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ABSTRACT
While the growing number of cores per chip allows researchers
to solve larger scientific and engineering problems, the par-
allel efficiency of the deployed parallel software starts to de-
crease. This unscalability problem happens to both vendor-
provided and open-source software and wastes CPU cycles
and energy. By expecting CPUs with hundreds of cores to
be imminent, we have designed a new framework to perform
matrix computations for massively many cores. Our perfor-
mance analysis on manycore systems shows that the unscal-
ability bottleneck is related to Non-Uniform Memory Access
(NUMA): memory bus contention and remote memory ac-
cess latency. To overcome the bottleneck, we have designed
NUMA-aware tile algorithms with the help of a dynamic
scheduling runtime system to minimize NUMA memory ac-
cesses. The main idea is to identify the data that is, either
read a number of times or written once by a thread res-
ident on a remote NUMA node, then utilize the runtime
system to conduct data caching and movement between dif-
ferent NUMA nodes. Based on the experiments with QR
factorizations, we demonstrate that our framework is able
to achieve great scalability on a 48-core AMD Opteron sys-
tem (e.g., parallel efficiency drops only 3% from one core to
48 cores). We also deploy our framework to an extreme-scale
shared-memory SGI machine which has 1024 CPU cores and
runs a single Linux operating system image. Our frame-
work continues to scale well, and can outperform the vendor-
optimized Intel MKL library by up to 750%.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming ; C.1.2 [Processor Architec-
tures]: Multiple Data Stream Architectures (Multiproces-
sors)—Parallel processors
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1. INTRODUCTION
The number of cores per chip keeps increasing due to the

requirements to increase performance, to reduce energy con-
sumption and heat dissipation, and to lower operating cost.
Today, more and more multicore compute nodes are de-
ployed in high performance computer systems. However,
the biggest bottleneck for the high performance systems, is
to design software to utilize the increasing number of cores
effectively.

The problem is that with an increasing number of cores,
the efficiency of parallel software degrades gradually. Since
matrix problems are fundamental to many scientific com-
puting applications, we tested and benchmarked the per-
formance of matrix factorizations on a shared-memory ma-
chine with 48 cores. Figure 1 shows the performance of Intel
MKL [1], TBLAS [18], and PLASMA [3]. As shown in the
figure, from one core to 48 cores, the efficiency (i.e., perfor-
mance per core) of all three libraries decreases constantly.

At first glance, one would think it is the hardware or
the operating system that imposes a limit to the parallel
software. Indeed, this is true for I/O intensive applications
due to limitations in I/O devices and critical sections in de-
vice drivers [6, 10, 21], but this argument is rarely true for
computation-intensive applications. Computation-intensive
applications typically perform in-memory computations and
can minimize the overhead of system calls. By our intuitions,
their performance should be scalable. However, it is not, as
shown in Figure 1. Our paper studies why this unscalability
problem can happen and how to solve the problem.

To solve the unscalability problem, we first want to find
out what and where the bottlenecks are. We take QR fac-
torization as an example and use PAPI [2] to collect a set
of hardware performance counter data. By comparing ex-
periments on a small number of cores to experiments on a
large number of cores, we find the main causes for the per-
formance degradation, which are“FPU idle cycles”and“Any
stall cycles”. However, there are many sources that can con-
tribute to the causes. This leads us to conduct another set of
experiments to identify the real reason. The reason we even-
tually find out is not a big surprise, but confirms one of our
speculations. It is the increasing number of remote memory
accesses that are incurred by the hierarchical NUMA (Non-
Uniform Memory Access) architecture which is commonly
found on modern manycore systems.

After finding the reason, we start to seek a solution to the
problem. The main idea is as follows. First, at algorithm
level, we extend the tile algorithms proposed by Dongarra et
al. [8,9] to design new NUMA-aware algorithms. Instead of
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Figure 1: QR factorization on a 48-core AMD
Opteron machine. With more cores, the per-core
performance keeps dropping. Input sizes n = 1000 ×
NumberCores. One core does not reach the max
performance because it is given a small input and
has a relatively larger scheduling overhead.

allocating a global matrix and allowing any thread to access
any matrix element, we restrict each thread to a fixed subset
of the matrix. Since each thread has its own subset of data,
a thread can view its own data as local and others as remote.
The NUMA-aware algorithms take into account the number
of accesses to remote data. For instance, if a thread needs to
access remote data many times, it copies the remote data to
its local NUMA node before accessing it. Second, we design
a novel dynamic scheduling runtime system to support sys-
tems with a large number of CPU cores. The new runtime
system follows a push-based data-flow programming model.
It also uses work stealing to attain better load balancing.
Third, we use a 2-D block cyclic distribution method [13] to
map a matrix to different threads. Fourth, each thread owns
a memory pool that is allocated from its local NUMA node
and uses this memory to store its mapped subset of matrix.

Our experiment with QR factorizations demonstrates great
scalability of the new approach. On a Linux machine with
48 cores, our performance per core drops only 3% from one
core to 48 cores. This is an improvement of 16% over the
previous work. We also test it on an extreme-scale shared-
memory system with 1024 CPU cores. The system runs a
single Linux operating system image. Based on the exper-
imental results, we can deliver a maximum performance of
3.4 TFlops. It is 750% faster than the Intel MKL library,
75% faster than the Intel MKL ScaLAPACK library, and
42% faster than the PLASMA library [3] developed by the
University of Tennessee.

To our best knowledge, this paper makes the following
contributions:

1. Performance analysis of the unscalability issue in math-
ematical software for manycore systems, as well as an
approach to solving the issue.

2. An extended matrix computation algorithm with NUMA
awareness.

3. An extremely scalable runtime system with new mech-
anisms to effectively reduce NUMA memory accesses.

4. A novel framework that runs efficiently on manycore
systems. It is the first time to demonstrate great scal-
ability on shared-memory massively manycore systems
with 1000 CPU cores.

The rest of the paper is organized as follows. Next section
conducts performance analysis and identifies the reasons of
the unscalability issue. Section 3 introduces our extended
NUMA-aware QR factorization algorithm. Sections 4 and
5 describe the implementation of our framework. Section
6 provides the experimental results. Section 7 presents the
related work. Finally Section 8 summarizes our work.

2. PERFORMANCE ANALYSIS
We measured the performance of an existing dynamic

scheduling runtime system called TBLAS [18] to compute
matrix operations. TBLAS was previously tested on quad-
core and eight-core compute nodes, but has not been tested
on compute nodes with more than sixteen CPU cores.

To measure TBLAS’s performance on modern manycore
systems, we did experiments with QR factorizations on a
shared-memory 48-core machine. The 48-core machine has
four 2.5 GHz AMD Opteron chips, each of which has twelve
CPU cores. It also runs the CentOS 5.9 operating sys-
tem and has 256 GB memory partitioned into eight NUMA
nodes. Figure 1 displays performance of the QR factoriza-
tion implemented with TBLAS. Each experiment takes as
input a matrix of size n = 1000 × NumberCores. On
six cores, TBLAS reaches the highest performance of 6.5
GFlops/core. Then its performance keeps dropping. On 48
cores, its performance becomes as slow as 5.1 GFlops/core
(i.e., a 20% loss).

However, we know that QR factorization has a time com-
plexity of O( 4

3
n3) and is CPU-bound. With an increased

input size, we had expected to see great scalability as previ-
ously shown on clusters with thousands of cores [18], because
its ratio of communication to computation becomes less and
less as the input size increases. Hence, Figure 1 exposes an
unexpected unscalable problem. Our immediate task is to
investigate what has caused this unscalability problem. Is it
due to hardware or software or due to both?

2.1 Performance Analysis Using Hardware
Performance Counters

We manually instrumented our matrix factorization pro-
gram using the PAPI library [2]. Then we compared the
differences between one experiment with a small number of
cores and another experiment with 48 cores. Since this is a
multi-threaded program, we collected performance data of
hardware performance counters for each thread. Based on
our performance data, each thread spent an equal amount
of time on computation. This implies that there is no load
imbalance among threads.

Table 1 shows the performance-counter data we collected
on 12 and 48 cores, respectively. From the table, we can see
that the 48-core experiment keeps the same low cache-miss
rate and branch miss-prediction rate, as well as the same low
rate of cycles without instructions. By contrast, the TLB
miss rate increases a little bit from 7.8% to 8.7%. Moreover,
the rate of FPU idle cycles increases by 31% from 3.9% to
5.1%. The rate of any-stall cycles (due to any resources)
increases by almost 75%.



Table 1: Data of hardware performance counters
collected from a 12-core experiment and a 48-core
experiment, respectively.

On 12 Cores On 48 Cores

Performance per Core 6.4 GFlops 5.1 GFLops

L1 Data Cache Miss Rate .5% .5%

L2 Data Cache Miss Rate 2.98% 2.87%

TLB Miss Rate 7.8% 8.7%

Branch Miss-Prediction Rate 1.6% 1.5%

Cycles w/o Inst. .5% .6%

FPU Idle Cycles 3.9% 5.1%

Any-Stall Cycles 20.6% 35.9%

2.2 Reasons for Increased Any-Stall Cycles
We expect there are three possible reasons that can result

in lots of stall cycles (due to any resources). They are: (1)
thread synchronization, (2) remote memory access latency,
and (3) memory bus or memory controller contention.

Thread synchronization can happen during the schedul-
ing of tasks by the TBLAS runtime system. For instance,
a thread is waiting to enter a critical section (e.g., a ready
task queue) to pick up a task. When a synchronization oc-
curs, the thread cannot do any computation but waiting.
Therefore, the synchronization overhead is a part of the
thread’s non-computation time (i.e., total execution time -
computation time). However, as shown in Table 2, the non-
computation time of our program is less than 1%. Therefore,
we can omit thread synchronization as a possible reason.

Table 2: Analysis of synchronization overhead.

Total Time (s) Computation Time (s)

12 Cores 30 29.9

48 Cores 74.8 74

The second possible reason is remote memory accesses.
We conduct a different experiment to test the effect of re-
mote memory accesses. In the experiment, the TBLAS pro-
gram allocates memory only from the NUMA memory nodes
from 4 to 7, that is, the second half of the eight NUMA
memory nodes as shown in Figure 2. This is enforced by
using the Linux command numactl. Then, we compare two
configurations (see Figure 2): (a) running twelve threads on
CPU cores from 0 to 11 located on NUMA nodes 0 and 1,
and (b) running twelve threads on CPU cores from 36 to 47
located on NUMA nodes 6 and 7. In the first configuration,
TBLAS attains a total performance of 57 GFlops. In the
second configuration, it attains a total performance of 63
GFLOPS. Note that the matrix input is stored in NUMA
nodes from 4 to 7. The performance difference shows that
accessing remote memory does decrease performance. Note
that we use Linux command taskset to pin each thread to
a specific core.

The third possible reason is memory contention that may
come from a memory bus or a memory controller. Here
we do not differentiate the controller contention from the
bus contention, but consider the memory controller an end

cores: 0-23 cores: 24-47 

Memory Memory 

(a) 12 threads 

matrix 

(b) 12 threads 

NUMA nodes: 0-3 NUMA nodes: 4-7 

Figure 2: Effect of remote NUMA memory access
latency. matrix is always allocated on NUMA nodes
from 4 to 7. Then we run twelve threads in two
different locations: (a) on NUMA nodes 0 and 1
(i.e., far from data), and (b) on NUMA nodes 6 and
7 (i.e., close to data).

point of its attached memory bus. In our third experiment,
we run “numactl -i all” to place memory to all the eight
NUMA nodes using the round-robin policy. As shown in
Figure 3, there are two configurations: (a) we create twelve
threads and pin them on cores from 0 to 11, (b) we create
twelve thread and each thread runs on one core out of every
four cores. In both configurations, each thread must access
all the eight NUMA nodes due to the interleaved memory
placement. Since the second configuration provides more
memory bandwidth to each thread (i.e., lesser contention)
than the first configuration, it achieves a total performance
of 76.2 GFlops. By contrast, the first configuration only
achieves a total performance of 66.3 GFlops. The difference
shows that memory contention also has a significant impact
on performance. One way to reduce memory contention is
to maximize data locality and minimize cross-chip memory
access traffic.

The above three experiments together with the perfor-
mance differences they have made, provide an insight into
the unscalability problem and motivate us to perform NUMA
memory optimizations. We target at minimizing remote
memory accesses since it is able to not only reduce the la-
tency to access remote memories, but also alleviate the pres-
sure on memory buses.

3. THE TILE ALGORITHM

cores: 0-23 cores: 24-47 

Memory Memory 

12 threads 

NUMA nodes: 0-3 NUMA nodes: 4-7 

matrix matrix matrix matrix  

cores: 0-23 cores: 24-47 

Memory Memory 

12 threads: 1 out of every 4 cores 

NUMA nodes: 0-3 NUMA nodes: 4-7 

matrix matrix  matrix matrix  

(a) 12 threads running on cores: 0-11.  (b) 12 threads equally distributed.  

...

Figure 3: Effect of memory bus contention. ma-

trix is allocated to all eight NUMA nodes using the
roundrobin policy. We start twelve threads using
two configurations, respectively. (a) 12 threads are
located on 12 contiguous cores from 0 to 11. (b) 12
threads, each of which runs on one core out of every
four cores.



To achieve the best performance, we must redesign new
algorithms that can take advantage of both architecture
and the application-level knowledges. We first briefly intro-
duce the existing tile QR factorization algorithm. Then we
analyze the algorithm’s data-flow and data-reuse patterns.
Finally we introduce our extension to make the algorithm
NUMA aware.

3.1 Background
The tile QR factorization algorithm [8,9] uses an updating-

based scheme that operates on matrices stored in a tile data
layout. A tile is a block of submatrix and is stored in mem-
ory contiguously. Given a matrix A consisting of nb × nb

tiles, matrix A can be expressed as follows:

A =


A1,1 A1,2 . . . A1,nb

A2,1 A2,2 . . . A2,nb

...
...

. . .
...

Anb,1 Anb,2 . . . Anb,nb

 ,

where Ai,j is a square tile of size b× b.
At the beginning, the algorithm computes the QR factor-

ization for tile A1,1 only. The factorization output of A1,1 is
then used to update the set of tiles on A1,1’s right hand side
in an embarrassingly parallel way (i.e., {A1,2, . . . , A1,nb}).
As soon as the update on any tile A1,j is finished, the up-
date on tile A2,j can read the modified A1,j and start. In
other words, whenever a tile-update in the i-th row com-
pletes, its below tile in the (i+ 1)-th row can start if Ai+1,1

also completes. After updating the tiles in the bottom nb-
th row, tile QR factorization applies the same steps to the
trailing submatrix A2:nb,2:nb recursively.

3.2 Algorithm Analysis
Figure 4 shows the data-flow graph for solving a matrix

of 4 × 4 tiles using the tile QR factorization algorithm. In
the figure, each node denotes a computational task. A task
is represented by a function name and an index [i, j]. A task
with index [i, j] indicates that the output of the task is tile
A[i, j]. An edge from node x to node y indicates that the
output of node x will be an input to node y. For instance,
SSRFB [2, 4] refers to a task that reads the output of tasks
LARFB [1, 4] and TSQRT [2, 1], then modifies its own output
of A[2, 4].

There are totally four functions (aka “kernels”) in the tile
QR factorization algorithm: GEQRT, TSQRT, LARFB, and SS-

RFB. For completeness of this paper, we describe them briefly
here:

• GEQRT: R[k,k], V[k,k], T[k,k] ← GEQRT(A[k,k]).

It computes the QR factorization for a tile A[k,k] lo-
cated on matrix A’s main diagonal, and generates three
outputs: an upper triangular tile R[k,k], a unit lower
triangular tile V[k,k] containing the Householder re-
flectors, and an upper triangular tile T[k,k] for storing
the accumulated transformations.

• TSQRT: R[k,k], V[i,k], T[i,k] ← TSQRT(R[k,k], A[i,k]).

It updates the tiles located under tile A[k,k]. After
GEQRT is called, TSQRT stacks tile R[k,k] on top of
tile A[i,k] and computes an updated factorization.

• LARFB: R[k,j] ← LARFB(V[k,k], T[k,k], A[k,j]).

2,1

GEQRT

TSQRT

2,2
SSRFB

1,2
LARFB

1,3
LARFB

1,4
LARFB

3,1
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Figure 4: Data flow graph of the tile QR factoriza-
tion algorithm to solve a matrix of 4× 4 tiles.

It updates the tiles located on the right hand side of
A[k,k]. LARFB applies GEQRT’s output to tile A[k,j]
and computes the R factor R[k,j].

• SSRFB: R[k,j], A[i,j] ← SSRFB(V[i,k], T[i,k], R[k,j],
A[i,j]).

It updates the tiles located in the trailing submtrix
of Ak+1:nb,k+1:nb . It applies TSQRT’s output to a
stacked R[k,j] and A[i,j], and updates them correspond-
ingly.

It is important to note that Figure 4 provides not only the
information of data dependency, but also the information
of data reuse. The previous TBLAS runtime system and
many other runtime systems only use the data dependency
information to ensure correct computational results.

Data reuse is the other important information to be uti-
lized. It indicates how many times a tile will be used by
the other tasks. For instance, in Figure 4, suppose tasks
of SSRFB [2,2], [2,3], [2,4] are computed by the same thread
running on a NUMA node p, and task TSQRT [2,1] is com-
puted by another thread running on a different NUMA node
q. Then due to cache misses, the former thread has to read
the remote tile A[2,1] three times. Note that on NUMA sys-
tems, the latency to access a remote NUMA node can be
much higher than that to access a local NUMA node (e.g.,
twice higher on our 48-core AMD machine). Therefore, we
modify the tile algorithm and the TBLAS runtime system to
utilize the data-reuse information to optimize NUMA mem-
ory accesses.

3.3 A NUMA-Aware Extension
This subsection describes our extended algorithm to solve

QR factorizations by minimizing remote NUMA memory ac-
cesses.

We assume that the input to the algorithm is a matrix
A with nb × nb blocks. Given a number of n threads, the
nb×nb blocks are mapped to the n threads using a static dis-



Algorithm 1 Extended NUMA Tile QR Algorithm

Thread init(int tid /*thread id*/, double A[nb][nb])
double* Atid[nb][nb]
for i ← 0 to nb-1 do

for j ← 0 to nb-1 do
/*Each tile[i,j] is mapped to a thread*/
if get assigned thread(i, j) = tid then

Atid[i][j] ← malloc(tile size)
Atid[i][j] ← A[i][j];

end if
end for

end for

Thread entry point(int tid)
for k ← 0 to nb-1 do

if get assigned thread(k, k) = tid then
Rtid[k,k], Vtid[k,k], Ttid[k,k] ← geqrt(Atid[k,k])
[memcpy Vtid[k,k], Ttid[k,k] to Vtidx [k,k], Ttidx [k,k]
in threads tidx, where thread tidx is waiting for
Vtid/Ttid[k,k]]

end if
thread barrier
for j ← k+1 to nb-1 /*along k-th row*/ do

if get assigned thread(k, j) = tid then
Atid[k,j] ← larfb(V [k,k], T [k,k], A[k,j])
[memcpy Atid[k,j] to Atid′ [k,j], where thread tid′ is
waiting for Atid[k,j]]

end if
end for
thread barrier
for i ← k+1 to nb-1 do

if get assigned thread(i, k) = tid then
R[k,k], V [i,k], T [i,k] ← tsqrt(R[k,k], A[i,k])
[memcpy Vtid[i,k], Ttid[i,k] to Vtidx [i, k], Ttidx [i,k]
in threads tidx, where thread tidx is waiting for
Vtid/Ttid[i,k]]

end if
for j ← k+1 to nb-1 do

if get assigned thread(i, j) = tid then
Atid[k,j], Atid[i,j]←ssrfb(Vtid[i,k], Ttid[i,k],
Atid[k,j], Atid[i,j])
[memcpy Atid[k,j] to Atid′ [k,j], where thread tid′

is waiting for Atid[k,j]]
end if

end for
thread barrier

end for
end for

tribution method. The static distribution method is defined
by the means of an application-specific mapping function
get_assigned_thread(i,j) which calculates the mapped
thread ID of a matrix block [i, j].

Each thread has a thread ID tid. It uses its local NUMA
memory to store its assigned subset of the input matrix A
denoted by Atid, and intermediate matrix results denoted by
Vtid and Ttid. Those thread-private matrices of Atid, Vtid,
and Ttid are implemented as nb× nb NULL pointers. Their
memories are dynamically allocated when needed.

Algorithm 1 shows the multithreaded version of NUMA-
aware tile QR factorization. Before starting computation,
each thread tid calls Thread_init to copy input to its pri-
vate Atid, from either a global matrix or a file in parallel.
Next, each thread computes QR factorization in parallel as
follows: 1) factor block A[k,k] on the main diagonal by call-
ing geqrt if A[k,k] is assigned to itself; 2) factor all blocks on
the k-th row by calling larfb; 3) factor the remaining ma-

trix blocks from A[k+1,k] to A[nb-1,nb-1] by calling tsqrt

and ssrfb in parallel. Note that the algorithm copies cer-
tain tasks’ output to a set of remote threads explicitly. The
set of threads that are waiting for the specific output can
be determined by the data flow analysis of the algorithm as
shown in Figure 4.

The purpose of thread_barrier is only to show a correct
working version of the parallel algorithm. We acknowledge
that a direct translation of the algorithm may not be the
fastest implementation due to the barriers. In our own im-
plementation using a runtime system, however, there is no
barrier at all. We use a dynamic data-availability-driven
scheduling scheme in the runtime system to trigger new tasks
whenever their inputs become available and are able to avoid
global synchronizations. As shown in Figure 4, a runtime
system can execute any task as long as its inputs are ready.
A ready task can be scheduled to start even though some
tasks prior to it are blocked. This approach essentially uses
the same idea as the out-of-order instruction execution in
superscalar processors.

4. OVERVIEW OF OUR FRAMEWORK
To support manycore NUMA systems efficiently, we de-

sign a framework that integrates application, runtime sys-
tem, and architecture together. The framework consists of
a static distribution method, an architecture-aware runtime
system, and a user program. The user program is used to
create (or “eject”) new tasks which will be scheduled dynam-
ically by the runtime system.

Our framework adopts a data-centric computing model. It
co-allocates both data and tasks to different threads using
a static distribution method. A matrix block A[i, j] is first
assigned to a thread. Next, the task whose output is block
A[i, j] will be assigned to the same thread as the block A[i,
j]. On shared-memory systems, the static distribution will
not prevent a thread from accessing any data. However, by
using the static distribution, we are able to allocate all of a
thread’s data from its local NUMA memory and minimize
remote memory accesses.

A user program is executed by the runtime system. When-
ever reading a computational function, the runtime system
creates a task and puts it to a queue immediately without
doing any computation (i.e., “eject” a task or a job). A cre-
ated task contains all the information needed for a thread to
execute such as function name, locations of input and out-
put. There are two types of task pool: waiting-task pool and
ready-task pool. When a new task is created, it first enters
the waiting-task pool. After all of its inputs are ready, it
becomes a ready task and moves to a ready task pool.

The entire framework follows a data-flow programming
model. It drives the user-program execution by data avail-
ability. After finishing a task and generating a new output,
a compute thread goes to the waiting-task pool to search for
the tasks whose input is the same as that output. If a wait-
ing task has the same input as the newly generated output,
its input state changes from unready to ready. When all the
input states change to ready, the waiting task becomes a
ready task and will be later picked up by a compute thread.
Note that each compute thread is independent from every
other compute thread (i.e., there is no fork-join).

In order to minimize remote NUMA memory accesses, our
runtime system copies an output to the waiting threads’
local memory nodes. The memory copy operation happens



before the input state changes (from unready to ready) so
that the local copy of the output can be used by the waiting
thread.

In general, each compute thread executes the following
steps in a while loop: (1) picks up a ready task, (2) computes
the task, (3) searches for tasks that are waiting for the new
output, and (4) triggers new ready tasks. Whenever a task
is finished, the runtime system will use the newly available
output data to trigger a set of new tasks.

5. THE IMPLEMENTATION
Our work builds upon the previous TBLAS runtime sys-

tem to support scalable matrix computations on shared-
memory manycore systems.

5.1 TBLAS
The TBLAS runtime system was originally designed to

support matrix computations on distributed multicore clus-
ter systems [18]. Although TBLAS has demonstrated good
scalability on clusters, it has been applied only to compute
nodes with a maximum number of 12 CPU cores. The struc-
ture of TBLAS is very simple. It has one task window and a
global ready task queue shared by all the compute threads.
The task window is of fixed size and stores all the wait-
ing task (i.e., tasks created but not finished). The ready
queue stores all the ready tasks whose input are available
to read. The runtime system includes two types of thread:
task-generation thread and compute thread. Each CPU core
has a compute thread, but the entire runtime system has a
single task-generation thread. The task-generation thread
executes the user program and create new tasks to fill in the
task window. Whenever becoming idle, a compute thread
picks up a ready task from the global ready task queue. Af-
ter finishing the task, the compute thread searches for the
finished task’s children and triggers new tasks.

5.2 Extensions
To achieve scalability on a shared-memory system with

hundreds or even thousands of cores and a complex NUMA
memory hierarchy, we have extended the previous TBLAS
runtime system in the following aspects. Suppose a shared-
memory system has n CPU cores and m NUMA memory
nodes, our runtime system will launch n compute threads
on n different cores.

• Static data and tasks partitioning. A matrix with
nb×nb tiles will be partitioned among different threads
using a 2-D cyclic distribution method [13]. Assume
that n threads are mapped to a 2-D grid of r rows and
c columns, where n = r × c. Given a tile A[i, j] that
is located at the i-th row and j-th column of matrix
A, tile A[i, j] will be assigned to thread[i mod r, j
mod c]. This distribution method is called 2-D cyclic
distribution. All the matrix tiles assigned to thread i
will be stored to thread i’s local NUMA memory node.
Also, a task whose output is tile A[i, j] will be assigned
to the same thread as A[i, j]. This way a thread can
always perform write operations to its local NUMA
memory.

• Per-thread ready queue. As shown in Figure 5,
instead of using a global ready task queue, each thread
has its own ready task queue. A thread’s ready task
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... 

NUMA Memory 0 

... 
ready queue 

... 
ready queue 

NUMA Memory 1 

... 
ready queue 

... 
ready queue 

compute 
thread 

Core 0 Core 1 Core 2 Core 3 

CPU 0 CPU 1 

Leader Leader 
compute 
thread 

Figure 5: Architecture of the new TBLAS runtime
system designed for NUMA many cores. For sim-
plicity, the figure only displays two dual-core CPUs
and two NUMA nodes. The actual runtime system
can support many cores and many NUMA nodes.

queue only stores the tasks that are assigned to it based
on the 2-D cyclic distribution. If a task modifies a tile
that is assigned to thread i, the task is added to thread
i’s ready task queue accordingly. Using a per-thread
ready queue not only reduces thread contention but
also increases data locality.

• Thread-private memory allocator. Each thread
allocates memory from its private memory pool to store
its assigned submatrix and intermediate results. Be-
fore a thread starts, it has pre-allocated a slab of mem-
ory for its memory pool. When the thread starts, the
first thing it does is to touch all the pages associated
with the memory pool. This way all physical memory
frames will reside in the thread’s local NUMA memory
node.

• Work stealing. Since each thread is assigned a fixed
subset of tasks based on the 2-D cyclic distribution
method, it results in a suboptimal performance due to
load imbalance. To obtain better load balancing, our
runtime system allows each thread to do work stealing
when a thread has been idle for a certain amount of
time. Note that a thread just steals tasks, but not the
tasks’ input or output data even if the data are in a
remote NUMA node. We have implemented two work
stealing policies: 1) locality-based work stealing, where
a thread first tries to steal tasks from its neighbors that
are on the same NUMA node, then steals from other
threads located on remote NUMA nodes; 2) system-
wise random work stealing, where a thread steals tasks
from any other thread randomly.

• Inter-NUMA-node memory copy. If a matrix
block owned by thread x is accessed multiple times



by a remote thread y, the runtime system calls memcpy
to copy the block to thread y’s local buffer. After mem-
cpy is complete, thread y can access the block from its
local buffer directly.

Although the output block of a task is stored to a
buffer in the destination, it will not stay in the desti-
nation forever since our runtime system keeps track of
a reference counter for each block. After the consumers
read (or consume) the block for a certain number of
times, the block will be freed to the runtime system’s
free-memory pool and can be reused for future memory
copies. Therefore, this NUMA optimization method
has good scalability in terms of memory usage.

In our current implementation, the algorithm specifies
which block should be copied to remote NUMA nodes.
Note that given any matrix block, the runtime system
knows to which thread the block is assigned by the
predefined static 2-D cyclic distribution method.

• NUMA-group leader thread. We use leader threads
to further reduce the cost of memory copies. Figure 5
illustrates that each NUMA node has a group of com-
pute threads (one thread per core). The thread that
runs on the first core of the NUMA node is defined as
the“leader thread”of the group. The leader thread has
a larger memory pool than its group members. When
a data block is needed by multiple threads that reside
on a remote NUMA node, the runtime system copies
the data block to that NUMA node’s leader thread
only once. After the block is copied to the remote
leader thread, member threads on the remote NUMA
node can read data from their leader correspondingly.
Note that all accesses from the member threads to their
leader are local memory accesses, which saves a lot of
remote memory accesses.

We use the above enhancements to attain better locality,
load balancing, scalability, reduced synchronizations, and
NUMA optimization. In addition, without the support of
the runtime system, it will be much more difficult for pro-
grammers to manage and copy memory around manually to
optimize NUMA memory accesses.

6. EXPERIMENTAL RESULTS
This section presents experimental results with QR factor-

izations on two shared-memory multicore systems: a system
with 48 CPU cores, and a system with 1024 CPU cores.

6.1 Evaluation on a 48-core System
The 48-core system is the same one as we used for the

performance analysis in Section 2. It has four 12-core AMD
Opteron CPUs. Each CPU chip consists of two packages
each of which has a dedicated NUMA memory node. Hence
the system has eight NUMA memory nodes.

In the following experiments, we choose the appropriate
NUMA memory placements to obtain the best performance.
For instance, in the single CPU experiment, we use the
Linux command “numactl -m node” to allocate memory to
the CPU’s local NUMA node. And in the largest 48-core
experiment, we used “numactl -i all” to interleave allocation
to all the NUMA nodes. Note that the performance will
become much worse if numactl is not used.

6.1.1 Initial Optimizations
The previous TBLAS runtime system does not have good

scalability. Figure 6 shows that the previous TBLAS on
a single CPU (i.e. 6 cores) attains a performance of 6.5
GFlops/core. With an increasing number of cores, its perfor-
mance starts to decrease gradually. Eventually on 48 cores,
it drops to 5.4 GFlops/core (i.e., 17% loss). Note that the
input matrix is of size N = 1000 × NumberCores.

The first optimization we apply is to divide a global ready-
task queue into multiple queues so that each thread has a pri-
vate ready task queue. This optimization can reduce thread
contention to enter the global queue. We use the 2-D cyclic
distribution method to distribute tasks to different threads
statically as described in Section 5.2. As shown in Figure
6, adding the 2-D cyclic distribution makes the program
scale better (i.e., a more constant GFlops/core). However,
on a small number of cores, the previous TBLAS is faster
than our extended 2-D cyclic version. This is because the
dynamic scheduling method of the previous TBLAS has a
better load balancing than the static distribution method.
Furthermore, the thread contention overhead is low when
only six threads are used.

The second optimization is to use work stealing (WS) to
improve load balancing. Figure 6 shows that adding work
stealing improves the static 2D cyclic extension by another
6%. When the number of cores is greater than 24, the 2D

cyclic + WS extension starts to outperform the previous
TBLAS system.

However, from 24 cores to 48 cores, 2D cyclic + WS still
drops gradually. This shows that load balancing across dif-
ferent cores and using block-based data layout are not suf-
ficient. Based on the insight provided by our performance
analysis (Section 2), we start to perform NUMA memory
optimizations.

6.1.2 Adding NUMA Optimizations
In order to minimize remote memory accesses, we not only

distribute tasks to different threads statically, but also dis-
tribute data to different threads statically. The location of
a task and the location of the task’s output are always the
same. This feature is enforced by the 2-D cyclic distribution
method.

0

1

2

3

4

5

6

7

1 6 12 18 24 30 36 42 48

G
Fl

op
s 

pe
r C

or
e

Number of Cores 

Prev. TBLAS
Prev. TBLAS  + 2D cyclic  
Prev. TBLAS + 2D cyclic + WS

Figure 6: Our initial attempt to add 2-D cyclic dis-
tribution and work stealing to the previous TBLAS
runtime system. The modified versions have a bet-
ter scalability but are slower when using a small
number of cores.



We have implemented the NUMA-aware QR factorization
using our new TBLAS runtime system. The NUMA-aware
algorithm decides which matrix block should be copied to re-
mote NUMA memory nodes. Then the runtime system will
take care of all the remaining work. For instance, the run-
time system first determines which threads are waiting for
the block, then pushes the block to the consumer threads’ lo-
cal memory buffers, finally it notifies the consumer threads
of the data availability. The major NUMA optimizations
added to the TBLAS runtime system are: 1) static partition-
ing and co-allocation of data and tasks, 2) automatic inter-
NUMA memory copy, 3) NUMA-group leaders, 4) thread-
private and group-private memory allocators, and 5) locality-
aware work stealing. Please refer to Section 5.2 for details.

Figure 7 shows the performance of our new TBLAS that
has added the NUMA optimizations. Without work steal-
ing, the new TBLAS runtime system already shows great
scalability. For instance, on 18 cores, it attains a maximum
performance of 6.3 GFlops/core. On all the 48 cores, it at-
tains 6.1 GFlops/core (i.e., 3% less than the maximum). By
enabling work stealing, we are able to further improve the
performance slightly (up to 4%). The figure also displays
the performance of PLASMA 2.5.1 as a reference. To get
the best performance of PLASMA, we have run its experi-
ments with numactl, chosen the static scheduler, and tried
various tile sizes. The performance difference between the
previous TBLAS and PLASMA is due to the load-balance
difference between dynamic scheduling and static schedul-
ing.

It is worthwhile to point out that the new TBLAS with
work stealing can perform as well as the previous TBLAS
that runs on a single local memory node (i.e., no remote
memory accesses). In addition, it is 16% faster than the
previous TBLAS when using 48 cores.

6.2 Evaluation on a Massively Manycore
System with 1024 Cores

The largest shared-memory manycore system we have ac-
cess is an SGI UV1000 system [17]. It has 1024 CPU cores
(Intel Xeon X7550 2.0GHz), and runs a single operating sys-
tem image of Red Hat Enterprise Linux 6. It has 4 Terabytes
of global shared memory distributed across 64 blades. Each
blade consists of two 8-core CPUs and two NUMA mem-
ory nodes. All the blades are connected by a NUMAlink 5
interconnection.
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Figure 7: Performance of the new TBLAS run-
time system with NUMA optimizations on a 48-core
AMD Opteron system.

We run experiments on the SGI UV1000 system using
one core to 960 cores. The input matrix size N = 2000 ×√
number cores. As shown in Figure 8, we compare five

different programs. To make a fair comparison, we have
tuned each program to obtain its best performance. We
describe the five programs as follows:

• Intel MKL (LAPACK) QR. We use Intel MKL 10.3.6 to
compute QR factorizations using its LAPACK routine.
It creates one process with a number of threads to
perform computations. We run the Linux command
“numactl –interleave=memory-nodes” to execute the
program.

• PLASMA QR. PLASMA is a parallel multithreading li-
brary for multicore systems. We test various tile sizes
and choose the size that provides the best performance.
We also use PLASMA’s static scheduler and “numactl
–interleave=memory-nodes” to run the experiments.

• New TBLAS. Because the new TBLAS runtime system
itself manages memory allocation and memory copy to
optimize NUMA accesses, we use“numactl –localalloc”
to allocate memory on the local NUMA memory node.
We tune its tile size to achieve the best performance.

• Intel MKL (ScaLAPACK) QR. Intel MKL provides two
sets of computational routines: shared-memory LA-
PACK routines, and distributed-memory MPI-based
ScaLAPACK routines. Since the memory on the SGI
UV1000 system is distributed to various blades, an-
other interesting experiment is to test the ScaLAPACK
routine which uses the MPI message passing model.

We tune three optimization parameters for the ScaLA-
PACK QR factorization: i) selection of one-process-
per-node or one-process-per-core, ii) ScaLAPACK block
size NB, iii) process grid P ×Q, where the total num-
ber of processes is equal to P × Q. To attain the
highest performance, we choose one-process-per-core,
NB=100, and the P ∗×Q∗ with the best performance.

• Intel MKL ScaLAPACK PDGEMM. PDGEMM is a paral-
lel matrix multiplication subroutine in ScaLAPACK.
The reason we compare QR factorizations to PDGEMM
is that matrix multiplication has a higher computation-
to-communication ratio, a higher degree of parallelism,
and faster kernel implementations than the QR factor-
ization. Therefore, we can use PDGEMM as an upper
bound for QR factorizations. In fact, matrix multipli-
cation can serve as an upper bound for most matrix
computations although it may not be a tight upper
bound.

Figure 8 (a) shows that our new TBLAS is able to keep
up with the speed of PDGEMM, and scales efficiently from
one core to 960 cores. Although the SGI UV1000 system has
1024 cores, we were not able to reserve all of them due to
long job waiting time and hardware issues. The new TBLAS
program delivers 1.05 TFlops, 2.0 TFlops, and 2.9 TFlops on
256, 512, and 784 cores, respectively. On 960 cores, it can
deliver 3.4 TFlops. Note that the speedup of PDGEMM
slows down a little bit from 784 to 960 cores. We think it
might hit some hardware limitation because parallel matrix
multiplication typically has a perfect weak-scalability.
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Figure 8: Comparison of the new TBLAS QR implementation with Intel MKL LAPACK, Intel MKL ScaLA-
PACK, PLASMA, previous TBLAS, and parallel matrix multiplications (i.e., PDGEMM) on a shared memory
1024-core SGI UV1000 system.

PLASMA is the second best library, which can deliver 2.4
TFlops using 960 cores. As shown in Figure 8 (b), when
the number of cores is less than or equal to 16 (i.e., within
one blade), new TBLAS is slower than PLASMA because
we disabled work stealing for better performance on large
numbers of cores. On the other hand, the Intel MKL 10.3.6
library achieves 0.45 TFlops by using the MKL LAPACK
routine, and 1.95 TFlops by using the MKL ScaLAPACK
routine, respectively. Figure 8 shows that by taking into
account NUMA optimizations, our new TBLAS can outper-
form its counterpart of Intel MKL LAPACK by 750%, and
the ScaLAPACK library by 75%.

7. RELATED WORK
There are a few mathematical libraries that can provide

high performance on multicore architectures. Intel MKL,
AMD ACML, and IBM ESSL are vendor-provided libraries.
They support linear algebra computations as one funda-
mental area. All the linear algebra subroutines have im-
plemented the standard LAPACK interface [4]. PLASMA
is an open source linear algebra library developed at the
University of Tennessee [3]. It is a reimplementation of LA-
PACK and aims at delivering high performance on multicore
architectures. Similar to PLASMA, our work also uses the
tile algorithms but extends the algorithms with NUMA opti-
mizations. ScaLAPACK is a high performance linear algebra
library for distributed memory machines [5]. ScaLAPACK
uses a message passing programming model. Different from
ScaLAPACK, our work focuses on how to design scalable
software using a shared-memory programming model.

While the existing libraries can utilize all CPU cores, their
efficiency (e.g., GFlops per core) keeps dropping when the
number of cores increases. This paper targets at this un-
scalability problem and proposes an approach to improving
it. We compare our framework with the most widely used
Intel MKL and the latest PLASMA library and demonstrate
better scalability.

NUMA-related issues on multicore systems have been stud-
ied by many researchers in the high performance computing
community. McCurdy and Vetter introduced a tool called
Memphis, which uses instruction-based sampling to pinpoint

NUMA problems in benchmarks and applications [16]. Tao
et al. designed a low-level hardware monitoring infrastruc-
ture to identify remote NUMA memory inefficiencies and
used the information to specify proper data layout to opti-
mize applications [20]. Li et al. used shared memory to im-
plement NUMA-aware intra-node MPI collectives and have
achieved twice speedup over traditional MPI implementa-
tions [14]. Tang et al. proposed a two-phase methodol-
ogy to investigate the impact of NUMA on Google’s large
workloads and designed load-test to optimize NUMA perfor-
mance [19]. Frasca et al. improved both CPU performance
and energy consumption significantly for large sparse-graph
applications by using graph reorganization and dynamic task
scheduling to optimize NUMA performance [12].

NUMA issues have also been studied by many researchers
in the operating system community. Majo and Gross in-
vestigated the NUMA-memory contention problem and de-
veloped a model to characterize the sharing of local and
remote memory bandwidth [15]. Fedorova et al. designed
a contention-aware algorithm Carrefour to manage mem-
ory traffic congestion in the Linux OS [11]. An extension
of the GNU OpenMP, ForestGOMP [7], allows developers
to provide hints to the runtime system to schedule thread
and memory migrations. These system related researches
mainly studied how and when to migrate thread and mem-
ory with a minimal cost. Differently, we take advantage of
the domain-specific knowledge (i.e., matrix computations)
and use a combination of 2-D cyclic distribution and work
stealing to keep load balancing and minimize thread and
memory movement.

8. CONCLUSION AND FUTURE WORK
Despite the increase in the number of cores per chip, par-

allel software has not been able to take the full advantage
of all the cores and to scale efficiently on shared-memory
manycore systems. We analyzed the performance of exist-
ing software and proposed a new framework that consists
of an extended NUMA-aware algorithm and a new runtime
system. The framework builds upon a static 2-D cyclic dis-
tribution such that tasks are co-located with their accessed
data. If a data block is referenced by remote threads multi-



ple times, the runtime system copies the data from a local
memory node to a remote memory node. The runtime sys-
tem uses a data-availability-driven (i.e., data-flow) schedul-
ing method and knows where data are located and which
tasks are waiting for the data. This way it is feasible to push
data to consumers automatically. The experimental results
on a 48-core system and a 1024-core system demonstrate
that our approach is effective, and is much more scalable
than the existing numerical libraries (e.g., up to 750% faster
than Intel MKL on 960 cores).

While our approach is used to solve QR factorization as
an example, it can be applied directly to solve other differ-
ent matrix factorizations, systems of linear equations, and
eigenvalue problems. We envision that the same method-
ology and principles can also be extended to support other
types of scientific applications such as computational fluid
dynamics, sparse matrix problems, and quantum chemistry.
Our future work is to apply the framework to solve other ma-
trix problems, and then extend it to support computational
fluid dynamics applications and sparse matrix problems on
distributed-memory manycore systems at extreme scale.
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