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Information-Theoretic Regret Bounds for Gaussian
Process Optimization in the Bandit Setting

Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias W. Seeger

Abstract—Many applications require optimizing an unknown,
noisy function that is expensive to evaluate. We formalize this task
as a multiarmed bandit problem, where the payoff function is ei-
ther sampled from a Gaussian process (GP) or has low norm in a
reproducing kernel Hilbert space. We resolve the important open
problem of deriving regret bounds for this setting, which imply
novel convergence rates for GP optimization. We analyze an in-
tuitive Gaussian process upper confidence bound ( - al-
gorithm, and bound its cumulative regret in terms of maximal in-
formation gain, establishing a novel connection between GP op-
timization and experimental design. Moreover, by bounding the
latter in terms of operator spectra, we obtain explicit sublinear
regret bounds for many commonly used covariance functions. In
some important cases, our bounds have surprisingly weak depen-
dence on the dimensionality. In our experiments on real sensor
data, - compares favorably with other heuristical GP op-
timization approaches.

Index Terms—Bandit problems, Bayesian prediction, ex-
perimental design, Gaussian process (GP), information gain,
nonparametric statistics, online learning, regret bound, statistical
learning.

I. INTRODUCTION

I N MOST stochastic optimization settings, evaluating
the unknown function is expensive, and sampling is to

be minimized. Examples include choosing advertisements
in sponsored search to maximize profit in a click-through
model [2] or learning optimal control strategies for robots [3].
Predominant approaches to this problem include the multi-
armed bandit paradigm [4], where the goal is to maximize
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cumulative reward by optimally balancing exploration and
exploitation, and experimental design [5], where the function
is to be explored globally with as few evaluations as possible,
for example, by maximizing information gain. The challenge
in both approaches is twofold: we have to estimate an unknown
function from noisy samples, and we must optimize our esti-
mate over some high-dimensional input space. For the former,
much progress has been made in machine learning through
kernel methods and Gaussian process (GP) models [6], where
smoothness assumptions about are encoded through the
choice of kernel in a flexible nonparametric fashion. Beyond
Euclidean spaces, kernels can be defined on diverse domains
such as spaces of graphs, sets, or lists.
We are concerned with GP optimization in the multiarmed

bandit setting, where is sampled from a GP distribution or has
low “complexity” measured in terms of its reproducing kernel
Hilbert space (RKHS) norm under some kernel. We provide
the first sublinear regret bounds in this nonparametric setting,
which imply convergence rates for GP optimization. In partic-
ular, we analyze the Gaussian process upper confidence bound

- algorithm, a simple and intuitive Bayesian method
[7], [9]. While objectives are different in the multiarmed bandit
and experimental design paradigms, our results draw a close
technical connection between them: our regret bounds come in
terms of an information gain quantity, measuring how fast
can be learned in an information-theoretic sense. The submod-
ularity of this function allows us to prove sharp regret bounds
for particular covariance functions, which we demonstrate for
commonly used squared exponential and Matérn kernels.
Related Work: Our work generalizes stochastic linear

optimization in a bandit setting, where the unknown function
comes from a finite-dimensional linear space. GPs are nonlinear
random functions, which can be represented in an infinite-di-
mensional linear space. For the standard linear setting, Dani
et al. [10] provide a near-complete characterization explic-
itly dependent on the dimensionality. In the GP setting, the
challenge is to characterize complexity in a different manner,
through properties of the kernel function. Our technical contri-
butions are twofold: first, we show how to analyze the nonlinear
setting by focusing on the concept of information gain, and
second, we explicitly bound this information gain measure
using the concept of submodularity [11] and knowledge about
kernel operator spectra.
Compared to an earlier version of [1], this paper is signif-

icantly expanded, including detailed proofs, additional expla-
nations (e.g., Fig. 3), and more comprehensive experimental
demonstration of the performance of the - algorithm.
Kleinberg et al. [12] provide regret bounds under weaker and

less configurable assumptions (only Lipschitz continuity w.r.t.
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Fig. 1. Our regret bounds (up to polylog factors) for linear, radial basis, and
Matérn kernels— is the dimension, is the time horizon, and is the Matérn
parameter.

a metric is assumed; Bubeck et al. [13] consider arbitrary topo-
logical spaces), which, however, degrade rapidly with the di-
mensionality of the problem . In practice, linearity
w.r.t. a fixed basis is often too stringent an assumption, while
Lipschitz continuity can be too coarse-grained, leading to poor
rate bounds. Adopting GP assumptions, we can model levels of
smoothness in a fine-grained way. For example, our rates for the
frequently used squared exponential kernel, enforcing a high de-
gree of smoothness, have weak dependence on the dimension-
ality: (see Fig. 1). In addition, the GP ap-
proach allows for natural extensions. Subsequently, to the ini-
tial version of this paper [1], Krause and Ong [14] show how the
approach can be extended to address the GP contextual bandit
setting, in which the decision maker is provided with context,
and needs to learn an optimal mapping from context to action.
They further show how the information-theoretic bounds extend
to the stronger notion of contextual regret.
There is a large literature on GP (response surface) opti-

mization. Several heuristics for trading off exploration and
exploitation in GP optimization have been proposed (such as
expected improvement (EI)[15], most probable improvement
(MPI)[16], and upper confidence sampling [7]) and success-
fully applied in practice (cf., [3]). Brochu et al. [17] provide
a comprehensive review of and motivation for Bayesian opti-
mization using GPs. The efficient global optimization (EGO)
algorithm for optimizing expensive black-box functions was
proposed by Jones et al. [18] and extended to GPs by Huang
et al.[19]. Little is known about theoretical performance of
GP optimization. While convergence of EGO is established
by Vazquez and Bect [20], convergence rates have remained
elusive. Grünewälder et al. [21] consider the pure exploration
problem for GPs, where the goal is to find the optimal decision
over rounds, rather than maximize cumulative reward (with
no exploration/exploitation dilemma). They provide sharp
bounds for this exploration problem. Note that this method-
ology would not lead to bounds for minimizing the cumulative
regret. Our cumulative regret bounds translate to the first
performance guarantees (rates) for GP optimization.
In summary, our main contributions are as follows.
1) We analyze - , an intuitive algorithm for GP op-
timization, when the function is either sampled from a
known GP, or has low RKHS norm.

2) We bound the cumulative regret for - in terms of
the information gain due to sampling, establishing a novel
connection between experimental design and GP optimiza-
tion.

3) By bounding the information gain for popular classes of
kernels, we establish sublinear regret bounds for GP opti-
mization for the first time. Our bounds depend on kernel
choice and parameters in a fine-grained fashion.

4) We evaluate - on sensor network data, demon-
strating that it compares favorably to existing algorithms
for GP optimization.

II. PROBLEM STATEMENT AND BACKGROUND

Consider the problem of sequentially optimizing an unknown
reward function . In each round ; we choose a
point and get to see the function value there, perturbed
by noise: . Our goal is to maximize the sum
of rewards , thus to perform essentially as well as

(as rapidly as possible). For example,
we might want to find locations of highest temperature in a
building by sequentially activating sensors in a spatial network
and regressing on their measurements. consists of all sensor
locations, is the temperature at , and sensor accuracy is
quantified by the noise variance. Each activation draws battery
power, so we want to sample from as few sensors as possible.
Regret: A natural performance metric in this context is cu-

mulative regret, the loss in reward due to not knowing ’s max-
imum points beforehand. Suppose the unknown function is ;
its maximum point 1 . For our choice
in round , we incur instantaneous regret .
The cumulative regret after rounds is the sum of instanta-
neous regrets: . A desirable asymptotic property
of an algorithm is to be no-regret: Note
that neither nor are ever revealed to the algorithm. Bounds
on the average regret translate to convergence rates for
GP optimization, since the maximum in the first
rounds is no further from than the average.

A. Gaussian Processes and RKHS’s

GPs: Some assumptions on are required to guarantee
no-regret. While rigid parametric assumptions such as linearity
may not hold in practice, a certain degree of smoothness is
often warranted. In our sensor network, temperature readings
at closeby locations are highly correlated [see Fig. 2(a)].
We can enforce implicit properties like smoothness without
relying on any parametric assumptions, modeling as a
sample from a GP: a collection of dependent random vari-
ables, one for each , every finite subset of which is
multivariate Gaussian distributed in an overall consistent way
[6]. A is specified by its mean func-
tion and covariance (or kernel) function

. For GPs not
conditioned on data, we assume2 that . Moreover, we
restrict , , i.e., we assume bounded variance.
By fixing the correlation behavior, the covariance function
encodes smoothness properties of sample functions drawn
from the GP. A range of commonly used kernel functions is
given in Section V-B.
In this work, GPs play multiple roles. First, some of our re-

sults hold when the unknown target function is a sample from a
known GP distribution . Second, the Bayesian
algorithm we analyze generally uses as prior
distribution over . A major advantage of working with GPs
is the existence of simple analytic formulas for mean and co-
variance of the posterior distribution, which allows easy imple-
mentation of algorithms. For a noisy sample
at points , with

1 need not be unique; only occurs in the regret.
2This is w.l.o.g. [6].
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Fig. 2. (a) Example of temperature data collected by a network of 46 sensors at Intel Research Berkeley. (b) and (c) Two iterations of the - algorithm.
The dark curve indicates the current posterior mean, while the gray bands represent the upper and lower confidence bounds which contain the function with high
probability. The “ ” mark indicates points that have been sampled before, while the “o” mark shows the point chosen by the - algorithm to sample next.
It samples points that are either (b) uncertain or have (c) high posterior mean.

i.i.d. Gaussian noise, the posterior over is a GP dis-
tribution again, with mean , covariance and
variance :

(1)

(2)

where and is the posi-
tive definite kernel matrix .
RKHS: Instead of the Bayes case, where is sampled from

a GP prior, we also consider the more agnostic case where
has low “complexity” as measured under an RKHS norm (and
distribution-free assumptions on the noise process). The no-
tion of reproducing kernel Hilbert spaces (RKHS, [22]) is in-
timately related to GPs and their covariance functions .
The RKHS is a complete subspace of of nicely
behaved functions, with an inner product obeying the re-
producing property: for all .
It is literally constructed by completing the set of mean func-
tions for all possible , , and . The induced RKHS
norm measures smoothness of w.r.t. : in
much the sameway as would generate smoother samples than
as GP covariance functions, assigns larger penalties

than . can be extended to all of , in which
case iff . For most kernels discussed
in Section V-B, members of can uniformly approximate
any continuous function on any compact subset of .

B. Information Gain and Experimental Design

One approach to maximizing is to first choose points
so as to estimate the function globally well, and then play the
maximum point of our estimate. How can we learn about as
rapidly as possible? This question comes down to Bayesian ex-
perimental design (henceforth, “ED”; see [5]), where the infor-
mativeness of a set of sampling points about is mea-
sured by the information gain (cf., [23]), which is the mutual
information between and observations at these
points:

(3)

quantifying the reduction in uncertainty about from re-
vealing . Here, and .
For a Gaussian, , so that in
our setting ,
where . While finding the in-
formation gain maximizer among ,
is NP-hard [24], it can be approximated by an efficient
greedy algorithm. If , this algorithm picks

in round , which can be
shown to be equivalent to

(4)

where . Importantly, this simple algo-
rithm is guaranteed to find a near-optimal solution: for the set

obtained after rounds, we have

(5)

at least a constant fraction of the optimal information gain value.
This is because satisfies a diminishing returns property
called submodularity [25], and the greedy approximation guar-
antee (5) holds for any submodular function [11].
While sequentially optimizing (4) is a provably good way to

explore globally, it is not well suited for function optimiza-
tion. For the latter, we only need to identify point where
is large, in order to concentrate sampling there as rapidly as pos-
sible, thus exploiting our knowledge about maxima. In fact, the
ED rule (4) does not even depend on observations obtained
along the way. Nevertheless, the maximum information gain
after rounds will play a prominent role in our regret bounds,
forging an important connection between GP optimization and
experimental design.

III. - ALGORITHM

For sequential optimization, the ED rule (4) can be
wasteful: it aims at decreasing uncertainty globally, not
just where maxima might be. Another idea is to pick points as

, maximizing the expected reward
based on the posterior so far. However, this rule is too greedy
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Fig. 3. - selection rule implicitly rules out regions of the decision set
where the upper confidence bound is less than the maximum lower confidence
bound, thus eliminating regions where the function value is suboptimal with
high probability.

too soon and tends to get stuck in shallow local optima. A
combined strategy is to choose

(6)

where are appropriate constants. This latter objective prefers
both points where is uncertain (large ) and such
where we expect to achieve high rewards (large ): it im-
plicitly negotiates the exploration-exploitation tradeoff.
A natural interpretation of this sampling rule, which will give

insight into the choice of , is that it greedily selects points
such that should be a reasonable upper bound on ,
since the argument in (6) is an upper quantile of the marginal
posterior .We call this choice the - index,
where is specified depending on the context (see Section IV).
Pseudocode for the - algorithm is provided in Algorithm
1. Fig. 2 illustrates two subsequent iterations, where -
both explores [see Fig. 2(b)] by sampling an input with large

and exploits [see Fig. 2(c)] by sampling with large
.

Another intuition about the - selection rule is pre-
sented in Fig. 3. Since the upper and lower confidence bounds
correspond to percentile points for , at points where even
the UCB is smaller than the highest lower confidence bound,
the function values are suboptimal with high probability. The
- selection rule picks the point of highest UCB and

therefore avoids these regions of the decision set.
The - selection rule (6) is motivated by the UCB al-

gorithm for the classical multiarmed bandit problem [8], [26].
Among competing criteria for GP optimization (see Section I),
variants of the - rule (with only heuristically defined )
have been introduced and demonstrated to be effective for this
application [7], [27]. To our knowledge, strong theoretical re-
sults of the kind provided for - in this paper have not
been given for any of these search heuristics. In Section VI, we
show that in practice - compares favorably with these
alternatives.
If is infinite, finding in (6) may be hard: the upper con-

fidence index is multimodal in general. However, global search
heuristics are very effective in practice [17]. It is generally as-
sumed that evaluating is more costly than maximizing the
- index.

Algorithm 1 The - algorithm.

Input: Input space ; GP Prior

for do

Choose

Sample

Perform Bayesian update to obtain and

end for

UCB algorithms (and GP optimization techniques in general)
have been applied to a large number of problems in practice
[26], [2], [3]. Their performance is well characterized in both
the finite arm setting and the linear optimization setting, but no
convergence rates for GP optimization are known.

IV. REGRET BOUNDS

We now establish cumulative regret bounds for GP
optimization, treating a number of different settings:

for finite ,
for general compact , and the agnostic case of arbitrary
with bounded RKHS norm.
GP optimization generalizes stochastic linear optimization,

where a function from a finite-dimensional linear space is
optimized. For the linear case, Dani et al. [10] provide regret
bounds that explicitly depend on the dimensionality3 . GPs can
be seen as random functions in some infinite-dimensional linear
space, so their results do not apply in this case. This problem
is circumvented in our regret bounds. The quantity governing
them is the maximum information gain after rounds, de-
fined as

(7)

where is defined in (3). Recall
that , where

is the covariance matrix of
associated with the samples . Our regret bounds are of the
form , where is the confidence parameter in
Algorithm 1, while the bounds of Dani et al. [10] are of the
form ( the dimensionality of the linear function
space). Here and later, the notation is a variant of , where
log factors are suppressed. While our proofs—all provided
in the Appendix—use techniques similar to those of Dani et
al. [10], we face a number of additional significant technical
challenges. Besides avoiding the finite-dimensional analysis,
we must handle confidence issues, which are more delicate for
nonlinear random functions.
Importantly, note that the information gain is a problem-de-

pendent quantity—properties of both the kernel and the input
space will determine the growth of regret. In Section V, we pro-
vide general methods for bounding , either by efficient auxil-
iary computations or by direct expressions for specific kernels of

3In general, is the dimensionality of the input space , which in the finite-
dimensional linear case coincides with the feature space. By this, we mean that

for some .
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interest. Our results match known lower bounds (up to log fac-
tors) in both the -armed bandit and the -dimensional linear
optimization case.

A. Bounds for a GP Prior

For finite , we obtain the following bound.

Theorem 1: Let and .
Running - with for a sample of a GP with mean
function zero and covariance function , we obtain a re-
gret bound of with high probability. Pre-
cisely,

where .
The proof is provided in the Appendix.
This theorem shows that, with high probability over sam-

ples from the GP, the cumulative regret is bounded in terms of
the maximum information gain, forging a novel connection be-
tween GP optimization and experimental design. This link is
of fundamental technical importance, allowing us to generalize
Theorem 1 to infinite decision spaces. Moreover, the submod-
ularity of allows us to derive sharp a priori bounds,
depending on choice and parameterization of (see Section V).
In the following theorem, we generalize our result to any com-
pact and convex under mild assumptions on the kernel
function .

Theorem 2: Let be compact and convex, ,
. Suppose that the kernel satisfies the following

high probability bound on the derivatives of GP sample paths
: for some constants , :

Pick , and define

Running - with for a sample of a GP with mean
function zero and covariance function , we obtain a
regret bound of with high probability. Precisely,
with we have

The main challenge in our proof (provided in the Appendix) is
to lift the regret bound in terms of the confidence ellipsoid to
general . The smoothness assumption on disqualifies
GPs with highly erratic sample paths. It holds for stationary ker-
nels which are four times differentiable
([28, Theorem 5])., such as the squared exponential and Matérn
kernels with (see Section V-B), while it is violated for the
Ornstein–Uhlenbeck kernel (Matérn with ; a stationary
variant of the Wiener process). For the latter, sample paths
are nondifferentiable almost everywhere with probability 1 and
come with independent increments. We conjecture that a result
of the form of Theorem 2 does not hold in this case.

B. Bounds for Arbitrary in the RKHS

Thus far, we have assumed that the target function is sam-
pled from a GP prior and that the noise is with known
variance . We now analyze - in an agnostic setting,
where is an arbitrary function from the RKHS corresponding
to kernel . Moreover, we allow the noise variables
to be an arbitrary martingale difference sequence (meaning that

for all ), uniformly bounded by . Note
that we still run the same - algorithm, whose prior and
noise model are misspecified in this case. The following result
shows that - attains sublinear regret even in the agnostic
setting.

Theorem 3: Let . Assume that the true underlying
lies in the RKHS corresponding to the kernel ,
and that the noise has zero mean conditioned on the history
and is bounded by almost surely. In particular, assume
and let . Running - with
, prior , and noise model , we obtain

a regret bound of with high probability
(over the noise). Precisely,

where .
Note that while our theorem implicitly assumes that -

has knowledge of an upper bound on , standard guess-and-
doubling approaches suffice if no such bound is known a priori.
Comparing Theorems 2 and 3, the latter holds uniformly over
all functions with , while the former is a proba-
bilistic statement requiring knowledge of the GP that is sam-
pled from. In contrast, if , then
almost surely [22]: sample paths are rougher than RKHS func-
tions. Neither Theorem 2 nor 3 encompasses the other.

V. BOUNDING THE INFORMATION GAIN

Since the bounds developed in Section IV depend on the in-
formation gain, the key remaining question is how to bound the
quantity for practical classes of kernels.

A. Submodularity and Greedy Maximization

In order to bound , we have to maximize the information
gain over all subsets of size : a com-
binatorial problem in general. However, as noted in Section II,

is a submodular function, which implies the performance
guarantee (5) for maximizing sequentially by the greedy ED
rule (4). Dividing both sides of (5) by , we can upper-
bound by , where is constructed
by the greedy procedure. Thus, somewhat counterintuitively, in-
stead of using submodularity to prove that is near-op-
timal, we use it in order to show that is “near-greedy.” As
noted in Section II, the ED rule does not depend on observations
and can be run without evaluating .
The importance of this greedy bound is twofold. First, it al-

lows us to numerically compute highly problem-specific bounds
on , which can be plugged into our results in Section IV to
obtain high-probability bounds on . This being a laborious
procedure, one would prefer a priori bounds for in practice
which are simple analytical expressions of and parameters of
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Fig. 4. (Left) Spectral decay and (right) information gain bound for independent (diagonal), linear, squared exponential, and Matérn kernels ( ) with equal
trace.

Fig. 5. Sample functions drawn from a GP with (a) Bayesian linear regression, (b) squared exponential, and (c) Matérn kernels ( ).

. In this section, we sketch a general procedure for obtaining
such expressions, instantiating them for a number of commonly
used covariance functions, once more relying crucially on the
greedy ED rule upper bound. Suppose that is finite for now,
and let , . Sampling
at , we obtain , where is

the indicator vector associated with . We can upper-bound
the greedy maximum once more, by relaxing this constraint to

in round of the sequential method. For this relaxed
greedy procedure, all are leading eigenvectors of , since
successive covariance matrices of share their eigen-
basis with , while eigenvalues are damped according to how
many times the corresponding eigenvector is selected. We can
upper-bound the information gain by considering the worst-case
allocation of samples to the leading eigenvec-
tors of :

(8)

subject to and .
We can split the sum into two parts in order to obtain a bound
to leading order. The following theorem captures this intuition.

Theorem 4: For any and any :

where and .
Therefore, if for some the first eigenvalues

carry most of the total mass , the information gain will be
small. The more rapidly the spectrum of decays, the slower
the growth of . Fig. 4 illustrates this intuition.

B. Bounds for Common Kernels

In this section, we bound for a range of commonly
used covariance functions: finite-dimensional linear, squared
exponential, and Matérn kernels. Together with our results in
Section IV, these imply sublinear regret bounds for -
in all cases.
Finite-dimensional linear kernels have the form
. GPs with this kernel correspond to random linear func-

tions , .
The squared exponential kernel is

, being a length scale pa-
rameter. Sample functions are differentiable to any order
almost surely [6].
The Matérn kernel is given by

, , where
controls the smoothness of sample paths (the smaller, the

rougher) and is a modified Bessel function. Note that as
, appropriately rescaled Matérn kernels converge to

the squared exponential kernel.
Fig. 5 shows random functions drawn from GP distributions

with the aforementioned kernels.

Theorem 5: Let be compact and convex, .
Assume that the kernel function satisfies .
1) Finite spectrum. For the -dimensional Bayesian linear re-
gression case: .

2) Exponential spectral decay. For the squared exponential
kernel: .

3) Power law spectral decay. For Matérn kernels with :
.

A proof of Theorem 5 is given in the Appendix; we only
sketch the idea here. is bounded by Theorem 4 in terms of
the eigendecay of the kernel matrix . If is infinite or very
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Fig. 6. Mean average regret: - and various heuristics on (a) synthetic and (b, c) sensor network data.

large, we can use the operator spectrum of , which like-
wise decays rapidly. For the kernels of interest here, asymptotic
expressions for the operator eigenvalues are given by Seeger et
al. [29], who derived bounds on the information gain for fixed
and random designs (in contrast to the worst-case information
gain considered here, which is substantially more challenging
to bound). The main challenge in the proof is to ensure the exis-
tence of discretizations , dense in the limit, for which
tail sums in Theorem 4 are close to corresponding
operator spectra tail sums. Our existence result relies on the
probabilistic method.
Together with Theorems 2 and 3, this result guarantees

sublinear regret of - for any dimension (see Fig. 1).
For the squared exponential kernel, the dimension appears
as exponent of only, so that the regret grows at most as

—the high degree of smoothness of the
sample paths effectively combats the curse of dimensionality.

VI. EXPERIMENTS

We compare - with commonly used heuristics such
as the EI and MPI, and with naive methods which choose
points of maximum mean or variance only, both on synthetic
and real sensor network data, and also on the Branin and Gold-
stein–Price benchmark functions [30] for global optimization.
The EI heuristic [15] chooses the point where the EI over
the currently observed maximum value is highest, while the
MPI heuristic [16] chooses the point where improvement over
current maximum is most probable.
Experimental Setup: To generate synthetic test functions, we

sample random functions from a GP with squared exponential
and Matérn kernels, using a length scale parameter
0.2. The sampling noise variance was set to 0.025 or 5% of
the signal variance. Our decision set is uniformly
discretized into 1000 points. We run each algorithm for

iterations with , averaging over 30 trials (samples
from the kernel).
Next, we use temperature data collected from 46 sensors de-

ployed at Intel Research Berkeley over 5 days at 1-min inter-
vals, pertaining to the example in Section II. We take the first
two-thirds of the dataset to compute the empirical covariance
of the sensor readings, and use it as the kernel matrix. The func-
tions for optimization consist of one set of observations from
all the sensors taken from the remaining third of the dataset, and

the results (for , or 5% noise, ) were
averaged over 2000 possible choices of the objective function.
We also use data from traffic sensors deployed along the

highway I-880 South in California. The goal was to find the
point of minimum speed in order to identify the most congested
portion of the highway; we used traffic speed data for all
working days from 6 A.M. to 11 A.M. for one month, from 357
sensors. We again use the covariance matrix from two-thirds
of the dataset as kernel matrix, and test on the other third. The
results (for , or 5% noise, ) were
averaged over 900 runs.
While the choice of as recommended by Theorem 1 leads

to competitive performance of - , we find (using cross
validation) that the algorithm is improved by scaling down
by a factor 5. Note that we did not optimize constants in our
regret bounds.
Exploration–Exploitation Performance: Fig. 6 compares

the mean average regret ) incurred by the different
heuristics and the - algorithm on synthetic and real
data, as a function of the number of iterations (samples) .
For temperature data, the - algorithm and EI heuristic
clearly outperform the others, and do not exhibit significant
difference between each other. On synthetic and traffic data,
MPI does equally well. In summary, - performs at least
on par with the existing approaches which are not equipped
with regret bounds.
Performance in Search Problems: Fig. 7 compares the mean

minimum regret incurred by the different heuris-
tics and the - algorithm on synthetic and real data. This
measure is more relevant to pure search problems (i.e., no ex-
ploitation) and captures how quickly the algorithms find the
optimal point. For temperature data, the - algorithm
and EI heuristic clearly outperform the MPI, and do not ex-
hibit significant difference between each other. On synthetic
and traffic data, the MPI does slightly better but still not as
well as the - algorithm and the EI heuristic. In con-
trast to the average regret (see Fig. 6), for the minimum regret
the variance-only (information gain) criterion performs well,
but (except for temperature data) still exhibits slower conver-
gence than - and EI. Mean-only performs very poorly
due to convergence to local optima. In summary, - per-
forms at least on par with the existing approaches which are not
equipped with regret bounds, even on the search (pure explo-
ration) problem.
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Fig. 7. Mean minimum regret: - and various heuristics on (a) synthetic, and (b, c) sensor network data.

Fig. 8. Mean average regret: - and various heuristics on synthetic data from the squared exponential kernel of (a) dimension 1 and (b) dimension 4; (c)
comparison of - performance with increasing dimensionality of the problem.

Fig. 9. Mean average regret: - and various heuristics on synthetic data from the Matérn kernel of (a) dimension 1 and (b) dimension 4; (c)
comparison of - performance with increasing dimensionality of the problem.

Fig. 10. Comparison of - and various heuristics on (a) Branin and (b) Goldstein–Price benchmark functions.

Dependence on Dimensionality: We also compare the
- algorithm with the heuristics on synthetic test func-

tions for decision sets of dimensionality varying between 1 and
4. In each case, the decision set was discretized into
nine points along each dimension, i.e., discretized uniformly
into points. Fig. 8 compares the mean average regret incurred
by the different heuristics and the - algorithm on syn-
thetic data from the squared exponential kernel of dimensions 1
[see Fig. 8(a)] and 4 [see Fig. 8(b)]. Fig. 8(c) illustrates how the
performance of the - algorithm scales with increasing

dimensionality of the problem. These figures illustrate that
the - algorithm performs competitively with popular
heuristics on problems of varying dimensionality, and that the
relative performance scales well with dimension. Fig. 9 shows
qualitatively similar results for the Matérn kernel with .
Synthetic Benchmarks: Finally, we compare (see Fig. 10) the

performance of the - algorithm with the heuristics on
the Branin [see Fig. 10(a)] and Goldstein–Price [see Fig. 10(b)]
benchmark functions [30] for global optimization. The respec-
tive domains of the functions were scaled and translated onto the
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2-D unit square, which was uniformly discretized into 10 000
points. A Matérn kernel ( and length scale parameter
0.2) was used as the prior, and all other details were identical to
the high-dimensional experiment case. The - algorithm
and EI heuristic seem to do better than the others on the Branin
benchmark function, while the - algorithm seems to out-
perform both the EI and MPI heuristics on the Goldstein–Price
benchmark function.
Based on these experiments, we conclude that - is at

least competitive with other selection heuristics (which are not
known to admit regret bounds) on several synthetic benchmarks
and real-world sensor selection problems.

VII. CONCLUSION

We prove the first sublinear regret bounds for GP optimiza-
tion with commonly used kernels (see Fig. 1), both for sam-
pled from a known GP and of low RKHS norm. We analyze
- , an intuitive, Bayesian upper confidence bound-based

sampling rule. Our regret bounds crucially depend on the in-
formation gain due to sampling, establishing a novel connec-
tion between bandit optimization and experimental design. We
bound the information gain in terms of the kernel spectrum,
providing a general methodology for obtaining regret bounds
with kernels of interest. Our experiments on real sensor network
data indicate that - performs at least on par with com-
peting criteria for GP optimization, for which no-regret bounds
are known at present.
We remark that while our bounds hold under weak regularity

assumptions on the kernel, we do not have lower bounds
showing that our conditions are necessary in order to achieve
(sublinear) regret. However, we should note that our regret
bounds match known lower bounds for both the -arm bandit
setting and the finite-dimensional linear kernel. An important
open question is characterizing what the necessary conditions
are for (sublinear) regret in the nonparametric case (along
with characterizing the achievable rate of regret). Moreover,
it is unclear whether the EI heuristic can be shown to achieve
sublinear regret.
Overall, we believe that our results provide an interesting step

toward understanding exploration–exploitation tradeoffs with
complex utility functions.

APPENDIX I
REGRET BOUNDS FOR SAMPLED FROM GP

Here, we provide details for the proofs of Theorems 1 and 2.
In both cases, the strategy is to show that

for all and all , or in the infinite
case, all in a discretization of which becomes dense as
gets large.

1) Finite Decision Set: We begin with the finite case,
.

Lemma 5.1: Pick and set ,
where , . Then,

holds with probability .

Proof: Fix and . Conditioned on
, are deterministic, and

. Now, if , then

for , since for . Therefore,
, using

and . Applying the union bound

holds with probability . Choosing
and using the union bound for , the statement holds.

For example, we can use .

Lemma 5.2: Fix . If
for all , then the regret is bounded

by .
Proof: By definition of :

. Therefore,

Lemma 5.3: The information gain for the points selected
can be expressed in terms of the predictive variances. If

:

Proof: Recall that
. Now,

.
Here, we use that are deterministic conditioned on

, and that the conditional variance does not
depend on . The result follows by induction.

Lemma 5.4: Pick and let be defined as in
Lemma 5.1. Then, the following holds with probability :

where .
Proof: By Lemmas 5.1 and 5.2, we have that

with probability . Now, is
nondecreasing, so that

with , since
for , and .
Noting that , the result follows by plugging in the
representation of Lemma 5.3.
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Finally, Theorem 1 is a simple consequence of Lemma 5.4,
since by the Cauchy–Schwarz inequality.

2) General Decision Set: Theorem 2 extends the state-
ment of Theorem 1 to the general case of compact.
We cannot expect this generalization to work without any as-
sumptions on the kernel . For example, if

(Ornstein–Uhlenbeck), while sample paths are a.s.
continuous, they are still very erratic: is a.s. nondifferentiable
almost everywhere, and the process comes with independent in-
crements, a stationary variant of Brownian motion. The addi-
tional assumption on in Theorem 2 is rather mild and is satis-
fied by several common kernels, as discussed in Section IV.
Recall that the finite case proof is based on Lemma 5.1 paving

the way for Lemma 5.2. However, Lemma 5.1 does not hold for
infinite . First, let us observe that we have confidence on all
decisions actually chosen.

Lemma 5.5: Pick and set ,
where , . Then,

holds with probability .
Proof: Fix and . Conditioned on

, are deterministic, and
. As before,

. Since and using the
union bound for , the statement holds.

Purely for the sake of analysis, we use a set of discretiza-
tions , where will be used at time in the analysis.
Essentially, we use this to obtain a valid confidence interval on
. The following lemma provides a confidence bound for these

subsets.

Lemma 5.6: Pick and set ,
where , . Then,

holds with probability .
Proof: The proof is identical to that in Lemma 5.1, except

now we use at each timestep.

Now by assumption and the union bound, we have

which implies that, with probability greater than ,
we have

(9)

This allows us to obtain confidence on as follows.
Now let us choose a discretization of size so that for

all

where denotes the closest point in to . A sufficient dis-
cretization has each coordinate with uniformly spaced points.

Lemma 5.7: Pick and set
, where , . Let
. Let denotes the closest point in

to . Then,

holds with probability .
Proof: Using (9), we have that with probability greater than
,

Hence,

Now by choosing , we have

This implies that . Using in
Lemma 5.6, we can apply the confidence bound to (as this
lives in ) to obtain the result.

Now we are able to bound the regret.

Lemma 5.8: Pick and set
, where , .

Then, with probability greater than , for all , the
regret is bounded as follows:

Proof: We use in both Lemmas 5.5 and 5.7, so that
these events hold with probability greater than . Note that
the specification of in the aforementioned lemma is greater
than the specification used in Lemma 5.5 (with ), so this
choice is valid.
By definition of :

. Also, by Lemma 5.7, we
have that ,
which implies .
Therefore,

which completes the proof.

Now we are ready to complete the proof of Theorem 2. As
shown in the proof of Lemma 5.4, we have that with probability
greater than ,

so that by Cauchy–Schwarz:
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Hence,

(since ). Theorem 2 now follows.
Finally, we now discuss the additional assumption on in

Theorem 2. For samples of the GP, consider partial derivatives
of this sample path for . [28, Th. 5]

states that if derivatives up to fourth order exist for
, then is almost surely continuously differentiable,

with distributed as GPs again. Moreover, there are
constants , such that

(10)

Picking , we have that
for all , so that for

, by the mean value theorem, we have
.

Also, note that .
This statement is about the joint distribution of and its

partial derivatives w.r.t. each component. For a certain event in
this sample space, all existing are continuous, and the
complement of (10) holds for all . [28, Th. 5], together with the
union bound, implies that this event has probability .
Derivatives up to fourth order exist for the Gaussian covariance
function, and for Matérn kernels with [31].

APPENDIX II
REGRET BOUND FOR THE TARGET FUNCTION IN RKHS

In this section, we detail a proof of Theorem 3. Recall that in
this setting, we do not know the generator of the target function
, but only a bound on its RKHS norm .
Recall the posterior mean function and posterior co-

variance function from Section II, conditioned on data
, . It is easy to see that the RKHS norm

corresponding to is given by

This implies that for any , while the
RKHS inner products are different: . Since

for any by the repro-
ducing property, then

(11)

by the Cauchy–Schwarz inequality.
Compared to our other results, Theorem 3 is an agnostic state-

ment, in that the assumptions the Bayesian UCB algorithm bases
its predictions on differ from how and data are gener-
ated. First, is not drawn from a GP, but can be an arbitrary
function from . Second, while the UCBmethod assumes
that the noise is drawn independently from

, the true sequence of noise variables can be a uni-
formly bounded martingale difference sequence: for all

. All we have to do in order to lift the proof of Theorem
1 to the agnostic setting is to establish an analog to Lemma 5.1,
by way of the following concentration result.

Theorem 6: Let . Assume that the noise variables
are uniformly bounded by . Define

Then

1) Concentration of Martingales: In our analysis, we use
the following Bernstein-type concentration inequality for mar-
tingale differences, due to Freedman [32] (see also Theorem
3.15 of [33, Th. 3.15]).

Theorem 7 (Freedman): Suppose is a martin-
gale difference sequence, and is a uniform upper bound on the
steps . Let denote the sum of conditional variances:

Then, for every , ,

2) Proof of Theorem 6: We will show that

Theorem 6 then follows from (11). Recall that .
We will analyze the quantity , measuring
the error of as approximation to under the RKHS norm
of . The following lemma provides the connection with
the information gain. This lemma is important since our concen-
tration argument is an inductive argument—roughly speaking,
we condition on getting concentration in the past, in order to
achieve good concentration in the future.

Lemma 7.1: We have

Proof: We have that
. The statement follows from Lemma 5.3.

The next lemma bounds the growth of . It is formulated
in terms of normalized quantities: , ,

, . Also, to ease notation, we will use ,
as shorthand for , .

Lemma 7.2: For all ,



12 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 5, MAY 2012

Proof: If , then .
Then, , and .
Moreover, for ,

. Since
, we have

Now, , where “ ”
means that we drop determinant terms, thus concentrating on
quadratic functions. Since

, we have

with . Dropping
and changing to normalized quantities concludes the proof.

We now define a useful martingale difference sequence. First,
it is convenient to define an “escape event” as

where is the indicator function. Define the random variables
by

Now, since is a martingale difference sequence with respect
to the histories and is deterministic given ,
is a martingale difference sequence as well. Next, we show that
with high probability, the associated martingale does
not grow too large.

Lemma 7.3: Given and as defined in Theorem
6, we have

The proof is given in Section II-E in the Appendix. Equipped
with this lemma, we can prove Theorem 6.

Proof of Theorem 6: It suffices to show that the high-prob-
ability event described in Lemma 7.3 is contained in the support
of for every . We prove the latter by induction on .
By Lemma 7.2 and the definition of , we know that

. Hence, always. Now suppose
the high-probability event of Lemma 7.3 holds, in particular

. For the inductive hypothesis, assume
. Using this and Lemma 7.2:

The equality in the second step uses the inductive hypothesis.
Thus, we have shown , completing the induction.

3) Concentration: What remains to be shown is Lemma
7.3.While the step sizes are uniformly bounded, a standard
application of the Hoeffding–Azuma inequality leads to a bound
of , too large for our purpose. We use the more specific
Theorem 7 instead, which requires to control the conditional
variances rather than the marginal variances which can be much
larger.

Proof of Lemma 7.3: Let us first obtain upper bounds on
the step sizes of our martingale:

(12)

where the first inequality follows from the definition of .
Moreover, for . Therefore,

, since and is nondecreasing. Next, we
bound the sum of the conditional variances of the martingale:

In the last line, we used Lemma 7.1 with , noting that
. Since we have established that the sum

of conditional variances, , is always bounded by , we
can apply Theorem 7 with parameters , ,
and to get
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Note that our choice of satisfies

Therefore, the previous probability is bounded by ,
whereas the last inequality follows from the definition of .
With a final application of the union bound:

completing the proof of Lemma 7.3.

APPENDIX III
BOUNDS ON INFORMATION GAIN

In this section, we show how to bound , the maximum
information gain after rounds, for compact (as-
sumptions of Theorem 2) and several commonly used covari-
ance functions. In this section, we assume4 that for
all .
The plan of attack is as follows. First, we note that the argu-

ment of , is a submodular function, so can be
bounded by the value obtained by greedy maximization. Next,
we use a discretization with
with nearest neighbor distance , consider the kernel matrix

, and bound by an expression involving
the eigenvalues of this matrix, which is done by a further
relaxation of the greedy procedure. Finally, we bound this em-
pirical expression in terms of the kernel operator eigenvalues of
w.r.t. the uniform distribution on . Asymptotic expressions

for the latter are reviewed in [29], which we plug in to obtain
our results. A key step in this argument is to ensure the existence
of a discretization , for which tails of the empirical spectrum
can be bounded by tails of the process spectrum.We will invoke
the probabilistic method for that.

1) Greedy Maximization and Discretization: In this sec-
tion, we fix and assume the existence of a discretization

, on the order of , such that

(13)

We come back to the choice of below. We restrict the infor-
mation gain to subsets :

Of course, , but we can bound the slack.

Lemma 7.4: Under the assumptions of Theorem 2, the in-
formation gain is uni-
formly Lipschitz-continuous in each component .

4Without loss in generality, we use this assumption later to ensure that
. If is not constant, this is approxi-

mately true by the law of large numbers, and our result given later remains
valid.

Proof: The assumptions of Theorem 2 imply that the
kernel is continuously differentiable. The result fol-
lows from the fact that is continuously differentiable
in the kernel matrix .

Lemma 7.5: Let be a discretization of such that (13)
holds. Under the assumptions of Theorem 2, we have

Proof: Fix , and let be a max-
imizer for . Consider neighbors according to
(13), . Then,

where . By Lemma
7.4, is uniformly Lipschitz-continuous in each component,
so that

by (13) and the mean value theorem.

We concentrate on in the sequel. Let
be the kernel matrix over the entire

, and its eigendecomposition, with
and orthonormal. Here,

if , define for . Information
gain maximization over a finite can be described in terms
of a simple linear-Gaussian model over the unknown ,
with prior and likelihood potentials

with unit-norm features, .
With the following lemma, we upper-bound by way of two
relaxations.

Lemma 7.6: For any , we have

subject to , , where is
the spectrum of the kernel matrix . Here, if , then

for .
Proof: As shown byKrause and Guestrin [25], the function

is submodular. In the particular case consid-
ered here, this can be seen as follows:
, where the entropy is a (not-necessarily monotonic)

submodular function in , and since the noise is conditionally
independent given , is an additive (modular) func-
tion in . Subtracting a modular function preserves submodu-
larity; thus, is submodular. Furthermore, the information
gain is monotonic in (i.e., whenever )
[23]. Thus, we can apply the result of Nemhauser et al. [11]5

which guarantees that is upper-bounded by times
the value the greedy maximization algorithm attains. The latter
chooses features of the form in each
round, . We upper-bound the greedy maximum once
more by relaxing these constraints to only. In the re-
mainder of the proof, we concentrate on this relaxed greedy pro-
cedure. Suppose that up to round , it chose . The

5While the result of Nemhauser et al. [11] is stated in terms of finite sets,
it extends to infinite sets as long as the greedy selection can be implemented
efficiently.
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posterior has inverse covariance matrix
, , and the greedy

procedure selects so to maximize the variance : the
eigenvector corresponding to ’s largest eigenvalue (by the
Rayleigh–Ritz theorem). Since , then .
Moreover, if all , , have been chosen among ’s
columns, then by the inverse covariance expression just given,

and have the same eigenvectors, so that is a
column of as well. For example, if , then com-
paring and , all eigenvalues other than the th remain
the same, while the latter is shrunk. Therefore, after rounds
of the relaxed greedy procedure, ,

: at most the leading eigenvectors of can
have been selected (possibly multiple times). If denotes the
number that the th column of has been selected, we obtain
the theorem statement by a final bounding step.

2) From Empirical to Process Eigenvalues: The final step
will be to relate the empirical spectrum to the kernel op-
erator spectrum. Since in The-
orem 7.6, we will mainly be interested in relating the tail sums
of the spectra. Let be the uniform dis-
tribution on , , and assume that is con-
tinuous. Note that by our assumption

, so that is Hilbert–Schmidt on . Then,
Mercer’s theorem [22] states that the corresponding kernel op-
erator has a discrete eigenspectrum , and

where and .
Moreover, , and the expansion of converges
absolutely and uniformly on . Note that

. In order to
proceed from Theorem 7.6, we have to pick a discretization
for which (13) holds, and for which is not much larger
than . With the following lemma, we determine sizes
for which such discretizations exist.

Lemma 7.7: Fix , and . There exists a
discretization of size

which fulfills the following requirements.
1) -denseness: For any , there exists such
that .

2) If , then for any
:

Proof: First, if we draw samples indepen-
dently at random, then is -dense with probability

. Namely, cover with hy-
percubes of sidelength , within which the maximum Eu-
clidean distance is . The probability of not hitting at least one
cell is upper-bounded by . Since

, this is upper-bounded by if .

Now, let . Shawe-Taylor et al. [34] show
that . If is the event , then

. Since in any case, we
have that . By the
probabilistic method, there must exist some for which
and the latter inequality hold.

The following lemma, the equivalent of Theorem 4 in the
context here, is a direct consequence of Lemma 7.6.

Lemma 7.8: Let be some discretization of ,
. Then, for any :

Proof: We split the right-hand side in Lemma 7.6 at
. Let . For ,

, since . For ,
.

The following theorem describes our “recipe” for obtaining
bounds on for a particular kernel , given that tail bounds on

are known.

Theorem 8: Suppose that is compact, and
is a covariance function for which the additional assumption of
Theorem 2 holds. Moreover, let , where

is the operator spectrum of with respect to the uniform
distribution over . Pick , and let
with . Then, the following bound holds
true:

for any .
Proof: Let and . Lemma 7.7

provides the existence of a discretization of size which
is -dense, and for which . Since

, then .
The statement follows by using Lemma 7.8 with these bounds,
and finally employing Lemma 7.5.

3) Proof of Theorem 5: Here, we instantiate Theorem 8
in order to obtain bounds on for Squared Exponential and
Matérn kernels, results which are summarized in Theorem 5.

Squared Exponential Kernel: For the Squared Exponential
kernel , is given by Seeger et al. [29]. While was
Gaussian there, the same decay rate holds for w.r.t. uniform

, while constants might change. In hindsight, it turns out
that is the optimal choice for the discretization size,
rendering the second term in Theorem 5 to be , which is
subdominant and will be neglected in the sequel. We have that

with . Following their analysis,
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where , . Therefore,
, .

We have to pick such that is not much larger than
. Suppose that , so that
, . The bound becomes

with . The first part dominates, so that
and .

This should be compared with
given by Seeger et al. [29], where are drawn independently
from a Gaussian base distribution. At least restricted to a com-
pact set , we obtain the same expression to leading order for

.
Matérn Kernels: For Matérn kernels with rough-

ness parameter , is given by Seeger et al. [29]
for the uniform base distribution on . Namely,

for almost all , and
. To match terms in the bound, we choose

( chosen next), so that the
bound becomes

with . For , we
obtain that the maximum over is

. Finally, we choose
to match this term with . Plug-

ging this in, we have , .
Together with Theorem 2 (for ), we have that

(suppressing factors): for any and
any dimension , the - algorithm is guaranteed to be
no-regret in this case with arbitrarily high probability.
How does this bound compare to the bound on

given by Seeger et al. [29]? Here,
, while

.
Linear Kernel: For linear kernels ,
with , we can bound directly. Let

with all . Now,

with , by Hadamard’s inequality.
The largest eigenvalue of is , so that

and .
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