v1;m

da ;
n

G
2;p
da ; G2;m

da ; G
2;p
fa ; G2;m

fa ; G2;p
mo ; G2;m

mo ; v
2;p
da ; v2;m

da

o
;

B1;2
so ¼ G1;p

so ; G1;m
so ; G

1;p
fa ; G1;m

fa ; G1;p
mo ; G1;m

mo ; v1;p
so ; v1;m

so ;
n

G2;p
so ; G2;m

so ; G
2;p
fa ; G2;m

fa ; G2;p
mo ; G2;m

mo ; v2;p
so ; v2;m

so

o
;

B2;3
da ¼ G

2;p
da ; G2;m

da ; G
2;p
fa ; G2;m

fa ; G2;p
mo ; G2;m

mo ; v
2;p
da ; v2;m

da ;
n

G
3;p
da ; G3;m

da ; G
3;p
fa ; G3;m

fa ; G3;p
mo ; G3;m

mo ; v
3;p
da ; v3;m

da

o
;

B2;3
so ¼ G2;p

so ; G2;m
so ; G

2;p
fa ; G2;m

fa ; G2;p
mo ; G2;m

mo ; v2;p
so ; v2;m

so ;
n

G3;p
so ; G3;m

so ; G
3;p
fa ; G3;m

fa ; G3;p
mo;G

3;m
mo ; v3;p

so ; v3;m
so

o
:

Here da denotes the daughter, so denotes the son, fa denotes
the father, and mo denotes the mother. For every child there
are two clusters, one for markers 1 and 2 and one for markers 2
and 3. A cluster contains the paternal and maternal genotype
variables (e.g., G

1;p
da ) and segregation indicators (e.g., v

1;p
da ) of

the child and the genotype variables of both parents (e.g.,
G2;m

fa ) for the two markers in the cluster. Thus the genotype
variables and segregation indicators of the children defined
for marker 2 are contained in two clusters; the genotype
variables of the parents defined for marker 2 are contained in
all four clusters. With this set of clusters the CVM will yield
approximate probabilities.

With p ¼ 0.5%, CVMHAPLO requires four iterations to
reconstruct the haplotypes. In Table 1 the marginal distribu-
tions of the ordered genotypes as computed with the CVM,
and the ordered genotypes that are assigned from these
marginals, are shown for all four iterations. In the first
iteration all homozygous genotypes can be assigned, since
the corresponding marginal distributions indicate that one
configuration has probability one. Also the ordered genotypes
of the daughter and son for marker 2 can be assigned as these
are unambiguously determined by the homozygous genotypes
of the parents. The heterozygous ordered genotype of the
father for marker 1 is assigned in the first iteration since it has
the highest qmap. Symmetry has been removed (see the
appendix) by fixing the paternal segregation indicator of
the daughter at the middle marker such that the father
transmits his paternal allele. As a result, the father is most
likely to transmit his paternal allele to the daughter at the first
marker as well. Since the daughter must have received the ‘‘B’’
allele from the father at this marker, this implies a probability
of 1.0� recomb. frac.¼ 0.95 for the ordered genotype ‘‘BA’’ of
the father at the first marker. Ordered genotype ‘‘AB’’ implies a
recombination event and therefore has probability 0.05. In the

Marker Father Mother Daughter Son

1 BA BB BB BB
2 AA BB AB AB
3 AB BA AB AA
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second iteration the marginal distributions are reestimated
conditioned on the marker data and the ordered genotypes
assigned in the first iteration. The ordered genotype of the
father for marker 3 now has the highest probability, qmap¼ 0.9,
and is assigned: the MAP configuration is fG3;p

fa ; G3;m
fa gmap ¼

fG3;p
fa ¼ A; G

3;p
fa ¼ Bg. In the third iteration the ordered

genotype of the daughter for marker 3 is assigned and finally
in the fourth iteration the ordered genotype of the mother for
marker 3 is assigned.

The inferred haplotype configuration is identical to the
true haplotype configuration and is an exact maximum-likeli-
hood solution. In this example, the absolute error of the CVM
approximation of the conditional marginal probabilities of the
ordered genotypes is in the order of 10�4. Note that the true
ordering of the genotypes was not available to the algorithm.

Data sets: We evaluated CVMHAPLO on two pedigrees that
were taken from experimental linkage studies. Pedigree I is an
extended pedigree and concerns an affected/not-affected
disease with a complex mode of inheritance. It consists of 53
individuals, of which 13 have been genotyped with an
Affymetrix (Santa Clara, CA) 10K SNP array. The pedigree is
shown in Figure 2. Pedigree II is a complex pedigree of 368
individuals, of which 262 were genotyped for eight SNP
markers spanning �0.08 cM. It is taken from a QTL fine-
mapping study in a chicken population. The pedigree is shown
in simplified form in Figure 3. Pedigree IIsub contains a subset
of the individuals in pedigree II and is shown in Figure 4. Exact
computations are feasible in this pedigree. In all analyses the

Haldane mapping function was used. Details of the data sets
analyzed are given in Table 2. We used the computer program
MEGA2 (Mukhopadhyay et al. 2005) to create input files for
SIMWALK2.

CVMHAPLO: One hundred outer-loop iterations and 2
inner-loop iterations of the double-loop algorithm were used
for the first iteration of the haplotype inference algorithm; in
the subsequent iterations 10 outer-loop and 2 inner-loop
iterations were used (see the appendix for details). For all
simulations we used p ¼ 0.5%.

Implementation: The implementation of CVMHAPLO was
done in C11 and compiled with gcc version 4.1.1.

Hardware: All simulations were performed on a cluster of
five machines with two dual-core 2.4-GHz AMD64 processors
each and 4 GB of physical memory available per processor,
running the Linux operating system.

RESULTS

Accuracy of the marginal distributions of ordered
genotypes: In this section we assess the accuracy of the
CVM approximation of the marginal distributions of the
ordered genotypes as computed with CVMHAPLO
for problems for which exact likelihood computations
are feasible. We compared the CVM approximation of
the marginal distributions Q ðGl ;p

i ; Gl ;m
i jMÞ with the

TABLE 1

Illustration of CVMHAPLO

Iteration Marker Father Mother Daughter Son

1 1 (0.00, 0.05, 0.95, 0.00)
/ BA

(0.00, 0.00, 0.00, 1.00)
/ BB

(0.00, 0.00, 0.00, 1.00)
/ BB

(0.00, 0.00, 0.00, 1.00)
/ BB

2 (1.00, 0.00, 0.00, 0.00)
/ AA

(0.00, 0.00, 0.00, 1.00)
/ BB

(0.00, 1.00, 0.00, 0.00)
/ AB

(0.00, 1.00, 0.00, 0.00)
/ AB

3 (0.00, 0.86, 0.14, 0.00)
/ —

(0.00, 0.20, 0.80, 0.00)
/ —

(0.00, 0.83, 0.17, 0.00)
/ —

(1.00, 0.00, 0.00, 0.00)
/ AA

2 1 (0.00, 0.00, 1.00, 0.00)
/ BA

(0.00, 0.00, 0.00, 1.00)
/ BB

(0.00, 0.00, 0.00, 1.00)
/ BB

(0.00, 0.00, 0.00, 1.00)
/ BB

2 (1.00, 0.00, 0.00, 0.00)
/ AA

(0.00, 0.00, 0.00, 1.00)
/ BB

(0.00, 1.00, 0.00, 0.00)
/ AB

(0.00, 1.00, 0.00, 0.00)
/ AB

3 (0.00, 0.90, 0.10, 0.00)
/ AB

(0.00, 0.18, 0.82, 0.00)
/ —

(0.00, 0.86, 0.14, 0.00)
/ —

(1.00, 0.00, 0.00, 0.00)
/ AA

3 1 (0.00, 0.00, 1.00, 0.00)
/ BA

(0.00, 0.00, 0.00, 1.00)
/ BB

(0.00, 0.00, 0.00, 1.00)
/ BB

(0.00, 0.00, 0.00, 1.00)
/ BB

2 (1.00, 0.00, 0.00, 0.00)
/ AA

(0.00, 0.00, 0.00, 1.00)
/ BB

(0.00, 1.00, 0.00, 0.00)
/ AB

(0.00, 1.00, 0.00, 0.00)
/ AB

3 (0.00, 1.00, 0.00, 0.00)
/ AB

(0.00, 0.10, 0.90, 0.00)
/ —

(0.00, 0.95, 0.05, 0.00)
/ AB

(1.00, 0.00, 0.00, 0.00)
/ AA

4 1 (0.00, 0.00, 1.00, 0.00)
/ BA

(0.00, 0.00, 0.00, 1.00)
/ BB

(0.00, 0.00, 0.00, 1.00)
/ BB

(0.00, 0.00, 0.00, 1.00)
/ BB

2 (1.00, 0.00, 0.00, 0.00)
/ AA

(0.00, 0.00, 0.00, 1.00)
/ BB

(0.00, 1.00, 0.00, 0.00)
/ AB

(0.00, 1.00, 0.00, 0.00)
/ AB

3 (0.00, 1.00, 0.00, 0.00)
/ AB

(0.00, 0.05, 0.95, 0.00)
/ BA

(0.00, 1.00, 0.00, 0.00)
/ AB

(1.00, 0.00, 0.00, 0.00)
/ AA

For each individual, marker, and iteration of CVMHAPLO the CVM approximation of the marginal distribution of ordered
genotype Q(G

l ;p
i , Gl ;m

i j M, Gassigned) is shown in parentheses, where the probabilities are ordered as ðQ ðAAÞ; Q ðABÞ;
Q ðBAÞ; Q ðBBÞÞ. The values assigned to the ordered genotypes are shown next to the marginal probabilities. Assignments of
ordered genotypes with qmap [ max Q(G

l ;p
i , Gl ;m

i j M, Gassigned) , 1 are underlined. Ordered genotypes that were not assigned
are represented by ‘‘—.’’ The reconstructed ordered genotypes are identical to the true ordered genotypes.
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exact marginal distributions PðGl ;p
i ; Gl ;m

i jMÞ, using the
absolute difference as error measure. Unfortunately
there are no linkage programs that provide exact mar-
ginal distributions; therefore we implemented the junc-
tion tree algorithm ( Jensen 1996; Jensen and Kong

1999) to calculate these.
Forty replicates of five markers were simulated for

pedigree I (configuration A in Table 2). The marker
distances were, respectively, 0.52, 0.32, 0.24, and 0.17
cM. Figure 5 shows a scatter plot of the exact marginal
probabilities vs. the approximate CVM marginal prob-
abilities. The mean error was 0.0044 6 0.012. Eight of
the CVM estimates had an error .0.25; Figure 5 shows
that these correspond to exact marginal probabilities
that were close to 0.5. The error of the CVM estimates
was generally smaller for exact marginal probabilities
close to 1 and 0. This is relevant because the ordered
genotypes that correspond to these extreme marginal
probabilities are the ordered genotypes with the least

uncertainty that will be assigned by CVMHAPLO in
every iteration, while the ordered genotypes with the
most uncertainty will not be assigned.

We also determined the accuracy of the approxima-
tion in the same pedigree and configuration with real
marker data. The mean error was 0.0036 6 0.0073, with
a maximum error of 0.059. We conclude that the CVM
estimates of the marginal probabilities of the ordered
genotypes are accurate for the purpose of haplotyping.

Accuracy of the inferred haplotypes: In this section
we evaluate the accuracy of the reconstructed haplo-
types in simulated data sets where the true inheritance
was known. We define accuracy as the percentage of
assigned ordered genotypes equal to the true simulated
ordered genotype.

Comparison with exact maximum-likelihood meth-
ods: We assessed the performance of CVMHAPLO in
two pedigrees for which exact calculation of the maxi-
mum-likelihood haplotype configuration was feasible.

Figure 2.—Pedigree I. Individuals that are
shaded have genotype information.

Figure 3.—Pedigree II. Schematic representation. Diamonds represent groups of 5–15 individuals. Shaded nodes represent
groups with genotyped individuals.
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We analyzed pedigree I with five markers using our own
implementation of the junction tree algorithm and
pedigree IIsub with eight markers using SUPERLINK
(configurations B and G in Table 2). Replicates were
simulated with 30, 40, . . . , 90% of the individuals geno-
typed for all markers. The genotyped individuals were
chosen at random. For each percentage of genotyped
individuals 40 replicates were simulated, resulting in a
total number of 280 replicates per pedigree.

Columns two and three in Table 3 show that the
accuracies of, respectively, the exact maximum-likeli-
hood haplotype configuration and the haplotype con-
figuration obtained with CVMHAPLO were similar for
all percentages of genotyped individuals, for both
pedigrees. The fourth and fifth columns show the log-
likelihoods log P(Gassigned, vassigned, M) of the corre-
sponding haplotype configurations. For both pedigrees
the log-likelihoods of CVMHAPLO were very close to
the exact maximum log-likelihoods when the percent-
age of genotyped individuals was high and slightly lower
when the percentage of genotyped individuals was low.
Although in theory higher likelihoods should result in
higher accuracies, we find that the differences in the
likelihoods did not significantly affect the accuracy.

We also performed a partial haplotype reconstruction
where we used the confidence measure (1) as a stopping

criterion. The sixth column in Table 3 shows the
accuracy of the haplotype configuration obtained from
iteration n of CVMHAPLO where the confidence in
the assignment was 99%. Indeed, independently of the
percentage of genotyped individuals the accuracy of this
partial haplotype configuration was �99%. The last col-
umn shows that the percentage of assigned ordered
genotypes in the partial haplotype configuration de-
creased when fewer individuals had genotype informa-
tion. In pedigree I the percentage of assigned ordered
genotypes was lower than the percentage of genotyped
individuals, while it was higher in pedigree IIsub, indi-
cating a nontrivial dependence of the accuracy on the
structure of the pedigree and distribution of the geno-
typed individuals over the pedigree. These results show
that (1) provides a useful stopping criterion to obtain
partial assignments of high accuracy.

To assess the performance of CVMHAPLO in the real
data sets of pedigrees I and IIsub, we performed the
simulations of Table 3, however, simulating genotype
data for the same individuals as in the real data set
(configurations A and H in Table 2) rather than for
individuals selected at random. For pedigree I we found
that the log-likelihoods of CVMHAPLO were on average
2.03% lower than the exact maximum log-likelihood,
but that the accuracy was higher (75.95 and 73.02%,
respectively). For pedigree IIsub we found that the log-
likelihoods of CVMHAPLO were on average 2.02% lower
than the exact maximum log-likelihood, but that the
accuracies were comparable (91.56 and 92.05%, respec-
tively). These results are compatible with the results of
Table 3: when the pedigree contains untyped individu-
als the accuracy of CVMHAPLO is comparable to the
accuracy of the exact maximum-likelihood approach,
while the log-likelihoods are slightly lower.

Figure 4.—Pedigree IIsub, a subpedigree of pedigree II.

TABLE 2

Overview of data sets analyzed

Pedigree Markers Individuals Genotyped Dist.a MMAFb

Average spacing
(cM)

A I 5 53 13 Real 0.31 0.312c

B I 5 53 30–90% Random 0.31 0.312c

C I 20 53 13 Real 0.24 0.601d

D I 200 53 13 Real 0.24 0.601e

E I 20 53 13 Real 0.34 0.601d

F II 8 368 262 Real 0.28 0.012f

G IIsub 8 22 30–90% Random 0.28 0.012f

H IIsub 8 22 16 Real 0.28 0.012f

a Distribution of genotyped individuals: ‘‘real’’ indicates as in a real data set, and ‘‘random’’ indicates ran-
domly assigned individuals.

b Mean minor allele frequency.
c Marker distances: 0.52, 0.32, 0.24, 0.17 cM.
d Marker distances: 0.01, 1.13, 0.75, 0.04, 1.00, 0.61, 0.69, 1.42, 1.34, 0.52, 0.32, 0.24, 0.17, 0.29, 0.06, 0.41, 0.84,

1.48, 0.17 cM.
e Marker distances were equal to 10 blocks of 20 markers of configuration C.
f Marker distances: 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.03 cM.
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When applied to the real data sets of pedigree I and
pedigree IIsub (configurations A and H), CVMHAPLO
yielded a haplotype configuration with a log-likelihood
that was 2.3% lower than the exact maximum log-
likelihood for pedigree I and a log-likelihood that was
equal to the exact maximum log-likelihood for pedigree
IIsub. These results suggest that CVMHAPLO will also
accurately infer haplotypes in the real data sets.

We conclude that the accuracy of the haplotype
configurations inferred with CVMHAPLO was high and
similar to the accuracy of exact maximum-likelihood
haplotype configurations.

Comparison with SIMWALK2: For pedigree I 40
replicate data sets with 20 markers were simulated and
for pedigree II 8 replicate data sets with 8 markers were
simulated (respectively configurations C and F in Table
2). The number of replicates for pedigree II was relatively
small due to the long computation times of SIMWALK2.
Exact computation of the maximum-likelihood haplo-
type configuration was not feasible in these data sets. Fig-
ure 6 shows the accuracy as a function of the percentage
of assigned ordered genotypes of CVMHAPLO and
SIMWALK2 for both pedigrees.

By default, SIMWALK2 assigns only a subset of the
alleles from the unordered marker data, the size of
which depends on the informativeness of the marker
data ½the two leftmost data points ‘‘SIMWALK2 (all)’’
and ‘‘SIMWALK2 (genotyped)’’ in Figure 6�. The subset
consists of those alleles that are transmitted to an ob-
served genotype given the inheritance vector of the
(approximate) maximum-likelihood configuration. SIM-
WALK2 can also be forced to assign all alleles in the
haplotypes ½the two rightmost data points SIMWALK2
(all) and SIMWALK2 (genotyped) in Figure 6�. Depend-
ing on the number of iterations, CVMHAPLO infers
anywhere between zero and all of the ordered genotypes.

Figure 5.—Scatter plot of exact marginal probabilities of
the ordered genotypes vs. the CVM approximation of the mar-
ginal probabilities, computed for pedigree I and five markers
(configuration A in Table 2).

TABLE 3

Comparison of CVMHAPLO with exact maximum-likelihood methods

Full haplotype reconstruction Partial reconstructiona

% genotyped
Accuracyb Log-likelihood

Accuracy:
CVMHAPLO

% assigned:
CVMHAPLOindividuals Exact ML CVMHAPLO Exact ML CVMHAPLO

Pedigree I
90 97.20 97.53 �79.01 �79.06 99.47 92.25
80 95.69 95.92 �77.51 �77.69 99.51 85.98
70 92.46 92.97 �76.34 �76.45 99.38 74.76
60 89.26 89.95 �74.80 �75.23 99.48 60.72
50 83.99 84.46 �72.18 �73.35 99.16 38.62
40 79.93 81.33 �70.19 �71.64 99.59 31.49
30 77.57 77.80 �66.00 �67.14 99.43 20.31

Pedigree IIsub
90 98.16 98.44 �33.51 �33.51 99.01 98.05
80 96.25 96.13 �33.50 �33.53 99.35 89.90
70 94.87 94.63 �33.51 �33.51 99.31 84.94
60 93.67 94.00 �32.60 �32.67 99.71 79.55
50 91.06 91.93 �31.97 �32.09 99.60 70.72
40 87.17 87.54 �32.07 �32.13 99.41 55.07
30 83.91 83.35 �31.14 �32.79 99.53 37.61

All values are reported as means over 40 replicates.
a The partial haplotype configuration GðnÞassigned obtained from the iteration n where the confidence from

Equation 1 was 99%.
b Accuracy is defined as the percentage of assigned ordered genotypes equal to the true simulated ordered

genotype.
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When all alleles in the haplotypes are assigned (100%
on the horizontal axis), the accuracy of CVMHAPLO
was not signficantly different from the accuracy of
SIMWALK2, both in the subset of genotyped individuals
and in the full pedigree. As expected, the accuracy of
SIMWALK2 and CVMHAPLO was higher in the subset
of genotyped individuals. The likelihoods of the haplo-
type configurations inferred with CVMHAPLO were
slightly lower than the likelihoods of the haplotype
configurations inferred with SIMWALK2: in pedigree I
the mean difference in the log-likelihood was �1.6 6

1.2%; in pedigree II the mean difference was �3.3 6

2.3%. Apparently the lower likelihoods did not signifi-
cantly affect the overall accuracy, in agreement with our
previous results.

In the case of partial assignments, we infer from
Figure 6 that the accuracies of SIMWALK2 and CVMHA-
PLO are similar for the genotyped individuals and that
the accuracy of CVMHAPLO is significantly higher for
the individuals without genotype information. The
accuracy of CVMHAPLO was very high when only the
ordered genotypes with high confidence (Equation 1)
were assigned and decreased as more ordered geno-
types were assigned. In contrast, the criterion used by
SIMWALK2 to flag the alleles that could be assigned
with certainty was more coarse. This difference was
more pronounced in pedigree I than in pedigree II. We
attribute this difference to a large extent to the larger
percentage of missing data in pedigree I. We conclude
that CVMHAPLO gives more accurate partial assign-
ments than SIMWALK2 when the percentage of missing
values is high.

Scaling with the number of markers: To assess the
scaling of the accuracy of CVMHAPLO with the number
of markers, we analyzed 10 replicates with 20 markers
and 10 replicates with 200 markers for pedigree I
(configurations C and D in Table 2, respectively). To
obtain replicates with comparable marker informative-
ness, the replicates with 200 markers consisted of 10

adjacent blocks of the markers in the replicates with 20
markers. Analysis of the replicates with 200 markers with
CVMHAPLO was feasible, whereas SIMWALK2 did not
converge in reasonable time (1 week for a single
replicate).

Figure 7 shows that the average accuracy for the
replicates with 20 markers and 200 markers was similar.
We conclude that the accuracy of CVMHAPLO does not
degrade with the number of markers.

The effect of marker–marker linkage disequilib-
rium: We investigated the effect of marker–marker
linkage disequilibrium (LD) on the accuracy of the
haplotype reconstruction of CVMHAPLO and SIM-
WALK2. For pedigree I, LD was generated as follows.
Five haplotype blocks each containing four markers
were defined. Next, for each block a pool of 4 haplotypes

Figure 6.—Comparison
of the haplotype reconstruc-
tion accuracy of CVMHA-
PLO and SIMWALK2 for
pedigree I (A, 20 markers,
configuration C in Table 2)
and pedigree II (B, 8
markers, configuration F in
Table 2). Accuracy is de-
finedas thepercentageofas-
signed ordered genotypes
identical to the true simu-
lated ordered genotype. Ac-
curacy is shown for all
individuals (‘‘all’’) and for
genotyped individuals only
(‘‘genotyped’’). Standard

deviations are over 40 replicates for pedigree I and 8 replicates for pedigree II. For clarity, standard deviations are shown only on
one side of the curve. Note the different scales on the horizontal and vertical axes.

Figure 7.—Comparison of the haplotype reconstruction
accuracy of CVMHAPLO in pedigree I with 10 replicates of
20 markers (shaded symbols, configuration C in Table 2)
and 10 replicates of 200 markers (solid symbols, configuration
D in Table 2). Accuracy is shown for all individuals (‘‘all’’) and
for genotyped individuals only (‘‘genotyped’’).
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with randomly chosen frequencies was created; the
resulting mean pairwise LD coefficient jD9j was 0.85 6

0.28 for markers within a haplotype block. For pedigree
II LD was generated by assuming a single haplotype
block with a pool of 25 haplotypes with randomly chosen
frequencies. This resulted in a mean pairwise LD co-
efficient jD9j of 0.59 6 0.36. For each block the
haplotypes of the founders were assigned by sampling
a haplotype from the corresponding pool, and the
haplotypes for the nonfounders were obtained by gene
dropping, whereby recombination between markers
within a block was allowed. Thus, the alleles of markers
in different blocks were assumed to be in equilibrium.
For pedigrees I and II, respectively, 40 and 8 replicates
were simulated. These were analyzed using the correct
marginal allele frequencies (obtained by marginalizing
the true haplotype frequencies), however, under the
assumption of linkage equilibrium between the markers.
Thus, the replicates were analyzed using an incorrect
model. The results were compared to results obtained
with an equal number of replicates simulated under the
assumption of linkage equilibrium and the same mar-
ginal allele frequencies. Both LD and non-LD replicates
are shown as configurations E and F in Table 2.

We did not find a significant effect of LD on the
accuracy of the inferred haplotypes for pedigrees I and
II, either for the genotyped individuals or for the
individuals without genotype information (results not
shown). We found this to be the case for both CVMHA-
PLO and SIMWALK2. In the presence of LD we also
observed that the log-likelihoods of the fully recon-
structed CVMHAPLO haplotype configurations were

slightly lower than the log-likelihoods of the haplotype
configurations of SIMWALK2, similar to what we found
in data sets simulated without LD.

Evaluation of the confidence measure: Figure 6
demonstrates that it would be useful to have an in-
dication of the reliability of the (partial) haplotype
configuration, as the accuracy decreased significantly
when a larger subset of ordered genotypes was assigned.
For these replicates we therefore compared the confi-
dence level from Equation 1 to the accuracy of the
(partial) haplotype configuration inferred in iteration n
of CVMHAPLO, for all n. Figure 8 shows for a given
confidence level the mean accuracy of the correspond-
ing haplotype configurations, where the leftmost circle
and square data point correspond to the haplotype
configurations where all the ordered genotypes were
assigned (the haplotypes obtained in the final iteration).
We see that for pedigree I the confidence was lower than
the accuracy, but still highly correlated with it. For
pedigree II the confidence of the haplotype configu-
rations gave a very good indication of the accuracy. The
difference is most likely due to the fact that the marker
data in pedigree II were more informative than those in
pedigree I. We conclude that the confidence measure
(1) gives a useful indication of the accuracy (assuming
absence of genotype errors) and may be used to control
the accuracy of the inferred haplotypes.

Comparison of computation time and memory
usage: Finally we report the computation time and
memory usage for all the experiments that were per-
formed. For CVMHAPLO we report the computation
time of the marginal posterior distributions (computed
in the first iteration) and the computation time of the
full reconstruction (computation time of all subsequent
iterations) separately. When applicable we report the
values for SIMWALK2 and for the exact computation
with the junction tree algorithm.

For all analyses performed with CVMHAPLO we used
a fixed value of p ¼ 0.5% for the percentage of ordered
genotypes assigned in every iteration, independent of
the number of markers and individuals. Theoretically,
for a fixed percentage p computation time of CVMHA-
PLO is expected to scale linearly with the number of
markers and approximately linearly with the number of
individuals depending on the pedigree structure, which
is confirmed by the results shown in Table 4. Although
CVMHAPLO required more memory, it was significantly
more efficient than SIMWALK2 for the complex pedi-
gree II and scaled more favorably with the number of
markers.

DISCUSSION

To obtain useful results with maximum-likelihood
methods, it must be assumed that the distribution of the
parameters that are being estimated (for the purpose of
haplotype inference these are the ordered genotypes) is

Figure 8.—Accuracy vs. confidence of the haplotype con-
figurations inferred with CVMHAPLO. For every iteration
of CVMHAPLO the accuracy and the confidence level from
(1) of the (partial) haplotype configuration was computed
for the replicates analyzed in Figure 6. For a given confidence
level the mean accuracy of the corresponding haplotype con-
figurations is shown. The leftmost circle and square corre-
spond to the haplotype configurations where all ordered
genotypes were assigned.
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peaked around the maximum-likelihood solution. If
genotype information is available for all individuals and
markers, this assumption is generally valid; however, if
there are many missing genotypes this assumption may
not be valid. Although a maximum-likelihood estimate
will yield the most likely value of the parameters given
the observations, it is not guaranteed that all parameters
can be inferred with certainty. Indeed, as we have shown
in our experiments, a full haplotype reconstruction
from limited data can be very inaccurate. Therefore, in
the case of missing data it is essential to estimate the
probability of the haplotype configurations to reliably
assign haplotypes. Both MCMC methods and the CVM
provide approximate posterior probability estimates for
Bayesian analysis of the data, each using a different
approach. For our method we suggest to use Equation 1
to monitor the quality of the haplotype inference using
posterior probabilities.

It is interesting to note that although our approach
does not explicitly maximize the likelihood, it inferred
haplotype configurations with nearly optimal likelihood
when full genotype information was available. In the
case of missing genotypes, the log-likelihood of the
inferred haplotype configurations was �2% lower than
the exact maximum log-likelihood; however, the accu-
racy was not significantly different. Our results suggest
that the assignments that are suboptimal in the sense of
the likelihood are limited to the ordered genotypes that
cannot be inferred with high certainty from the marker
data.

An important parameter of CVMHAPLO is p, the
percentage of ordered genotypes assigned in every
iteration. In general, for smaller values of p the accuracy
will be higher and the computation times longer. In our
experience values of p , 0.5% did not yield significantly
higher accuracies. With p¼ 0.5%, for only 4 replicates of
the �700 replicates analyzed the algorithm required a
restart with p ¼ 0.25% to produce a consistent config-

uration; in all of the other replicates a consistent
configuration was found with the initial value of p ¼
0.5%. For higher values of p the number of replicates
where CVMHAPLO had to be restarted increased
somewhat. Therefore we recommend to use the default
value of p ¼ 0.5%, but it can be adjusted by the user. We
plan to investigate whether computationally inexpen-
sive heuristics can be devised to prevent inconsistent
assignments and consequently restarts of the algorithm.

We compared our approach to the approximate
maximum-likelihood haplotyping algorithm of SIM-
WALK2, since like our approach, SIMWALK2 is a
statistical approach that does not require absence of
recombinations or tightly linked markers and does not
assume the number of recombinations to be minimal.
Furthermore, SIMWALK2 is commonly used by practi-
tioners. In previous work on the estimation of para-
metric LOD scores in pedigrees without inbreeding
(Albers et al. 2006), we showed that our approach based
on the CVM was more efficient than the MCMC sampler
implemented in the computer program MORGAN
(Thompson 1994; Thompson and Heath 1999;
George and Thompson 2003). Since MORGAN has
no option for haplotyping and cannot be applied to
general pedigrees, we believe a comparison here would
not be of added value. We also considered the integer
linear programming algorithm implemented in PED-
PHASE (Li and Jiang 2004), since this algorithm does
not require absence of recombinations. On the simu-
lated data sets for pedigree I (configuration C in Table
2), the accuracy was on average 10% lower than that of
CVMHAPLO, and the log-likelihoods were on average
50% lower than those of SIMWALK2. It could not
analyze the real and simulated data sets (configuration
F) for pedigree II within 1 week. The block-extension
algorithm in PEDPHASE produced inconsistent output
for the data sets simulated for pedigree I and terminated
with error status for the data sets simulated for pedigree

TABLE 4

Comparison of computation time and memory usage

Computation time Memory usage (MB)

Pedigree Markers CVM CVMHAPLO SIMWALK2 Exact CVMHAPLO SIMWALK2 Exact

Ia,b 5 26 sec 542 sec NAd 329 sec 18 NA 1230
Ib 5 26 6 1 sec 530 6 21 sec NA 307 6 29 sec 18 6 0.3 NA 750 6 233
IIsubc 8 6 6 1 sec 185 6 27 sec NA ,1 sec 6 6 0.5 NA ,1
IIsuba,c 8 9 sec 165 sec NA ,1 sec 6 NA ,1
I 20 187 6 6 sec 2977 6 887 sec �2400 sec NFe 85 6 1 10 NF
I 200 2520 6 43 sec 16.2 6 9.6 hr .280 hr NF 944 6 2 23 NF
II 8 568 6 32 sec 2.2 6 0.12 hr 4.5 6 1.7 days NF 150 6 3 15 NF
IIa 8 572 sec 2.9 hr 5 days NF 151 15 NF

a Real data set.
b Exact results computed with junction tree algorithm.
c Exact results computed with SUPERLINK.
d Simulations not performed as exact computation was feasible.
e Exact computation not feasible.
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II. Finally, on simulated data (400 SNPs covering 100
cM) in a pedigree of 400 outbred mice, where a small
number of parents had many offspring, we found that
our approach was more accurate than the approach
described by Windig and Meuwissen (2004), although
it was less efficient (results not shown). This approach
requires that sufficient genotyped offspring are avail-
able for each parent and therefore we expect that it will
be less accurate than SIMWALK2 and CVMHAPLO on
the data sets considered in this article, especially for
pedigree I. For these reasons we have not included this
approach in our comparison.

Like SIMWALK2, our haplotype inference algorithm
currently does not explicitly account for linkage dis-
equilibrium between the markers. In dense SNP panels,
such as the Affymetrix 10K and Illumina 6K panels,
significant marker–marker LD has been shown to be
present (Peralta et al. 2005). LD can lead to a bias in
LOD scores when the marker alleles are assumed to be
in equilibrium, especially when parental genotypes are
missing (Huang et al. 2004; Abecasis and Wigginton

2005), demonstrating that missing data may strongly
affect identity-by-descent probabilities. Schaid et al.
(2002) showed in a real data set that haplotype
frequencies estimated in unrelated individuals with an
expectation-maximization algorithm differed signifi-
cantly from haplotype frequencies estimated in pedi-
grees with GENEHUNTER under the assumption of
linkage equilibrium. They suspected that strong LD was
responsible for this discrepancy. Our finding that there
was no significant effect of LD on the accuracy appears
to be in contradiction with these findings, but we believe
the difference can be explained by the fact that we
evaluated the accuracy of a single haplotype configura-
tion, while the LOD scores investigated by Huang et al.
and the haplotype frequencies estimated by Schaid et al.
may be more sensitive to violations of the assumption of
linkage equilibrium.

To determine the effect of LD we introduced haplo-
type frequencies, but allowed for recombination be-
tween markers in the same haplotype block. As pedigree
I was taken from a linkage study in a human population,
it is more realistic to have (virtually) no recombination
between markers in the same block. We found that also in
this case the haplotyping accuracy was not affected by LD.

The issue of LD is a modeling issue and therefore in
principle unrelated to the issue of the quality of the
CVM approximation, although, of course, the quality of
the CVM approximation may depend on the model.
The CVM approximation can be applied to any proba-
bilistic model and in particular to a pedigree-likelihood
model that includes LD. Pairwise modeling of LD
between markers would not require a different choice
of the clusters in the CVM approximation. This is a
direction for further research.

We have shown results for the CVM cluster choice
shown in Figure 1. This cluster choice provides a good

trade-off between accuracy and efficiency for a wide
range of pedigrees. We found that larger clusters con-
sisting of the variables of three markers for an individual
and its parents (instead of two as in Figure 1) may fur-
ther increase accuracy. If many individuals are geno-
typed the increase in computation time is often still
acceptable as the number of compatible configurations is
limited by the observations. One may also choose smaller
clusters; however, if many individuals are genotyped the
gain in efficiency may be limited. Our current imple-
mentation of the algorithm offers several cluster choices.

We applied our algorithm to data sets consisting of
SNP markers only. Currently our software does accept
multiallelic markers. Due to the increased state space in
the case of multiallelic markers, the efficiency of our
implementation is not as high as in the case of SNPs.
Work is in progress to improve the efficiency for multi-
allelic markers by applying additional preprocessing
techniques and using clusters with fewer variables in the
CVM approximation.

In this article we assumed absence of genotyping
errors. In practice this will rarely be the case. A simple
heuristic for error detection is to locate unlikely double
recombinants. These can be inferred from the marginal
distributions over segregation indicators of adjacent
loci, which can be trivially obtained from the cluster
marginal distributions. However, it is preferable to use
an error model as proposed by Sobel et al. (2002). Such
an error model can be relatively easily incorporated into
our approach, at the expense of a larger state space.
Although the efficiency of CVMHAPLO will be reduced,
we believe that the additional computational expense
may be well justified. In a preliminary analysis of a real
data set of 1600 animals genotyped for 14 closely linked
markers, we found that inclusion of an error model
significantly reduced the number of unlikely recombi-
nant haplotypes, which suggests that haplotype effects
can be estimated with better power. These results will be
presented in a separate publication. We plan to in-
corporate the modeling of genotyping errors in future
versions of CVMHAPLO.

The program CVMHAPLO is freely available for
noncommercial use and can be downloaded from our
website at http://www.mbfys.ru.nl/�keesa/cvmhaplo/.
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APPENDIX

We use the formalism of Bayesian networks (Pearl 1988; Lauritzen 1996) to represent the probability distribution
that describes the problem of linkage analysis (Jensen and Kong 1999; Thomas et al. 2000; Fishelson and Geiger

2002; Lauritzen and Sheehan 2003). The probability distribution is given by the product of conditional probability
tables defined on subsets of a low, tractable number of variables. This facilitates the application of the cluster variation
method, which requires a set of tractable potential functions as input for the approximation.
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A Bayesian network representation: The full probability distribution is given by

PðM; v; G jm; uÞ
¼
Y

i2F ;NF

Y
l
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: ðA1Þ

Here fa(i) and mo(i) represent the father and the mother of individual i, respectively. The second line in this equation
represents the observation model, i.e., the probability of the observed genotype conditional on the true ordered
genotype, and incorporates the unknown phase of the observed genotype. The third line represents the recom-
bination model parameterized by the recombination frequencies between the adjacent markers l� 1 and l, for l . 1.
The fourth line represents the paternal and maternal allele transmission from parents to children. The last line
represents the prior allele distributions. Here, Hardy–Weinberg equilibrium of the alleles within a marker and linkage
equilibrium between alleles of different markers are assumed. We assume that m, u are given as well as the M l

i of the
person markers with genotype information.

The cluster variation method: Here we describe the CVM for the case that no ordered genotypes have been assigned
and only unordered genotype observations are available. The case in which ordered genotype assignments are
available does not require a different treatment, as assignments of ordered genotypes can be modeled as observed
genotypes for which both the value of the two alleles and the ordering of the alleles are known.

The idea of the cluster variation method (Kikuchi 1951; Morita 1990; Yedidia et al. 2005) is to approximate the
intractable probability distribution

Pðv; G jM; m; uÞ ¼ PðM; v; G jm; uÞ
PðM jm; uÞ

in terms of marginal distributions on overlapping subsets of variables, i.e., the clusters. It requires specification of the
set of clusters B ¼ {a1, a2, . . .}: a collection of overlapping subsets of variables, chosen such that the corresponding
approximate marginal distributions Qa(xa) are feasible for exact probability calculus. For ease of notation we do not
explicitly state that Qa(xa) is conditioned on the marker data M and assigned ordered genotypes Gassigned and that x¼
(v, G). We define I as the set of clusters that consists of all clusters that can be formed by the intersection of clusters in B
and in I. Thus any intersection of clusters is contained in I. The choice of B determines the approximation and fully
determines I. The following restrictions on the choice of the set of clusters B hold:

1. For every conditional probability table in the definition of Equation 3, there must exist at least one cluster a 2 B
that contains all variables of the conditional probability table.

2. No cluster a1 2 B is a subset of another cluster a2 2 B.

To motivate the formalism of the CVM, we first observe that the exact posterior distribution Pðv; G jM; m; uÞ can be
obtained by minimizing the exact free energy defined as

FexactðQ Þ[
X

x

Q ðxÞ log
Q ðxÞ
CðxÞ; subj: to

X
x

Q ðxÞ ¼ 1;

with respect to Q(x), where C(x) is the right-hand side of Equation A1. This can be verified by simple differentiation
with respect to Q. Since the functional Fexact(Q) itself is generally intractable to evaluate, the cluster variation method
proposes to minimize the approximate free energy

FCVMðQÞ ¼
X

g2B[I

ag

X
xg

QgðxgÞ log
QgðxgÞ
CgðxgÞ

subj: to consistency constraints ðA2Þ

with respect to the approximate marginal distributions Qg(xg). Here Q defines the collection of all approximate
cluster marginals {Qg(xg): g 2 B [ I}.

The cluster potential functions Cg are defined by the conditional probability tables of the Bayesian network in
Equation A1:
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CgðxgÞ ¼
Y

n:xfn;pðnÞg4xg

Pðxn j xpðnÞÞ: ðA3Þ

In this equation xn refers to a variable in the Bayesian network and xp(n) denotes the set of variables on which variable
xn is conditioned. Thus, the product of conditional probability tables that defines a potential function Cg may contain
the tables associated with the allele transmissions, PðGl ;m

i j vl ;m
i ; G

l ;p
moðiÞ; Gl ;m

moðiÞÞ as well as unordered genotype
observations PðM l

i jG
l ;p
i ; Gl ;m

i Þ. Note again that the variables M l
i are not explicitly included in the clusters since they

are observed.
The Moebius coefficients ag satisfy

X
d2B[I�g

ad ¼ 1; " g 2 B [ I

and have the effect that, for instance, the evidence in the form of observed genotypes is not overcounted. For details we
refer to Heskes et al. (2003).

The constraints in Equation A2 are consistency and normalization constraints. The consistency constraints are
X

xan xb

QaðxaÞ ¼ QbðxbÞ; " a 2 B; b 2 I � a;

which require any pair of clusters to have identical marginal distributions over the subset of variables contained in
both clusters. The normalization constraints are

X
xg

QgðxgÞ ¼ 1; " g 2 B [ I ;

which require the cluster marginal distributions to sum to one.
Thus, the approximate free energy FCVMðQÞ is a sum of the free energies associated with each cluster g 2 B [ I

multiplied by the Moebius coefficient ag. The generalized belief propagation (GBP) algorithm (Pearl 1988; Murphy

et al. 1999; Yedidia et al. 2005) is a fixed-point iteration scheme that finds extrema of FCVMðQÞ. However, GBP does not
always converge. Therefore we use the convergent double-loop algorithm described by Heskes et al. (2003) to
minimize FCVMðQÞ. The idea of the double-loop algorithm is to iteratively minimize convex upper bounds on the free
energy. At each iteration of the algorithm a convex upper bound is calculated (the outer loop) that is minimized in the
inner loop. The algorithm always converges to a (local) minimum of FCVMðQÞ, provided the inner loop has converged.

For clarity we note that the free energy is not explicitly used in the iterative assignment procedure for the
reconstruction of the haplotypes. It is merely used as a suitable optimization criterion for inferring approximate
marginal distributions. In special cases of tree-like probabilistic graphical models minimization of the free energy
yields exact marginal distributions (Pelizzola 2005; Yedidia et al. 2005); then the free energy FCVMðQÞ can be
interpreted as a distance measure between the exact distribution P and the CVM distributionQ (Yedidia et al. 2005).

Consistency of the assignment: When p of the ordered genotypes are assigned simultaneously in one iteration, it is
possible that the resulting GðnÞassigned is inconsistent in the sense that this configuration has zero probability under the
probability model of equation A1. This is not likely to happen if p is chosen sufficiently small. Our implementation of
CVMHAPLO automatically detects inconsistent assignments as follows. When assignments are inconsistent, for one or
more of the CVM cluster marginal distributions as a result Qg(xg)¼ 0, " xg; i.e., all states have zero probability. When
all alleles in the pedigree are assigned and no inconsistency is detected like this, the inferred haplotype configuration
is consistent.

Preprocessing: Given our cluster choice, the CVM is exact for a single marker if the pedigree has no loops
(Pelizzola 2005). As a result, the CVM eliminates all inconsistent genotypes in this case by assigning these
configurations a probability of zero in the cluster marginal distributions. Even if the pedigree contains loops, many
inconsistent genotypes will be eliminated. As a preprocessing step we apply the CVM to each marker independently
and determine which configurations in the cluster marginal distributions are assigned probability zero. These
configurations need not be considered in the subsequent haplotype reconstruction procedure. This preprocessing
step is highly similar to the genotype elimination algorithm proposed by Lange and Goradia (1987) and may yield
significant speedups.

Removal of symmetries: The probabilistic model defined by Equation A1 contains a number of symmetries. The
first symmetry concerns the haplotypes of the founders: since by definition the founders do not have parents that are
included in the pedigree, it is impossible to determine which haplotype is paternal and which is maternal. The second
symmetry occurs when a father and a mother are founders and also do not have genotype information. In this case a
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haplotype that is found in one of the children could be inherited from either parent with equal probability (assuming
no recombination). More symmetries may be present, but in general it is hard to enumerate them all.

We find experimentally that CVMHAPLO yields better results when these symmetries are removed before
application of the CVM. We remove the first symmetry by fixing for one child of every founder the parental source of
the allele inherited from the founder for one marker. The second symmetry is removed by fixing in one grandchild of
every untyped pair of founder parents the parental source of the inherited allele for one marker.

We choose not to fix segregation indicators of more than one marker for each chromosome, as this may lead to
inconsistent configurations. See the discussion of Sillanpää and Arjas (1998) on this topic in the context of MCMC
approximations.

Algorithm 1—CVMHAPLO:

1. Gð0Þassigned*B

2. n * 1
3. Choose p
4. repeat
5. Run the double- loop algorithm to compute the CVM approximate marginal distributions

Q ðGl ;p
i ; Gl ;m

i j M; Gðn�1Þ
assignedÞ for all individuals i and loci l.

6. if Gðn�1Þ
assigned is consistent then

7. For all individuals i and loci l, compute

qi;l
map ¼ max Q G

l ;p
i ; Gl ;m

i jM; G
ðn�1Þ
assigned

� �
; ðA4Þ

G
l ;p
i ; Gl ;m

i

n o
map
¼ arg max Q G

l ;p
i ; Gl ;m

i jM; G
ðn�1Þ
assigned

� �
: ðA5Þ

8. Order the genotypes fqi1;l1
map; qi2;l2

map; . . . g such that qi1;l1
map $ qi2;l2

map $ qi3;l3
map; . . . :

9. Select the ordered genotypes with qmap¼ 1 and at most pNL ordered genotypes with qmap , 1, and assign the
value of the corresponding genotype variables fGl ;p

i ; Gl ;m
i gmap to fGl ;p

i ; Gl ;m
i g.

10. Update GðnÞassigned

11. else
12. GðnÞassigned*B

13. n * 0
14. p*1

2p
15. end if
16. n * n 1 1
17. until all ordered genotypes have been assigned.

1116 C. A. Albers, T. Heskes and H. J. Kappen


