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Abstract    

The total factor carbon emission performance has been largely used to investigate the 

effectiveness of climate policies and to support the design of carbon reduction 

strategies. Despite the important information that this indicator is providing in relation 

to historical and cross-country trends, no previous studies have been specifically 

devoted to analyse the persistent and the transient components of the total factor 

carbon emission performance. By disaggregating the time-variant and the 

time-invariant elements of the carbon dioxide emission changes, this paper adopts, for 

the first time, a new methodological approach to decompose the components of the 

total factor carbon emission performance indicator. Using panel data for selected 30 

Chinese provinces for the time-period 1997-2017, this paper combines the 

environmental production technology, the Shephard distance function, and the 

stochastic frontier models to measure and investigate the spatio-temporal evolution of 

the total factor carbon emission performance and to evaluate the effectiveness of 

Chinese policies. By providing a better understanding of the main drivers of carbon 

dioxide emission changes, the proposed methodology, is suitable to be replicated 

across regions and countries, and provides an important opportunity for international 

comparisons and for the design of coordinated carbon reduction strategies.    
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1. Introduction  

The rapid economic development that has taken place in China since the economic 

reforms and the open-door policy of 1978 has largely contributed to energy 

consumption and carbon emission increase. As depicted in Figure A1 in appendix, 

China has endured a rapid process of increasing carbon since its entrance into WTO. 

It has overtaken United States as the largest CO2 emitter, and the per capita emissions 

are now larger than in European Union and UK (Figure A2 in appendix). Despite the 

decreasing trend in the quantity of emissions generated per unit of GDP produced, the 

carbon intensity of China is still larger than other countries, and even higher than the 

world average (Figure A3 in appendix), leaving space and pressure for further 

efficiency improvements (Long et al., 2018). Climate change is of broad concern with 

the appealing for public health and sustainable development and carbon emission is 

one main trigger of global warming. With the rapid economic development and 

urbanisation process, China endures a rough pressure to control energy consumption 

and curb carbon emission (Xu and Lin, 2015).    

Within this context, the Chinese government has been introducing a large set of 

policies oriented to balance the economic growth of 1.4 billion people together with 

the challenges of the green development strategies. The carbon tax, the carbon quota 

policy, the pilot low-carbon city initiative and the mandatory constraints on carbon 

intensity announced since the 12th Five-Year Plan (2011-2015)1, are examples of that 

reflective action (Cheng et al., 2019; Cheng et al., 2018a; Li, Y. et al., 2020). To track 

the progress toward a more sustainable development, the carbon intensity has been 

widely used to measure the carbon performances of the Chinese economy. By using 

panel data at different scale of analysis, a wide range of analytical models have been 

developed to support the design of policies oriented to curb the carbon intensity of 

production (Wang et al., 2020, Jiang, 2016; Li and Lin, 2015). Most of the commonly 

used carbon performance indicators (such as the carbon intensity and the per capita 

carbon emissions) have however been largely criticized for considering only some 

aspects of production and for the lack of systematic definition and integral 

measurement (Sun, 2005). In recent years, total factor carbon emission performance 

(TFCP) has then been proposed as alternative indicator that provide a composite 

measure combining information from all production factors (Wang, Q. et al., 2012; 

Zhou et al., 2006).  

                                                 
1 In addition, there are some industry-specific policies in the Five-Year Plans, e.g. the civil aviation 

industry by Civil Aviation Administration of China (CAAoC) and the building code by Ministry of 

Housing and Urban-Rural Development (MoHURD). 
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For the Chinese case, total factor carbon emission performance indicators have 

been calculated with the application of Data Envelope Analysis (Cheng et al., 2018b; 

Lin and Chen, 2019) and stochastic frontier analysis (Lin and Du, 2015; Zhou et al., 

2010). In the previous studies, the indicators are calculated as time varying. However, 

there are some elements leading the carbon performance to be long lasting or 

time-invariant. That is because, in most of the cases, environmental regulations are 

settled in a long-run period and affect carbon performance structurally. In addition, 

other persistent and time-invariant factors, such as institutional environment and 

governance structures, can also influence the carbon performance without changing 

over a long period. For this reason, it is reasonable to hypothesis that there are 

components of efficiency that does not change and others that change over time. 

In previous literature, three main strands of methods have been used to measure 

performances by distinguishing between the long-run and the short-run efficiency. 

First, according to the heuristic economic concepts of (quasi-)fixed inputs, Bilodeau 

et al. (2004) and Ouellette and Vierstraete (2004) proposed the concept of short-run 

and long-run efficiency and calculated it with DEA models. However, the total factor 

efficiency is not only related to inputs, and other factors in the production process 

matter. Second, Tsionas and George Assaf (2014) proposed a new method that 

combined SFA and ARMA to analyze the persistence of technical efficiency. The 

method specifies the inefficiency term from SFA as a truncated ARMA process and 

then takes its steady state as long-run efficiency. However, it ignores the 

heterogeneity of panel individuals. Third, a series of stochastic frontier models have 

been used to estimate the long-run and short-run efficiency separately (Greene, 2005; 

Pitt and Lee, 1981), whereas Colombi et al. (2011) and Kumbhakar et al. (2014) have 

been among the firsts to try to decompose persistent, transient inefficiency term and 

heterogeneity simultaneously in one stochastic frontier model. The concepts of 

long-run (or persistent, time-invariant) inefficiency and short-run (or transient, 

time-varying) inefficiency mentioned in the present study follows the thoughts of 

Schmidt and Sickles (1984), Greene (2005), Colombi et al. (2011) and Kumbhakar et 

al. (2014). In general, the former, reveals rigidities in the production processes that 

are caused by institutional factors and obsolete equipment’s, such as old production 

machines, old buildings, old road systems, and systematic behavioral failures 

(Filippini and Hunt, 2015). By contrast, the latter is caused by short-run factors, such 

as inefficient supplier selection, sub-optimal resource allocation and trial-and-error 

processes in unknown situations (Colombi et al., 2017).  

By providing information related to the nature and the drivers of changes, the 

decomposition of the TFCP into the persistent and the transient components represent 
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an important element of policy support (Badunenko and Kumbhakar, 2016; Filippini 

et al., 2018). For this reason, the main objective of this paper is to refine the existing 

TFCP decomposition approach by focusing on the nature of persistence and transient 

and by considering the time invariant and the time-variant factors simultaneously. The 

methodological innovation will then be applied to the case of China. Being 

characterized by energy and environmental policies usually set over a long-period of 

time, with a short-period tracking, the Chinese context represents the perfect case 

study for the methodological innovation proposed in this paper. In particular, by using 

panel data for selected 30 Chinese provinces over the time period 1997-2017, the 

following research questions will be addressed: (i) Is the low carbon emission 

performance of China persistent or transient?; (ii) Which are the main characteristics 

of TFCP in China?; (iii) Which economic factors have influenced the spatial and 

temporal patterns?. This study contributes to the existing literature in the following 

ways: 

First, by using a newly developed stochastic frontier model, this paper enables to 

distinguish, for the first time, the persistent and transient components of the total 

factor carbon emission performance. By providing disaggregated information across 

the spatial and temporal scales this approach can provide important information 

supporting the design of targeted policies (Badunenko and Kumbhakar, 2016). Second, 

the regional disparities and the temporal evolution of the carbon emission 

performance are analyzed by mapping the spatial and the temporal patterns of the 

carbon emission performance components on the national scale. The provided 

evidence can support the design of policies able to consider both the regional 

demonstration effect and the historical experience. Third, the economic effects of the 

persistent and the transient carbon emission performance are modelled simultaneously. 

The related empirical results provide a better understanding of the economic drivers 

of carbon emission changes and can support the development of carbon reduction 

strategies.  

The paper is structured as follows. Section 2 reviews the main developments in 

total factor carbon emission performance and stochastic frontier models. Section 3 

proposes an innovative method to measure the persistent and the transient total factor 

carbon emission performance through stochastic frontier model and model economic 

effects and panel data sets. Section 4 presents the empirical results and discussion. 

Section 5 concludes.  
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2. Literature review   

2.1. Defining and measuring total factor carbon emission performance  

Carbon emission is usually defined as one kind of undesirable (or bad) output that is 

different from the desirable (or good) gross domestic production. The traditional 

production technology in manufacturing ignores the joint production of bad and good 

output. How to treat bad output becomes a question in the specification of production 

process and measurement of efficiency. Arabi et al. (2015) and Halkos and Petrou 

(2019) summarised the most common channels to treat bad output in data 

envelopment analysis. Among them, the adjustment of the specification of production 

technology set is a popular method, in which the bad output such as carbon emission, 

is treated in its original form mentioned above and assumed to be weak disposability 

by imposing an equality constraint on bad output in the production set (Färe et al., 

2005). The technology dealing with undesirable output was firstly constructed by Fare 

et al. (1989) through imposing an assumption of weak disposability on bad outputs, 

and they use a multiplicative distance function. After this pioneering work, growing 

amounts of studies have arisen to take into consideration of bad output when 

measuring productivity and efficiency (Färe et al., 2001; Hernandez-Sancho et al., 

2000). Fare et al. (2007) formulated environmental technology that meets the two 

environmental axioms incorporating weak disposability and null-jointness of outputs, 

and proposed an additive environmental directional distance function (DDF). For 

example, the weak disposability highlights the cost to reduce bad output and the 

null-jointness axiom means the unavoidable bad output in production. Under the 

constraints of these axioms, measurement of technical efficiency can be defined 

through Shephard distance function and directional distance functions (Table 1).     

The distance functions such as Shephard distance function (Shephard, 1970) and 

directional distance function (Chambers, 1996; Chung et al., 1997) are commonly 

used to functionally represent the environmental production technology. The 

Shephard distance function can be viewed as a special case of directional distance 

function by imposing some appropriate direction vector (Chung et al., 1997; Färe et 

al., 2005). The directional distance function (Chambers, 1996) sets the input 

contraction or output expansion along the pre-specified direction vector at the same 

rate. Chung et al. (1997) extended the directional distance function to incorporate 

undesirable output and it allows expanding the good output and decreasing the bad 

output simultaneously. One argument on directional distance function is the choice of 

the direction vector, among which it can be set in some ad hoc way such as a specific 

direction (Macpherson et al., 2010; Wang et al., 2013), or according to the research 
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goal (Cheng et al., 2018a). Färe et al. (2013) developed a method to estimate 

directional distance function in which the direction vectors are endogenously 

determined. When there is any slack, the efficiency measures derived from the 

original directional distance function may be overestimated (Fukuyama and Weber, 

2009). So, the other argument about the specification of change rate between inputs 

and outputs, which induces radial or non-radial directional distance function 

(Fukuyama and Weber, 2009; Zhou et al., 2007), has been widely considered in the 

context of data envelopment analysis (Cheng et al., 2018b; Färe and Grosskopf, 2010; 

Zhang et al., 2015). Fukuyama and Weber (2010) extended the directional slack based 

measure of technical efficiency by Fukuyama and Weber (2009) to incorporate 

undesirable output. Different from the previous studies that solve the slack based 

inefficiency from data envelopment models, Zhou et al. (2012) defined a non-radial 

directional distance function normally and then energy performance index, carbon 

performance index and a performance index simultaneously model energy and CO2 

through some specifications on normalized weight vector and direction vector.  

Data envelopment analysis (non-parametric) and stochastic frontier analysis 

(parametric) are the two main strands of techniques to estimate production technology 

and efficiency scores (Färe et al., 2005). As the rapid development of Data 

Envelopment Analysis (DEA) variants, plethora of empirical studies have adopted 

DEA to consider characteristics and properties of production process like 

heterogeneity (Cheng et al., 2018b). The environmental efficiency and total-factor 

carbon emission performance in China have been calculated from many perspectives 

and multiple scales, including provinces (Wang, Q. et al., 2012), fossil fuel power 

plants (Zhang and Choi, 2013), transportation system (Chang et al., 2013; Zhang et 

al., 2015; Zhou, G. et al., 2013), industrial sectors (Cheng et al., 2018b; Wang and 

Wei, 2014; Zhou, Y. et al., 2013), agricultural sector (Liu and Feng, 2019), 

commercial sector (Wang and Lin, 2018), and non-ferrous metals industry (Lin and 

Chen, 2019). Although DEA models, which include affluent specifications to 

illustrate the characteristics of production process, have the advantage to avoid the 

specification of production function, they have limitations and defects as they ignore 

the stochastic noise and cannot distinguish the persistent and transient parts of 

efficiency. Besides DEA and SFA, some scholars have combined the virtual of DEA 

and SFA in a unified framework, generating the more advanced methods namely 

stochastic non-smooth envelopment of data (StoNED) (Kuosmanen, 2006; 

Kuosmanen and Johnson, 2017; Kuosmanen and Kortelainen, 2010). This is a strand 

of semi-parametric approaches and it has been for example adopted to calculate cost 

efficiency (Li et al., 2016) and marginal abatement cost (Lee and Wang, 2019).  
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Stochastic Frontier Analysis (SFA) models have the advantage to express the 

production maximum and cost minimum, and the distance function derived via SFA is 

differentiable (Färe et al., 2005). The applications of SFA in carbon performance arise 

in recent years. Wang et al. (2013) proposed a total factor CO2 emissions performance 

index (TFCP) derived from the production technology and directional distance 

function and adopt SFA methods to estimate it on China’s province level. They find 

higher performance in the southeastern coastal areas than the central and western 

inland regions and the increasing disparity of performance between regions indicates 

the necessity to set different regional targets. Following the environmental 

performance index proposed by Tyteca (1997), Zhou et al. (2010) defined the 

Shephard carbon distance function and a Malmquist CO2 emission performance index 

(MCPI) which is derived by solving data envelopment analysis models. Lin and Du 

(2015) extended the work of Zhou et al. (2010) to parametric setting by specifying the 

Shephard carbon distance function with SFA models. The total factor carbon emission 

performance in this study is defined by following the method of Lin and Du (2015) 

based on SFA models.   

Although the environmental efficiency and total carbon emission performance of 

China have been investigated widely, there is no study on disentangling the persistent 

and transient components, that is the time-invariant and time-varying division or 

long-run and short-run components, and it cannot be achieved very well by using the 

current DEA and StoNED techniques. However, the two parts may affect the 

effectiveness of carbon reduction policies. This study tends to bridge this gap. Lv et 

al. (2020) gives an up-to-date review on the development of SFA. A series of 

derivative models and applications of four components SFA are constructed (Lai and 

Kumbhakar, 2018a; Lien et al., 2018). It is obvious that the models set by SFA 

present the thoughts to separate time-varying and time-invariant efficiency. However, 

there is a lack of theoretical support and empirical experience in the scope of 

economics. After the model proposed by Kumbhakar et al. (2014), the distinction 

between long-run and short-run efficiencies has been taken into consideration but 

only in some nascent studies. For example, bank’s efficiency (Badunenko and 

Kumbhakar, 2016), Italy hospitals (Colombi et al., 2017), coal-fired electric power 

generating plants in the U.S. (Lai and Kumbhakar, 2018a), Swiss hydropower firms 

(Filippini et al., 2017), energy efficiency in the U.S. residential sector (Alberini and 

Filippini, 2017) and New Zealand’s electricity distribution businesses (Filippini et al., 

2018). Utilizing the recent proposed model of SFA, we are able to disentangle 

Chinese carbon performance and analyze the determinants of its different 

components.   
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Table 1 The measurement of total factor carbon emission performance.  

 Production 

technology set 

Shephard 

distance 

function 

Radial or 

non-radial DDF  

Non-parametric (DEA) Wang, Q. et al. (2013) Zhou et al. 

(2010) 

Zhang et al. (2015) 

Wang et al. (2016) 

Parametric (SFA)  Lin and Du 

(2015) 

Wang et al. (2013) 

 

2.2 The economic determinants of carbon emissions   

According to STIRPAT (Stochastic Impacts by Regression on Population, Affluence 

and Technology) model, there are three classifies of factors (P-A-T) influencing 

environment. Based on the STIRPAT and previous literature, eight commonly 

investigated variables which are widely explored are frequently modelled as 

determinants of carbon performance (Cheng et al., 2018a; Dong et al., 2018; York et al., 

2003). All these determinants can be classified to affluence, technology and 

population, and the theoretical mechanism of their effects on carbon performance 

have been widely discussed and have been explored through empirical research. 

It is evident that carbon emissions are a consequence of the production process 

and economic growth as it is inextricably linked with energy. Per capita Gross 

Domestic Product is usually recognised as a crucial driver of carbon emissions and 

has hitherto been under discussion extensively but there has been no a unanimous 

conclusion as results vary among samples and empirical techniques (Bo, 2011; Dinda, 

2004; Sarkodie and Strezov, 2019). The coal dominated energy structure urges the 

effect of economic development on carbon emissions in China (Cheng et al., 2018a). 

Among these studies, an important line is the Environmental Kuznets Curve 

hypothesis. It posits an inverted-U relationship between income and environmental 

pollutions, and it has been tested and discussed widely (Grossman and Krueger, 1995; 

Onafowora and Owoye, 2014).  

The secondary industry is energy intensive and industrialization is an impetus to 

economic development in China, accelerating carbon emissions and carbon intensity 

(Dong et al., 2018; Tian et al., 2014). Xu and Lin (2015) find a nonlinear impact of 

industrialization on carbon emissions. However, China has realised this problem and 

implemented various policies to control carbon emission during industrialisation 

(Zhang et al., 2019). The upgrading and optimisation of industrial structure indicates 

the production towards the high-tech industry and modern services. The tertiary 

industry is regarded as an industry with less energy consumption and thus lower 
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emissions (Shi, 2003). The percentage of value added of the third industry to GDP is 

taken as a proxy of the upgrading of industrial structure and has been proved to be 

helpful to curb carbon intensity (Cheng et al., 2018a; Lin and Zhu, 2017). 

The effects of international trade on environment can be classified into scale 

effect, composition effect and technology effect (Grossman and Krueger, 1991). 

Antweiler et al. (2001) explored how international trade affects environmental 

pollutants in a general equilibrium model of trade. Carbon emissions embodied in 

international trade is mentioned in the hot discourse on the responsibility attribution 

of emission. Carbon emissions embodied in international trade imposes large burden 

on China (Lin and Sun, 2010) and as a net carbon export country, it has experienced a 

growth period since China entered WTO in 2001 (Long et al., 2018). Foreign direct 

investment (FDI) transfers and relocates products that are energy and carbon intensive 

worldwide through new investment and cross border merge (Huang et al., 2017). 

According to pollution heaven theory, host countries, especially developing countries 

under low environment standard and regulation, suffer from environmental 

deterioration brought by FDI (Sun et al., 2017). In addition, FDI is an channel to 

technology spillover which contributes to mitigate carbon emissions (Peterson, 2007). 

Overall, there are no consensus results on whether FDI is responsible for increasing 

carbon emission (Liu et al., 2019; Shao et al., 2019). Besides, the role of native 

technology progress is not clear due to rebound effect. It has been proved that 

technological progress is effective to reduce energy consumption under scenario 

analysis (Yuan et al., 2009) and curb carbon intensity (Cheng et al., 2018a; Dong et 

al., 2018).  

After the five theorems proposed by Ehrlich and Holdren (1971) under IPAT 

(population, affluence, technology) model, the importance of demographic factor on 

environment attracts much concern. Individual consumption behavior, lifestyle and 

preference affect energy consumption and carbon emissions. Dalton et al. (2008) 

classified the demographic factors into population size (direct scale effect), population 

composition (indirect scale effect) and consumption patterns. They developed a 

theoretical framework by incorporating age structure into a dynamic computable 

general equilibrium model and find heterogeneous effect of aging under different 

scenarios in USA. In OECD countries, Liddle (2011) and Menz and Welsch (2012) 

identified an intensive impact of young adults (20-34) on (transportation-induced) 

carbon emissions and an adverse impact from other age groups. In addition, the latter 

study found a negative year-of-birth effect and revealed the different interaction 

effects between birth cohort and age structure. The population structure and 

consumption level are revealed to be two major impact factors of population change 
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on carbon emissions in China (Zhu and Peng, 2012). China has entered a process of 

demographic transition and one significant aspect is its age structure and population 

aging. Zhang and Tan (2016) verify a nonlinear impact of aging on carbon emissions 

in China, which is more pronounced than the effect from energy intensity. Wang et al. 

(2017) find the effects of population aging on CO2 emissions among Chinese regions 

are heterogeneous.  

Additionally, urbanisation is another important aspect of population structure 

that cannot be ignored. Poumanyvong and Kaneko (2010) analysed the mechanisms 

of urbanisation on carbon emissions and identified positive relationships empirically. 

Finally, energy is the main source of carbon emission, especially fuel combustion. 

Energy efficiency is regarded as one effective policy tool to curb carbon emissions 

and it is widely discussed from national, regional and industrial scales (Wang et al., 

2020). Energy intensity is included to represent energy efficiency.   

 

3. Methods and data sources   

3.1. New measurement of total factor carbon emission performance    

This section introduces the concept of environmental production technology first 

(Färe et al., 2005). Then it defines the Shephard carbon distance function (Zhou et al., 

2010) which can be considered as a directional distance function with a special 

direction vector. It adopts a translog function to represent the Shephard carbon 

distance function. The translog function, which is a second order differential 

approximation of the Taylor expansion, has the advantage to release the assumption 

on production function. It has been widely employed in a handful of research on 

China (Lin and Long, 2015; Lin and Wang, 2014) and other countries (Filippini et al., 

2018). Finally, some specification of SFA models are selected to parametrically 

estimate the carbon performance and disentangle it.   

Supposed the production process in China includes three inputs, including labor 

(L), capital (K) and energy (E), they can generate two kinds of production, in which 

the desirable one is gross domestic product (Y) and the undesirable one is carbon 

emissions (C). The environmental production technology is expressed as:  

       (1) 

Here for notational simplicity, the individual index (i) and time index (t) of 

variables are omitted at first. As it is focused on the performance of carbon emissions, 
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the Shephard carbon distance function (Zhou et al., 2010) is defined as follows.       

             (2) 

In this definition, it aims to find out the maximal proportion of carbon emissions 

reduced when keeping other inputs and output fixed, and the hypothetical amount of 

carbon emissions is . Under this context, the total factor carbon emission 

performance (TFCP) is the ratio between the hypothetical and actual carbon 

emissions.  

                                  (3) 

It is clear that the value of TFCP is above zero and the higher value of TFCP 

means the smaller difference between the actual carbon emission and the hypothetical 

values, indicating higher efficiency (or lower inefficiency) of carbon emission in the 

production process. The maximum value of TFCP indicates the efficient decision unit 

locating at the production frontier. Now the translog transformation function, which is 

more flexible than Cobb-Douglas function (Coelli and Perelman, 1999; Heshmati and 

Kumbhakar, 2011; Lien et al., 2018), is adopted to express the Shephard distance 

function explicitly.  

(4) 

Where  (i=1, 2, 3, 4, 5) corresponds to K, L, E, Y, C, and  includes the 

statistical noise and measurement error. In addition to meeting the conditions that the 

range of Shephard distance function is (0, 1], equation (4) should also satisfy the 

following regularity conditions.   

                                           (5) 
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To estimate the functional form of Shephard distance function, we exploit its 

properties derived from its definition. According to the definition of Shephard 

distance function, it is linearly homogeneous of degree one in carbon emissions.  

                  (6) 

Substituting equation (4) into the logarithm of (6) and setting , it generates, 

(7)    

Where it uses variable name as subscripts to indicate the corresponding 

coefficients in (4), for example,  is the coefficient for multiplication of  and 

. Substituting equation (7) into (4) and rearranging it, we get,  

 

(8) 

It is obvious that equation (4) can be written as,   

(9) 

That is, 

 (10)       
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If denoting , the specification of equation (10) is consistent 

with that of stochastic frontier models. Then, 

.                                      (11) 

In the following, we use the lower-case letters of variables  to 

represent the logarithm value of variables . Above all, we can 

obtain the TFCP scores through some stochastic frontier models. There are many 

possible choices of SFA models. However, there is no criteria to choose a specific one 

(Farsi et al., 2006). Above all, we want to discover both the persistent, transient and 

overall carbon performance, so for consistency and comparison, three kinds of SFA 

models are adopted for equation (10) in this study.  

The first model is the one constructed by Schmidt and Sickles (1984) as follows.  

(12) 

Where  is the error disturbance, and  is the inefficiency term, which belongs to 

long-run inefficiency. The problem of model (11) is that it puts some unobservable 

time-invariant things into the inefficiency part, and mixes up the inefficiency part that 

relates to production technology with the pure heterogeneity that relates to the 

individual characteristics.       

The second model is developed by Greene (2005) which is termed as true 

individual effects SFA models, and it separates the individual effects in the panel 

model while leaving time-varying inefficiency in the compounded residuals. It 

estimates the time-varying inefficiency, which covers only the short-run component 

of inefficiency.       

 (13) 
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Where  is the individual effect that is time-invariant,  is error disturbance 

and  denotes the inefficiency that is time-varying. The problem in this model is 

that any time-invariant component is ended up in the individual effect inducing an 

extension of individual heterogeneity.  

The last one is the four component stochastic frontier model (or termed as 

general true individual effects SFA model) developed by Kumbhakar et al. (2014), 

which is a primary effort to separate the individual effects, persistent (time-invariant, 

long-run) inefficiency and transient (time-varying, short-run, residual) inefficiency 

within one model. Besides, the overall (time-varying) inefficiency can be derived 

from the persistent and transient inefficiency of this model.    

(14)    

Where  is the individual effect,  is error disturbance,  represents the 

persistent inefficiency and  denotes the transient inefficiency.    

After the estimation of different type inefficiency scores, TFCP is derived by 

following the method of Jondrow et al. (1982). The long-run (time-invariant) TFCP 

derived from model (12) is denoted as LONG. The short-run (time-varying) TFCP 

derived from model (13) is denoted as SHORT. The persistent TFCP, transient TFCP 

and overall TFCP from model (14) are abbreviated as TRANSIENT, PERSISTENT 

and OVERALL.       

Table 2 Abbreviations for carbon performance indicators. 

Performance indicator Abbr. 

Total factor carbon performance TFCP 

long-run TFCP LONG 

short-run TFCP SHORT 

transient TFCP TRANSIENT 

persistent TFCP PERSISTENT 

overall TFCP  OVERALL 
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3.2. Regression modelling     

To identify the response of total factor carbon emission performance to economic 

variables, the efficiency scores in section 3.1 are taken as dependent variables and the 

possible driving factors as independent variables. The definition and origination of 

determinants are illustrated in the Table 3. Then a full regression equation is created. 

It is hypothesized the factors that affect actual and hypothetical carbon emissions are 

possible determinants of TFCP as defined in section 3.1. The hypothetical carbon 

emission lies on production frontier and is affected by production technology. With 

these factors referred in section 2.2 in mind, an extended STIRPAT model is 

established in equation (15). 

                          (15) 

Table 3 The selected determinants of TFCP. 

Variables Proxy Abbr. References 

Economic growth Per capita Gross Domestic 

Product 

PCGRP Cheng et al. (2018a) 

Industrialization 
Percentage of the industry value 

added to GDP 

INDU Li et al. (2018) 

Industrial structure 

upgrading 

Percentage of value added of the 

third industry to GDP 

TERT Lin and Zhu (2017) 

Population structure 
Percentage of urban population 

to total population 
URBAN 

Lv et al. (2020) 

International trade 

openness 

Percentage of import and export 

to GDP 
OPEN 

Zhang et al. (2017) 

Foreign direct 

investment 

Percentage of actual foreign 

investment to GDP 
FDI 

Huang et al. (2017) 

Technology progress  
Number of patents application 

granted 
TECH 

Dong et al. (2018) 

Population aging 
Ratio of population aged 65 and 

above to the total population 
AGING 

Wang et al. (2017) 

Energy efficiency 
Energy intensity 

EI 
Wang and Wang 

(2020) 

 

3.3. Data sources  

In the SFA models, five variables including three inputs and two outputs are used to 

calculate the total factor carbon emission performance index. The number of 

employed persons in urban units at the year-end measures labor. The data for capital 
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is calculated by adopting the perpetual inventory method (PIM) and adjusted by the 

price index of investment of fixed assets (Zhang et al., 2004). The gross domestic 

product (GDP) represents the desirable output and carbon emissions is the undesirable 

output. As there is no official publication of carbon emissions in China, carbon 

emissions is derived and calculated by following the work by Shan et al. (2018). Data 

for labor, capital and GDP are collected from China Statistical Yearbook (1998-2018). 

The data for energy consumption is derived from the China Energy Statistical 

Yearbook (1998-2018). Due to requirement for data consistency, this study collects 

the data of thirty provinces of China over the period 1997 to 2017 but regions such as 

Tibet, Taiwan, Hong Kong and Macao are excluded because of data unavailability. 

Data for these variables in section 3.2 are extracted from China Statistical Yearbook 

(1998-2018), China Price Statistical Yearbook and Statistical Yearbook of provinces 

(1998-2018) and regional Statistical Yearbook (1998-2018). All variables are in 

logarithms to alleviate the impact of heteroscedastic and to get elasticity. In sum, 

descriptive statistics are presented in Table 4. 

 Table 4 Statistical description of variables.       

Variables Mean SD Min Median Max 

l 7.5331 0.824 5.5607 7.6176 8.8198 

k 9.3139 1.243 5.7941 9.3217 11.9747 

e 8.9256 0.836 5.9661 8.9901 10.5687 

c 5.0684 1.011 -0.2053 5.1346 7.3473 

GDP 8.6292 1.109 5.3122 8.7221 11.0944 

PCGRP 5.0945 0.799 3.1135 5.1523 6.7822 

IND 3.6135 0.255 2.4713 3.6754 3.9710 

TERT 3.7148 0.172 3.3430 3.6938 4.3890 

URBAN 3.8300 0.322 3.0694 3.8410 4.4954 

OPEN 0.5271 1.005 -1.7798 0.2267 2.8458 

FDI 3.3932 0.902 0.9357 3.2008 6.3466 

TECH 8.4912 1.715 4.0254 8.3887 12.7149 

AGING 2.1442 0.241 1.3987 2.1442 2.7961 

EI 0.2965 0.506 -0.9878 0.2485 1.6158 

Note: Variables are in logarithm.    

 

4. Results     

4.1. Total factor carbon emission performance       

The summary statistics of TFCP scores from models (11) (12) (13) are reported in 
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Table 5. First, the mean value of two time-invariant efficiency measurements, LONG 

and PERSISTENT, are 0.516 and 0.694, with different skewness of 0.258 and -1.040. 

The difference between them reveals the incorporation of individual heterogeneity 

into efficiency term when calculating efficiency scores using model (11). It verifies 

the necessity to separate individual effect in the panel SFA models to find out 

unbiased efficiency scores. Second, in the case of the three time-varying efficiency 

scores, TRANSISENT, SHORT and OVERALL, the statistics between 

TRANSISENT and SHORT are similar, as both only measures the short-run 

component of efficiency. Moreover, the mean value of OVERALL, which covers both 

the long-run and short-run component of efficiency, is lower than the other four 

efficiency scores, verifying the existence of different sources of inefficiency and the 

necessity to decompose it. This finding suggests the government to set exact policy 

from right direction to curb inefficiency. Third, the standard errors (SD) of SHORT 

and TRANSISENT are closer and much lower than that of LONG, PERSISTENT and 

OVERALL, indicating that there is no obvious difference in the spatial-temporal 

evolution of short-run component, whereas the spatial evolution of long-run part 

shows large diversification and disparity. It reveals that the gap of long-run efficiency 

between provinces is large and some provinces has much pressure to catch up. The 

inefficiency of carbon is a long-run problem, and the factors that related to structural 

rigidity and management ability should be paid more attention. Finally, the gaps of 

quantile values and standard error between long-run and short-run efficiency values 

prove the necessity to decompose efficiency which helps to make corresponding 

policy precisely. The larger value of standard errors of time-invariant efficiency show 

that long-run efficiency between provinces is more diversified than the short-run part. 

There is a long way to alleviate the disparity between regions and it is efficient to 

improve long-run efficiency to catch-up.  

The pairwise (rank) correlation coefficients between the different TFCP scores 

are presented in Table 6. First, it is evident that the two kinds of correlation 

coefficients between SHORT and TRANSISENT (0.9929, 0.9969) are very high and 

significant positive, verifying the previous evidence. Second, the correlation 

coefficients between LONG and PERSISTENT are significant positive and high, as 

they are used mainly to measure the long-run component of efficiency. Although the 

time-invariant efficiency LONG includes individual effect and induces biased results, 

it does not affect the ranking of provinces in the long-run carbon performance here. 

Third, the correlation coefficients between TRANSISENT (SHORT) and 

PERSISTENT (LONG) are relatively low at around 0.1. The low value of Spearman’s 

rank correlation informs a different ranking between provinces in their short-run 
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efficiency. Finally, the correlation between OVERALL and long-run efficiency is 

much higher than that between OVERALL and short-run efficiency, manifesting that 

total efficiency is occupied by the long-run part, and indicating there is a long way to 

improve carbon utilization.  

Figure 1 portrays the spatial-temporal evolution of two time-varying carbon 

emission performance, taking years 2000, 2005, 2010 and 2015 as examples. The 

spatial distribution has no concrete decline or increase characteristic among regions, 

indicating that transient carbon performance can be changed temporarily. The order of 

transient efficiency is unstable, indicating that it can be improved by some temporary 

elements. Figure 2 displays the spatial distribution of long-run efficiency based on 

LONG (left) and PERSISTENT (right). As the spatial distribution of OVERALL is 

similar to long-run efficiency, it is not displayed. The range of PERSISTENT 

(without the 5% extreme value) is larger than that of TRANSISENT. There is 

significant regional distribution (disparity and agglomeration) which is attributed to 

different industrial structure, economic development, local lifestyles, different 

development strategies and geographical characteristics (Feng et al., 2009; Wang, K. 

et al., 2019; Wu et al., 2016; Zhuo and Deng, 2020). It reveals that long-run (overall) 

efficiency is higher in the east and south regions than in the west and north regions 

(Cheng et al., 2018b; Liu et al., 2016; Wang, Y. et al., 2019). Both the power of more 

good output and less bad output improves carbon performance. The north region faces 

the issue of heating with coal in winter (Wu et al., 2016). The west region has lower 

GDP and bares the transfer of high-energy consuming and high-polluting industries 

from eastern region since western development of 2000. Both are possible reasons to 

cause low carbon performance. Although the east and south are recognized as 

developed with more energy demand to satisfy both residential life and economic 

growth, it has new and high-tech industry and large proportion of tertiary. The study 

of Cheng et al. (2018b) supports the role of technical progress in improving carbon 

efficiency in eastern region and the technology gap in inhabiting the western region. 

Besides, it shows similar results depicted by Ding et al. (2019). There is efficiency 

agglomeration and diffusion around the main municipalities (Beijing, Tianjin, 

Shanghai and Chongqing).    
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Table 5 Descriptive statistics of total factor carbon emission performance. 

TFCP Mean SD Min P5 Median P95 Max Skewness Kurtosis Shapiro-Wilk 

LONG 0.516 0.206 0.089 0.240 0.519 0.886 1.000 0.258(0.0086) 2.640(0.0326) 0.984(0.0000) 

SHORT 0.713 0.084 0.255 0.580 0.724 0.827 0.978 -1.260(0.0000) 8.340(0.0000) 0.907(0.0000) 

TRANSIENT 0.640 0.090 0.211 0.500 0.647 0.773 0.975 -0.525(0.0000) 6.650(0.0000) 0.941(0.0000) 

PERSISTENT 0.694 0.182 0.145 0.390 0.762 0.898 0.912 -1.040(0.0000) 3.690(0.0042) 0.895(0.0000) 

OVERALL 0.446 0.131 0.031 0.168 0.474 0.610 0.739 -0.904(0.0000) 3.550(0.0154) 0.939(0.0000) 

Notes: SD is standard error. Min is minimum value. P5 is the 5% quantile value. P-values are in parentheses. 

Table 6 The coefficients of correlation between TFCP scores. 

 LONG SHORT TRANSIENT PERSISTENT OVERALL 

LONG 1 0.0784** 0.0737* 1.0000*** 0.8962*** 

SHORT 0.1414*** 1 0.9969*** 0.0784** 0.4324*** 

TRANSIENT 0.1006** 0.9929*** 1 0.0737* 0.4289*** 

PERSISTENT 0.9299*** 0.1785*** 0.1276*** 1 0.8962*** 

OVERALL 0.8585*** 0.5024*** 0.4635*** 0.9271*** 1 

Notes: (1) Lower-triangular cells report Pearson's correlation coefficients, and upper-triangular cells are Spearman’s rank correlation. (2)*** 

p<0.01, ** p<0.05, * p<0.1 
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Figure 1 The spatial distribution of time-varying TFCP       
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Figure 2 The spatial distribution of time-invariant TFCP    

4.2. Modelling determinants of TFCP     

To find out the determinants of TFCP scores, three regression models are developed. 

Although there are arguments with no consistent views on the data generating process of 

efficiency scores (Hoff, 2007; McDonald, 2009), it is common to regard the efficiency scores 

as censored data and adopt Tobit model to regress it on economic variables (Bai, X. et al., 

2019; Ouyang et al., 2019). To derive robust result, both (panel) Tobit and linear regression 

models are adopted in this section. There are very limited studies exploring the determinants 

of persistent efficiency (Lai and Kumbhakar, 2018b; Lien et al., 2018). It should be noted that 

there are no natural time-invariant determinants as regressors of persistent or long-run TFCP 

in our sample, which is the same situation as the two previous studies. The former takes mean 

values of time-varying variables as determinants of persistent efficiency, and the latter 

explores determinants of transient inefficiency only. As the economic determinants to be 

sought are time varying, examining their impact on time-invariant TFCP will be problematic 

in terms of temporal match for modelling. Thereby, it is imperative to process data first (Lai 

and Kumbhakar, 2018b). However, Lai and Kumbhakar (2018b) take mean value over the full 

sample, which doesnot consider the temporal heterogeneous effect of a time-varying 

determinant on the time-invariant TFCP. That is, for example, the impact on persistent 

inefficiency of urbanization at different stage may be changed. In addition, Five-Year Plan is 
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one main component of the socialist economy with Chinese characteristics, showing large 

disparity with the western market economy. It updates the constraint targets on carbon 

emissions every five years and has played top-down governance role in managing carbon 

emissions of China (Hu, 2016; Yuan and Zuo, 2011). Consequently, based on the data 

processing method in Lai and Kumbhakar (2018b), the mean values of influencing variables 

are calculated during 1997-2000, 2001-2005, 2006-2010, and 2011-2017, which follow the 

divisions of all the Five-Year Plans after 1997 in China covering the carbon constraint target 

since 2010. Methodologically, the sample is divided into four sub-samples and the impact is 

revealed with cross sectional regression. The data processing and model regressions are 

programmed in Stata 15 and results are shown in Table 7, with the results by Tobit regression 

in the upper part A and the results by linear regression in the lower part B. The values of LR 

chi2 and F-statistics reveal that both Tobit regression and linear regression are significant at 

1% significance level, respectively. The impact of determinants on time-varying TFCP are 

revealed within panel regression, and results are presented in Table 8 with the results by panel 

Tobit in column (A) and the results by panel linear regression in column (B). The values of 

Wald chi2 show that the models are significant at 1% significance level. The values of 

chibar2 refer to the tests of individual-specific effects, using likelihood-ratio test for panel 

Tobit and Breusch and Pagan Lagrangian multiplier test for panel random effect regression, 

confirming the significance of individual-specific effects at 5% significance level. It is clear 

that in most cases the sign and significance of resulting time-invariant TFCP in Table 7 are 

consistent with the results of total performance in Table 8, confirming the dominant role of 

persistent carbon performance. The magnitude of coefficients is unstable between 

time-invariant and time-varying scores. It draws some new insights and a complete picture in 

the following.  

As shown in Table 7, per capita GDP has insignificant impact on time invariant TFCP in 

all cases (Song, M. et al., 2020), indicating that the economic development has no significant 

pressure or improvement on carbon performance. It indicates that economic growth does not 

damage carbon performance in the study period. However, the increase of investment on 

green technology caused by economic growth does not work significantly. As China has 

experienced a process with high economic development but with the sacrifice of environment, 

it needs a long-run process of recovery. The same result happens in the situation of short-run 

carbon performance.  

Industrialisation is recognised to have positive and significant impact (Liu and Song, 

2020). Evidence on how industrialisation affects carbon emission and intensity is well 

established, however there is no consensus. The impact of industrialisation is found to be 
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insignificant negative (Song, M. et al., 2020; Yang et al., 2020), significant positive (Dong et 

al., 2018; Huang et al., 2020; Huang et al., 2018). By comparing multi integrated assessment 

models, Duan et al. (2021) forecast that industrial carbon emissions will decline, which is 

driven by industrial structure adjustment, low-carbon transition of energy and enhancement of 

energy efficiency. Although result in this study is different from most others based on carbon 

intensity (Huang et al., 2020), it validates the effectiveness of a series of policies on industrial 

sectors which target at energy conservation and pollution reduction in China (Yang et al., 

2020; Zhang et al., 2019). On one side, as the secondary industry accounts for 70% of carbon 

emission in China and leaves large potential to curb carbon. In this regard, the government 

has launched a wide range of energy conservation and carbon reduction policies (Feng et al., 

2020; Lo et al., 2015; Zhou et al., 2014). All these programs and codes contribute to promote 

green production effectively. On the other side, China has paced into the post-industrialisation 

stage and factor substitution is highlighted in pursuing its supply-side structural reforms. As 

one aspect of energy substitution, inter-factor substitution is affirmed to be attributable to 

carbon intensity reduction in heavy industry (Liu, K. et al., 2018). In addition, the policies to 

shut down the high pollution enterprises and cut overcapacity contribute to carbon reduction 

(Chen, Z. et al., 2020).  

The upgrading and optimization of industrial structure (TERT) has positive impact on 

persistent carbon performance, indicating the importance of industrial structure adjustment to 

achieve carbon reduction targets (Cheng et al., 2018a; Lin and Zhu, 2017). The Ministry of 

Science and Technology issues a notice on the Special Twelfth Five-Year Plan (2011-2015) 

of modern service industry (MOST, 20122), which has the advantage of low resource 

consumption and environmental pollution. The development of modern service and high-tech 

industries are beneficial to promote low-carbon economy (Xu and Lin, 2018). The impact of 

industrialisation and industrial structure on TRANSIENT and SHORT (Table 8) is 

insignificant positive, indicating that it does not work in a transient process. As the energy 

conservation and emissions reduction policies has begun from the 11-th Five-Year Plan 

(2006-2010) with emphasis putting on the secondary industry from upgrading and optimizing 

industrial structure, whereas the research period covers the long-run process from 2006.  

Urbanisation shows negative but insignificant effect in most cases (Table 7), which is 

similar to the results based on carbon intensity (Huang et al., 2020). The energy demand from 

urban construction and the insufficient treatment of pollutants are two main aspects that 

induce the increase of carbon emissions and impede carbon performance during urbanisation 

                                                 
2 http://www.most.gov.cn/fggw/zfwj/zfwj2012/201202/t20120222_92619.htm   

http://www.most.gov.cn/fggw/zfwj/zfwj2012/201202/t20120222_92619.htm
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in China (Cheng et al., 2018a; Pan et al., 2020). The new-type urbanisation since 2014 in 

China requires ecological and environmentally friendly construction. On the consumer side, 

the consumption patterns and lifestyles of rural people is different from urban population 

(Jiang and Hardee, 2011). Urbanisation is responsible for the increase of residential carbon 

emissions (Bai et al., 2019). Some provinces or cities with high level of urbanisation tend to 

pay more attention on environmental quality. With the policy efforts and the rising 

environment awareness of residents, the negative effect of urbanisation shows insignificant 

gradually. The impact of urbanisation on TRANSISENT and SHORT (Table 8) is also 

insignificant negative; however, the impact on total carbon performance (Table 8) is 

significant negative. Overall, urbanisation hinders the improvement of carbon performance 

and the push effect has not aroused yet. Given the larger coefficient of persistent carbon 

performance and its dominant role, it is necessary to pay more attention to urbanisation 

driving forces that benefits to long process carbon performance.   

In Table 7, the impact of openness is not significant in most cases (Yang et al., 2014). 

FDI has negative but not always significant impact, endorsing the pollution heaven theory. 

This is a result consistent with that of Cheng et al. (2018a), Liu and Song (2020) and Song et 

al. (2020). Although it is expected to benefit from the technology spillover, carbon emission 

brought by FDI and trade through scale effect and decomposition effect is dominated until 

now. From the perspective of scale effect, the foreign enterprises increase energy 

consumption and carbon emission in production process. Carbon emission embodied in 

international trade accounts for a large proportion and it has grown steadily in China after 

having joined WTO (Long et al., 2018; Ren et al., 2014; Wang and Su, 2020). In view of the 

relative advantage of low cost and environmental regulation standards, it tends to transfer the 

low-tech processing, assembly, manufacturing and resource intensive industry to China 

(Cheng et al., 2018a). The technology effect has not played its role well, due to the limited 

ability to absorb technology and the spread of managerial skills (Ang, 2009). It is believed 

that the role of FDI and trade on carbon emission is not isolated and it depends on some other 

factors, such as human capital (Lan et al., 2011) and institutional quality (Perkins and 

Neumayer, 2011). The impacts of FDI and openness on both persistent and transient carbon 

performance are insignificant or negative, indicating that the international connections impose 

large pressure on environment and carbon performance. There is still a long way to alleviate 

the side effect from outside. It is still an issue to decrease scale effect and to utilize the 

technology effect, not only from the short-run process but also from the long-run process.  

The results state that technology progress has positive impact on time-invariant carbon 

performance (Cheng et al., 2018a; Huang et al., 2020). To deal with climate change and 
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construct an environmentally friendly society, the nation encourages financing and investment 

on green and low-carbon technology. Although using an input indicator of technology 

progress, Luan et al. (2019) find domestic R&D activities is conducive to curb carbon 

intensity in Chinese industrial sectors. Wang, Z. et al. (2012) find the role of domestic patents 

for carbon-free energy technologies in carbon reduction plays well in China, whereas the 

domestic patents for fossil-fueled technologies do not work. In addition, technology progress, 

especially the development of energy innovation and clean production technology, is 

recognised as one pivotal way to decouple economic growth with carbon emission and 

achieve sustainable economic growth (Wang and Su, 2020; Wang and Wang, 2019). The 

impact of technology progress on transient carbon performance is positive but insignificant, 

which shows a little difference from the results of persistent and total performance. It should 

be noted that technology progress is lagged and spends long time to create working effects. 

Besides, although technology progress can be regarded as a significant determinant of 

persistent and long TFCP, there is no obvious strengthening or weakening trend between each 

five-year periods, indicating that the impact is nonlinear and not steady. 

Aging has positive but insignificant impact, as this study focuses on a full sample 

different from the regional analysis of Wang et al. (2017) and the nonlinear analysis of Zhang 

and Tan (2016) and Yang and Wang (2020). On one hand, the Chinese older population 

incline to live with younger occupying less space and there are transportation policies such as 

bus-discount for older, inducing a different lifestyle of aging population in China from other 

countries (Menz and Welsch, 2012). It may cause scale of economy and contributes to the 

inhibitory effect of aging on carbon emission (Wang et al., 2017). On the other hand, the push 

effect of aging on carbon emission can be attributed to continuous labor supply and 

psychological factors (Zhang and Tan, 2016). In view of cost and preference, the low 

willingness of the elderly to applicate and accept new energy conservative products hinders 

the improvement of energy and carbon efficiency. The elder in developed regions tend to 

contribute emission more as they have higher requirement on medical and health care, which 

implies that the stage of aging matters (Yang and Wang, 2020). The increasing life longevity 

and rising recruitment age push carbon emissions emitted in the process of production and 

consumption. The impact of aging on transient and total carbon performance is significant 

positive. It indicates that aging and its effect on carbon performance happen almost 

simultaneously.     

It shows negative effect of energy intensity on long-run carbon performance. This is 

reasonable as energy intensity is always used as a reciprocal indicator of energy efficiency 

and has been recognised to have positive impact on carbon intensity (Dong et al., 2018; Lin 
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and Zhu, 2017; Liu and Song, 2020; Song, M. et al., 2020). The decrease of energy intensity 

means the growth rate of GDP is larger than that of energy input. Carbon is embodied in 

energy especially fossil fuels, implying that it is affected by both energy structure and energy 

efficiency (Dong et al., 2018). Energy intensity can be curbed by the growing development 

and utilization of renewable energy such as wind, solar and biomass energy, which are more 

efficient and environmentally friendly. The impact of energy intensity on total carbon 

performance is significant positive. This is a confused result proving the biased measurement 

of energy efficiency from side, in which energy intensity is a single-factor indicator and 

carbon performance is a total-factor indicator. In addition, the role of energy intensity on 

carbon performance relates to energy structure. Overall, there is no obvious temporal trend of 

the impact in different periods, showing that the impact of energy intensity on persistent 

TFCP is nonlinear and changing.  
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Table 7 Determinants of time-invariant TFCP.    

 (1) Persistent (2) long (3) persistent (4) long (5) persistent (6) long (7) persistent (8) long  (9) persistent (10) long 

 1997-2000 1997-2000 2001-2005 2001-2005 2006-2010 2006-2010 2011-2017 2011-2017 1997-2017 1997-2017 

Part A: Results from Tobit regression. 

PCGRP -0.246 

[0.21] 

-0.318 

[0.29] 

0.114 

[0.26] 

0.235 

[0.34] 

-0.177 

[0.27] 

-0.299 

[0.38] 

-0.460 

[0.28] 

-0.553 

[0.42] 

-0.140 

[0.28] 

-0.071 

[0.41] 

INDU 0.736*** 

[0.22] 

0.756** 

[0.31] 

0.987*** 

[0.30] 

0.821* 

[0.40] 

0.786** 

[0.36] 

0.495 

[0.51] 

1.103*** 

[0.32] 

1.055** 

[0.48] 

1.140*** 

[0.31] 

1.037** 

[0.45] 

TERT 0.718 

[0.43] 

1.083* 

[0.60] 

1.518*** 

[0.46] 

1.697** 

[0.60] 

0.648 

[0.51] 

0.388 

[0.73] 

1.104* 

[0.58] 

0.925 

[0.86] 

1.290** 

[0.53] 

1.424* 

[0.77] 

URBAN -0.052 

[0.22] 

-0.141 

[0.31] 

-0.666* 

[0.33] 

-1.040** 

[0.44] 

-0.125 

[0.52] 

-0.192 

[0.74] 

0.272 

[0.69] 

-0.003 

[1.02] 

-0.372 

[0.44] 

-0.735 

[0.64] 

OPEN 0.006 

[0.10] 

-0.097 

[0.14] 

-0.168 

[0.10] 

-0.278** 

[0.13] 

0.033 

[0.09] 

-0.059 

[0.12] 

0.197* 

[0.10] 

0.152 

[0.15] 

0.048 

[0.12] 

-0.095 

[0.17] 

FDI -0.245** 

[0.09] 

-0.245* 

[0.12] 

-0.079 

[0.08] 

-0.024 

[0.10] 

-0.248*** 

[0.08] 

-0.153 

[0.11] 

-0.317*** 

[0.10] 

-0.241 

[0.15] 

-0.287*** 

[0.10] 

-0.195 

[0.14] 

TECH 0.153** 

[0.06] 

0.255*** 

[0.08] 

0.193*** 

[0.06] 

0.314*** 

[0.08] 

0.123* 

[0.06] 

0.282*** 

[0.09] 

0.067 

[0.06] 

0.158 

[0.10] 

0.078 

[0.07] 

0.208** 

[0.10] 

AGING 0.368 

[0.24] 

0.462 

[0.34] 

-0.035 

[0.27] 

-0.099 

[0.36] 

0.400 

[0.30] 

0.314 

[0.42] 

0.371 

[0.25] 

0.398 

[0.37] 

0.353 

[0.29] 

0.263 

[0.43] 

EI -0.321** 

[0.14] 

-0.489** 

[0.19] 

-0.285* 

[0.15] 

-0.341 

[0.20] 

-0.325* 

[0.18] 

-0.237 

[0.25] 

-0.242 

[0.15] 

-0.273 

[0.22] 

-0.435** 

[0.17] 

-0.474* 

[0.25] 

_cons -4.002* 

[2.06] 

-5.573* 

[2.86] 

-9.061*** 

[2.36] 

-10.088*** 

[3.12] 

-4.511* 

[2.57] 

-2.797 

[3.67] 

-5.481** 

[2.29] 

-4.070 

[3.40] 

-6.894** 

[2.59] 

-7.771* 

[3.79] 

LR chi2 49.82 

(0.0000) 

46.91 

(0.0000) 

47.50 

(0.0000) 

47.05 

(0.0000) 

43.13 

(0.0000) 

39.02 

(0.0000) 

47.20 

(0.0000) 

40.04 

(0.0000) 

49.99 

(0.0000) 

43.63 

(0.0000) 
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Part B: Results from linear regression.   

PCGRP -0.246 

[0.27] 

-0.315 

[0.40] 

0.114 

[0.16] 

0.237 

[0.24] 

-0.177 

[0.23] 

-0.273 

[0.31] 

-0.460 

[0.30] 

-0.542 

[0.44] 

-0.140 

[0.21] 

-0.053 

[0.30] 

INDU 0.736** 

[0.34] 

0.793 

[0.46] 

0.987* 

[0.55] 

0.878 

[0.71] 

0.786 

[0.54] 

0.574 

[0.71] 

1.103** 

[0.47] 

1.092* 

[0.59] 

1.140** 

[0.48] 

1.092* 

[0.62] 

TERT 0.718 

[0.67] 

1.077 

[0.91] 

1.518* 

[0.77] 

1.735* 

[0.98] 

0.648 

[0.78] 

0.481 

[1.09] 

1.104 

[0.78] 

0.980 

[1.14] 

1.290* 

[0.74] 

1.486 

[0.96] 

URBAN -0.052 

[0.18] 

-0.143 

[0.24] 

-0.666** 

[0.27] 

-1.037*** 

[0.33] 

-0.125 

[0.57] 

-0.221 

[0.77] 

0.272 

[0.75] 

0.007 

[1.22] 

-0.372 

[0.37] 

-0.752 

[0.45] 

OPEN 0.006 

[0.12] 

-0.094 

[0.15] 

-0.168* 

[0.09] 

-0.277** 

[0.13] 

0.033 

[0.08] 

-0.061 

[0.11] 

0.197* 

[0.11] 

0.150 

[0.18] 

0.048 

[0.11] 

-0.097 

[0.17] 

FDI -0.245* 

[0.12] 

-0.235 

[0.15] 

-0.079 

[0.07] 

-0.026 

[0.09] 

-0.248** 

[0.10] 

-0.160 

[0.13] 

-0.317** 

[0.12] 

-0.249 

[0.15] 

-0.287** 

[0.11] 

-0.198 

[0.14] 

TECH 0.153** 

[0.06] 

0.247*** 

[0.08] 

0.193*** 

[0.05] 

0.303*** 

[0.08] 

0.123* 

[0.06] 

0.267*** 

[0.09] 

0.067 

[0.08] 

0.151 

[0.11] 

0.078 

[0.08] 

0.197* 

[0.11] 

AGING 0.368 

[0.22] 

0.426 

[0.31] 

-0.035 

[0.23] 

-0.120 

[0.28] 

0.400** 

[0.18] 

0.268 

[0.26] 

0.371 

[0.23] 

0.346 

[0.31] 

0.353 

[0.26] 

0.218 

[0.41] 

EI -0.321* 

[0.18] 

-0.497** 

[0.22] 

-0.285 

[0.19] 

-0.366 

[0.25] 

-0.325 

[0.26] 

-0.286 

[0.34] 

-0.242 

[0.16] 

-0.299 

[0.23] 

-0.435 

[0.27] 

-0.507 

[0.35] 

_cons -4.002 

[2.59] 

-5.601* 

[3.10] 

-9.061** 

[3.92] 

-10.316** 

[4.93] 

-4.511 

[3.71] 

-3.307 

[5.00] 

-5.481 

[3.37] 

-4.342 

[4.51] 

-6.894* 

[3.35] 

-8.104* 

[4.55] 

F-statistics 35.15 

(0.0000) 

26.58 

(0.0000) 

9.57 

(0.0000) 

7.94 

(0.0001) 

10.59 

(0.0000) 

10.54 

(0.0000) 

10.20 

(0.0000) 

9.47 

(0.0000) 

12.71 

(0.0000) 

9.63 

(0.0000) 

Notes: Part A shows the results from Tobit regression and Part B shows the results from linear regression.  

Standard errors for coefficients are in brackets. P-values are in parentheses.  

* indicates significant at 10%, or p < 0.10. ** indicates significant at 5%, or p < 0.05. *** indicates significant at 1%, or p < 0.01. 
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Table 8 Determinants of time-varying TFCP.   

 (a)transisent (b)transisent (a)short (b)short (a)overall (b) overall 

PCGRP -0.010 

[0.03] 

-0.014 

[0.03] 

-0.009 

[0.03] 

-0.015 

[0.02] 

-0.036 

[0.05] 

-0.100** 

[0.04] 

INDU 0.074 

[0.06] 

0.070 

[0.05] 

0.065 

[0.05] 

0.056 

[0.05] 

0.360*** 

[0.09] 

0.439*** 

[0.09] 

TERT 0.083 

[0.09] 

0.075 

[0.09] 

0.069 

[0.08] 

0.053 

[0.08] 

0.399*** 

[0.12] 

0.423*** 

[0.13] 

URBAN -0.101 

[0.08] 

-0.090 

[0.07] 

-0.106 

[0.07] 

-0.086 

[0.06] 

-0.370*** 

[0.10] 

-0.395*** 

[0.10] 

OPEN 0.020 

[0.01] 

0.020 

[0.01] 

0.018 

[0.01] 

0.018 

[0.01] 

0.016 

[0.02] 

0.022 

[0.02] 

FDI -0.012 

[0.02] 

-0.014 

[0.01] 

-0.006 

[0.01] 

-0.010 

[0.01] 

-0.003 

[0.02] 

-0.005 

[0.02] 

TECH 0.005 

[0.01] 

0.004 

[0.01] 

0.009 

[0.01] 

0.008 

[0.01] 

0.063*** 

[0.02] 

0.089*** 

[0.02] 

AGING 0.162*** 

[0.04] 

0.161*** 

[0.04] 

0.155*** 

[0.04] 

0.153*** 

[0.04] 

0.231*** 

[0.06] 

0.275*** 

[0.06] 

EI 0.003 

[0.03] 

-0.002 

[0.03] 

0.017 

[0.03] 

0.006 

[0.03] 

0.145*** 

[0.05] 

0.109** 

[0.05] 

_cons -0.902** 

[0.43] 

-0.849** 

[0.39] 

-0.743* 

[0.40] 

-0.641* 

[0.35] 

-2.969*** 

[0.66] 

-2.927*** 

[0.66] 

Wald 

chi2 

31.38 

(0.0003) 

31.38 

(0.0003) 

32.84 

(0.0000) 

36.36 

(0.0000) 

54.48  

(0.0000) 

80.21  

(0.0000) 

chibar2 

 

4.25 

(0.0200) 

3.52 

(0.0303) 

10.05 

(0.0010) 

9.42 

(0.0011) 

547.06 

(0.0000) 

1807.32 

(0.0000) 

Notes: For every model, column (A) shows the results from Tobit regression, and column (B) 

shows the results from linear regression.  

Standard errors for coefficients are in brackets. P-value are in parentheses.  

* indicates significant at 10%, or p < 0.10. ** indicates significant at 5%, or p < 0.05. *** 

indicates significant at 1%, or p < 0.01. 

 

5. Conclusion  
A clear understanding of the properties and main drivers of carbon dioxide emission changes 

is a fundamental element of policy design. Within this context the aim of this paper is to 

provide an innovative approach to disaggregate the total factor carbon emission performance 

between the persistent and the transient components. After an extensive literature review on 

the studies of total factor carbon emission performance and the linked econometric models, 
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this paper integrates the environmental production technology and the Shephard distance 

function to provide an innovative way to analyse efficiency (Adom et al., 2018a; Filippini et 

al., 2017; Musau et al., 2020). Using panel data for 30 selected Chinese provinces for the time 

period 1997-2017, three SFA models are then adopted to fit the distance function and to 

evaluate the carbon emission performance. These models are meaningful to distinguish the 

individual heterogeneity and the persistent and the transient components (Adom et al., 2018a; 

Filippini and Zhang, 2018), where the latter two elements provide information related to the 

spatio-temporal evolution of the TFCP. The key findings and implications are listed as 

follows. 

Firstly, the measurements of carbon emission performance highlight that the range of 

persistent carbon performance (PERSISTENT and LONG) is larger than the transient parts 

(TRANSIENT and SHORT), indicating that the disparity among provinces is mostly 

attributed to a long-run process. In light of the spatio-temporal evolution of carbon 

performance scores, there are two main policy implications. On one hand, it is necessary to 

make regional specific policies to reduce carbon emission and improve its performance 

according to the spatial disparity of persistent carbon performance. To make balanced 

development, the lagged provinces, that shows a relative low level of long-run TFCP, are 

suggested to emphasis policies related to long-run performance. From the country’s 

perspective, the resource misallocation, the long-run moral hazards and the institutional 

quality are accounted for long-run inefficiency (Adom et al., 2018b; Colombi et al., 2017; 

Filippini et al., 2018). Institutional reforms, sound infrastructure governance and 

environmental regulations are examples of tools that can be used to improve the carbon 

performance and to alleviate the regional disparities (Adom et al., 2018a; Kennedy et al., 

2014). Transformation of energy structure, urban planning and location choices of 

pollution-intensive firms, are among the policies that can contribute to improve the persistent 

efficiency (Wang, X. et al., 2019; Ye et al., 2015). On the other hand, these results have 

proved the effectiveness of the China’s Five-Year Plans to manage carbon emission on 

national, regional and sectoral scales. However, there is still a long way to maximize carbon 

emission performance in China. In addition, the transient part, which is diversified without 

concrete spatial distribution, can be improved by temporary policies, e.g. fiscal subsidies on 

new energy vehicle, real time pricing, carbon information disclosure and social norms (Huber 

et al., 2018; Luo, 2019). On a regional scale, the following recommendations are suggested: 

In the northern areas where supply of winter heating is essential, it is urgent to improve the 

heating efficiency by retrofitting old buildings (Liu, Y. et al., 2018). In the eastern and in the 

coastal regions with mature economic development, it is suggested to increase the application 
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of renewable energy and to promote more sustainable lifestyles (Feng et al., 2009). In the 

western and in the central areas more attentions should be devoted in adjusting the industrial 

structure, and in adopting the more advanced technology and human capital resources from 

the eastern regions. Overall, it is necessary to continue the strategy of regional coordinated 

development and differential environmental regulations (Shuai and Fan, 2020; Zhuo and 

Deng, 2020).   

Secondly, referring to the determinants of carbon emission performance, the impacts of 

economic variables on transient, persistent and total carbon performance are not always 

consistent. With the growth of economy, development of urbanisation, upgrading and 

optimization of industrial structural, the undermining effects on carbon emission performance 

weakened gradually. Due to the increasing concern on environment and the urging policies to 

protect ecology and living conditions, the push effects of these economic activities have 

arisen (Lin and Benjamin, 2017), particularly on the persistent parts. It is recommended to 

carry on the construction of new-type urbanisation, industrialisation and industrial structure 

transformation. For example, at the stage of industry 4.0, it is suggested to enhance the 

optimization and upgrading of industrial structure (Wang et al., 2020) and to promote the 

integration of advanced manufacturing industry and modern service industry (Song et al., 

2020). It is no doubt that urbanisation affects persistent efficiency as the urban plan and 

construction last long, while there are behaviors that change transiently. In the situation of 

new-type urbanisation, it is then urgent to alleviate its negative effect on carbon emission 

performance. To combat environment problems, more attention should then be devoted to the 

energy demand and to the carbon emission changes in different end-use sectors as their 

energy and carbon impacts are diversified (Lv et al., 2019). One challenge of urbanisation is 

the rapid construction of both residential and commercial buildings, which should highlight 

the importance of green construction (Li, D. et al., 2020). It takes long time to achieve 

low-carbon in construction industry whereas life-cycle management of building contributes to 

monitor and feedback the energy consumption and carbon emission conditions (Ge et al., 

2020). Another challenge of new-type urbanisation is the transport issue. A major part of 

carbon emission come from road construction (Chen et al., 2017) and worker commuting, 

whereas the style of the latter has been transformed during the urbanisation, appealing the 

construction of public transport. Incentive polices to change transportation mode of residents 

and retail sector affect transient behavior (Chen and Wang, 2016; He et al., 2013). The 

residential sector cannot be ignored either, as energy consumption styles and preference of 

urban and rural residents are increasingly changing. One solution to develop low-carbon 

economy is the construction of smart city (Wang et al., 2019) and eco-city (Li et al., 2019). 
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Smart cities can promote efficient energy management (Reinisch et al., 2011), by 

strengthening the application of information and communication technology (ICT) (Kramers 

et al., 2014; Moyer and Hughes, 2012) and block-chain (Sun and Zhang, 2020) etc. during 

city operation and governance.   

Thirdly, factors that may change production technology are revealed to be significant in 

improving persistent TFCP, confirming the role of technology effect. However, the 

technology effect on persistent and long-run TFCP is changing over periods. To improve 

persistent TPCP and achieve carbon neutrality, it is instrumental to find out a steady or 

increasing path to keep the positive technology effect. According to the insignificant impact 

of foreign direct investment (FDI) and trade openness on carbon emission performance, how 

to signify the technology spillover effect and absorb advanced technology to improve carbon 

performance is still an issue. A further and detailed research is required to identify whether 

the technology embodied in FDI or trade is green. It appeals the government to set policies to 

attract green FDI and import green products. Under the circumstance of globalisation, it calls 

for reforms of environmental institutions (Andersson, 2018), adjustment of export 

diversification and sophistication (Apergis et al., 2018). As proved by these empirical results, 

technological progress is a crucial factor in improving the performance (Jiao et al., 2020). 

Technology progress stems from persistent research with considerable capital. Increasing 

investment on innovative research and accelerating the application and transformation of new 

technology to industries can contribute to improve the carbon emission performance (Ang, 

2009). Although research and development is a process with high input and slow effect, the 

significant role on persistent carbon performance and the persistent attribute of technological 

progress can drive enterprises in making long-term research and development strategies. For 

this reason, policy support should be provided in promoting R&D initiatives (Chen et al., 

2020). The negative impact of energy intensity on persistent efficiency suggests to focus on 

both energy consumption and energy structure (Wang and Wang, 2020). Within this context, 

strategies to improve persistent energy efficiency can be considered as effective policy tools 

to increase carbon performance (Lv et al., 2020; Vieira et al., 2018).  

There are some inevitable limitations in this study, which appeal for further studies on 

this topic. The focus of this paper is at provincial level, but analysis could be extended to the 

national (Zaman and Moemen, 2017), prefectural-city (Shan et al., 2017), country, industry 

and enterprise levels (Ren et al., 2014). Different scales of analysis and the results will be 

useful to gain a better understanding of the carbon trends and to optimize resource allocation 

and responsibility attribution. In addition, given the importance of the regional development 

policies (for example in Pearl River Delta and Yangtze River Delta) specific regional analysis 
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would also be required. Despite the existing limitations and the possible analytical 

developments, the methodological approach presented in this paper represent one of the first 

attempts to disaggregate the persistent and the transient components of the TFCP. By 

providing a better understanding of the spatial and temporal patterns influencing the carbon 

dioxide emission changes and the related economic determinants, this paper can be used to 

support the design of carbon reduction policies at different scale of analysis. The possibility to 

replicate the proposed methodologies across regions and countries can also provide important 

opportunities for international comparisons and design of coordinated carbon reduction 

strategies. It should be noted that due to the property of persistent efficiency, the data 

processing method proposed in this study to match with Five-Year Plan is limited, particularly 

when applying it to Western economies. However, our approach within the specific context of 

Chinese economic policy-making provides comparative perspectives of understanding the 

complexity of economic systems, including the global challenge of carbon emission targets. 

Given the importance of persistent efficiency, it is imperative to develop other generalized 

method of processing such data and explore time-invariant determinants in the future work. 
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Appendix  

 

Figure A1. Total CO2 emissions of selected countries (the world one on the right y-axis) 
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Figure A2. CO2 emissions per capita of selected countries   

 

Figure A3. Carbon intensity between the selected countries and the world  


