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Abstract

Performing efficient inference on high dimensional discrete Bayesian Networks (BNs)
is challenging. When using exact inference methods the space complexity can grow expo-
nentially with the tree-width, thus making computation intractable. This paper presents
a general purpose approximate inference algorithm, based on a new region belief approxi-
mation method, called Triplet Region Construction (TRC). TRC reduces the cluster space
complexity for factorized models from worst-case exponential to polynomial by perform-
ing graph factorization and producing clusters of limited size. Unlike previous generations
of region-based algorithms, TRC is guaranteed to converge and effectively addresses the
region choice problem that bedevils other region-based algorithms used for BN inference.
Our experiments demonstrate that it also achieves significantly more accurate results than
competing algorithms.

1. Introduction

Performing efficient inference to compute posterior densities on high dimensional Bayesian
Network (BN) models, containing many densely connected variables, is a major compu-
tational challenge. Discovering the global optimum is known to be NP-hard (Dagum &
Luby, 1993; Cooper, 1990) for exact and approximate inference algorithms, although recent
work by (Weller & Jebara, 2013; Jebara, 2014) showed that polynomial time discovery is
possible for some models. When using exact methods, such as the Junction Tree (JT) algo-
rithm (Darwiche, 2009; Koller & Friedman, 2009), space complexity can grow exponentially
with the tree-width (Murphy, 2012; Koller & Friedman, 2009) and the computation can
quickly become intractable. Instead, we must rely on approximate inference. There are
two categories of well known approaches for reducing the space complexity and performing
efficient inference on BNs. These are a) variational inference based methods and b) the
Bethe/Kikuchi free energy based approximation. We first briefly review these methods and
illustrate their limitations when applied to BN inference.

©2020 AI Access Foundation. All rights reserved.



Lin, Neil, & Fenton

Variational Inference (VI) (Jordan et al., 1998; Wainwright & Jordan, 2008; Beal,
2003) is a flexible deterministic framework to use factorized and tractable distributions to
approximate Bayesian posterior densities (when they are analytically intractable) and can
also provide a lower bound of the log evidence of the model when given data. VI can be
applied to general models belonging to the conjugate exponential family by using the varia-
tional message passing (VMP) algorithm (Winn & Bishop, 2005). The VMP and its recent
derivative distributed-VMP (Masegosa et al., 2016) localize the computations to maximize
the lower bound of the log evidence (of the model) using message passing between the par-
ent and child nodes in a BN. This means it can be applied to large networks and massive
data sets. Alternatively, the lower bound of the log evidence can also be optimized using
the gradient-based approach, such as that used by stochastic variational inference (SVI)
(Hoffman et al., 2013). Both VMP and SVI suit Bayesian model selection tasks. However,
the approximation accuracy of the posterior densities using these approaches relies heavily
on how the posterior distributions over the latent variables are factorized. This factor-
ization usually assumes a simple form, such as the mean-field (Jordan et al., 1998) which
uses a fully factorized form of the latent variables. Despite this, the VI based methods are
very efficient for the model selection task, even if the posterior densities are not necessarily
well approximated (Hoffman & Blei, 2015; Blei, Kucukelbir, & McAuliffe, 2017). Certain
improvements are available, such as the structured VMP (Winn, 2004) and structured SVI
(Hoffman & Blei, 2015) which factorize the posterior distributions over the latent variables
into clusters. In this way, dependency structures are retained and approximation accuracy
is increased; however, a by-product is that they introduce more complex optimization prob-
lems that are difficult to solve (Blei et al., 2017).

Bethe/Kikuchi approximation: An alternative variational method to the previous VI
based algorithms is the belief propagation algorithm (Yedidia et al., 2005; Heskes, 2006).
Belief Propagation (BP) is an efficient algorithm to perform inference over the factor graph
of the original model that can be either directed or undirected. BP is exact if the factor
graph is a tree but only approximate if the factor graph contains cycles, and the approxi-
mation accuracy of the posterior marginal cannot be generally guaranteed. Yedidia et al.
(2005) showed that the convergence of BP corresponds to the stationary points of the Bethe
approximation of the free energy of a factor graph. Generalized BP (GBP) is a generalised
form of the BP algorithm that uses the region graph instead of the factor graph and can
be more accurate than the BP algorithm. The convergence of the GBP algorithm corre-
sponds to the minimization of the Kikuchi cluster free energy (Kikuchi approximation),
which generalizes the Bethe approximation by including higher-order interactions.

Compared to the VI based approaches, Kikuchi approximation requires only local con-
sistency of the node beliefs hence does not ensure providing bounds of the free energy
function (Beal, 2003; Yedidia et al., 2005) but can be more accurate and flexible to approx-
imate the posterior densities. However, using the Kikuchi approximation involves choosing
appropriate regions to construct a region graph, which is left to the model designer with
only ad-hoc guidance available in the literature. Despite the success of existing region based
approaches to approximate the posterior densities of undirected graphical models, such as
the spin class/grid models (Yedidia et al., 2005), applying the region based approach for
BN inference involves overcoming several limitations in existing algorithms. Most of these
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relate to the question of how best to build a region graph that is both an efficient and
accurate approximation.

Existing algorithms build a region graph based on either structural information (Dechter
& Rish, 1997; Mateescu et al., 2010; Gelfand & Welling, 2012; Welling et al., 2005) of the
graph model or by evaluating a cost function over a set of candidate regions generated by a
greedy (or a guided) search (Komodakis & Paragios, 2008; Forouzan & Ihler, 2015; Sontag
et al., 2008; Welling, 2004). However, the former approach does not ensure accuracy when
given limited region size, because it ignores factor information in the model completely,
and thus can incur locally very poor approximation (we call this the max variability prob-
lem). The latter approach is computationally expensive and the performance cannot be
guaranteed.

We present a general inference algorithm called Triplet Region Construction (TRC) that
overcomes these limitations, enabling us to perform robust inference on high tree width
BNs. The TRC algorithm represents a major breakthrough, since the cluster size for high
tree-width models is reduced from worst-case exponential to polynomial whilst ensuring
accuracy.

Our approach involves four key novel contributions:

1. Applies to directed graphs: Whereas region-graph based belief propagation is typ-
ically applied to undirected graphical models with ad-hoc guidance on region selection,
TRC is the first algorithm that can be applied systematically to directed graph models
(sections 3 and 4).

2. Optimum and localized region selection: We present a region identification
algorithm, called Outer Region Identification (ORI), that combines both structural
and factor information to incorporate necessary local factor interactions as an effective
way of identifying the outer regions in the region graph (sections 3). In contrast to
function value based algorithms, ORI selects outer regions in an entirely localized way
without the need to run message passing for scoring a cost function. ORI satisfies the
perfect correlation property and the maxent-normal property (Yedidia et al., 2005;
Gelfand & Welling, 2012), both desirable pre-conditions that improve accuracy.

3. Improved numerical stability: region-based belief propagation algorithms suf-
fer from unavoidable numerical instability problems when performing inference on
high tree-width factorized models. We propose a Region Graph Binary Factoriza-
tion (RGBF) algorithm to decompose the region graph into an equivalent, but more
numerically stable, alternative. We show that RGBF improves the robustness of
region-based belief propagation algorithms (section 4).

4. Improved accuracy: The TRC algorithm, which combines the above ORI and
RGBF algorithms, is guaranteed to converge. It achieves more accurate results when
we compare the singleton and higher ordered marginal distributions of variables with
those produced by other approximate algorithms when using bounded cluster size
(section 5). TRC can also be extended to use larger cluster sizes for greater accu-
racy. Moreover, competing algorithms normally ignore the max variability problem
associated with the approximation; this is simply because when results are reported
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they are averaged and so inaccuracy is masked. We show this problem cannot be ig-
nored, and argue that TRC effectively tackles the max variability problem better than
competing approaches. In general, because TRC generates more regions than other
algorithms to ensure the perfect correlation property is satisfied, its efficiency can be
worse than other algorithms; however, if we relax the perfect correlation property,
TRC can achieve similar efficiency as other algorithms.

The paper is structured as follows:
In section 2 we provide the necessary definitions and background for region-based ap-

proximation methods for BN models and explain why the previous region-based algorithms
cannot effectively deal with the high tree-width BN inference. In section 3 we describe
our region choice algorithm, which solves the complex region choice problem by using re-
gion graph based approximation for directed models. In section 4 we present our proposed
TRC algorithm and explain how it can be extended using larger cluster size to obtain bet-
ter accuracy. In section 5 we present experiments where we compare TRC with VI based
algorithms and other region-based algorithms using challenging and high tree-width (also
high dimensional) BNs as test cases. Section 6 concludes the paper and discusses possible
extensions of the TRC algorithm.

2. Background and Definitions

This section provides necessary definitions, notation and background for the paper. In
section 2.1 we introduce BNs and the region graph related background. In section 2.2 we
review existing region graph based algorithms and illustrate their limitations. Section 2.3
introduces the complete Directed Acyclic Graph (DAG) and its equivalent binary factored
model for which we will use the region-based approximation to perform inference. The
rationale for using such a binary factored model is that it enables us to construct the region
graph automatically and efficiently.

2.1 Converting BN to A Region Graph and Performing Inference
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X1X2

X4

E1X3
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Figure 1: (a) a BN G; (b) moral graph M [G] of (a); (c) factor graph of (a), with factor
φX1 and φX1X2 multiplied into φX1X2X3 ; (d) region graph G of (c) with counting
numbers listed beside each region.

Bayesian Network (BN): A BN (such as that shown in Fig. 1 (a)) is a Directed Acyclic
Graph (DAG), with nodes X1, ..., Xn representing random variables, together with a Con-
ditional Probability Distribution (CPD) for each node conditional on its parent nodes, if
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present. The absence of arcs between nodes encodes the Conditional Independence (CI)
(Murphy, 2012) assumptions between variables when no evidence is entered in the BN. The
BN represents the joint distribution, p of the random variables X1, ..., Xn as the product
of its CPDs. Without using any CI assumptions, we can use the chain rule to factorize the
joint distribution, as shown in Eq. (1).

p(X1, X2, ..., Xn) = p(X1)
n∏
i=2

p(Xi|X1, ..., Xi−1). (1)

With CI assumptions this simplifies to Eq. (2)

p(X1, ..., Xn) =
n∏
i=1

p(Xi|Xpa(i)), (2)

where pa(i) represents the parents of node i.

Next we introduce some fundamental definitions and the necessary notation related to
region graphs.

Moral Graph: the BN needs to be converted into its equivalent Markov Networks 1 (MN)
form. This is achieved by constructing the moral graph of a BN, G, denoted M [G], where
M [G] is an undirected graph that contains an edge (Xi, Xj) if there is an edge between Xi

and Xj in G, or if Xi and Xj are parents of the same child node. For example, Fig. 1 (b)
is the moral graph M [G] associated with the BN G of Fig. 1 (a). The added edge (such
as the one linking X3 and E1 in Fig. 1 (b)) between the parents that share the same child
node is called a moral edge.

Factor graph: A factor graph (shown in Fig. 1 (c)) is a bipartite graph representing the
factorization of a function encoded by the Markov network, with a factor node per factor
of the BN, a variable node per variable of the BN and an edge connecting a factor node to
a variable node. The factor size is the number of variables included in a factor.

Cluster graph and cluster : A cluster graph for a set of factors Φ over variables V is an
undirected graph, each of whose nodes i is associated with a subset of variables Ci ∈ V ,
where Ci is called a cluster. Each factor φ ∈ Φ is associated with a cluster. Each edge
between a pair of clusters Ci and Cj is associated with a sepset Si,j ∈ Ci ∩Cj . The cluster
size is the number of variables it contains. The cluster space is a product of cardinalities
of all variables that belong to the cluster (Koller & Friedman, 2009).

Tree-width (t.w.): This is one less than the maximum cluster size produced using exact
methods, such as Junction Tree (Lauritzen & Spiegelhalter, 1988).

We also need to convert the BN’s CPDs into factors, such that: φ{i}∪{pa(i)}(Xi, X{pa(i)}) =
p(Xi|X{pa(i)}). However, connecting parent nodes Xi and Xj via a moral edge assumes that

1. A Markov Network is a set of random variables having a Markov property described by an undirected
graph.
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Xi and Xj are not conditionally independent and, if we do so, we may lose CI information
(Murphy, 2012) contained in the BN (i.e. I(M [G]) ⊆ I(G), where I(·) is the set of all CI
information encoded by the graph).

We can now define region and region graph:

Definition 1: A region r is a set of variable nodes, Vr, and factor nodes, Ar, in a factor
graph, such that if a factor node a is in Ar, all variable nodes linked to a are in Vr. The
region size is the number of variables it contains.

Definition 2: A region graph, G, is a directed graph G = (V, E ,L) in which each vertex
v ∈ V, corresponding to a region r, is labelled with a subset of nodes in a factor graph,
using label l(v) ∈ L. We say vp is a parent of vc if vp → vc is a directed edge e ∈ E , and
vp → vc exists only if the label of vc is a subset of the label of vp. We say rp is a parent
region of rc if vp → vc. If there is a directed path from ra to rd, we say ra is an ancestor
region of rd. Each region r is associated with a counting number cr = 1−

∑
r′∈Ancestor(r)

cr′ ,

given Ancestor(r) are all ancestor regions of r and c′r is the number of degrees of freedom
for the region r′.

Let child(r) denote all child regions of region r and parent(r) denote all parent regions
of region r. Regions with no parents (and hence which have no incoming region edges) are
called outer regions. All others are called inner regions. One classical method to construct
a region graph is the Cluster Variation Method (CVM) (Yedidia et al., 2005). It can be
used to produce a valid region graph given the outer regions are readily identified by other
algorithms. CVM iterates over each level to generate the regions for subsequent levels using
intersections between the regions declared at the previous level to define new regions at the
current level. Fig. 1 (d) is a CVM region graph using only factors as outer regions. The
accuracy of CVM cannot be guaranteed because the choice for the outer regions are left to
the model designer.

The convergence of any region-graph based inference algorithm corresponds to the min-
imization of the Kikuchi cluster free energy FG (Yedidia et al., 2005),

FG =
∑
r∈R

cr{
∑
xr

br(xr)Er(xr) +
∑
xr

br(xr) log br(xr)}+ LG , (3)

where Er(xr) is an energy term associated with each region and is computed using the
factors φ{i}∪{pa(i)}(Xi, X{pa(i)}). The region belief term br, is an estimated distribution of
the true distribution over a region (Yedidia et al., 2005).

The region-graph based approximation minimizes FG over the locally consistent polytope
local[G] (Murphy, 2012), which is a set of pseudo-marginal distributions over the variables
in each region. This local consistency neglects higher ordered terms of consistencies, and
hence achieves polynomial time complexity, provided that all regions are calibrated (Koller
& Friedman, 2009).

Minimization of FG is equivalent to the problem of constructing a fixed point for the
constrained region belief equations. Hence, we need to consider the Lagrangian term LG ,
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LG =
∑
r∈R

∑
c∈child(r)

∑
xc

λr,c(xc){
∑
x∈r\c

br(xr)− bc(xc)}

+
∑
r∈R

γr(
∑
xr

br(xr)− 1), (4)

which incorporates two kinds of constraints: the normalization constraint for each region,∑
xr
br(xr) = 1 and the running intersection constraints between parent and child region

beliefs,
∑

x∈r\c br(xr) = bc(xc) (c ∈ child(r)). Solving for Lagrangian multipliers λ and γ,
in Eq. (4), corresponds to an iterative message passing algorithm, such as GBP. We define a
constrained region based free energy to be an approximate region based free energy subject
to the constraints in Eq. (4).

The Kikuchi region based entropy, HG , is defined as.

HG =
∑
r∈R

crHr(br) = −
∑
r∈R

cr
∑
xr

br(xr) ln br(xr), (5)

HG can be obtained when all beliefs are calibrated after the GBP update. Likewise,
the constrained region based entropy is an approximate region based entropy subject to the
constraints in Eq. (4).

In addition to GBP there are other region based message-passing algorithms (Meltzer
et al., 2009; Yuille, 2002). One of these, called the Concave-Convex Procedure (CCCP)
(Yuille, 2002; Yuille & Rangarajan, 2003) is particularly powerful since it guarantees con-
vergence where GBP does not. However, both GBP and CCCP can be numerically unstable
for large models. In general, GBP is more efficient than CCCP since CCCP runs using an
outer-inner double loop and each inner loop involves recursively updating the Lagrangian
multipliers. For simplicity, we present the CCCP updating equation in Appendix B.3.

2.2 Region Choice and The Limitations of Existing Approaches

Region graph based approximation reduces the maximum cluster size by constructing vari-
ational regions of limited size. However, the quality of the results produced by any region
graph based algorithm is limited by the regions chosen, especially choices made about outer
regions. We therefore introduce two desired properties that are relevant to region-based
entropy and that subsequently influence region choices:

Definition 3: Perfect-correlation property. This property requires the sum of all re-
gions’ counting numbers to equal one,

∑
R cR = 1.

This property is not necessary for all classes of models, but it does ensure that the
region-based entropy is correct if all variables are perfectly correlated.

Definition 4: Maxent-normal property. This property holds if a constrained region-
based free energy approximation is valid and the corresponding constrained region-based
entropy, HG , achieves its maximum when all the beliefs are uniform.
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These two properties ensure the region based entropy is correct when all variables are
perfectly correlated or all beliefs are uniform.

All variables are perfectly correlated, in the global joint distribution, if all variables can
only be in the same state with equal probability (Yedidia et al., 2005). For example, in
Fig. 1 (a) (assuming variables are all binary) the BN has all variables perfectly correlated if

node X1 has a uniform distribution and other variables have diagonal CPDs, i.e.

(
1 0
0 1

)
for the CPD X2|X1 and

(
1 0 1 0
0 1 0 1

)
for the other CPDs. Given this, there are only

two possible joint states (all variables will have state zero or one), and they have equal
probability. The joint entropy of this example model is ln(2). We can verify this using
region-based approximation and for this model every region will have entropy ln(2), which
implies that the sum of the counting numbers over all regions must be one. If it is not
equal to one the region based entropies must be incorrect. Similarly, we can verify the
maxent-normal property for a region based approximation by setting all CPDs to uniform
distributions and then compare the region based entropy to the true entropy, N × ln(2)
(where N is the number of variables in the model). Again, if it is not N × ln(2) then it is
not Maxent-normal.

Next, we review existing approaches that attempt to produce better region choice and
describe their limitations with respect to the above properties. We classify these algorithms,
with respect to how regions are chosen, as structural information based and function value
based. Here we concentrate on comparing our algorithm against others that have used
marginal inference and published results in marginal form. There is also much relevant
research on MAP inference (Weiss, Yanover, & Meltzer, 2007; Batra, Nowozin, & Kohli,
2011), which is clearly related but is outside the scope of our and comparable algorithms.

Structural information based algorithms include:

� Iterative Join Graph Propagation (IJGP) (Mateescu et al., 2010) and its extensions.
IJGP uses a bounded cluster size parameter (called i-bound) and connects all factor
clusters in a loopy join graph. Accuracy in IJGP is increased by using higher i-bound
values. There are different ways to define the join graph used in IJGP, including Mini
Bucket Elimination (MB) (Dechter & Rish, 1997; Rollon & Dechter, 2010) and the
weighted MB (WMB) approaches (Liu & Ihler, 2011) where the factors are grouped
into partitions, and the i-bound parameter is used to control space complexity in each
partition. However, accuracy is not guaranteed when using small i-bound parameter
values. IJGP also ignores the counting number assignments with respect to the perfect
correlation and maxent normal properties.

� Loop Structured Region Graph (LSRG) algorithm (Welling et al., 2005; Gelfand &
Welling, 2012) and its extensions produces a three-level region graph that meets a
number of pragmatic conditions. The first condition is to discover Fundamental Cycle
Bases (FCBs) of G, such that each cycle has some edge that do not appear in any cycle
preceding it in some predefined order. Given this, the FCB is tree-exact with respect
to all spanning trees of G. If the FCBs also satisfy the Tree-Robustness condition, the
inference result will be more accurate. The FCB approach can satisfy both desired
properties provided that the fundamental cycles are correctly discovered, but there
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are possibly many fundamental cycles to consider. Also, under a bounded cluster size,
i.e. three, the use of structural information based approaches will be insufficient to
choose regions. For example, in Fig. 1 (a) if we need to incorporate the pair-wise
information of {E1, X3}, we would add either {X2, E1, X3} or {X1, E1, X3} by using
FCB. However, these two regions are at symmetric positions in the moral graph in
Fig. 1 (b) and it is not possible to determine which one should be chosen using only
structural information.

Function value based approaches include:

� Cluster pursuit (Komodakis & Paragios, 2008; Sontag et al., 2008; Forouzan & Ihler,
2015). This is a class of score based algorithms that test the potential improvement
of a defined cost function (usually upper bound of the partition function) by greedy
or guided searching of the new regions. These methods involve region inference and
message scheduling during the region selection process and can be computationally
expensive.

� Region pursuit (Welling, 2004). This also requires region inference to test the im-
provement, in terms of free energy, by adding regions. Again, the difficulty in using
function value to choose regions is that it may be computationally expensive when
a large number of candidate regions need to be generated and tested. Also, which
regions should be tested next is undefined.

Both the above function based methods offer no control of the counting number to guar-
antee the perfect correlation and maxent normal properties are satisfied. Hence, the region
based entropy cannot be guaranteed to be correct under these conditions. The literature
also classifies the region based algorithms as either top-down (IJGP and its extensions) or
bottom-up (FCB, cluster pursuit) based on how regions are constructed. Top-down algo-
rithms start with exact methods and split large regions into smaller ones and bottom-up
algorithms start with small regions and then group them into larger ones. Both of them
cannot usually ensure desired region graph properties.

In addition to the region choice problem associated with other algorithms, there are also
numerical issues that can hinder the convergence of message passing for high dimensional
models. Region graphs generated for large and complex models often involve multiple
connections between regions located at different levels. Because one parent can have a large
number of children in a model, the same variable will appear in many different regions across
different region graph levels. This gives rise to a large counting number and multiple cycles
associated with a single region, leading to under/overflows during the multiplication of
multiple messages. This numerical instability can be encountered during message updating
in both GBP and CCCP, hence preventing convergence for region graph based algorithms.
We address a solution to the region choice problem in section 3 and the numerical instability
in section 4.

2.3 Defining The Binary Factorized Model

Apart from its graphical representation, the most obvious attraction of using a BN is the
fact that its joint probability distribution is the simplified factorization Eq. (2), rather
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Figure 2: BF process of a 5-dimensional complete DAG G to its binary factorized model G′

than the normal Eq. (1). However, in the ’worst case’ there may be no CI assumptions
in the BN, and so Eq. (1) and (2) are equal. In other words, the BN graph is a complete
DAG with n nodes, where every pair of nodes is connected by a directed edge. Performing
inference on such a complete BN graph represents the worst case space complexity for exact
algorithms and is usually intractable.

Given our inference task is to compute marginals, our proposed region-graph based
algorithm will not operate on the original BN directly but requires that the BN be pre-
processed using a Binary Factorization (BF) algorithm first. This converts the original BN
G into a factored BN G′, where each node has at most two parent nodes. The conversion
will not change any ordered exact joint distributions for the original nodes in G and G′.
The rationale for using such a binary factorized BN is that it helps generate a region graph
involving only triplet outer regions so the resulting region graph can be more convenient to
scale up and satisfy the desired region graph properties.

Our BF algorithm is different from other forms of BF algorithm in (Wainwright &
Jordan, 2008); it extends the BF algorithm in (Neil et al., 2012; AgenaRisk, 2020) to
accommodate discrete nodes. The core idea of our BF algorithm is to binary factorize the
CPD defined on each node. In a BN any CPD containing more than three discrete parent
nodes can be factorized using the method (by incrementally adding intermediate variables
to combine a pair of parent nodes’ CPDs each time). In this way each node in the resulting
factorized BN has at most two parent nodes, and the maximum node indegrees are therefore
reduced by adding intermediate nodes.

We show the BF process for a 5-dimensional complete DAG graph in Fig. 2. The Binary
Factorized Graph (BFG) is a BN that is a BF version of the complete DAG. For example,
the graph G′ in Fig. 2 is a BFG.

In what follows we show that such a BFG model is uniquely defined if the parent child
node ordering is defined by Theorem 1. We make use of a well-known result of graph theory
(which can be proved by induction on the number of nodes) that asserts that any complete
DAG of n nodes has a unique Hamiltonian path, and is hence uniquely defined up to a
permutation of the n nodes. Specifically,

Theorem 1: In any complete DAG of n nodes there is exactly one node with indegree
n − 1, exactly one node with indegree n − 2, . . . , exactly one node with indegree one, and
exactly one node with indegree zero.
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Theorem 1 ensures the uniqueness of the chain rule factorization (Eq. (1)) for a com-
plete DAG of n nodes subject to the order in which, for each i = 1, . . . , n node Xi is the
(unique) node with indegree i−1. In what follows we will assume this ordering of the nodes
in the complete graph.

Proposition 1: A BN G can be transformed into a binary factorized BN G′ whose
nodes are a superset of G and which is ’equivalent’ to G such that, for each node Xi in G,
the CPD of Xi in G′ is equivalent2 after factorization to the CPD of Xi in G.

The proof of Proposition 1 is given in Appendix A.1. Applying the BF process to an n
node complete DAG results in a BFG model with κn nodes where κn = n+(n−2)(n−3)/2 =
(n2 − 3n+ 6)/2.

We will use κn to denote the number of variables in a BFG throughout the rest of the
paper. In a BFG all original nodes in an n-dimensional DAG at the left most path labeled
as Xi, i = 1, ..., n, and the rest of the nodes are intermediate nodes.

We can transform any BN into a complete DAG by adding arcs, and then for every
node Xi for which parents are added, the CPD of Xi in the complete DAG is defined as
p′(Xi|X{pa(i)}) = p(Xi|X{pa(i)}) where p(Xi|X{pa(i)}) is the CPD of Xi in the original BN.
We can then binary factorize the complete DAG to obtain its BFG.

However, in a complete DAG the indegrees of each node is known (Theorem 1). For a
BN that is not a complete DAG this conversion requires the BN nodes to be ordered, so
that the indegree of each node can be determined. Here we present the detailed steps to
convert a BN to a BFG.

(1) Triangulate the graph 3 M [G] to obtain a triangulated graph GT and a clique tree CT ,
and obtain an ordering ≺ of the cliques in an ancestor-descendent way, such that the
clique Ci is ordered before Cj if the variables in Ci are ancestors of the variables in Cj .

(2) Using the order ≺ to define a valid parent-child ordering πG =: {X1 →, ...,→ Xn} for
the n original variables in G, where for any Xj that is the successor to Xi (i, j ∈ n),
Xj /∈ Xpa(i). The ordering πG uniquely define the indegrees of each original node.

(3) Add edges to G following the ordering πG, i.e., each node links to its successors.

(4) Binary factorize G to obtain its BFG G′.

(5) Define the CPD for each original node Xi (Xi ∈ G) in the BFG by reusing the CPD
from G and replicating Xi or Xpa(i) (Xpa(i) ∈ G) via intermediate nodes in the specific
path connecting Xi and Xpa(i).

In step (1) nodes in each clique are ancestor-descendent ordered. If the nodes in a clique
are ordered as neighbours in πG the optimum regions can be obtained more efficiently in
the corresponding BFG, otherwise more regions will be created.

2. Equivalent means the original CPD for node Xi in G can be rebuilt by the new CPDs for Xi and its
associated intermediate nodes in G′. So any ordered exact joint distributions are the same between G
and G′.

3. An undirected graph G is called triangulated if every cycle of length strictly greater than 3 possesses a
chord.
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Figure 3: (a) moral graph M [G] of the Asia BN G; (b) triangulated graph (with the parent-
child directions preserved) of M [G]. The dashed lines are moral or chordal edges;
(c) κ8 BFG G′ of G with the original nodes lie on the leftmost path and the
replicated nodes labeled the same with the original nodes.

Step (1) ensures M [G] is triangulated (Golumbic, 2004; Koller & Friedman, 2009) so
large cycles in M [G] can be split into triplet cycles. In practice, we can bypass step (3)
given the BFG structure in step (4) will be determined once the node ordering in step (2)
is defined. To reuse the CPD for Xi from G the parent nodes Xpa(i) in G′ must be the
same as those in G. This is achieved by replicating the original variables via intermediate
variables in G′ if Xpa(i) in G and G′ differ.

As an example, consider the well-known Asia BN G whose moral graph is shown in
Fig. 3 (a) and whose triangulated graph is shown in Fig. 3 (b). The associated BFG
in Fig. 3 (c) shows intermediate nodes (in grey) and original node replicas. All original
nodes lie on the leftmost path of the BFG structure, with a valid node ordering defined as
πG =: {a → t → s → l → b → e → d → x} (discussion of a different order is given in
Appendix C.2). The node replicas are those variables with the same label as the original
nodes but which do not lie on the left hand side of the model. The node replicas have CPDs
that ensure consistency e.g. p(t|s, t) = p(t). The Ej , j = 1...9 nodes are intermediate nodes
that are not replicas and have uniform CPDs.

The triangulated graph in (b) shows that large cycle in M [G] can be split into triplet
cycles. Using the BFG G′ (defined by πG) we can verify all moral and chordal edges in (b)
correspond to moral edges in (c), so the triplet cycles in (b) are contained in the BFG’s
moral graph M [G′]. Hence M [G′] contains more sufficient triplet cycles than M [G], i.e.,
M [G] in (a) does not contain {s, l, b}. When given a bounded cluster size three we can
benefit from using M [G′] rather than M [G] to obtain better approximate accuracy.

However, if the triangulated graph GT is not a planar graph not all triplet cycles in
GT are contained in M [G′]. We will only select triplet cycles by following M [G′], because
selecting all triplet cycles in GT can even distort the approximation (as shown in section
3.3).

It is possible that multiple node orderings are valid, as long as they do not violate the
conversion step (2). Different valid orderings will, of course, result in different BFGs, but
they will not change the parent-child node relationships in BN G. So, despite using different
BFGs, the parent-child node relationships can still be maintained in the BFG, but with a
different configuration of node replicas. We can still obtain the same outer regions despite
using different BFGs (as shown in section 3.4).

242



Triplet Region Construction

A κn BFG has reduced node indegree but the tree-width and the dimensionality of
the original nodes remain the same as the n-dimensional complete DAG. So the space
complexity of the BFG remains unchanged and the original high dimensional BN inference
problem remains high dimensional. Since a BN’s (tree-width+1) is greater than or equal to
the maximum factor size, to reduce space complexity we can always restrict the maximum
cluster size, bound it to the maximum factor size and find the optimum region graph based
approximation. Next, we can increase the maximum cluster size subject to the memory
constraint to improve the accuracy.

In addition, if a BN is already a binary factorized model the interaction information
between the original nodes will be preserved in the BFG. Otherwise, the interaction in-
formation in the BFG will differ from the BN because we have binary factorized the BN
and added intermediate nodes. The interaction change does not mean we lose information,
because both the BN and the BFG have the same ground truth over the original nodes’
marginals. However, there is a trade-off between the interaction change and the region
identification efficiency. It may be less preferable for an interaction change when the opti-
mum regions are identified easily in the BN. However, large, complex models will benefit
from interaction change in our method as the region graph is built automatically and hence
more efficiently (we show the interaction change comparisons for approximation quality in
section 5.2).

Specifically, we gain crucial benefits when using a BFG model:

� It reduces the maximum node indegree and this allows our region-based algorithm
to build regions efficiently involving only triplets, whilst other algorithms might have
more candidate regions to consider when the node indegree increases (shown in section
3.3 and also by experiments in section 5);

� The triplet regions can be constructed more effectively and automatically in the BFG,
as the moralized graph of a BN may contain fewer triplet cycles than its BFG (shown
in Fig. 3 and section 5.2). This also helps scale up to using higher-ordered region
sizes by merging smaller regions (shown in section 4.1).

� Given the BFG is uniquely defined it ensures that our corresponding region graph
satisfies desirable properties, which are not guaranteed by other algorithms (shown in
section 4.1).

3. Outer Region Identification

Our TRC algorithm uses an Outer Region Identification (ORI) algorithm and its efficiency
optimization to identify outer regions, and the rest of the regions are generated by the
CVM algorithm. ORI automatically identifies and adds outer regions to improve accuracy,
while candidate regions that are not effective are removed. ORI is a two-stage region
selection procedure. It uses conditional entropy to derive a structural property to directly
select regions at the first stage. Then, at the second stage, we use each candidate region’s
factor information to select from those competing regions should they satisfy the same sub-
structural property. All candidate regions identified as redundant regions are then removed
from the region graph.
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Section 3.1 introduces the maximally exhaustive property for adding candidate regions.
Section 3.2 and 3.3 describe how redundant regions are identified for removal. Section 3.4
describes using different BFGs to obtain the same outer regions. Section 3.5 concludes the
ORI algorithm.

3.1 Adding Interaction Triplets

Because all BNs are a subset of complete DAGs, the BNs factorized by the BF algorithm
are also a subset of BFGs, i.e., the BFG contains more variables, but the ground truth of
the original nodes’ marginals is the same as the original BN. Hence, our ORI algorithm is
established on the BFG model and can, therefore, be applied to all BNs. We can include
all triplet factors as outer regions at the first level of a CVM region graph, which will then
produce a valid region graph. However, using only triplet factors as outer regions will fail
to incorporate some pair-wise information and hence will decrease accuracy. For example,
the region graph in Fig. 1 (d) failed to generate an interaction for the pair wise information
{E1, X3} so node X4 will not be approximated well because it depends on the pair wise
information {E1, X3}. This means, to incorporate all necessary pair-wise information en-
coded in the triplet factors we need to add extra outer regions to generate intersections of
pairs of outer regions to form the second level of the region graph. These intersections are
node pairs in a triplet factor. Ideally, we should include all these node pairs as second level
regions. Hence, we introduce the following maximal exhaustivity property to achieve that.

Definition 5: Maximal Exhaustivity property : A region graph satisfies this property if
any maximum membership subset4 of the outer region that contains a factor converted from
the original BN is included in at least one second level region.

The ORI algorithm will first construct a region graph to satisfy the maximal exhaustiv-
ity property to ensure all higher ordered (with the order up to the outer region size -1) local
interactions are incorporated. When outer regions are all triplets we will need to generate
local pair-wise interactions and this can be achieved by defining two types of outer region
members for our BFG models: primary triplets and interaction triplets.

Definition 6: A primary triplet F = (VXj , φ) is a triplet with nodes VXj = {Xi, Xj , Xp}
in the moral graphM [G′] and a factor φ defined by the conversion from the CPD p(Xj |Xi, Xp)
in the BFG, G′, as a child variable Xj and its two parents Xi and Xp.

Definition 7: An interaction triplet U = (V, µ) is a triplet with factor µ defined as
a uniformly distributed factor, and triplet nodes V ∈M [G′] where U is not a primary triplet.

We also define:

Definition 8: The maximum membership subset of a primary triplet F = (VXj , φ), ΩXj

(where Xj is a child node of Xi and Xp), is the set of combinations of all node pairs in VXj :

4. A set of combinations of all nodes included in the outer region with the set size equal to the outer region
size minus one.
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{Xi, Xj}, {Xi, Xp} and {Xj , Xp}.

The shared nodes between two primary triplets will mostly contain a single node only
and this fails to satisfy the maximal exhaustivity property. However, by adding interaction
triplets we can use node pairs that belong to different primary triplets and this creates a
maximum subset via which two or more primary triplets can interact.

Consider again the Fig. 1 (d) region graph where pair-wise interaction is identified using
only primary triplets factors but which does not meet the maximally exhaustive property.
For example, the node pair {E1, X3} is not shared by any two triplet factors but it influences
the accuracy of node X4. This lack of interaction can be resolved by adding the interaction
triplet region {X2, E1, X3} to the region graph. Similarly, other pair-wise correlations will
also be incorporated by adding other interaction triplets. Hence, to satisfy the maximal
exhaustivity property second-level regions in our region graph will all be formed by an
exhaustive set of all possible pair-wise interactions among all triplet factors.

As all primary triplet factors are CPD conversions from a BFG they are already iden-
tified in the moral graph and we can use the moral graph to help us identify interaction
triplets, using what is called a coupled Markov Blanket:

Definition 9: A coupled Markov Blanket for edge nodes (Xi, Xj) is the set of nodes
∂(Xi, Xj) composed of Xi and Xj ’s Markov blanket excluding nodes {Xi, Xj}. Therefore
∂(Xi, Xj) = (∂Xi ∪ ∂Xj)\(Xi,Xj).

The coupled Markov Blanket limits the number of candidate nodes that will be used to
generate candidate interaction triplets for a node pair {Xi, Xj}, while ensuring the maximal
exhaustivity property is satisfied.

(a) G’ (b) G’ (c) M[G’]

X2 X1

E2E1X3

E3X4

X5

X2 X1

E2

E1

X3

E3X4

X5

X2 X1

E2

E1

X3

E3X4

X5

Figure 4: (a) κ5 BFG with a moral edge shown as dashed line; (b) all nodes in the coupled
Markov Blanket ∂(X1, X3) in (a), shown with nodes shadowed; (c) moral graph
of (a)

Fig. 4 (a) shows a primary triplet {X1, X2, X3} and an interaction triplet {X1, X3, E1}
interacted via an edge (X1, X3) (shown as a bold solid line). In Fig. 4 (b), to identify
interaction triplets for edge (X1, X3) (shown as a bold solid line), we first identify the coupled
Markov Blanket ∂(X1, X3) = {X2, E1, E2, X4, E3} (shown with nodes shadowed). From
this, the candidate interaction triplets are easily identified as: {X1, X3, E1}, {X1, X3, E2},
{X1, X3, X4}, {X1, X3, E3} and {X1, X3, X2}. Notice that {X1, X3, X2} is then excluded
as it is a primary triplet. All maximum subsets, as node pairs, are identified as the edges
in M [G′] as shown in Fig. 4 (c).
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Therefore, adding interaction triplets within a coupled Markov blanket ensures all local
pair-wise correlations are incorporated.

This method of adding new regions to create interactions is also used in (Welling, 2004)
on the assumption that adding regions could improve the accuracy. However, we do not
share this assumption because some regions, introduced by the maximal exhaustivity prop-
erty, may be redundant and would not change all the singleton marginal inference results if
retained. Also, unlike the cluster pursuit algorithm (which involves message passing to com-
pute a cost function to test the potential improvement along with the newly added regions
and which is very inefficient), we use both structural and factor information to determine
redundancy in an entirely localized way.

Note that if we do not remove redundant regions the resulting region graph will not
satisfy the perfect correlation property. Therefore, our ORI algorithm will first identify all
outer regions that satisfy the maximally exhaustive property and then identify redundant
regions to reject. We identify two kinds of redundant interaction triplet regions that must be
rejected during ORI. We refer to them as an incomplete interaction triplet and a competing
interaction triplet. The basic principle for deciding whether to include an interaction triplet
is to determine if the triplet changes the entropy of any node in the model. Obviously,
evaluating the entropy change of all nodes is computationally expensive. Therefore, we will
instead use the CI structural information to identify redundancy and then use factor infor-
mation to refine the redundancy identification further. Also, entropy information change
is determined using all primary triplets, and no other interaction triplets, except the one
under evaluation. We evaluate the interaction triplet without evidence because that will
not change the factor information and also helps localize the computations.

Section 3.2 defines and discusses redundancy introduced by incomplete interaction triplets
and section 3.3 defines and discusses redundancy introduced by competing interaction
triplets.

3.2 Identifying Redundant Interaction Triplet Using Structural Information

Definition 10: Incomplete interaction redundancy. This is redundancy introduced by
an interaction triplet that provides no singleton entropy information change for any node
in M [G′].

To identify incomplete interaction redundancy, we use the following structural informa-
tion:

Definition 11: Incomplete interaction triplet is an interaction triplet containing a node
pair (edge) that does not exist in M [G′]; If all node pairs in the interaction triplet are con-
tained in M [G′] it is a complete interaction triplet.

Proposition 2: Incomplete interaction redundancy can be identified by using incom-
plete interaction triplets.

Proposition 2 is proved in Appendix A.2.

So, we change the original entropy evaluation problem (which is inefficient) to a struc-
tural identification problem (which is efficient). Proposition 2 means that all incomplete
interaction triplets are redundant and hence the remaining (complete interaction triplets)
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are retained. Note that, although all incomplete interaction triplets are removed, our proof
of Proposition 2 is based on using a BFG model. Hence, evaluating one incomplete inter-
action triplet at a time is sufficient.

If a BN is sparser than its BFG version then it is possible that node entropies will change
if two incomplete interaction triplets (that are rejected) are together derived from the BN
rather than the BFG. An incomplete interaction triplet in a BN could become a complete
interaction triplet in a BFG, so by using the BFG we will not ”miss” such an interaction
triplet.

For instance, if we use the Asia BN’s moral graph (Fig. 3 (a)) to identify the incomplete
interaction redundancy both {s, l, b} and {l, b, e} will be rejected since they are incomplete
interaction triplets. However, these two triplets cannot be rejected because they together
constitute a cycle path in the moral graph, resulting in node entropy changes. In contrast,
using the BFG in Fig. 3 (c) we will obtain both ({s, l, b} and {l, b, e}), as one of them is
identified as a primary triplet and the other is a complete interaction triplet in the BFG.
This result is also evident in our experiments (in section 5).

We use Fig. 4 (c) to illustrate how Proposition 2 is applied to our BFG model. We use
the coupled Markov blanket to generate a list of interaction triplets to satisfy the maximum
exhaustivity property. This involves adding both the incomplete and complete interaction
triplets, which requires a greedy search over the moral graph and is inefficient. But using
Proposition 2, we can simplify the search by only querying the complete interaction triplets,
which is efficient. Note that all primary triplets are already identified and can thus be
excluded, this leaves only five complete interaction triplets (which all contain a node pair
connecting a moral edge) remaining post search for the Fig. 4 (c) model.

Next, we can select outer regions from the complete interaction triplets. We can verify
that all complete interaction triplets contain a node pair that is connected by a moral
edge, and each node pair connected by a moral edge is contained in one or two complete
interaction triplets.

If a node pair connected by a moral edge is only contained in one complete interaction
triplet then the interaction triplet is retained, such as {X3, X4, E3} in Fig. 4 (c). If the
node pair is contained in two complete interaction triplets, which must be symmetric in the
moral graph, such as {X1, E1, X3} and {X2, E1, X3}, it is unclear whether we should keep
them both or reject one or other of them.

Selecting them both would induce a message exchange over the same moral edge and
might then distort the approximation, as none of them contains exact information. Rejecting
one of them is also difficult using structural information alone given they are symmetric in
the moral graph. We refer to these as ”competing interaction triplets”. We will use the
conditional entropy encoded in the region belief to select an optimal region directly from
the competing regions without performing message passing.

After selecting one of the two competing interaction triplets, each node pair connected
by a moral edge will be exclusively included in only one interaction triplet, so the number
of the interaction triplets finally obtained equals the number of the moral edges. Therefore,
our region selection procedure is very efficient because we only need to iterate each moral
edge in the moral graph of a BFG and choose one interaction triplet optimally for each
moral edge.
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3.3 Identifying Redundant Interaction Triplets Using Factor Information

In this section, we use factor information to reject one of the competing interaction triplets
as using structural information alone is insufficient. We will use the conditional entropy
information encoded in the region belief to select an optimal region directly from competing
regions without performing region graph inference. The competing interaction regions are
formally defined below:

Definition 12: Competing interaction triplets are two complete interaction triplets
{i, j, k} and {p, j, k} composed using the same shared nodes {j, k} connecting a moral edge,
and a pair of parent nodes {i, p} of the nodes {j, k}.

Definition 13: Competing interaction redundancy. This is redundancy introduced by
an interaction triplet that has a less accurate approximation to the pair-wise joint distribu-
tion of the moral edge than its competing interaction triplet.

Note that it is not possible for the two nodes connecting a moral edge to share more
than two parent nodes because this would violate the BF process. Therefore, each time the
number of competing interaction triplets is equal to two.

Proposition 3: Competing interaction redundancy cannot be identified using structural
information alone.

The proof of Proposition 3 is given in Appendix A.3.

Adding both the competing interaction triplets breaks the perfect correlation property,
so our best option is to choose one of them (assuming the maximum cluster size is bound
to equal the maximum factor size). Given proposition 3, we instead use factor information
to determine the choice of the competing regions.

Rather than analysing the factor information by optimizing the bounds of the partition
function globally, we use a local method that rejects one candidate region and accepts the
other.

We use conditional entropy decomposition for the exact joint entropy (Cover & Thomas,
2006). Given an elimination order e, the exact joint entropy can be decomposed to:

H(X1, ..., Xn) =
∑
i

H(Xe(i)|Xe(i+1),...,Xe(n)). (6)

The r.h.s of Eq. (6) includes all conditional distributions over the variables X1 to
Xn defined by the elimination order, so the size is exponential. Restricting the number
of conditioning variables cannot decrease the entropy and gives us an upper bound on
H(X1, ..., Xn). The Conditional Entropy Decomposition (CED)(Globerson & Jaakkola,
2007; Hazan et al., 2012) approach constructs an upper bound for the partition function by
restricting the number of conditioning variables to be in the predefined clusters. The CED
approach solves an optimization problem on the partition function but it does not determine
which region to select. We do not compute the actual upper bound for the exact joint
entropy, but only compute a relative value. This involves little extra computation, given
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that the maximum cluster size is three, and can be done without the need to perform region
inference. We can also restrict the conditioning variables for our entropy decomposition by
using the pre-defined regions.

We only need to consider the κ4 BFG structure, shown in Fig. 1 (a) because that is
where the competing interaction redundancy occurs in the BFG model. Any higher order
BFG contains multiple κ4 BFG structures. For example, Fig. 4 (c) contains two κ4 BFG
structures, so we can easily extend the approach.

Next, using the Fig.1 (a) model, and assuming a cluster size of three, we cannot compute
the marginal p(E1, X3) exactly so choosing either {X1, E1, X3} or {X2, E1, X3} as the inter-
action gives an approximation of the true marginal p(E1, X3). Hence, our task is to better
approximate p(E1, X3) by using a tighter upper bound of H(X1, X2, X3, X4, E1) based on
the pre-defined regions.

Because the marginal p(E1, X3) is not dependent on node X4, we can restrict the
conditioning variables to be in the set {X1, X2, X3, E1} with a fixed elimination order
E1 → X3 → X2 → X1. We can therefore simplify the problem by tightening the up-
per bound of H(X1, X2, X3, E1), which involves fewer variables and gives a more accurate
entropy approximation.

Furthermore, we do not need to calculate the actual upper bound of H(X1, X2, X3, E1)
given that we are only interested in the relative difference between the two choices. We can
also further restrict the conditioning variables to be in the marginal set of our pre-defined
regions, R.

Thus, based on Eq. (6) for a four-node distribution we have:∑
i

H(xe(i)|xe(i+1), ..., xe(4)) ≤
∑

i

Hj(xi|xr\i; br), (7)

where i = 1, ..., 4 and j = 1 or 2 is the choice of the competing interaction triplet.
Hj(xi|xr\i; br) is the conditional entropy of the jth choice, and br is the belief of region
r (r ∈ R) containing the variable i. Note that Eq. (7) is the sum of the restricted condi-
tional entropies in the marginal set of the pre-defined regions.

The difference between the two choices is dependent on the interaction triplets only
since other regions are simply the same set of primary triplets (with the same elimination
order and region counting number). Thus, we can use the following equation to simplify
the problem:

∆Hj =
∑

i

Hj(xi|xrj\i; brj ), i = 1...4, (8)

where rj is the interaction region by the jth choice, and ∆Hj is the conditional entropy
corresponding to rj .

Therefore, to calculate ∆Hj we need to compute the belief brj . For our example (Fig.
1 (a)) we start with the following equations:

p(X1, X3) =
∑

X2

φX1φX1X2φX1X2X3 ,

p(X1, E1) =
∑

X2

φX1φX1X2φX1X2E1 ,
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p(X2, X3) =
∑

X1

φX1φX1X2φX1X2X3 ,

p(X2, E1) =
∑

X1

φX1φX1X2φX1X2E1 .

These values are computed exactly. Next, we can compute the belief:

brj =
∑
Xj

b(Xj , E1, X3) =
∑
Xj

p(Xj , X3)p(Xj , E1)/p(Xj), (9)

where the value of brj is the same value under the choice of {Xj , E1, X3} as the interaction
triplet, by performing region inference. Finally, we will use the conditional entropy ∆Hj

to identify the competing interaction redundancy in the competing interaction triplets and
choose the one with the smaller value. The other is therefore redundant and is removed.

In BNs that are not BFGs, the singleton and pair-wise marginals associated p(Xj) in Eq.
(9) are not directly obtainable if Xj is not a leaf node. However, we can obtain the pseudo-
marginal5 instead for the marginals associated with Xj by using the CPD p(Xj |Xpa(j)) and
also the CPDs of these parents’ p(Xpa(j)|Xpa{pa(j)}) i.e. the grand-parents. In our experi-
ments, we used the CPDs p(Xj |Xpa(j)) and p(Xpa(j)|Xpa{pa(j)}), and set p(Xpa{pa(j)}) = 1
when computing the pseudo-marginal of Xj . We found that the error rate for computing
the conditional entropy ∆Hj by using the pseudo-marginal in the above setting compared
to using the exact p(Xj) is around 6% over 150 random factors 6. Clearly the calculation
of ∆Hj is localized.

We randomly generated a list of CPDs in Appendix D.1 for the κ4 BFG model in Fig. 1
(a), and use the model as an example to demonstrate how the factor information is applied.
The difference in results of choosing different interaction regions is shown in Table 1.

Table 1: Pair wise joint probability results for moral edge {E1, X3} compared by choosing
different interaction regions

Joint probabilities for {E1, X3} KL ∆H

Exact 0.488 0.122 0.077 0.313
{X1,E1,X3} 0.473 0.137 0.092 0.298 0.0028 0.727
{X2,E1,X3} 0.343 0.267 0.222 0.168 0.190 1.33

In Table 1, if {X2, E1, X3} is chosen as the interaction triplet the KL error is 0.19,
compared to 0.0028 when {X1, E1, X3} is chosen. Also if we use {X2, E1, X3} the resulting
pairwise joint probability values are nearly opposite to the true values. Despite this problem
the marginal approximation for each node does not look as bad as the pair-wise joint
approximation, for node X4 KL is 4.0e-5 when {X1, E1, X3} is chosen and 4.3e-3 when
{X2, E1, X3} is chosen.

5. The marginal distribution computed using local factors.
6. In future work we can improve the error rate by incorporating more ancestor CPDs.
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When we use extreme factors (near zero and one) instead for the triplet CPDs in Table
1 the difference in results can be very large. The KL results for the pair-wise and singleton
marginal are 7.0e-12 and 6.0e-16 if {X1, E1, X3} is chosen as the interaction triplet. In
contrast, if {X2, E1, X3} is chosen the results are 0.11 and 0.04 respectively. If we retain
both interaction triplets without removing competing interaction redundancy the results
are 0.92 and 0.11.

In (Yedidia et al., 2005) the region-based approximation is computed by belief propa-
gation subject to constraints using Eq. (3). The moral edge is not regularised (φj,k = 1)
in the BN, and multiple pair-wise solutions are possible to satisfy the region based con-
straints in the message passing procedure. So, even if singleton beliefs are approximated
well, the pair-wise joint beliefs may not be well approximated at all, as shown in Table 1.
Without the control for competing interaction regions the probabilities approximated could

be ”flipped”, i.e.,

(
0.9 0.1
0.1 0.9

)
is approximated to

(
0.1 0.9
0.9 0.1

)
, compared to the true

values. Obviously this problem is unacceptable especially when higher-ordered marginals
are needed. We refer to the problem of very poor local approximation as the max variability
problem and it can be quantified by the max KL error. By using conditional entropy, ∆H,
we can effectively reduce the max variability problem.

3.4 Different Node Orderings and Replacement Interaction Triplet

We use different node orderings, hence different BFGs, to illustrate how we can obtain the
same interaction triplets. The two examples in Fig. 5 (a) and (c) present situations where
competing interaction triplets and external nodes are used to define different valid node
orderings.
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Figure 5: (a) BN G with the dashed line representing a moral edge; (b) BFG G′ of (a) with
the original nodes on the leftmost path and the replicated nodes labeled the same
as the original nodes; (c) BN G1 with node X0 ordered between X4 and X5; (d)
BFG G′1 of (c).

In Fig. 5 (a), the BN G encodes competing interaction triplets {X3, X5, X6} and
{X4, X5, X6}. Fig. 5 (b) shows a BFG G′ of G with a pre-defined valid node ordering
πG : {...X3 → X4 → X5 → X6...} where X4 is ordered after X3 in a clique. Suppose we had
identified {X3, X5, X6} as the one to be retained from the competing interaction triplets in
G. Given X4 blocks the path from X3 to X5, using G′ we cannot obtain the interaction
triplet {X3, X5, X6} directly. Despite this, we can check if there exists another parent-child
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path that introduces an interaction triplet containing the node pair {X5, X6}, such as the
bold paths in (b). In the bold paths, X3 and its replicas are parent nodes of both X5 and
X6. The original node replicas are actually the same as the original nodes. This indicates
both the competing interaction triplets are maintained in the BFG. In this case, we should
replace the {X4, X5, X6} by {X3, X5, X6} without the need to change the node ordering
for X3 and X4. Therefore, we have obtained the same interaction triplet even though we
used different node orderings. Also, given that we are replacing one interaction triplet with
another interaction triplet, the total number of interaction triplets is unchanged.

Next, in (c) we change a valid node ordering πG : {X1 → ...X4 → X5... → X7} by
inserting an additional node X0 between X4 and X5 to the BN G1, such that X0 and G1

belong to different cliques for a large BN. Here, we have defined a different valid node or-
dering πG : {X1 → ...X4 → X0 → X5...→ X7} and obtained the BFG G′1 in (d). Suppose
we identified {X4, X5, X6} as an interaction triplet to be retained from the competing in-
teraction triplets. Then we cannot directly obtain it using G′1 as X0 is ordered after X4

and blocks the path. Likewise, there is a bold path in G′1 introducing an interaction triplet
{X4, X5, X6} through the original node replicas. So now we can repeat the approach and
replace the interaction triplet {X0, X5, X6} with {X4, X5, X6}.

We now define a replacement interaction triplet for interaction triplet {i, j, k}:
Definition 14: Replacement interaction triplet. For a BN G and associated BFG G′,

this is an interaction triplet {j, k, p} in M [G′] introduced by a cycle path that is composed
by a node pair {j, k} connecting a moral edge, a shared parent node p of j and k, and the
replicas of j, k, and p.

The replacement interaction triplet results from the definition of the BFG (that is fac-
torized from a complete DAG) such that any two original nodes have a unique path to
reach one from the other. So a parent-child relationship in G can always be preserved in
G′ through node replication. Thus, the different valid node orderings will not change the
parent-child relationships of a BN.

An interaction triplet that does not have a replacement interaction triplet in the BFG
will be selected directly. Therefore, despite using different BFGs, we only need to check
each moral edge for an interaction triplet and its replacement interaction triplet. If the
replacement interaction triplet corresponds to a triplet cycle in a triangulated graph of
the BN G we should select it rather than using the original interaction triplet. Using
the replacement interaction triplet also ensures the total number of outer regions will not
increase and can avoid generating interactions that may distort the approximation.

3.5 Optimization and Summary of The ORI Algorithm

Converting a BN to a BFG may introduce some intermediate nodes that do not replicate
any original node (such as the E nodes in Fig. 5 (b)). Outer regions created by these nodes
can be safely removed. For the intermediate nodes replicating the original nodes, such as
the original node replicas that have the same label with the original nodes in Fig. 5 (b), we
can reuse the original nodes to replace these nodes for all outer regions as the replicas are
the same as the original nodes.
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We can then optimize the ORI algorithm by node reuse and unused triplets removal to
reduce the number of outer regions.

Node reuse: If the intermediate node Ej is a replicated node for the original node Xi

we can change Ej to Xi directly in the outer regions (this includes both the primary and the
interaction triplets) selected, since node Ej is the same as the node Xi.

Unused triplet removal: If Ej does not replicate any original node and is a child node
of a primary triplet we can also remove this primary triplet and its connected interaction
triplet sharing the same moral edge from the outer regions.

For example, in Fig. 5 (b) we can identify a primary triplet {X5, X6, X6} that is com-
posed by an original node X5, an original node X6 and its replicated node being reused
by original node X6. This primary triplet can be further simplified to {X5, X6} and the
region {X5, X6} then becomes a subset of other outer regions. As a result, the outer regions
in the region graph will be reduced as fewer outer regions are created. The outer regions
associated with the Ej nodes not reused by any original node will also be removed during
unused triplet removal. So there will be no Ej nodes represented in the outer regions. We
provide optimization tests in section 5.2.

We summarize the ORI algorithm in Algorithm 1.
If a BN is a BFG, ORI simply collects all primary triplets and iterates through each

moral edge to identify interaction triplets. If the node pair connecting a moral edge shares
a single parent node then the unique interaction triplet is retained. If the node pair shares
two parent nodes a competing interaction triplet with smaller ∆H is kept. If a BN is not a
BFG ORI first caches all competing interaction triplets and identifies competing interaction
redundancies using ∆H. Then ORI converts the BN to a BFG using the predefined node
ordering. Next, it iterates through each moral edge in the BFG to find the interaction
triplet or its replacement.

From Algorithm 1 we can summarize the ORI into four sub-algorithms: i. BF algorithm;
ii. Selecting all primary and complete interaction triplets using the BFG of a BN; iii.
Localized conditional entropy test; iv. Efficiency optimization by node reuse and unused
triplet removal.

From Algorithm 1 we can verify that the number of interaction triplets equals the number
of moral edges in a BFG, with a total number (n − 2)(n − 3)/2. The primary triplets are
selected directly, with a total number of n−2+(n−2)(n−3)/2. So the space complexity for
the ORI is proportional to the BFG’s dimension, [(n−2)(n−3)/2]+[n−2+(n−2)(n−3)/2] =
(n− 2)2 for κn, which is polynomial O(n2). As all outer regions are determined by ORI we
can obtain our TRC region graph, as described in section 4.
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Algorithm 1: ORI algorithm

Input: a BN G
Output: Outer regions R;
1: Perform BF to G to obtain G′ (with variables Xi, i = 1, ..., n);
2: if G′ is a κn BFG then

M [G′]← parametrizing G′;
Merge all primary triplets in M [G′] to R;
for each node pair {j, k} connecting a moral edge in M [G′] do

Merge {i, j, k} to R if j and k share a single parent i;
Merge a competing interaction triplet to R if j and k share two parents;

3: if G′ is not a BFG then
Identify all competing interaction triplets in G′;

Define a valid node ordering πG′ and convert G′ to BFG G̃′;

M [G̃′]← parametrizing G̃′;

Merge all primary triplets in M [G̃′] to R;

for each node pair {j, k} connecting a moral edge in M [G̃′] do
Identify interaction triplet {i, j, k};
Check the replacement interaction triplet {j, k, p} for {i, j, k};
Merge {i, j, k} or {j, k, p} to R;

4: Perform node reuse and unused triplet removal to R;
5: return R;

4. The Triplet Region Construction Algorithm

The TRC algorithm is composed of three sub-algorithms:

� Outer Region Identification (ORI) with further efficiency optimization

� Region Graph Binary Factorization (RGBF)

� Concave-Convex Procedure (CCCP)

Section 4.1 presents our TRC region graph which results from applying ORI and CVM.
To avoid numerical instability, in Section 4.2 we propose the Region Graph Binary Factor-
ization (RGBF) algorithm to ensure each region has exactly two parent regions. Section 4.3
summarises the TRC algorithm and introduce the worse case BNs for testing in section 5.

4.1 TRC Region Graph and Its Extension

Now that all outer regions are determined by primary and interaction triplets, the CVM
algorithm can generate the corresponding valid region graph. The resulting region graph for
our BFG models contains three levels, with all first level regions having counting numbers
equal to one (as all factors are included in the first level). The resulting region graph is
our TRC region graph which we now show satisfies both the perfect correlation and maxent
normal properties.
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Figure 6: TRC region graph for Fig. 4 (a)

An example of a TRC region graph for Fig. 4 (a) the κ5 BFG is shown in Fig. 6.
There are two κ4 BFGs included in the κ5 BFG so there are two competing interaction
redundancy tests involved. In Fig. 6 we have assumed our choice is X2 (another choice is
X1) after applying the competing interaction redundancy test for each of the κ4 BFG. The
region graph constructed when a different choice for the competing interaction redundancy
test is given in Appendix A.5.

There are six primary triplets and three moral edges in a κ5 BFG. Each moral edge is
exclusively contained in one interaction triplet. So there are three interaction triplets. The
L1 level of the TRC region graph is composed of all the outer regions, and the remaining
levels are generated by CVM.

The number of interaction triplets and primary triplets for a κn BFG is determined in
section 3.5. So we can summarize the properties for the TRC region graph, as shown in
Table 2 (the proof of these results is given in Appendix A.5).

Table 2: Properties for κn (n > 3) BFG region graph G, where v(r) is the number of
variables included in region r, ”total” is the total number of regions involved
in each level of the region graph, max(cr) and min(cr) are the maximum and
minimum value of the counting number cr

Levels v(r) total max(cr) min(cr)

1st 3 (n− 2)2 1 1
2nd 2 (n− 2)2 -1 3− n
3rd 1 (n− 3) n− 3 1

Table 2 shows the region membership size v(r), the number of regions contained in
each level, and max, min of counting numbers in each level regions. For convenience,
we summarize these result by assuming we have chosen the node X2 after the competing
interaction redundancy test for all competing interaction triplets in all κ4 BFGs (that are
included in the κn BFG). The different choice of the competing interaction triplet will not
affect the result of our proof (shown in Appendix A.5).

We can verify that the properties in Table 2 apply to the Fig. 6 region graph, i.e.,
the 3rd level max(cr) = 5 − 3 = 2, the 2nd level min(cr) = 3 − 5 = −2, and both the
total number of regions contained in the 1st and the 2nd level is (n− 2)2 = (5− 2)2 = 9.
Using the summaries in Table 2 we can derive the sum of all regions counting numbers in
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a κn BFG region graph, which equals one, so the TRC region graph satisfies the perfect
correlation property. The TRC region graph also satisfies the maxent-normal property. We
provide proofs of both properties in Appendix A.5 and A.6.

If a BN is not a BFG, ORI converts the BN to a BFG and applies the node reuse and
unused triplet removal to the outer regions. These reductions will not break the perfect
correlation property because node reuse does not directly remove outer regions but simplifies
and merges the outer regions. The unused triplet removal process removes the primary
and interaction triplets in pairs for the unused intermediate nodes without affecting other
variables’ local structures.

However, the perfect correlation property is not compulsory for all models. For many
situations, we won’t have strong correlations for all variables. Even with the relaxation
of the perfect correlation property the accuracy for the marginals will not degrade. For
large models, relaxing the perfect correlation property can help reduce the number of outer
regions significantly and, hence improve efficiency.

If the perfect correlation property is relaxed efficiency can be optimized further by in-
teraction triplet removal for the outer regions: after the previous optimization used in ORI,
the number of primary triplets will be close to the number of factors of the original model.
This means many interaction triplets will be left without connecting to the existing primary
triplets; the role of such interaction triplets is to maintain the counting number to satisfy
the perfect correlation property. Therefore, we can remove them provided that other inter-
action triplets connecting existing primary triplets are not affected.

Interaction triplet removal: an interaction triplet can be removed if it is not con-
nected to any existing primary triplet and also does not affect other interaction triplets
connecting existing primary triplets.

This optimization is explored as extended work in Appendix B.2. It is important be-
cause we show that by using these optimizations we can achieve similar efficiency to other
algorithms while still achieving greater accuracy.

The cluster size of the current TRC region graph is three. We can extend the TRC region
graph to use higher cluster size if higher accuracy and higher ordered marginals are needed.
For a cluster size four region graph, we can merge the triplet regions from the current region
graph to produce new outer regions with cluster size four, and remove unnecessary size four
outer regions to optimize efficiency (and also avoid creating unnecessary interactions which
might be harmful). In a BFG, we know the exact number of parent nodes that each node
pair connecting a moral edge is dependent on. So we can guide the merge process and
remove those outer region that introduce no new interaction information for a given moral
edge. The resulting region graph will still satisfy the perfect correlation and maxent normal
properties (proven in Appendix A.7). We emphasize that to build the size four cluster TRC
region graph we still have to build the triplet TRC region graph first. The size four TRC
region graph or the higher ordered region graph is only obtained by the guided merging.
Therefore, the TRC region graph can use arbitrary (≥ 3) cluster size which is flexible.

We continue using the κ5 BFG in Fig. 4 (a) as an example. Suppose we have obtained
the TRC region graph with all the outer regions being triplets, shown in Fig. 6. To obtain
a size four TRC region graph, we can iterate each node pair {j, k} connecting a moral edge
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in the BFG and find all the parent nodes on which the node pair {j, k} is dependent to
guide the merging.

There are three moral edges in Fig. 4 (a): {X3, E1}, {X3, E2} and {X4, E3}. The
node pair connecting the moral edge {X3, E1} is dependent on the pair-wise informa-
tion of {X1, X2}. Thus, to compute p(X3, E1) exactly we need to include four nodes
{X1, X2, X3, E1}. So we should merge the primary triplet {X1, X2, X3} to the interaction
triplet X2, X3, E1. The resulting size four cluster has introduced the pair-wise information
of {X1, X2}, which is new information compared to the singleton information of X1 or X2

introduced by only triplets before.

Likewise, we can merge the primary triplets {X3, X4, E1} and {X3, E2, E3} to the inter-
action triplet {X3, X4, E3} respectively to obtain two size four clusters {X3, X4, E1, E3} and
{X3, X4, E2, E3}, which will introduce new pair-wise information {X3, E1} and {X3, E2} for
better approximating p(X4, E3). If we are given a cluster size five, we can then keep merging
the two size four clusters to obtain a size five cluster {X3, X4, E1, E2, E3}, and p(X4, X3)
can be computed exactly. We did not merge any region to another region without guiding,
so the total number of outer regions does not increase after the merge. The first level of
the region graph now contains a mixture of size three, size four and size five outer regions,
and the total number of outer regions is 4 (compared to 9 initially).

TRC can be also viewed as a bottom-up approach that finds all the optimum interaction
triplets while maintaining the desired region graph properties. So, approximation quality is
ensured by using the smallest possible (triplets) cluster size. Therefore, TRC can be more
accurate than other algorithms given a bounded cluster size. Accuracy is then improved by
guided merging when a higher-ordered cluster size is used. In contrast, other bottom-up
algorithms, such as FCB, do not justify how to improve accuracy and nor can they automat-
ically decide how to generate regions under bounded cluster size. Also, during the merge
TRC does not add as many large regions as the greedy approaches; these approaches, such
as cluster pursuit (Sontag et al., 2008) suffer from a greedy merging and, as a consequence,
the computation can quickly become a bottleneck.

4.2 Region Graph Binary Factorization Algorithm

We use CCCP (Yuille, 2002) to perform message passing over the TRC region graph. How-
ever, both GBP and CCCP can be numerically unstable, so may prevent convergence if
the region graph contains large values for the counting numbers and many cycles associ-
ated with the child regions. There is a so called damping technique (Yedidia et al., 2005;
Jaimovich et al., 2010) using a weighted message of the old and the new messages to help
improve numerical instability but it is not very effective when the region graph present
large counting numbers and multiple cycles. Therefore, one has to avoid creating a cyclic
region graph and perform optimizations of the message updating procedure to improve the
numerical stability. These methods are tied to the message passing procedure and may not
be generally applicable.

We instead solve both the large counting number and multiple cycles problems directly
from the region graph by proposing a Region Graph Binary Factorization (RGBF) algo-
rithm, which can be applied to both GBP and CCCP to effectively improve numerical
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instability.

Definition 15: A Region Graph Binary Factorization (RGBF) algorithm is one that
ensures that each region in a region graph, originally with more than two parents, has ex-
actly two parents without changing the validity of a region graph.

RGBF solves the numerical problem by avoiding excessive message passing from altering
the region graph structure. This differs from other methods that are tied to message passing
algorithms. So, RGBF can effectively improve the numerical instability problem for both
CCCP and GBP message passing.

Recall that cr = 1 −
∑

r′∈Ancestor(r)
cr′ , and so a large absolute value of counting number

also implies a global multiplicity of connected regions. For the BFG model, in Table 2,
the connections between first and second level regions grow because the min(cr) is linearly
decreasing (conversely max(cr) is linearly increasing), which means the number of multiple
connections grow and we are guaranteed to encounter a numerical instability problem from
multiple cycles in the region graph. To reduce the absolute value of the counting number and
decompose the multiple connections within a region graph we apply the RGBF algorithm
that is described in Algorithm 2.

Algorithm 2: RGBF algorithm

Input: k-level CVM region graph G;
Output: k-level CVM region graph G′;
1: G′ ← ∅;
2: Copy all levels regions in G to G′ without region connections;
3: for i = level 2 to level k do

for each region r in level i do
if the number of parent regions pr > 2 then

create pr − 1 copies r′z of region r, z = 1...pr − 1 in level i;
Connect each region r′z to two parent regions of r and ensure the
neighboring r′z share only a single parent region of r;

Connect all child regions of r to all copies r′z;

else the number of parent regions pr <= 2
Copy all parent and child region connections for r in G to G′;

4: Assign counting numbers to all regions in G′;
5: return G′;

The main idea of Algorithm 2 is to create copies for regions that have more than two
parent regions. Then each copy is restricted to connect to two parent regions while ensuring
the neighboring copies are connected through one shared parent region, so the copies of
regions are consistent. The benefit of applying the RGBF algorithm is that large counting
numbers no longer occur and multiple connections are decomposed into local connections.
Therefore, the number of cycles in the region graph is reduced to a minimum.
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This RGBF algorithm will be used to generate an equivalent region graph G′ from the
original region graph G, with the equivalence properties described in the following proposi-
tion:

Proposition 4: By applying the RGBF algorithm we transform a k-level CVM region
graph G with all factors included in the 1st level, into an equivalent k-level region graph G′,
such that each region r in G′ (r ∈ R, r /∈ R1stlevel) is connected to two parents. The counting
numbers for all regions are 1, -1 and 0. This does not change the consistency and unity 7

properties of G.

We provide the proof in Appendix A.4.

The time and space complexity for RGBF is proportional to
t∑

j=1
crj , where t is the

number of regions with a counting number |crj | ≥ 2. The RGBF algorithm simply splits
the region into copies when the counting number |crj | ≥ 2 and ensures each region is
connected to at most two parent regions.

An example is shown in Fig. 7.
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Figure 7: (a) region graph G (all 1st level regions’ counting numbers 1); (b) region graph
G′ resulting from (a) by RGBF

In this example, regions e and h are copied twice and three times respectively. The
counting numbers for each 2nd level region becomes -1, and for each 3rd level region becomes
0 or 1. It does not matter if 1 is placed on h1 or h2 since it does not change the consistency
and unity conditions, but it will influence the convergence speed. All regions h1 to h3 have
the same belief as they are still connected through their parent regions. Likewise, region e1

to e2 also have the same belief.

If we use the RGBF algorithm for a multiply connected CVM region graph, the CCCP
updating will be numerically robust. For example, in Fig. 7 (a) updating the parent-
child message λa→e in CCCP equations (Yuille & Rangarajan, 2003) involves the belief
calculations of seven regions at a time: a, b, c, e, f , g and h. This number grows with
multiple connections for h and the number of cycles associated with h also grows (there are
three cycles associated with h in Fig. 7 (a)). But after applying RGBF to (a), as shown
in (b), to update λa→e1 there are now 5 regions (a, b, e1, e2, h1) and this number does not
increase with the number of connections because there are no multiple connections and only
one cycle, maximum, for each level three region. The large counting number for all levels
of the region no longer exist and therefore under/overflow problems are avoided.

7. A variable has unity when the sum of all regions counting numbers associated with that variable is one.
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4.3 TRC Algorithm and The Worst Case BN Examples

The TRC algorithm (Algorithm 3) is a sequential combination of ORI and its optimization,
RGBF, and CCCP.

Algorithm 3: TRC algorithm

Input: a parameterized BN G with variables V ;
Output: G with marginal distributions;
1: Obtain outer regions R ← ORI(G);
2: Interaction triplet removal of R if relaxed the perfect correlation property;
3: Obtain region graph G ← CVM(R);
4: Obtain region graph G′ ← RGBF (G);
5: Perform CCCP message passing (in parallel) to G′;
6: Return marginal distribution for variables V ;
7: Guided merge of R if given higher ordered cluster size and repeat 3-6;

TRC can use the CCCP message updating in parallel because to update each CCCP
message only limited regions are involved in the computation. The space complexity of TRC
is the sum of all levels’ regions and is polynomial and proportional to

∑
3 levels v(r) · total

(as shown in Table 2) for BFGs. This contrasts with the exponential complexity for exact
methods. Therefore, for a κn BFG with all binary variables the space complexity for TRC
is O(n2) while the exact method is O(2n).

The time complexity is proportional to the number of the 1st to the 2nd level region

edges, which is the sum of all 2nd level regions degree of freedom,
(n−2)2∑
j=1

(|crj |+ 1), and is

polynomial. Proof of these results is given in Appendix A.8.

As mentioned in section 2.3, when the BN is a binary factorized model, the interac-
tions between original nodes in the BN will be preserved in the BFG, and the interaction
information will be captured without change when using TRC.

If the BN undergoes a binary factorization then additional nodes are added, transforming
the interaction information in the original nodes into another form via the new intermediate
nodes in the BFG. This transformation will not change the exact distributions for the
original nodes between the BN and the BFG. When restricted by a bounded cluster size,
the interactions in the BN may produce a more accurate result than using the BFG, so
there is a trade off between the efficiency of region construction and accuracy. For instance,
when the BN is complex, identifying the optimum regions is very inefficient as there are
many choices to consider, but by using the BFG it can be made very efficient. Accuracy is
then improved by a guided merge presented in section 4.1.

Therefore, we test the interaction change introduced by the BF for the ”worst-case”
BNs, which are complex and containing competing interaction triplets that encode strong
interaction information. We also show that, compared to these worst cases, applying the in-
teraction change to BNs that do not encode competing interaction triplets will have minimal
or zero side effects when given bounded cluster size.

Here we present a ”worst-case” BN containing dense structures in M [G] and with in-
duced maximum cluster size (under exact methods) larger than maximum factor size. So we

260



Triplet Region Construction

will bound our maximum cluster size to the maximum factor size to ensure the maximum
cluster space is bounded.
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Figure 8: (a) a BN with the node pair in the moral edge (shown as a dashed line) dependent
on n parent nodes (called n+2 dimensional dense BN with t.w. n+1). The child
node in grey is observed; (b) BF model of the 5-dimensional dense BN

In Fig. 8 we present a class of BNs encoding multiple competing interaction triplets.
These BNs are either used in practical applications or embedded in other BNs as sub-
structures. They are the worst cases as their moral graph contains dense sub-structures
and also reflect how moral edges are involved in competing interaction triplets. If the moral
edge is not approximated well the subsequent parent-child distributions in the BN will also
be poorly approximated. The node pair in the moral edge in Fig. 8 (a) ((n+2) dimensional
dense BN) depends on n parent nodes and the parent nodes are all densely connected.
When n increases the BN encodes a multiplicity of competing interaction triplets. If we
bound the cluster size to the maximum factor size the gap between the cluster size and the
(tree-width+1) is always a constant value of one. Fig. 8 (b) is the binary factorized model
of (a) with n = 3.
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Figure 9: (a) Dynamic BN with n time slices with all child nodes dependent on m parent
nodes (called m×n DBN with t.w. 2m− 1); (b) a coupled HMM model (Barber,
2012); (c) a dynamic BN of a Hopfield network (Barber, 2012).

Fig. 9 (a) (m×n DBN) is a dynamic BN with m×n dimensions where m determines the
tree-width and n determines the temporal length of the BN. Here the child node depends
on all m parent nodes. The difference of the bounded cluster size and the (tree-width+1)
increases linearly with m. The moral graph of Fig. 9 (a) contain dense substructures and
an increase in the number of parent nodes results in a corresponding increase in the number
of competing interaction triplets and this makes manual region identification difficult if
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not impossible (given a bounded cluster size). Fig. 9 (b) is a coupled HMM and (c) is a
Hopfield network (Barber, 2012), which can be applications of (a) in practice. So, these
model classes (Fig. 8 and 9) reflect the most critical situation for the interaction change
for TRC and also present the worst case for all algorithms. We contrast TRC with other
algorithms using these tests in section 5.

5. Experiments

To demonstrate the importance of the region choice dilemma and numerical instability prob-
lems that we have highlighted, we concentrate on experiments involving public, challenging
BNs and associated BFGs with increased dimensionality and tree-width. We compare al-
gorithms by using marginals in our tests.

Section 5.1 explains the experimental settings. In Section 5.2 we test the ORI algorithm
in an incremental way to present its advantage over competing algorithms. Section 5.3
tests the RGBF algorithm using the high dimensional BFG models. Section 5.4 tests a
wide range of models in practice and compare TRC with the state of the art algorithms.

5.1 Experimental Settings

For a fair comparison, except where mentioned explicitly, in our tests the maximum cluster
size is bounded to equal the maximum factor size in a BN for each algorithm. So all
algorithms have the same maximum cluster space. Hence, we compared the singleton,
pair-wise, and triplet marginals under the following conditions: 1) Except for TRC, which
executes a BF model of the BN, the other algorithms use the BN. 2) in a BN the parent-
child joint distribution can be always computed by the joint distribution of the moral
edge multiplying with the parent-child CPD. So except where mentioned explicitly, if the
maximum factor size is three, we will compare the pair-wise marginals of the moral edge.
Likewise, we compare the triplet marginal (composed from nodes belonging to the moral
edges) of the parent nodes if the maximum factor size is four.

Except for the BFGs introduced in this paper, all other test models are publicly obtain-
able. For simplicity we use binary variables for all the original nodes. For random generated
factors we define ”normal factors” being generated by a uniform distribution over [0, 1] and
”extreme factors” (marked by ”*”) are random factors near zero and one. The closer factor
values (normalized) to zeros and ones, the stronger the factor strength.

Except when comparing with the competing algorithms, for the ”worst case BNs” we
also contrast TRC with the best approximation result obtainable by trying the exhaustive
set of the interaction regions post inference. We denote this result the ”best region choice”
(short for ”Best”) under a fixed cluster size constraint, despite the fact it is also not exact,
and use it as a reference to justify the approximation accuracy of all competing algorithms.

The environment for testing was Java JDK 1.8, Intel i5 4300m. We also used the existing
software package fastInf (Jaimovich et al., 2010), merlin (Marinescu, 2019) and runGBP
(Gelfand, 2011) for references of the testing. The convergence threshold is 1e-08. The TRC
code, test cases and random factors are publicly available in our code repository (Lin, 2020).
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5.2 Incremental Tests of The ORI Algorithm

The ORI algorithm can be divided into four sub-algorithms: i. BF algorithm; ii. selecting
all primary and complete interaction triplets using the BFG of a BN; iii. the localized con-
ditional entropy test; iv. efficiency optimization by node reuse and unused triplet removal.

We compare ORI with the other algorithms using the following incremental steps to
demonstrate the effectiveness of each sub-algorithm. 1. Test all the competing algorithms
from using lower ordered to higher ordered interactions, and from fewer to more interactions.
2. Under the same ordered node interactions test if the competing algorithms can find the
most efficient regions. 3. Introduce interaction change (by BF) for BN and test the ground
truth found by the ORI using the BFG. 4. Introduce interaction change for the worst-
case BNs to test the approximation quality of ORI. 5. Efficiency comparison for ORI
with/without efficiency optimization.

Step 1 and 2 use BNs that are already binary factorized. Step 3 and 4 use BNs that
need to be binary factorized for ORI, which will incur an interaction change.

In step 1, we test ORI with VI based approaches and other Bethe/Kikuchi based ap-
proaches using the well known Asia model (t.w. 2) (Lauritzen & Spiegelhalter, 1988). The
maximum factor size in the Asia model is three, which equals the induced maximum cluster
size, so the algorithm needs to find the exact solution. The Asia model is already a binary
factorized model and without the competing interaction triplets, so it is only testing the
sub-algorithm ii (selecting all primary and complete interaction triplets using the BFG of
a BN) of the ORI.

Table 3: KL comparisons using mean (s.d./max.) between ORI and the competing algo-
rithms for the Asia model

model VI Bethe/Kikuchi

MF VMP SVMP Bethe CVM FCB ORI

Asia
0.39

(0.5/1.26)
0.27

(0.36/0.96)
0.02

(0.04/0.13)
2.1E-04

(5.2E-4/1.5E-3)
2.1E-04

(5.2E-4/1.5E-3)
3.2E-06

(7.9E-6/2.3E-5)
2.0E-12

(2.1E-12/5.0E-12)

Table 3 shows from left to right the order of accuracy of the different algorithms (so
MF is the least accurate and ORI the most accurate, while the max variability problem
decreases). The mean field (MF) (Jordan et al., 1998; Jaimovich et al., 2010) and the
VMP (Winn & Bishop, 2005; Masegosa et al., 2017) algorithms use fully factorized forms
for the latent variables thus they only encode singleton interactions. The structured VMP
(SVMP) (Winn, 2004) captures some of the pair-wise interactions between nodes and hence
its accuracy is better compared to VMP. All the three VI based approaches factorize the
original joint distribution of the model to the tree-structured distributions.

In contrast, the Bethe approximation runs on a factor graph with loops, which performed
better than the VI based approaches in our tests. The CVM algorithm uses primary triplets
only as outer regions and the interactions generated at the second level of the region graph
involve only singleton interactions. So it is equivalent to the Bethe approximation running
on a factor graph for this test. FCB introduces interaction triplets for this model and
performs better than the CVM. But, given a bounded cluster size three, FCB generates
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less sufficient interaction triplets compared to ORI, because the cycle length found by the
FCB is larger than three. As a result, if we increase the factor strength the KL error for
FCB increases from 1.0E-06 to 1.0E-03. In contrast, ORI will not ”miss” these smaller
interactions as it runs on the BFG. And it also will not miss the higher ordered interaction
clusters because it can merge the smaller clusters. ORI has found the exact solution for
this test. So, when given a bounded cluster size, ORI has obtained better interactions than
other algorithms.

In step 2, we use the BayesGrid BN (den Broeck et al., 2014) to test the ability of ORI
and the competing algorithms to find the most efficient regions. A 2× 2 nodes BayesGrid
contains a leaf node X1, two child nodes X2 and X3 depending on X1, and a child node X4

depending on X2 and X3. Our test model is a 5× 5 BayesGrid (t.w. 5) with the last child
node observed. The BayesGrid BN is effective for testing the interactions because there is
only one interaction triplet that is optimum for each of the primary triplets. Adding more
or different regions rather than the optimum one could degrade the approximation. We
test ORI with competing algorithms that use the same ordered interactions so the VI based
approaches are not compared. Again this test only verifies the sub-algorithm ii of the ORI.

Table 4: KL comparisons using mean (s.d./max.) between ORI and the competing algo-
rithms for the BayesGrid model

model Join graph/Top down Region graph/Bottom up

IJGP WMB CVM FCB ORI

BayesGrid
1.5E-01

(3.4E-01/1.44E+00)
5.9E-03

(7.7E-03/2.9E-02)
5.1E-04

(1.4E-03/7.0E-03)
2.8E-08

(6.5E-08/2.9E-07)
2.8E-08

(6.5E-08/2.9E-07)

The results in Table 4 show, from left to right, the order of accuracy (so IJGP is the
least accurate and ORI is the most accurate). Increasing the i-bound for the top-down
algorithms can increase the accuracy of the results, which implies the top-down algorithms
introduce a loss of accuracy when constrained by a limited cluster size. In contrast, the
bottom-up algorithms try to find the optimum solution from using limited cluster size.
Both IJGP and WMB (run using merlin (Marinescu, 2019)) are significantly worse than
the bottom-up algorithms in this test. The CVM uses only primary triplets to generate the
outer regions hence the interactions generated are not sufficient. The FCB has found the
optimum interaction triplets for this test, which are complete interaction triplets sharing
the same moral edge with the primary triplets. The BayesGrid is already a binary factorized
model so the interactions in the BN are preserved in the BFG. ORI has also obtained the
optimum interaction triplets using the BFG (given in Appendix C.4) and it achieves the
same accuracy with FCB in this test.

Next, we use the coupled HMM in Fig. 9 (b) to test the sub-algorithms ii and iii
(localized conditional entropy test) of the ORI. The coupled HMM encodes competing
interaction triplets, and to approximate the model each moral edge’s joint distribution
needs to be accurately approximated or the error will be propagated to the next time slice.
Although the tree-width for this model is only three, the number of the interaction triplet
region choices is 2 × 2 × 2 = 8 for four-time slices and exponentially increases with the
number of time slices. Results are shown in Fig. 10 (a) where FCB 1 or 2 indicates that
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FCB chooses the y1 or y2 node as a root node for generating the fundamental cycles. We
simulated 100 instances of random factors for the results. ORI significantly improves the
accuracy of all singletons and pair-wise marginal compared to FCB. ORI achieves almost
the same accuracy as the “Best” result in this test, indicating that ORI selects the correct
competing regions and effectively solves the max variability problem.

Figure 10: (a) ORI vs. FCB using the coupled HMM model with four-time slices. FCB 1 or
2 indicates it uses either y1 or y2 as the root node to generate the fundamental
cycles. (b) ORI vs. IJGP and FCB using the 5-dimensional dense BN

In step 3 we test combination of sub-algorithms i (BF) and ii of the ORI algorithm
using a BN containing cycles (in the moral graph), induced by a child node dependant with
a number of parent nodes where the parent nodes share a single parent node. Because
the induced maximum cluster size equals the maximum factor size in a BN, this test has
a simple ground truth solution which is a cluster composed of all membership variables in
the child node’s factor. There is an interaction change after the BN is binary factorized, so
for a successful test the ORI algorithm is required to find the exact solution using the BFG
without increasing the cluster space bounded by the BN. We provide this verification in
Appendix D.2, and show that ORI finds the ground truth using the bounded cluster space,
as expected and the test verifies that the result using ORI is not altered by the interaction
change introduced by BF.

In step 4, we test the combination of sub-algorithms i, ii and iii of the ORI algorithm
using one of the worst-case BNs shown in Fig. 8 (a) (an n+ 2 dimensional dense BN). The
induced maximum cluster size of the BN is greater than the maximum factor size, so if we
bound the maximum cluster size to the maximum factor size our solution is approximate.

Assuming all nodes are binary and n = 3, there are six nodes in a 5 dimensional dense
BN. The maximum cluster size is four so the maximum cluster space is bounded to 16.
Likewise, we assume the BN contains extreme factors. With this setup the ORI algorithm
runs on the binary factorized BN shown in Fig. 8 (b), where node E1 is an intermediate
node with cardinality four. So, given that the bounded cluster space is 16, ORI uses only
triplets. We can compare the ORI result with that produced by the top-down algorithms
(IJGP with maximum cluster size four) and the bottom-up (FCB) algorithms, and also test
all possible size four clusters post inference to find the best outer regions.
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We simulated ten instances of random factors for the result shown in Fig. 10 (b). The re-
sults obtained by ORI significantly outperformed both IJGP and FCB. The ”Best” solution
is slightly better than ORI, which indicates there is a relative loss of interaction information
of the original nodes caused by the interaction change. After BF the interaction change
introduces a relative loss of interaction information compared to the interactions obtained
by the ”Best” solution. ORI will not lose interaction information if the BN is already a
binary factorized model, such as the coupled HMM. Nevertheless, the relative loss of the
interaction information can be compensated by a guided merge of the TRC outer regions
if higher ordered clusters are allowed. In addition to this test, we also stress tested ORI
using the n + 2 dimensional dense BN and the m× n DBNs with different tree-width and
factor strength, as discussed in Appendix D.3. For these worst cases BNs ORI has also
outperformed competing algorithms.

In step 5, we use the Asia model’s BFG in Fig. 3 (c) and Fig. 5 (b) models to test
sub-algorithm iv (efficiency optimization) of the ORI. They are both κ8 BFGs so without
employing node reuse and unused triplet removal the number of outer regions will be a
fixed number (n − 2)2 where n = 8. After removing the unused triplets for the Asia
model’s BFG the number of outer regions is reduced from 36 to 22, given there are 14 outer
regions containing unused intermediate nodes. After node reuse, the number of outer regions
reduces further from 22 to 7, which equals the number of factors in the Asia model. After
removing unused triplets, 20 outer regions remain in the model shown in Fig. 5 (b), and after
reusing nodes this is reduced to 6. These optimizations will not alter the perfect correlation
property and clearly with the efficiency optimization ORI has achieved comparable efficiency
to that achieved using other competing algorithms. Efficiency comparison test results are
provided in Appendix D.4.

We have incrementally shown the effectiveness of the sub-algorithms of ORI and how
each optimisation addresses the region choice problem using simple and complex BNs. All
the sub-algorithms of ORI have the potential to be used to optimise other algorithms.

5.3 RGBF and High Dimensional BFG Experiments

This section focuses on testing the RGBF algorithm and then testing TRC performance
when we scale up to higher ordered BFG models and models containing a greater number
of states for each node.

To investigate the effectiveness of the RGBF algorithm, Fig. 11 (a)-(c) shows the results
of using the GBP updating algorithms (implemented in (AgenaRisk, 2020)) on a TRC re-
gion graph containing multiple cycles (on the κ10, κ11, κ12 BFG models) with and without
RGBF. Without RGBF (but with damping) GBP demonstrates significant inaccuracy, espe-
cially evident in the lowest seven dimensions. In contrast, GBP results with RGBF achieve
high accuracy in these tests. These tests also show that the low dimensional variables of a
BFG model are more likely to experience numerical problems than high dimensional vari-
ables since low dimensional variables are connected to more children than high dimensional
variables.

We implemented the CCCP algorithm in (AgenaRisk, 2020) without applying any par-
ticular optimization to the messages, and tested it using a κ12 BFG model, with the factors
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Figure 11: (a)-(c): RGBF test by using the KL of marginal in κ10, κ11, κ12 BFGs for GBP
update, the Y -axis is the KL of marginals and X-axis is the variable ID; (d)
RGBF test by using the KL of marginal in κ12 BFG for CCCP update.

listed in our code repository. Fig. 11 (d) shows the CCCP results when not using RGBF,
with a convergence threshold of 3.0E-03 and the number of inner loops set at 3. When higher
settings are used CCCP did not converge at all if RGBF was not used. When RGBF is
used with CCCP, and also using an even more challenging convergence threshold of 1.0E-08
and with the number of inner loops was set at 4, the results show significant improvement.

Figure 12: (a) TRC vs. CVM and FCB by comparing the log(KL) of marginal in a κ20

BFG; (b) TRC performance on log(KL) of marginal in a κ20 BFG with a different
number of node states m.

In Fig. 12 (a), we compared ORI with other region graph-based algorithms using ten
instances of random factors of κ20 BFG (t.w. 19) using singleton marginal for nodes X4

to X15, which lie on the leftmost path of the BFG. We used the RGBF algorithm in these
tests.

CVM shows significant errors compared to TRC. The lower-dimensional variables accu-
racy in the κ20 BFG is determined by the competing interaction triplets so FCB is worse
than the TRC for variables X4 to X7. Variables X8 to X15 are less affected by the competing
interaction triplets, and the FCB has chosen the same complete interaction triplets as TRC
from the BFG, so the results for these variables are very close. Note that, for simplicity, we
only show the accuracy of the variables lying on the leftmost path of the BFG. There are
17 κ4 BFGs included in a κ20 BFG, and FCB will fail to test all the competing interaction
redundancies. Hence, many intermediate nodes will not be approximated well by FCB.
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IJGP (run by (Gelfand, 2011)) does not converge in this test when setting i-bound < 7
when running using GBP.

We also scaled the κ20 BFG to κ100 BFG (t.w. 99, variables 4853) with random factors
and found that the accuracy of TRC is not degraded. The results of these high dimensional
BFG tests are provided in Appendix D.5. These results show that the space complexity is
reduced from exponential (with exact methods) to polynomial and TRC shows robust and
accurate performance.

In Fig. 12 (b), we tested the TRC accuracy on a κ20 BFG by increasing the variables’
number of states under the convergence threshold of 1e-5. The KL statistics degrade slightly
with the increase in the number of states, but when the convergence threshold is set to 1e-
6, the KL is reduced. So, as the number of discrete states increases, we can set a higher
converge threshold to guarantee accuracy.

Next, we test TRC efficiency optimization using interaction triplet removal, and as a
consequence the perfect correlation property will be relaxed. We use two kinds of models
in the directed model category from the PASCAL challenge 2011 (Elidan, Globerson, &
Heinemann, 2011), These are the Pedigree and Promedas models (these are the only directed
models in the contest for computing marginals). These models contain extreme factors and
the Promedas models also encode multiple competing interaction redundancies. TRC will
convert these test models into BFGs and the BFGs for Pedigree and Promedas are equal
to κ517 (for network ID 3000) and κ434 (for network ID 4021) dimensional BFGs.

Table 5: Efficiency comparison for TRC by relaxing/retaining the perfect correlation prop-
erty

Perfect Correlation Pedigree (ID 3000) Promedas (ID 4021)
KL time iteration KL time iteration

Relaxed
1.0E-14

(8.3E-14)
372s 796

1.5E-11
(2.2E-11)

78s 1289

Retained
5.0E-11

(1.2E-10)
300m 24700

3.2E-10
(4.8E-10)

48m 6783

Table 5 shows the KL for singletons of the Pedigree and Promedas models obtained by
TRC. There are many more regions involved if the perfect correlation is retained, producing
minor numerical differences compared to the results obtained otherwise.

For the Promedas model (t.w. 4), There are 1700 outer regions in the TRC region graph
when the interaction triplet removal is not used, and that is around 3.6 times more regions
than optimized after the interaction triplets are removed. For the Pedigree model (t.w. 19)
there will be 13000 outer regions, without using interaction triplet removal, which is 8 times
more than the number of outer regions optimized after the interaction triplets are removed.

In general, the higher the tree-width of the BN the more outer regions will be introduced.
Our tests also verified that large BNs can be converted to BFGs and TRC can converge
on high dimensional models with extreme factors, but at a computational time cost if the
perfect correlation property is an absolute requirement. Note that the marginal results of
the PASCAL test models are not sensitive to the perfect correlation property. In contrast,
we found that by trying different outer regions using CVM, the results will be less accurate
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if the perfect correlation property is not satisfied for the n + 2 dimensional dense BN and
the m× n DBNs.

5.4 Experiments on A Wide Range of BNs in Practice

We have tested a wide range of BNs (and synthetic data sets) including:

� Well known BNs Asia (Lauritzen & Spiegelhalter, 1988) (t.w. 2), Student (Murphy,
2012) (t.w. 3), BayesGrid (den Broeck et al., 2014) (t.w. 5), coupled HMM (Murphy,
2012) (t.w. 3) and a Hopfield network (Murphy, 2012) (t.w. 5).

� PASCAL challenge models (Elidan et al., 2011) including Promedas (t.w. 4 to 28,
variables 400 to 900), Pedigree (t.w. 19, variables 385) and Protein 8 (t.w. 33, variables
14306).

� BNs introduced in this paper including a κ20 BFG (t.w. 19, variables 173), n + 2
dimensional dense BN and m× n DBNs.

� BNs hosted in the Bayesian nets repository (Elidan, 1998) including Barley (Kris-
tensen, 1998) (t.w. 5, variables 48), Pedigree Pigs (Jensen, 1998) (t.w. 11, variables
441), Diabetes (Andreassen et al., 1991) (t.w. 5, variables 413), the linkage anal-
ysis model (Jensen & Kong, 1996) (t.w. 13, variables 714), and the Munin model
(Andreassen et al., 1989) (t.w. 8, variables 1041).

The number of variables ranges from 7 to 14306 and the tree-width ranges from 2 to
33 in these test models. We run TRC by optimizing the efficiency and relaxation of the
perfect correlation property (if interaction triplet removal is possible). We contrast TRC
with WMB (by merlin (Marinescu, 2019)), IJGP and FCB (by runGBP (Gelfand, 2011))
as they are representative of the top-down (IJGP, WMB) and bottom-up (FCB) classes
of algorithm respectively. All experimental results comparing IJGP, FCB and TRC are
summarized in Table 8.

We can divide all the test models into two categories by either encoding the competing
interaction triplets or not. When models do not encode the competing interaction triplets
we only showed the singleton marginal (other algorithms perform no better than TRC on
the higher ordered marginal so we omit the results), shown in Table 8 for the 1st to the 6th

models. Here TRC has outperformed IJGP in test cases run on four out of six test models
and achieved almost the same accuracy for the remaining model. To obtain better accuracy
when using IJGP the i-bound is set subject to the allocated memory, but when we use the
bounded cluster size IJGP generated less sufficient interactions than TRC. The WMB is
also worse than the TRC in these test cases so we omit the results.

TRC has also outperformed FCB on five out of six models and achieved exactly the
same results for the other model (BayesGrid). If we increase the factor strength the result
discrepancy between FCB and TRC will be increased, such as the 2nd test model in Table
8. TRC has produced the same KL mean statistics with FCB for the Protein model but

8. The Protein model in (PASCAL 2011) is a large challenging MN model for MAP inference task. We
convert it to a BN by removing the cyclic factors associated to child nodes, so the model structures,
CPDs, and all the variables are retained, the test model can be downloaded in (Lin, 2020).
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the KL (s.d.) and max. statistics are better than FCB. When given a bounded cluster size,
FCB could miss necessary interactions because it is reliant on the cycle length found in the
BN, which could be larger than the bounded cluster size. Also, compared to FCB which
does not use a control parameter to improve the accuracy, TRC is more flexible as it can
use different ordered cluster sizes to improve accuracy.

When models encode the competing interaction triplets TRC shows clear advantage over
the competing algorithms, especially in higher ordered marginal results. TRC outperforms
competing algorithms in all the 15 test models (from the 7th to the 21st), as shown in
Table 8. Moreover, some tests result in Table 8 are obtained using normal factors only, the
discrepancy of the results between TRC and the competing algorithms will increase along
with the increasing factor strength.

IJGP and FCB obtained accurate approximations for the singletons marginal in the
Promedas test models, but exhibit significant inaccuracy when we examine the pair-wise
marginal involved in the competing interaction triplets, such as the node pair {X4, X5}
in Fig. 8 (b). This is because these node pairs do not have a shared child node in the
Promedas model so they are not connected as a moral edge, which affect none of the
singleton marginal results. However, once they have a shared child node the singleton
marginals will be inaccurate.

Table 6: TRC vs. other algorithms using KL mean (s.d.) for the pair-wise marginal for
Promedas test models

ID IJGP WMB FCB TRC

4000
9.0E-02

(9.0E-02)
5.5E-02

(2.4E-02)
6.0E-03

(1.3E-02)
1.7E-12

(2.8E-12)

4021
0.14

(0.15)
0.5

(0.1)
3.0E-02

(7.0E-02)
1.8E-07

(2.7E-07)

4034
6.6E-02

(0.13)
0.39

(0.35)
5.6E-02

(0.12)
1.6E-02

(2.1E-02)

4069
5.9E-02

(0.1)
2.7

(1.1)
1.8E-02

(3.5E-02)
2.7E-12

(3.0E-12)

4083
9.7E-03

(1.4E-02)
1.9

(2.0)
1.0E-02

(1.4E-02)
7.0E-04

(1.6E-03)

In Table 6, we show the Promedas results for the pair-wise marginals of the parent
nodes which are included in the competing interaction triplets, and demonstrate that these
pair-wise marginals cannot be ignored as they are poorly approximated by competing al-
gorithms. The original factors in these models are all extreme factors, so we simulated 10
random instances for each model using extreme factors. Clearly, TRC outperforms other
algorithms significantly on these pair-wise marginals. We omit the results for pair-wise
marginal for the moral edges because TRC performed equally well with the competing al-
gorithms.

In Table 7 we have listed the maximum KL results for 10 models encoding competing
interaction triplets in our random factor tests. TRC has achieved better accuracy compared
to the other algorithms. In many cases, especially where KL was greater than 0.1, the
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Table 7: KL max. of singleton, pair-wise and triplet marginals for models with competing
interaction triplets

models IJGP FCB TRC
(Singleton)
1. * 6 dimensional dense BN 0.41 0.38 2.0E-02
2. * 3x3 DBN 0.19 0.24 8.6E-02
3. Munin 0.15 0.15 3.8E-03
(Pair-wise)
4. κ20 BFG 0.18 0.2 0.07
5. Pigs 0.05 0.03 1.0E-03
6. coupled HMM 0.1 0.08 0.02
7. * Promedas 0.4 0.4 3.8E-02
(Triplets)
8. Diabetes 0.08 0.05 8.0E-03
9. Barley 0.15 0.11 0.04
10. * Hopfield 0.35 0.21 0.09

competing algorithms ”flipped” the pair-wise and triplet marginal probabilities compared
to the true values, leading to misleading inaccurate results. Even for singleton marginals, the
max variability problem is serious and evident for the competing algorithms. For example, in
the Munin test model, there is a node pair affected by competing interaction triplets sharing
no children. So the node pair will not be connected as a moral edge in the moral graph.
This means the node pair will not be approximated well because competing algorithms
will not generate interactions for it given the cluster size is limited. The error will be
propagated to many other variables, especially if the node pair is included in a cycle path.
In contrast, TRC runs on a BFG and the results will be accurate using only triplet outer
regions which is smaller than required by other algorithms for this test case. FCB will often
experience multiple region choices for the model encoding competing interaction triplets.
For example, there are six choices to select as root node for the set of fundamental cycles in
the substructure {X1, X2, X3, X4, X5, X6} using FCB for the 6-dimensional dense BN and
the number of choices increases with dimensionality. Also, the results can vary significantly
by different choices.

Based on the analysis here TRC demonstrates clear advantage over other algorithms on
both singleton and higher ordered marginals, especially when the models encode competing
interaction triplets. TRC also effectively reduced the max variability problem compared
to others. We provide efficiency comparisons against competing algorithm for Table 8 test
models in Appendix D.4. By using efficiency optimizations TRC can achieve comparable
efficiency to that achieved by competing algorithms.
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Table 8: Summary statistics of KL mean (s.d./max.) among IJGP, FCB and TRC. The
empty entries mean there are no pairwise or triplets for parent nodes (connecting
a moral edge) that are involved in the competing interaction triplets in the model.

Singleton Pair-wise

Models IJGP FCB TRC IJGP FCB TRC

1. Asia
1.6E-12

(2.0E-12/5.0E-12)
3.2E-06

(7.9E-06/2.3E-05)
2.0E-12

(2.1E-12/5.0E-12)
- - -

2. * Asia
5.8E-08

(3.52E-08/1.3E-07)
2.4E-04

(5.8E-04/1.7E-03)
3.2E-07

(3.2E-07/8.4E-07)
- - -

3. Student
5.0E-06

(1.3E-05)
5.3E-06

(9.6E-06)
3.4E-06

(8.9E-06)
- - -

4. BayesGrid
3.4E-04

(1.1E-03/5.8E-03)
2.8E-08

(6.5E-08/2.9E-07)
2.8E-08

( 6.5E-08/2.9E-07)
- - -

5. Linkage
2.6E-14

(1.3E-13)
3.7E-14

(1.7E-13)
1.1E-14

(3.9E-14)
- - -

6. Protein
2.8E-05

(1.2E-04/3.2E-03)
2.0E-05

(7.6E-05/2.4E-03)
2.0E-05

(6.4E-05/1.3E-03)
- - -

7. * 4 dimensional
dense BN

7.5E-02
(1.6E-01/5.8E-01)

4.7E-02
(1.4E-01/5.8E-01)

1.1E-03
(4.0E-03/1.6E-02)

3.2E-01
(8.5E-01/3.4E+00)

3.0E-01
(8.6E-01/3.4E+00)

1.1E-03
(3.7E-03/1.5E-02)

8. * 5 dimensional
dense BN

1.9E-02
(3.9E-02/1.5E-01)

7.9E-03
(2.4E-02/1.5E-01)

4.3E-03
(1.2E-02/8.6E-02)

1.5E-01
(3.0E-01/9.7E-01)

1.0E-01
(2.5E-01/9.9E-01)

2.0E-02
(6.5E-02/2.6E-01)

9. * 6 dimensional
dense BN

3.4E-02
(9.6E-02/4.1E-01)

1.6E-02
(5.0E-02/3.8E-01)

1.0E-03
(2.7E-03/2.0E-02)

5.1E-02
(1.2E-01/4.1E-01)

4.6E-02
(1.1E-01/4.2E-01)

4.7E-03
(7.7E-03/2.9E-02)

10. * 2× 3 DBN
2.2E-03

(5.4E-03/2.1E-02)
1.1E-03

(4.7E-03/2.5E-02)
3.1E-07

(2.0E-06/1.4E-05)
1.0E-02

(1.6E-02/6.2E-02)
5.5E-03

(2.0E-02/1.1E-01)
3.1E-04

(1.6E-03/9.1E-03)

11. * 3× 3 DBN
1.2E-02

(3.1E-02/1.9E-01)
2.1E-02

(4.6E-02/2.4E-01)
6.3E-03

(1.7E-02/8.6E-02)
- - -

12. coupled HMM
2.1E-03

(2.5E-03)
1.2E-03

(3.9E-03)
3.9E-04

(1.0E-03)
1.0E-02

(7.8E-03/0.1)
6.0E-03

(1.2E-02/0.08)
2.5E-03

(4.7E-03/0.02)

13. κ20 BFG
1.4E-04

(2.7E-04)
3.6E-06

(3.5E-06)
2.7E-06

(3.1E-06)
5.0E-03

(1.6E-02/0.18)
6.0E-03

(2.1E-02/0.2)
1.8E-03

(7.7E-03/0.07)

14. Diabetes
2.1E-04

(2.8E-03/5.7E-02)
1.3E-05

(1.4E-04/2.1E-03)
4.5E-06

(4.3E-05/8.3E-04)
5.8E-03

(5.1E-03/0.01)
3.4E-03

(3.1E-03/8.0E-3)
5.5E-04

(4.9E-04/1.0E-3)

15. Hopfield
8.6E-04

(1.7E-03)
3.6E-04

(2.9E-04)
2.9E-04

(3.1E-04)
9.7E-03

(1.4E-02/0.04)
6.0E-03

(5.4E-03/0.02)
3.0E-03

(2.0E-03/6.0E-3)

16. *Hopfield
2.2E-03

(2.1E-03)
5.5E-03

(1.0E-02)
7.9E-04

(9.6E-04)
3.8E-02

(1.7E-02/0.18)
1.6E-02

(1.7E-02/0.13)
1.3E-02

(1.4E-02/0.08)

17. Barley
5.8E-04

(3.6E-03/2.5E-02)
1.0E-03

(6.3E-03/4.4E-02)
6.0E-05

(3.4E-04/2.6E-03)
1.6E-02

(1.6E-02/0.04)
2.2E-02

(1.6E-02/0.04)
2.6E-03

(2.6E-03/6E-3)
18. Pedigree

PASCAL
1.2E-13

(5.4E-13)
1.2E-13

(5.5E-13)
1.0E-14

(8.3E-14)
- - -

19. Pigs
3.8E-07

(6.4E-06/1.3E-04)
3.8E-07

(6.4E-06/1.3E-04)
1.6E-07

(2.2E-06/3.6E-05)
1.3E-02

(1.6E-02/4.5E-02)
1.2E-02

(1.3E-02/3.3E-2)
3.7E-04

(4.1E-04/1.0E-3)
20. Promedas

PASCAL
2.8E-13

(4.1E-13)
2.1E-11

(3.1E-11)
1.5E-11

(2.2E-11)
4.6E-02

(7.2E-02/0.4)
3.4E-02

(6.8E-02/0.4)
1.8E-03

(3.0E-03/3.8E-2)

21. Munin
3.3E-04

(6.8E-03/1.5E-01)
3.4E-04

(6.9E-03/1.5E-01)
1.5E-05

(2.2E-04/3.8E-03)
5.5E-04

(9.0E-03/0.15))
7.3E-04

(1.0E-2/0.15)
2.0E-05

(2.4E-04/3.9E-03)

Singleton Triplet

Models IJGP FCB TRC IJGP FCB TRC

11. * 3× 3 DBN
1.2E-02

(3.1E-02/1.9E-01)
2.1E-02

(4.6E-02/2.4E-01)
6.3E-03

(1.7E-02/8.6E-02)
1.1E-01

(0.18/0.77)
1.9E-01

(0.3/1.2E+00)
4.7E-02

(6.6E-02/0.22)

12. coupled HMM
2.1E-03

(2.5E-03)
1.2E-03

(3.9E-03)
3.9E-04

(1.0E-03)
2.3E-02

(1.4E-02/0.12)
1.7E-02

(1.3E-02/0.09)
1.0E-02

(6.6E-03/0.02)

14. Diabetes
2.1E-04

(2.8E-03/5.7E-02)
1.3E-05

(1.4E-04/2.1E-03)
4.5E-06

(4.3E-05/8.3E-04)
3.5E-02

(3.0E-02/0.08)
2.1E-02

(1.8E-02/0.05)
3.2E-03

(3.2E-03/8.0E-3)

15. Hopfield
8.6E-04

(1.7E-03)
3.6E-04

(2.9E-04)
2.9E-04

(3.1E-04)
2.8E-02

(2.0E-02/0.07)
2.6E-02

(1.8E-02/0.07)
1.6E-02

(8.0E-03/0.02)

16. *Hopfield
2.2E-03

(2.1E-03)
5.5E-03

(1.0E-02)
7.9E-04

(9.6E-04)
1.1E-01

(2.9E-02/0.35)
2.3E-01

(4.5E-01/0.21)
3.8E-02

(2.5E-02/0.09)

17. Barley
5.8E-04

(3.6E-03/2.5E-02)
1.0E-03

(6.3E-03/4.4E-02)
6.0E-05

(3.4E-04/2.6E-03)
5.6E-02

(5.6E-02/0.15)
5.5E-02

(3.5E-02/0.11)
1.9E-02

(1.5E-02/0.04)
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6. Conclusion and Future Work

We have presented a general purpose approximate Bayesian Network inference algorithm
– Triplet Region Construction (TRC) – that overcomes the computational complexity bar-
rier presented by exact algorithms. Specifically, whereas exact algorithms are exponential
for BNs with increasing tree-width, the TRC algorithm reduces the space complexity from
exponential to polynomial for factorized models. The TRC algorithm provides system-
atic improvements over previous approximate methods for region-based approximate belief
propagation (namely relating to region choice, convergence, and accuracy). It guarantees
convergence and the maxent-Normal and perfect-correlation properties are preserved.

The binary factorization (BF) process is a necessary first step for our algorithm as it
reduces the node indegree required when building a region graph involving only triplet
outer regions and reduces the number of interaction regions to consider. Also, the ORI
algorithm solves the problem of identifying effective triplet interaction regions by using
both structural and factor information in an entirely localized way. The RGBF algorithm is
then applied to improve the stability when using GBP/CCCP. All these sub-algorithms can
be used or extended separately with other algorithms. We also demonstrate how further
optimizations, specifically node reuse and interaction triplet removal, can produce results
that achieve similar efficiency as competing algorithms.

The various and extensive experiments show that, given a bounded cluster size, TRC
is more accurate than competing algorithms, in both the high (also high dimensional) and
low tree-width models presented in the paper. TRC is an automated algorithm and is
relatively easy to extend to use different maximum cluster size to improve accuracy. TRC
also effectively addressed the max variability problem when other competing algorithms
cannot.

Future extensions of this work will focus on using TRC for high tree-width model param-
eter learning and improved computation efficiency. When using region-based approxima-
tion for parameter learning the competing interaction redundancy problem is more critical,
i.e., in each EM iteration the factors will change and may result in different competing
interaction redundancies between each EM iteration. We will also combine TRC with dis-
cretization or sampling methods to approximate continuous variables. Lastly, we will look
at paralellisation of the algorithms.
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Appendix A. Proofs

This section contains all the proofs associated with the paper.

A.1 Proof of Proposition 1

Given our inference task is to compute marginals we ensure any ordered joint distribu-
tions for the original nodes in a BN G are identical to the corresponding nodes in its BFG
G′. This can be achieved by rebuilding the original CPD for each node Xi in G using the
new CPD for Xi and its associated intermediate nodes in G′. Hence, we need to define the
new CPD for Xi and its associated intermediate nodes in G′ such that if the new CPDs in
G′ reproduce the original CPDs in G then Proposition 1 is proven.

In what follows we assume the unique ordering of the complete graph G from Theorem
1, and apply the structural factorization of G by introducing a set of intermediate variables
Et that are not in the original BN (Et ∈ G′, Et /∈ G). For example, in the case of a 5-
dimensional complete DAG G, the structure of the binary factorized version is as shown in
Fig. 13 G′. While the BF algorithm is guaranteed to produce a uniquely structured BFG
G′ for each complete DAG G, we show that the CPDs in G′ for each node Xi in G, the
CPD of Xi in G′ is equivalent, after factorization, to the CPD of Xi in G.

G

p2(x2|x1)

p4(x4|x1,x2,x3)

X1

X2

X3

X4X5

p5(x5|x1,x2,x3,x4)

p1(x1) p3(x3|x1,x2)

G’

X1

(=p(x1))
X2

(=p(x2|x1))

X3

(=p(x3|x1,x2))

E1

(=p(e1|x1,x2))
E2

(=p(e2|x1,x2))

E3

(=p(e3|e2,x3))

X4

(=p(x4|x3,e1))

X5

(=p(x5|e3,x1))

Figure 13: BF process of a five-dimensional dense graph G to its binary factorized model
G′.

In general, a discrete node D with three discrete parents A, B and C can be transformed
into an equivalent binary factorized form by introducing an intermediate node E (with
parents A and B) that has n×m states eij (i = 1, . . . , n and j = 1, . . . ,m) where A has n
states a1, . . . , an and B has m states b1, . . . , bm. The CPD for E is defined as:

p(E = eij |ak, bl) =

{
1 if k = i and l = j
0 otherwise

The CPD for node D in G′ (with parents C and E) is defined as: pG′ (D|eij , ck) =
pG(D|ai, bj , ck).

A.2 Proof of Proposition 2

All interaction triplets are generated by using the coupled Markov blanket. We can
verify that there is at least one node pair in the interaction triplet {i, j, k} that corresponds
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to a moral edge, or which is not directly connected as an edge in M [G′]. This means all
interaction triplets being evaluated are composed from incomplete and complete interaction
triplets. So, to prove Proposition 2 we need to prove all incomplete interaction triplets
are incomplete interaction redundant in the BFG, and hence the remaining (the complete
interaction triplets) are retained.

We first use Fig. 14 as an example to illustrate the rationale that the incomplete
interaction triplets can be removed and the complete interaction triplets need to be retained.

We introduce an incomplete interaction triplet {i, j, k} from Fig. 14 (a) and construct
the region graph in (b) by including all the primary triplets and the interaction triplet
{i, j, k} as outer regions. By introducing the incomplete interaction triplet we create the
pair-wise interactions {i, j} and {i, k} in L2 of (b), and all regions will be consistent for
the pair-wise regions {i, j} and {i, k}. However, these two pair-wise regions are exclusively
contained in the primary triplets {i, j, p} and {i, k, q} respectively, which makes these pair-
wise interactions redundant.

p j

qi

k

p j

qi

k L1 i,j,p i,k,q

L2 i,j

iL3

-1

0

(a) (b)

i,j,k

i,k-1

L1 i,j,p i,k,p j,k,t

L2 i,j

iL3

i,k-1-1

1

i,j,k

j,k-1

j k0 0

i,p-1

(d)

i p

kj

t

i p

kj

t

(c)

Figure 14: (a) {i, j, k} is an incomplete interaction triplet in a portion structure of the κ4

BFG, edges without arrow are moral edges; (b) region graph of (a) where the
regions with the dashed box can be removed; (c) {i, j, k} is a complete interaction
triplet in a κ4 BFG; (d) region graph of (c).

Therefore, introducing {i, j, k} will not change the pair-wise belief of bi,j and bi,k, but it
will change the belief of bj,k because {i, j, k} forces an update of the pair-wise information
{j, k} and changes the region belief bj,k from bj,k = bjbk to bj,k =

∑
i bi,jbi,k/bi. The change

of the pair-wise belief bj,k, however, will not change any of the singleton belief in the model,
because the nodes j and k are not connected as an edge in the BN in (a), indicating there
is no child node depending on the node pair {j, k}. Given no singleton entropy change in
the model the introduction of the incomplete interaction triplet is redundant and so it can
be removed.

Fig. 14 (c) shows a complete interaction triplet {i, j, k}, and we construct a region graph
in (d) by using the complete interaction triplet with all the primary triplets as outer regions.
Introducing the complete interaction triplet creates three pair-wise interactions {i, j}, {i, k}
and {j, k} in L2 of (d). Again, the pair-wise interactions {i, j} and {i, k} are exclusively
included in the corresponding primary triplets, and so they are fixed. The pair-wise belief
of bj,k will change by introducing the {i, j, k}. Given the node pair {j, k} is connected as
a moral edge, there must be a child node tdependant on it and which causes a singleton
entropy change. As a result, the complete interaction triplet will need to be retained.
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Proof. For convenience, we denote region entropy as H(br) ≡ −
∑

i br(xi) ln br(xi), and
mutual information for two region beliefs are I(br; bs) = H(bs)−H(bs|br). The redundancy
of an interaction triplet can be determined by determining if the singleton entropy of any
variable t in M [G′] changes when the interaction triplet is introduced. The variable t can
be a member of {i, j, k} or not.

1. Supposing variable t has entropy change and t ∈ {i, j, k}, so we need to determine
the entropies of i, j, and k as at least one of them changes:

The interaction triplet contains three node pairs, {i, j}, {i, k} and {j, k}, in which
a node pair is either connected as a moral edge or not connected as an edge in the
moral graph. Assuming this node pair is {j, k} then the other two node pairs must be
connected as edges in the moral graph, which means they must belong to two primary
triplets and are regularized. Here we can assume the two primary triplets are {i, j, p}
and {i, k, q} and they must share the node i.

The node pair {j, k} is not regularised and can be associated with a pair-wise factor
φj,k = 1 implying j ⊥ k|pa(j,k) (we do not need to consider the evidence case as we
are evaluating the interaction triplet without evidence) and hence the entropies of
j and k are separately determined by other node pairings: {i, j} and {i, k}. Next,
we can compute the mutual information of these two node pairs, given they contain
non-uniform factors. So, given j ⊥ k|pa(j,k), we have:

I(bi,j ; bi,k) = H(bi,k)−H(bi,k|bi,j) = H(bi,k)−H(bk|bi) = H(b̃i), (10)

where bi,j and bi,k are region beliefs associated with the region {i, j} and {i, k}, H(b̃i)
is the entropy of the marginal belief over variable i, which means the entropy change
of iwill change the entropy of both j and k.

We can compute the H(b̃i) by the GBP equation:

H(b̃i) ∝ b̃i =
∑
j,p
f̃i,j,p

∏
mi,j

∏
mi,p,

=
∑
k,q

f̃i,k,q
∏
mi,k

∏
mi,q,

(11)

where f̃i,j,p, f̃i,k,q are triplet factors associated with the two primary triplets that
contain variable i. In (11) all pair-wise messages are incoming messages to the two
primary triplet regions. Messages mi,p and mi,q do not result from the introduction
of {i, j, k} so they are fixed, but the mi,j and mi,k messages vary. Based on GBP
message updating (Yedidia et al., 2005), messages mi,j and mi,k are determined by
all messages sent from factor regions to regions for node pairs {i, j} and {i, k}. In
summary, the entropies of all the three variables in {i, j, k} are determined by the
regions of node pairs {i, j} and {i, k}.

2. Supposing variable t has entropy change and t 6∈ {i, j, k}.
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Since t is not a member of {i, j, k}, there is no singleton entropy change in {i, j, k},
otherwise we can refer to case 1. The entropy of t will possibly change only if t depends
on the pair-wise information of two variables in {i, j, k}, otherwise the entropy of
variable t will not change given that there is no singleton entropy change in {i, j, k}.
Therefore, pa(t) ∈ {i, j, k}, and {i, j, k} must contain a node pair that corresponds to
a moral edge. Suppose the moral edge is {j, k}, so the entropy of tdepends on the
region belief bj,k, and bj,k changes from bj,k = bjbk to bj,k =

∑
i bi,jbi,k/bi (because

of the interaction triplet {i, j, k}). In summary, the entropy change from t is also
determined by the regions of node pairs {i, j} and {i, k}.

As a result, whenever t is a member of {i, j, k} or not, the entropy change of t depends
on all the factors containing node i and then sending messages to regions for node pairs
{i, j} and {i, k}. We denote these factors as a set Ψi,j,k. We also denote a set of factors
Φi,j,k that is composed of all primary triplets connected by the interaction triplet {i, j, k}.
No matter whether {i, j, k} is an incomplete or complete interaction triplet the belief bj,k
will be changed from bj,k = bjbk to bj,k =

∑
i bi,jbi,k/bi. So we have the following conditions:

If Ψi,j,k ⊆ Φi,j,k, and if {j, k} does not correspond to an edge in the moral graph, there
will be no variable dependent on the pair-wise belief of bj,k, and the interaction triplet is
therefore redundant. We can verify that all incomplete interaction triplets satisfy this con-
dition, such as in Fig. 14 (a). Otherwise if {j, k} corresponds to a moral edge then there
must exist a child variable dependent on the pair-wise belief of bj,k, and so {i, j, k} must be
a complete interaction triplet that needs to be retained, such as Fig. 14 (c).

If Ψi,j,k 6⊂ Φi,j,k, then {i, j, k} can never be an incomplete interaction triplet in a BFG.
It must contain a node pair {j, k} corresponding to a moral edge and there must also exist
a child variable depending on the pair-wise of bj,k, such as {X3, X4, E3} in Fig. 13 G′. Thus
{i, j, k} is a complete interaction triplet that needs to be retained.

A.3 Proof of Proposition 3

Note that competing interaction redundancy occurs in a κ4 BFG, as shown in Fig. 14 (c)
and any higher-ordered BFG must contain multiple κ4 BFGs. The competing interaction
triplets {i, j, k} and {p, j, k} in Fig. 14 (c) that both contain the same node pair {j, k} which
corresponds to a moral edge in M [G′]. Given that the entropy of an individual node, except
node tin Fig. 14 (c), can be calculated exactly by using only two primary triplets, then
the only difference in contribution between the two competing interaction triplets is the
differing approximation quality of the pair-wise belief bj,k. Also, the accuracy of the belief
at node t depends on the accuracy of the pair-wise joint belief bj,k. The exact marginal pt
equals p(t) =

∑
j,k fj,k,tpj,k, so we need to minimize the KL D(bj,k||pj,k). Hence, we need at

least one interaction triplet to exchange messages for the node pair {j, k} associated with
primary triplet {j, k, t}. Given node j, k share a pair of parent nodes and the parent nodes
are also dependent, to calculate pj,k exactly we need to involve four nodes. But we only
have cluster size of three, and under this condition, we only have two competing interaction
triplets to consider: {i, j, k} and/or {p, j, k}.
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We can choose to either add both of them or one of them, but adding both of them will
not help because of the following counter-examples:

1. Suppose the node pair {j, k} connecting a moral edge shares a pair of parent nodes
{p, i}. To compute the pair-wise joint of pj,k exactly we need the pair-wise joint of pp,i,
but both competing interaction triplets contain only the singleton information of p or
i. Adding both does not incorporate the exact joint of pp,i. Likewise, adding both of
them forces the message exchange of {j, k} over the two competing interaction triplets,
but given none of them is computed exactly it risks distorting the approximation.

2. Adding both of them breaks the perfect correlation property.

3. If we choose one of them, we cannot use the structural information alone as well, given
the competing interaction triplets are symmetric.

So under the cluster size three constraint our best option is to choose only one of them.
Clearly we cannot determine this choice using structural information alone.

A.4 Proof of Proposition 4

Given pr the number of parents, Algorithm 2 RGBF will produce pr − 1 copies of the
region r in G′ when cr is not equal to 1, -1 or 0 in G. Each region r in G′ will share one
parent with its neighboring copy of r. Equivalence between G and G′ can be proven by
using the consistency and unity conditions 9 for a region graph.

1. Consistency: Since the first level has not changed, the consistency of all r (r /∈
R1st level) and its copies with their parents in G′ must be maintained. This is satisfied
given each region r is connected to its neighboring copy by sharing one parent, such
that parents and all regions r are connected and hence consistent.

2. Unity: Unity for each variable must be the same in G and G′. As G′ does not contain
any new regions compared to G but only copies of regions, r, from G, the counting
number for each variable will only be influenced by the region r and its copies. So the
unity condition can be satisfied by integer accumulation of r and its copies’ counting
numbers in G′ to cr in G,

∑pr−1
i=1 cri = cr (ri ∈ G′, r ∈ G), which will not change the

unity condition for each variable. Note that, in this way, the cumulative counting
number is not unique but can be specified by using 1, -1, and 0 as these work for any
integer.

A.5 Proof that the TRC region graph satisfies the perfect correlation property

The counting number properties for BFG model is already summarized in Table 2. We
prove the results in Table 2 below:

1. Let n be the number of original nodes in a BFG, G′ so the number of intermediate
nodes in G′ is 1 + 2 + ...+ n− 3 = (n− 2)(n− 3)/2, n > 3.

9. A variable has unity when the sum of all regions counting numbers associated with that variable is one.
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2. From the parent to child relationships in G′ the number of primary triplets is deter-
mined by the sum of the number of original variables and intermediate variables minus
2, as there are two factors absorbed into triplets. So we have n− 2 + (n− 2)(n− 3)/2
primary triplets.

3. The number of interaction triplets is the number of moral edges and it is also the
number of intermediate nodes, so we have (n− 2)(n− 3)/2 interaction triplets.

4. The number of first level triplets is then: L1 = n−2+(n−2)(n−3)/2+(n−2)(n−3)/2 =
(n− 2)2.

5. The number of second-level intersections is determined by the number of first level
triplets and is (n− 2)2.

6. There are n − 3 intersections with the form {Xi, Xj} which has counting number -1
to 3−n, so min(cr) = 3−n at the second level. All other intersections with the form
{Xi, Et} have counting number -1.

7. The third level regions are all single-variable regions and are original variables Xi,
with the counting number 1 to n− 3 sequentially, so max(cr) = n− 3.

Now we can prove the perfect correlation property :

The sum of all first level region counting numbers is (n− 2)2× 1. The second and third
level regions’ counting numbers are cancelled by each other, which will leave one region
with counting number 3− n (there are two regions at the second level with counting 3− n
and one is cancelled) and (n− 2)2− (n− 3)− 1 regions with counting -1. So, we sum them
all to obtain (n− 2)2 + 3− n+ ((n− 2)2 − (n− 3)− 1)×−1 = 1.

An example of a TRC region graph satisfying the perfect correlation property when
different root nodes are selected after the competing interaction redundancy test is shown
in Fig. 15.

X4X5E3 X2X3E1 X1X3E2L1 X1X2X3 X1X2E1 X1X2E2 X3X4E1 X3E2E3

L2  X3E3 X3E2 X3X4 X1E2X1X2

 X2L3

X3E1X2E1 X2X3

X3X4E3

X4E3

 X3

Primary Interaction

-1-1 -1 -1 -1 -1-1-1-2

1 1

X1X3
-1

 X11

Figure 15: TRC region graph for a κ5 BFG (in Fig. 13) when X1 and X2 are selected (after
competing interaction redundancy test) for each κ4 BFG it contains

We can verify in Fig. 15 that the sum of all regions’ counting number remains 1
(9− 11 + 3 = 1).

A.6 Proof that a TRC region graph satisfies the maxent-entropy normal prop-
erty
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The Bethe approximation is maxent-normal (Yedidia et al., 2005), and so the entropy

of the region graph, HG , can be written as HG =
N∑
i=1

H(bi) −
M∑
a=1

I(ba) where N is the

number of variables in the region graph, Xi, and M is the number of factors, a, (Xa are
the variables defined by the factor a). H(bi) ≡ −

∑
Xi

bi(Xi) ln bi(Xi) is the sum of entropies

from all variables Xi in the region graph, and I(ba) ≡
∑
Xa

ba(Xa) ln ba(Xa)−
∑

i∈N(a)

H(bi) is

the mutual information, which is the entropy for a region containing factor a, minus the

entropies of all variables contained in factor a. HG is maximal, equalling
N∑
i=1

H(bi), when

all beliefs, bi(Xi) and ba(Xa) are uniform, and under these circumstances, the mutual in-
formation, I(ba) equals zero. In our region graph we can always construct HG in the form

of HG =
N∑
i=1

H(bi) −
M∑
a=1

I(ba) because the mutual information for each triplet can be con-

structed by its connected second-level regions and the single variables the triplet contains,
resulting in minimal I terms and maximal entropy HG when all beliefs are uniform. The
rest of the proof is omitted for brevity because the verification can be done directly on the
TRC region graph.

A.7 Proof that a size four TRC region graph satisfies the perfect correlation
property

We use induction to prove this property. Consider the size four TRC region graph for a
κ6 BFG. For convenience, we merged all triplets into size four outer regions, so the first level
will not contain any triplet outer regions. We merge all primary triplets into the interaction
triplets and merge all interaction triplets. The first level regions are all size four regions
with counting number 1. We have the following counting numbers for each level in the
region graph:

Table 9: size 4 TRC region graph counting numbers for a κ6 BFG

1st level 22× 1
2nd level 5×−3 6×−2 7×−1
3rd level 3× 2 2× 3 1× 1
4th level -3 2 1

There are 22 1st level regions with counting number 1 so the overall count for the 1st

level is 22×1. There are 5 regions with counting number -3, 6 regions with counting number
-2 and 7 regions with counting number -1 at the 2nd level. The counts for the remaining
levels are also shown in Table 9. The sum of all the fourth level regions is zero. And we
will have the same counting numbers pattern for the κn BFG’s region graph in Table 10.

In Table 10, t = n− 3, Clevel1 = sum of the 1st level region counts, and Clevel4 = sum of
the 4th level region counts. Let Clevel2 and Clevel3 are the sum of the 2nd and the 3rd level
region counts respectively we have C ′level2 = Clevel2−[(2t−1)×−(n−3)]−[(2t)×−(n−4)],
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Table 10: size 4 TRC region graph counting numbers for a κn BFG, n ≥ 6

1st level Clevel1
2nd level (2t− 1)×−(n− 3) 2t×−(n− 4) C ′level2
3rd level C ′level3 1× 1
4th level Clevel4 = 0

and C ′level3 = Clevel3−1. The 2nd and the 3rd level regions have different signs and we have
the following pattern, C ′level2 + C ′level3 = 5 × (n − 5). So overall, we have the following
equations:

Clevel4 = 0, (12)

Clevel2 + Clevel3 = [(2t− 1)× − (n− 3) + 2t× − (n− 4) + 5× (n− 5)] + 1, (13)

Clevel1 + [(2t− 1)× − (n− 3) + 2t× − (n− 4) + 5× (n− 5)] = 0, (14)

where (14) is verified by induction and so by combining (12) to (14) the sum of all levels
region counts equals one.

For efficiency optimization we can remove specific size four outer regions produced by
merging the triplet outer regions. If a size four outer region is only composed from a
primary and an interaction triplet (sharing a moral edge) we can remove it (or not merge
the two triplets), given that adding it will not introduce new interaction information for the
associated moral edge. In general, as we know the exact number of parent nodes for each
node pair connecting a moral edge, we can evaluate whether the merged region introduces
new interaction information for the moral edge or not.

After applying the reduction operations we can remove more than half the size four
outer regions. The resulting 1st level of the region graph will contain a mixture of the
size four and the triplet outer regions. We can verify that the optimized size four region
graph will still satisfy the perfect correlation property (using the induction proof). And we
only need to analyze the region removal process for once for the BFG during the efficiency
optimization.

A.8 Proof that TRC time and space complexity is polynomial

For all BFGs the space complexity is proportional to the sum of all levels regions in a
TRC region graph. The space complexity is proportional to

∑
3levels v(r) · total (”total” is

the number of regions involved in each level of the region graph), which is polynomial.

Time complexity is proportional to the number of edges from the first to second level

regions, which is the sum of all second level’s degree of freedoms
∑(n−2)2

j=1 (|cr| + 1) and is
polynomial.
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Appendix B. Methods

This section contains all the methods supplement to the algorithms in the paper.

B.1 ORI efficiency optimization by node reuse and unused triplets removal

Converting a BN to a BFG may introduce some intermediate nodes that do not replicate
any original nodes in the BN. Outer regions created by these nodes can be safely removed.
Given the replicated nodes are actually the same as the original nodes, then, for intermediate
nodes that replicate original nodes, we can reuse the original nodes to replace these nodes
in all outer regions. We explain the rationale of ORI efficiency optimization by node reuse
and unused triplets removal for BNs below:

1. Node reuse: Replication is applied to reconstruct original node parent-child rela-
tionships along a specific path in the BFG. This means the primary and interaction
triplets associated with these replicated nodes are only copying information from one
replication to the other. The resulting outer region can be reduced from a triplet
to a node pair if two nodes in the region become the same. The number of outer
regions is therefore reduced since these node pairs are subsets of other triplet regions.
This method does not alter the perfect correlation property because the reduction is
achieved by merging subsets rather than removing them.

2. Unused triplets removal: We can increase computation efficiency further by re-
moving primary and interaction triplets in pairs, but only when the child node in the
primary triplet is an unused intermediate variable (i.e. does not replicate any original
variable). This means this primary triplet does not influence any original variables
in the model. In this case, removing the primary triplet r and an interaction triplet
r′ (r and r′ share the same node pair that is connected by a moral edge), as a pair,
won’t change the local structure of other variables in the region graph, and the perfect
correlation property will be preserved.

B.2 TRC efficiency optimization by relaxing the perfect correlation property

Following Algorithm 1 (ORI) with node reuse and unused triplets removal optimizations,
we can keep reducing the number of interaction triplets but only if we relax the perfect
correlation property. We call this method interaction triplet removal . After node
reuse and unused triplets removal, the number of remaining primary triplets is close to the
number of factors in the original model. As a result, some interaction triplets remain but are
disconnected from primary triplets and instead are only connected to neighboring interaction
triplets. We can remove these interaction triplets provided that other interaction triplets
connected to primary triplets are not affected. The perfect correlation property cannot be
guaranteed given we are removing interaction triplets directly.

All replicated nodes are now replaced by original nodes and the unnecessary interaction
triplets are removed; hence we will eventually remove all intermediate nodes. An inter-
mediate node that does not replicate any original node can be removed. As a result, the
remaining triplets are triplet cycles containing original nodes only.

B.3 CCCP updating equations
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TRC uses CCCP or GBP for message passing. We omit the GBP message passing
equations (Yedidia et al., 2005). The CCCP updating equations (Yuille, 2002) are given
below:

hr(xr) = e−
cr

cmax
{Er(xr)+1}{br(xr)}

cmax−cr
cmax , (15)

gr(xr) = e
−γr−

∑
s∈child(r)

λr→s(xs)+
∑

v∈parent(r)

λv→r(xr)

, (16)

br(xr) = hr(xr)gr(xr), (17)

e2λr→u(xu;τ+1) = e2λr→u(xu;τ)

∑
x∈r\u br

bu
. (18)

Where: λ and γ are Lagrangian multipliers. cmax is the max value of all regions’ counting
numbers in a region graph. hr and gr are pre-calculated parameters for computing belief
terms br. In the CCCP algorithm, updating each λr→u is a recursive process that involves
calculating the beliefs over all u’s parents and children, and its children’s parents. CCCP
can be updated in parallel provided that neighboring parent-child region messages are not
affected.

Appendix C. Examples

This section contains four examples supplemental to the examples in the paper.

C.1 Example of the BF process applied to a BN

Figure 16: (a) 5-dimensional dense BN; (b) BF model of (a).

The 5-dimensional dense BN shown in Fig. 16 (a) is also introduced in the paper. To
binary factorize the model, we can add an intermediate node E1 that combines the X0 and
X1 with a CPD: p(E1|X0, X1) = diag(1, 1, 1, 1) and obtain the BF model in (b).

C.2 Example of BFG conversion and obtaining TRC outer regions
We use the Asia BN as an example below to define the appropriate node ordering πG

for the BFG conversion.

283



Lin, Neil, & Fenton
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Figure 17: (a) the Asia BN with dashed lines a moral edge and a chordal edge; (b) cliques
obtained by exact method; (c) BFG G1; (d) BFG G2.

We can obtain a node ordering: {a → t → s → l → b → e → d → x} where nodes in a
clique ({s, l, b} and {l, b, e} shown in (b)) are ordered as neighbours, which is valid and then
uniquely define a BFG G1 in (c). In (d) we define another valid node ordering (i.e. obtained
by breadth first search) that does not follow strictly from the node neighbouring order in
cliques in (b), but we can obtain the same interaction triplets by using the replacement
interaction triplets. In BFG G2 we can still obtain {l, b, e} (shown as bold face) and {s, l, b}
(shown as an interaction triplet), which are necessary triplet cycles. However, using (c) is
more efficient than (d) as more intermediate nodes are left without replicating any original
node in (c), so less regions will be created.

We can then obtain TRC outer regions as follows. Firstly, we can discard pairs of
primary and interaction triplets if a primary triplet’s child node is not used (unused triplet
removal), such as all the E nodes in Fig. 17 (c). Next, we can reuse the original node
to replace the replicated node to get the following regions (primary triplet followed by its
interaction triplet) in Table 11.

Table 11: Primary triplets in the Asia BN’s BFG in Fig. 17 (c)

{a, t, s} with no interaction triplet
{a, t, t}− > {a, t} can be simplified as node t appear twice
{s, t, t}− > {s, t} with interaction triplet {t, s, t}− > {s, t}
{s, b, E2} with interaction {t, s, E2}
{s, l, E1} with interaction {t, s, E1}
{s, l, b} with interaction {s, l, s}− > {s, l}
{t, l, e} with interaction {s, l, t}
{b, e, e}− > {b, e} with interaction {l, b, e}
{b, b, E7}− > {b, E7} with interaction {l, b, E7}
{b, e, d} with interaction {b, b, e}− > {b, e}
{e, d, x} with interaction {e, e, d}− > {e, d}
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We then merge the repeated and subset regions to obtain the 1st level of the TRC region
graph containing 12 triplets, as shown in Table 12. There are three intermediate nodes E1,
E2 and E7 in the Table 12 list. The resulting TRC region graph satisfies the perfect
correlation and maxent-normal properties. After the optimization, the number of 1st level
region is reduced from 36 to 12, which is close to the number of outer regions generated by
FCB. We can convert the original CPDs to factors for the corresponding primary triplets.
The interaction triplets will be uniform factors.

Table 12: TRC outer regions for the Asia BN’s BFG in Fig. 17 (c)

{a, t, s} primary triplet
{s, b, E2} primary triplet
{t, s, E2} interaction triplet
{s, E1, l} primary triplet
{t, s, E1} interaction triplet
{s, l, b} primary triplet
{t, l, e} primary triplet
{s, l, t} interaction triplet
{b, e, l} interaction triplet
{l, b, E7} interaction triplet
{b, e, d} primary triplet
{e, d, x} primary triplet

If we relax the perfect correlation property we can further reduce the above-listed inter-
action triplets using interaction triplet removal. For example, we can remove the interaction
triplet for those regions containing E2 and E7 as they are not connected to primary triplets
sharing the same node pair (connected by a moral edge). Finally, we can also remove the
interaction triplet containing E1 as from the original model the nodes in this triplet are in-
dependent. So after a set of reduction operations, we are left with the triplet cycles shown
in Fig. 17 (a), which is to select {s, l, b} and {b, e, l} as interaction triplets.

C.3 Example to show how to obtain the TRC region graph for a coupled HMM

For simplicity in Fig. 18 (a), for the coupled HMM model shown, we removed three
observed nodes. To construct the BFG for the BN we need to incrementally test the com-
peting interaction redundancies for the BN and determine the list of competing interaction
triplets to retain. We then obtain the BFG in (b). The optimized TRC region graph is then
built using the same procedure used for the Asia model. In summary, we obtain the TRC
region graph by these four steps: (1) detect the competing interaction triplets in the BN
and define a node ordering; (2) construct the BFG; (3) construct the outer regions of the
region graph using the BFG; (4) optimize the outer regions by a set of reduction operations
and then generate the region graph using CVM.
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Figure 18: (a) four-time slices coupled HMM model with the last child node observed; (b)
The corresponding κ9 BFG of (a) where the E nodes in grey are intermediate
nodes not replicating any original nodes.

C.4 Example to show how to merge triplet outer regions to size four outer
regions
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Figure 19: (a) a 3× 3 Grid BN; (b) The corresponding κ9 BFG where the C nodes are the
replicated nodes and the E nodes in grey are intermediate nodes not replicating
any original nodes.

In Fig. 19 (a) we show a Bayes Grid BN and its corresponding BFG (b) using 3 × 3
Grids. Firstly, we obtain the TRC triplet outer regions using the BFG in Fig. 19 (b).
To obtain size four outer regions we will merge the primary triplets into the interaction
triplets provided that the merged regions introduce new interaction information (compared
to not merging) for the moral edges they are associated with. To determine whether the
merged region introduces new interaction information for the moral edge we check what
parent nodes are involved that can compute the pair-wise distribution of the moral edge
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exactly. Obviously this information can be obtained directly from the BFG model. For
instance, we will discard the merged region {CX0 , X1, X3, X4} given it introduces no new
interaction information for the moral edge {CX0 , X4}, compared to using the primary triplet
{CX0 , X3, X4} and the interaction triplet {CX0 , X1, X4} without merging. To compute the
pair-wise distribution PCX0

,X4 exactly we need to incorporate the pair-wise information of
{X0, X1}, which are the two parent nodes of the node pair {CX0 , X4} (connecting the moral
edge). But the region {CX0 , X1, X3, X4} we’ve merged does not contain the information.

We will retain the merged region {CX1 , X2, X3, CX4} (shown in the bold circle in (b))
given it introduces new interaction information for the moral edge {X2, CX4}. To compute
PX2,CX4

exactly we need the joint distribution of {CX1 , X3, CX4} (the three parent nodes of
the node pair {X2, CX4} ), so the merged region {CX1 , X2, X3, CX4} is retained. Likewise,
we know the exact number of parent nodes for each node pair connecting a moral edge, so
the merging and removal process is guided, and we can achieve arbitrary outer region sizes
> 3.

We have used this test to illustrate the merging process but alternatively we could use
the replacement interaction triplet to obtain the target interaction triplet without the need
to merge. This is evident in the BFG in (b) where there exists replacement interaction
triplets for the moral edges {X3, CX1}, {X2, CX4}, {X8, CX2} and {X7, CX5}.

Appendix D. Experiments

This section contains experiments supplement to the paper.

D.1 CPDs for Fig. 1 (a)

Table 13: CPDs for Fig. 1 (a)

X1 .54 .46
X2|X1 .996 .004 .67 .33
X3|X1, X2 .86 .14 .86 .14 .03 .97 .60 .4
E1|X1, X2 .98 .02 .996 .004 .09 .91 .35 .65
X4|E1, X3 .99 .01 .98 .02 .96 .04 .8 .2

D.2 Interaction change

This experiment is supplement to section 5.2 of the paper, which is a test of the ORI
approximation quality when introducing the interaction change.

Fig. 20 (a) is a BN with a child node dependent on a number of parent nodes where
all the parent nodes share a single ancestor node. Assuming they are all binary nodes, the
exact solution for the induced cluster size is seven (by including variables X1 to X7 as a
single cluster) and the induced cluster space is 128. Compared to the BN in (a), there is
an interaction change caused by the BF algorithm for the model in (b). ORI needs to find
the exact solution under the bounded cluster space 128 for the BF model in (b). There are
different BF models available for (a), but the BF model in (b) ensures the maximum factor
space (product of cardinalities of all variables in a factor) is also under 128. The cardinality
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Figure 20: (a) BN G; (b) binary factorized model of (a); (c) BFG of (a).

is four for variables E8 and E10, and eight for variables E9 and E11. The corresponding
BFG model of (b) is shown in (c).

Next, the ground truth of the original nodes for (a) and (b) is the same under exact
methods (Neil et al., 2012). So we only need to verify the clusters generated by the exact
method for (b) can be also generated using ORI from (c). If we index variables X0 to X7

to be 0, ..., 7 and variables E8 to E11 to be 8, ..., 11, the clusters generated by the exact and
the ORI solutions are given in Table 14.

Table 14: interaction change test

size Exact ORI space

4 0 1 2 8 (1 2 8 + 0 2 8) 32
4 0 4 5 10 (0 4 5 + 4 5 10) 32
4 0 3 8 9 (3 8 9 + 0 3 9) 128
4 0 6 10 11 (6 10 11 + 0 6 10) 128
4 0 6 9 10 (0 6 10 + 6 9 10) 128
3 6 9 11 (6 9 11) 128
3 7 9 11 (7 9 11) 128

In Table 14 the ORI rebuilds the exact clusters by merging the primary and interaction
triplets found in the BFG, without exceeding the bounded cluster space 128. This means,
despite an interaction change, this does not incur a loss of information from the original
nodes, and ORI has found the ground truth of the BN in (a) under the bounded cluster
space (as obtained by exact methods).

D.3 Stress testing
Additional to section 5.2 experiments provided in the paper, we stress test all competing

algorithms using the (n+2) dimensional dense BN (Fig. 8) and m×n DBN (Fig. 9). These
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BNs are either used in practical applications or embedded in other BNs as sub-structures.
They are the worst cases as their moral graph contains dense sub-structures that reflect
how moral edges are involved in competing interaction triplets. The experiments also test
the approximation quality of TRC when interaction change occurs.

Figure 21: (a) to (f): TRC vs. competing algorithms when the difference between the clus-
ter size and the tree-width is fixed but the factor strength (x-axis) is increasing,
by using the (n + 2) dimensional dense BN, where n = 2, 3, or 4. The aver-
age/s.d. of the result is short for a./s.; (g) and (h): the factor strength is fixed
but the difference between the cluster size and the (tree-width+1) is increasing
for the m×n DBN, where m×n = 2× 3, 3× 3 and 4× 3. The x-axis represents
different ordered nodes’ marginals being compared. The last child node in the
model is observed. ”(+1)” means the results are obtained with one increased
cluster size and restrict the max cluster space equal to all compared algorithms.

In Fig. 21, we show the performance of each algorithm using the (n + 2) dimensional
dense BN and the m × n DBN. Fig. 21 (a)-(f) is a factor strength test when fixing the
difference (=1) between the cluster size and the (tree-width+1). The factors are sampled
from a zero scaled log-normal distribution with s.d. from 1 to 5. The higher the s.d. the
closer factor values (normalized) to zeros and ones, hence this generates stronger factor
strength. The stronger the factor strength the worse the approximation and more severe
the max variability problem can be. Fig. 21 (g)-(h) is a tree-width test where the factor
strength is fixed (using extreme factors 0.99 and 0.01) but with increased difference between
the cluster size and the tree-width. So, under these two settings, for the worst test models,
we can evaluate how the averaged results and the max variability of each algorithm performs.
We optimized the efficiency by node reuse and the perfect correlation property is retained
for these tests.

We obtain each data point in Fig. 21 by 20 instances of random factors. In Fig. 21
(a)-(f) TRC significantly outperformed the competing algorithms for both singleton and
pair-wise marginals. When the factor strength increases the performance of the competing
algorithms generally decreases but TRC does not necessarily degrade (below or close to
10−2 while others exceed 10−1). Also, the max variability of TRC is significantly lower
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than the others.

In Fig. 21 (g)-(h), TRC also improves the results over others but the performance for all
algorithms degrade as a function of the model dimension m. This is because the difference
between the cluster size and the tree-width increases with the dimension m. If we increase
the cluster size for IJGP and TRC both results for max values are improved, but TRC
improves more significantly, as shown in (g) and (h) for the worst test case m× n = 4× 3.

TRC simply merges the smaller clusters and those merges do not distort the approxima-
tion 10 but improve the result significantly. For a fair comparison we did not merge certain
regions for TRC if they might exceed the maximum cluster space of others, by increasing
one cluster size. But in practice we should merge to obtain higher accuracy. There are many
choices for FCB to generate the fundamental cycles for these tests and the results vary sig-
nificantly depending on which ones are used. In these tests the max variability statistics for
FCB is worse than produced by the others. We also tried different outer regions for the Fig.
21 test models using CVM, and found the results are less accurate if the perfect correlation
property is relaxed.

These tests verified that under extreme settings and with the interaction change the
TRC algorithm still achieves better results than competing algorithms.

D.4 Efficiency comparison
Table 15 compares the efficiency of each algorithm for the test models presented in the

paper. We obtain the results in Table 15 by running each algorithm under the CCCP
message passing and convergence threshold 1.0e-08 for all algorithms. The CPU processor
was an i5 4300m.

We performed the TRC efficiency optimization by node reuse and interaction triplet
removal. There are many models contained in the PASCAL categories, so the values we
compare are listed in Table 15 as single tests. We have bounded all algorithms with the
same cluster space. Compared to IJGP and FCB, TRC can achieve similar efficiency when
the perfect correlation property is relaxed.

TRC generally produced more interaction regions than the others as the outer regions
found by TRC are more sufficient, but for many test cases TRC achieved similar efficiency.
However, it is still possible to reduce outer regions further from the remaining interaction
triplets, and we will explore it in future work. In addition, parallel computation for CCCP
is another option to improve efficiency. We have implemented the parallel CCCP in Agena
(AgenaRisk, 2020), which can improve the efficiency for at least 30% depending on the
number of processors.

10. As discussed in (Welling, 2004), adding larger regions can distort the approximation for certain models,
i.e. merging regions for the dense models could be harmful.
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Table 15: Efficiency comparison of the competing algorithms using time (second) and cccp
iterations

Models IJGP FCB TRC
Time (s) Iter. Time (s) Iter. Time (s) Iter.

Asia 0.1 58 0.1 41 0.22 70
Student 0.1 51 0.1 46 0.2 70
BayesGrid 5Ö5 1.1 95 1.7 127 3 170
Linkage 132 669 89 532 410 1065
4 d. dense BN 0.05 30 0.1 28 0.2 74
5 d. dense BN 0.1 56 0.2 51 0.5 113
*6 d. dense BN 0.3 141 0.3 115 1.7 235
*2Ö3 DBN 0.14 77 0.3 94 0.3 84
*3Ö3 DBN 0.4 105 1.6 223 1.8 207
coupled HMM 0.3 104 0.5 100 1.1 180
κ20 BFG 26 466 74 744 75 747
Diabetes 73 844 30 358 216 764
*Hopfield 0.6 150 1.5 176 2.3 258
Barley 3 201 3 176 18 478
Pedigree 55 318 14 154 210 658
Pigs 92 1080 44 672 217 1198
Promedas 151 2107 55 1226 65 1289
Munin 526 2316 362 1774 1290 2253
Protein 1326 584 1004 420 5600 757

D.5 High dimensional BFG tests

Table 16: KL distance for high dimensional BFG models (binary variables with normal
random factors) test

t.w. 19 (κ20) 39 (κ40) 79 (κ80) 99 (κ100)

JT O(2n) 8 Mb 8E3 Gb 9E15 Gb 9E21Gb
TRC O(n2) .06 Mb .11 Mb .47 Mb .73 Mb
iterations 782 1567 3561 3963
max.(KL) 1.5E-04 1.9E-05 3.8E-05 2.8E-05
min.(KL) 3.7E-12 2.5E-13 2.1E-09 4.5E-08
ave.(KL) 1.5E-05 5.2E-06 7.5E-06 2.9E-06

Table 16 is a summary of the test results for κ20 (t.w. 19, 173 variables), κ40 (t.w.
39, 743 variables), κ80 (t.w. 79, 3083 variables) and κ100 (t.w. 99, 4853 variables) BFGs
respectively, cluster space complexity for each model is compared to a JT solution. These
models are very large and the results show that the cluster space complexity is reduced from
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exponential to polynomial (from gigabytes to less than one megabyte). As the dimensions
increase the accuracy does not notably decrease; all KL statistics show a robust and accurate
performance and we can increase the convergence threshold to obtain higher accuracy.
Because exact computation for all variables is computationally expensive we compare the
accuracy of the first 20 dimensions produced under TRC. We would argue that if the first
20 dimensions are accurately approximated then higher dimension variables must also be
accurate by the same approximation, otherwise the inaccuracy will be revealed in the lower
dimensions, in priority order.
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