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Abstract
The field of machine translation (MT), the automatic translation of written text from

one natural language into another, has experienced a major paradigm shift in recent years.
Statistical MT, which mainly relies on various count-based models and which used to dom-
inate MT research for decades, has largely been superseded by neural machine translation
(NMT), which tackles translation with a single neural network. In this work we will trace
back the origins of modern NMT architectures to word and sentence embeddings and ear-
lier examples of the encoder-decoder network family. We will conclude with a short survey
of more recent trends in the field.

1. Introduction

Various fields in the area of natural language processing (NLP) have been boosted by the
rediscovery of neural networks (see Goldberg, 2016 for an overview). However, for a long
time, the integration of neural nets into machine translation (MT) systems was rather shal-
low. Early attempts used feedforward neural language models (Bengio et al., 2003, 2006)
for the target language to rerank translation lattices (Schwenk et al., 2006). The first neural
models which also took the source language into account extended this idea by using the
same model with bilingual tuples instead of target language words (Zamora-Martinez et al.,
2010), scoring phrase pairs directly with a feedforward net (Schwenk, 2012), or adding a
source context window to the neural language model (Le et al., 2012; Devlin et al., 2014).
Kalchbrenner and Blunsom (2013) and Cho et al. (2014b) introduced recurrent networks
for translation modelling. All those approaches applied neural networks as components in
a traditional statistical machine translation system. Therefore, they retained the log-linear
model combination and only exchanged parts in the traditional architecture.

Neural machine translation (NMT) has overcome this separation by using a single large
neural net that directly transforms the source sentence into the target sentence (Cho et al.,
2014a; Sutskever et al., 2014; Bahdanau et al., 2015). The advent of NMT certainly marks
one of the major milestones in the history of MT, and has led to a radical and sudden
departure of mainstream research from many previous research lines. This is perhaps best
reflected by the explosion of scientific publications related to NMT in the past few years1

(Fig. 1), and the large number of publicly available NMT toolkits (Tab. 1). NMT has already
been widely adopted in industry (Wu et al., 2016; Crego et al., 2016; Schmidt & Marg, 2018;
Levin et al., 2017) and is deployed in production systems by Google, Microsoft, Facebook,
Amazon, SDL, Yandex, and many more. This article will introduce the basic concepts of
NMT, and will give an overview of current research in the field.

1. Example Google Scholar search: https://scholar.google.com/scholar?q=%22neural+machine+
translation%22&as_ylo=2017&as_yhi=2017
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Figure 1: Number of papers mentioning “neural machine translation” per year according
Google Scholar.

Name Citation Framework GitHub
Stars

Tensor2Tensor Vaswani et al. (2018) TensorFlow
TensorFlow/NMT - TensorFlow
Fairseq Ott et al. (2019) PyTorch
OpenNMT-py Klein et al. (2017) Lua, (Py)Torch, TF
Sockeye Hieber et al. (2017) MXNet
OpenSeq2Seq Kuchaiev et al. (2018) TensorFlow
Nematus Sennrich et al. (2017b) TensorFlow, Theano
PyTorch/Translate - PyTorch
Marian Junczys-Dowmunt et al. (2016a) C++
NMT-Keras Álvaro Peris and Casacuberta (2018) TensorFlow, Theano
Neural Monkey Helcl and Libovický (2017) TensorFlow
THUMT Zhang et al. (2017) TensorFlow, Theano
Eske/Seq2Seq - TensorFlow
XNMT Neubig et al. (2018) DyNet
NJUNMT - PyTorch, TensorFlow
Transformer-DyNet - DyNet
SGNMT Stahlberg et al. (2017, 2018) TensorFlow, Theano
CythonMT Wang et al. (2018) C++
Neutron Xu and Liu (2019) PyTorch

Table 1: NMT tools that have been updated in the past year (as of 2019). GitHub stars
indicate the popularity of tools on GitHub.

2. Nomenclature

We will denote the source sentence of length I as x. We use the subscript i to index tokens
in the source sentence. We refer to the source language vocabulary as Σsrc.

x = xI1 = (x1, . . . , xI) ∈ ΣI
src (1)

The translation of source sentence x into the target language is denoted as y. We use an
analogous nomenclature on the target side.

y = yJ1 = (y1, . . . , yJ) ∈ ΣJ
trg (2)

In case we deal with only one language we drop the subscript src/trg. For convenience
we represent tokens as indices in a list of subwords or word surface forms. Therefore, Σsrc
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and Σtrg are the first n natural numbers (i.e. Σ = {n′ ∈ N|n′ ≤ n} where n = |Σ| is the
vocabulary size). Additionally, we use the projection function πk which maps a tuple or
vector to its k-th entry:

πk(z1, . . . , zk, . . . , zn) = zk. (3)

For a matrix A ∈ Rm×n we denote the element in the p-th row and the q-th column as Ap,q,
the p-th row vector as Ap,: ∈ Rn and the q-th column vector as A:,q ∈ Rm. For a series of m
n-dimensional vectors ap ∈ Rn (p ∈ [1,m]) we denote the m× n matrix which results from
stacking the vectors horizontally as (ap)p=1:m as illustrated with the following tautology:

A = (Ap,:)p=1:m = ((A:,q)q=1:n)T . (4)

3. Word Embeddings

Representing words or phrases as continuous vectors is arguably one of the keys in connec-
tionist models for NLP. One of the early successful applications of continuous space word
representations were language models (Bellegarda, 1997; Bengio et al., 2003). The key idea
is to represent a word x ∈ Σ as a d-dimensional vector of real numbers. The size d of the
embedding layer is normally chosen to be much smaller than the vocabulary size (d� |Σ|).
The mapping from the word to its distributed representation can be represented by an em-
bedding matrix E ∈ Rd×|Σ| (Collobert & Weston, 2008). The xth column of E (denoted as
E:,x) holds the d-dimensional representation for the word x.

Learned continuous word representations have the potential of capturing morphologi-
cal, syntactic and semantic similarity across words (Collobert & Weston, 2008). In neural
machine translation, embedding matrices are usually trained jointly with the rest of the net-
work using backpropagation (Rumelhart et al., 1988) and a gradient based optimizer such
as stochastic gradient descent. In other areas of NLP, pre-trained word embeddings trained
on unlabelled text have become ubiquitous (Collobert et al., 2011). Methods for training
word embeddings on raw text often take the context into account in which the word occurs
frequently (Pennington et al., 2014; Mikolov et al., 2013a), or use cross-lingual information
to improve embeddings (Mikolov et al., 2013b; Upadhyay et al., 2016).

A newly emerging type of contextualized word embeddings (Peters et al., 2017; McCann
et al., 2017) is gaining popularity in various fields of NLP. Contextualized representations
do not only depend on the word itself but on the entire input sentence. Thus, they cannot
be described by a single embedding matrix but are usually generated by neural sequence
models which have been trained under a language model objective. Most approaches either
use LSTM or Transformer architectures but differ in the way these architectures are used
to compute the word representations (Peters et al., 2017, 2018; Radford et al., 2018; Devlin
et al., 2019). Contextualized word embeddings have advanced the state-of-the-art in several
NLP benchmarks (Peters et al., 2018; Bowman et al., 2018; Devlin et al., 2019). Goldberg
(2019) showed that contextualized embeddings are remarkably sensitive to syntax. Choi
et al. (2017) reported gains from contextualizing word embeddings in NMT using a bag of
words.
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(a) Recursive autoencoder following Socher
et al. (2011).

(b) The convolutional sentence model (Kalch-
brenner & Blunsom, 2013).

Figure 2: Phrase and sentence embedding architectures. The color coding indicates weight
sharing.

4. Phrase and Sentence Embeddings

For various NLP tasks such as sentiment analysis or MT it is desirable to embed whole
phrases or sentences instead of single words. For example, a distributed representation
of the source sentence x could be used as conditional for the distribution over the target
sentences P (y|x). Early approaches to phrase embedding were based on recurrent autoen-
coders (Pollack, 1990; Socher et al., 2011). To represent a phrase x ∈ ΣI as a d-dimensional
vector, Socher et al. (2011) first trained a word embedding matrix E ∈ Rd×|Σ|. Then, they
recursively applied an autoencoder network which finds d-dimensional representations for
2d-dimensional inputs, where the input is the concatenation of two child representations.
The child representations are either word embeddings or representations calculated by the
same autoencoder from two different parents. The order in which representations are merged
is determined by a binary tree over x which can be constructed greedily (Socher et al., 2011)
or derived from an Inversion Transduction Grammar (Wu, 1997; Li et al., 2013). Fig. 2a
shows an example of a recurrent autoencoder embedding a phrase with five words into a
four dimensional space. One of the disadvantages of recurrent autoencoders is that the word
and sentence embeddings need to have the same dimensionality. This restriction is not very
critical in sentiment analysis because the sentence representation is only used to extract the
sentiment of the writer (Socher et al., 2011). In MT, however, the sentence representations
need to convey enough information to condition the target sentence distribution on it, and
thus should be higher dimensional than the word embeddings.

Kalchbrenner and Blunsom (2013) used convolution to find vector representations of
phrases or sentences and thus avoided the dimensionality issue of recurrent autoencoders.
As shown in Fig. 2b, their model yields n-gram representations at each convolution level,
with n increasing with depth. The top level can be used as a representation for the whole
sentence. Other notable examples of using convolution for sentence representations include
(Kalchbrenner et al., 2014; Kim, 2014; Mou et al., 2016; dos Santos & Gatti, 2014; Er
et al., 2016). However, the convolution operations in these models lose information about
the exact word order, and are thus more suitable for sentiment analysis than for tasks
like machine translation.2 A recent line of work uses self-attention (Sec. 6.5) rather than
convolution to find sentence representations (Shen et al., 2018a; Wu et al., 2018; Zhang

2. This is not to be confused with convolutional translation models which will be reviewed in Sec. 6.4.
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et al., 2018a). Another idea explored by Yu et al. (2018) is to resort to (recursive) relation
networks (Santoro et al., 2017; Palm et al., 2018) which repeatedly aggregate pairwise
relations between words in the sentence. Recurrent architectures are also commonly used
for sentence representation. It has been noted that even random RNNs without any training
can work surprisingly well for several NLP tasks (Conneau et al., 2017, 2018; Wieting &
Kiela, 2019).

5. Encoder-Decoder Networks with Fixed Length Sentence Encodings

Kalchbrenner and Blunsom (2013) were the first who conditioned the target sentence distri-
bution on a distributed fixed-length representation of the source sentence. Their recurrent
continuous translation models (RCTM) I and II followed the family of so-called encoder-
decoder networks (Neco & Forcada, 1997) which is the current prevailing architecture for
NMT. Encoder-decoder networks are subdivided into an encoder network which computes
a representation of the source sentence, and a decoder network which generates the target
sentence from that representation. As introduced in Sec. 2 we denote the source sentence as
x = xI1 and the target sentence as y = yJ1 . Most existing NMT models are auto-regressive
and thus define a probability distribution over the target sentences P (y|x) by factorizing it
into conditionals:

P (y|x)
Chain rule

=
J∏
j=1

P (yj |yj−1
1 ,x). (5)

Different encoder-decoder architectures differ vastly in how they model the distribution
P (yj |yj−1

1 ,x). We will first discuss encoder-decoder networks in which the encoder represents
the source sentence as a fixed-length vector c(x) like the methods in Sec. 4. The conditionals
P (yj |yj−1

1 ,x) are modelled as:

P (yj |yj−1
1 ,x) = g(yj |sj , yj−1, c(x)) (6)

where sj is the hidden state of a recurrent neural (decoder) network (RNN). We will for-
mally introduce sj in Sec. 6.3. Gated activation functions such as the long short-term
memory (Hochreiter & Schmidhuber, 1997, LSTM) or the gated recurrent unit (Cho et al.,
2014b, GRU) are commonly used to alleviate the vanishing gradient problem (Hochreiter
et al., 2001) which makes it difficult to train RNNs to capture long-range dependencies.
Deep architectures with stacked LSTM cells were used by Sutskever et al. (2014). The en-
coder can be a convolutional network as in the RCTM I (Kalchbrenner & Blunsom, 2013),
an LSTM network (Sutskever et al., 2014), or a GRU network (Cho et al., 2014b). g(·) is a
feedforward network with a softmax layer at the end which takes as input the decoder state
sj and an embedding of the previous target token yj−1. In addition, g(·) may also take the
source sentence encoding c(x) as input to condition on the source sentence (Kalchbrenner &
Blunsom, 2013; Cho et al., 2014b). Alternatively, c(x) is just used to initialize the decoder
state s1 (Sutskever et al., 2014; Bahdanau et al., 2015). Fig. 3 contrasts both methods. In-
tuitively, once the source sentence has been encoded, the decoder starts generating the first
target sentence symbol y1 which is then fed back to the decoder network for producing the
second symbol y2. The algorithm terminates when the network produces the end-of-sentence
symbol </s>. Sec. 7 explains more formally what we mean by the network “generating” a
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(a) Source sentence is used to initialize the
decoder state.

(b) Source sentence is fed to the decoder at
each time step.

Figure 3: Encoder-decoder architectures with fixed-length sentence encodings. The color
coding indicates weight sharing.

Figure 4: The encoder-decoder architecture of Sutskever et al. (2014). The color coding
indicates weight sharing.

symbol yj and sheds more light on the aspect of decoding in NMT. Fig. 4 shows the com-
plete architecture of Sutskever et al. (2014) who presented one of the first working standalone
NMT systems that did not rely on any SMT baseline. One of the reasons why this paper
was groundbreaking is the simplicity of the architecture, which stands in stark contrast to
traditional SMT systems that used a very large number of highly engineered features.

Different ways of providing the source sentence to the encoder network have been ex-
plored in the past. Cho et al. (2014b) fed the tokens to the encoder in the natural order
they appear in the source sentence (cf. Fig. 5a). Sutskever et al. (2014) reported gains
from simply feeding the sequence in reversed order (cf. Fig. 5b). They argue that these
improvements might be “caused by the introduction of many short term dependencies to the
dataset” (Sutskever et al., 2014). Bidirectional RNNs (Schuster & Paliwal, 1997, BiRNN)
are able to capture both directions (cf. Fig. 5c) and are often used in attentional NMT (Bah-
danau et al., 2015).

6. Attentional Encoder-Decoder Networks

One problem of early NMT models which is not fully solved yet (see Sec. 8.1) is that they
often produced poor translations for long sentences (Sountsov & Sarawagi, 2016). Cho et al.
(2014a) suggested that this weakness is due to the fixed-length source sentence encoding.
Sentences with varying length convey different amounts of information. Therefore, despite
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(a) Unidirectional encoder used by Cho et al. (2014b).

(b) Reversed unidirectional encoder from Sutskever et al. (2014).

(c) Bidirectional encoder used by Bahdanau et al. (2015).

Figure 5: Encoder architectures. The color coding indicates weight sharing.

being appropriate for short sentences, a fixed-length vector “does not have enough capacity
to encode a long sentence with complicated structure and meaning” (Cho et al., 2014a).
Pouget-Abadie et al. (2014) tried to mitigate this problem by chopping the source sentence
into short clauses. They composed the target sentence by concatenating the separately
translated clauses. However, this approach does not cope well with long-distance reorderings
as word reorderings are only possible within a clause.

6.1 Attention

Bahdanau et al. (2015) introduced the concept of attention to avoid having a fixed-length
source sentence representation. Their model does not use a constant context vector c(x)
any more which encodes the whole source sentence. By contrast, the attentional decoder
can place its attention on parts of the source sentence which are useful for producing the
next token. The constant context vector c(x) is thus replaced by a series of context vectors
cj(x); one for each time step j.3

We will first introduce attention as a general concept before describing the architecture
of Bahdanau et al. (2015) in detail in Sec. 6.3. We follow the terminology of Vaswani
et al. (2017) and describe attention as mapping n query vectors to n output vectors via a
mapping table (or a memory) of m key-value pairs. We make the simplifying assumption
that all vectors have the same dimension d so that we can stack the vectors into matrices
Q ∈ Rn×d, K ∈ Rm×d, and V ∈ Rm×d. Intuitively, for each query vector we compute an

3. We refer to j as ‘time step’ due to the sequential structure of autoregressive models and the left-to-right
order of NMT decoding. We note, however, that j does not specify a point in time in the usual sense
but rather the position in the target sentence.
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Name Scoring function Citation

Additive score(Q,K)p,q = vᵀ tanh(WQp,: + UKq,:) Bahdanau et al. (2015)
Dot-product score(Q,K) = QKᵀ Luong et al. (2015a)
Scaled dot-product score(Q,K) = QKᵀd−0.5 Vaswani et al. (2017)

Table 2: Common attention scoring functions. v ∈ Rdatt , W ∈ Rdatt×d, and U ∈ Rdatt×d
in additive attention are trainable parameters with datt being the dimensionality of the
attention layer.

output vector as a weighted sum of the value vectors. The weights are determined by a
similarity score between the query vector and the keys (cf. Vaswani et al., 2017, Eq. 1):

Attention(K,V,Q)︸ ︷︷ ︸
n×d

= Softmax(score(Q,K)︸ ︷︷ ︸
n×m

) V︸︷︷︸
m×d

. (7)

The output of score(Q,K) is an n ×m matrix of similarity scores. The softmax function
normalizes over the columns of that matrix so that the weights for each query vector sum
up to one. A straightforward choice for score(·) proposed by Luong et al. (2015a) is the dot
product (i.e. score(Q,K) = QKᵀ). The most common scoring functions are summarized in
Tab. 2.

A common way to use attention in NMT is at the interface between encoder and decoder.
Bahdanau et al. (2015), Luong et al. (2015a) used the hidden decoder states sj as query
vectors. Both the key and value vectors are derived from the hidden states hi of a recursive
encoder.4 Formally, this means that Q = sj are the query vectors , n = J is the target
sentence length, K = V = hi are the key and value vectors, and m = I is the source
sentence length.5 The outputs of the attention layer are used as time-dependent context
vectors cj(x). In other words, rather than using a fixed-length sentence encoding c(x) as
in Sec. 5, at each time step j we query a memory in which entries store (context-sensitive)
representations of the source words. In this setup it is possible to derive an attention matrix
A ∈ RJ×I to visualize the learned relations between words in the source sentence and words
in the target sentence:

A := Softmax(score((sj)j=1:J , (hi)i=1:I)). (8)

Fig. 6 shows an example of A from an English-German NMT system with additive atten-
tion. The attention matrix captures cross-lingual word relationships such as “is” → “ist” or
“great” → “großer”. The system has learned that the English source word “is” is relevant for
generating the German target word “ist” and thus emits a high attention weight for this pair.
Consequently, the context vector cj(x) at time step j = 3 mainly represents the source word
“is” (c3(x) ≈ h2). This is particularly significant as the system was not explicitly trained
to align words but to optimize translation performance. As an alternative to this align-
ment perspective, attention also has a probabilistic interpretation as the attention matrix
A contains valid probability distributions which are used to take the expectation over the
values.
4. sj and hi are defined in Sec. 5 and Sec. 6.3.
5. An exception is the model of Mino et al. (2017) that splits hi into two parts and uses the first part as

key and the second as value.
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history is a great teacher . </s>
die
Geschichte
ist
ein
großer
Lehrer
.
</s>

Figure 6: Attention weight matrix A for the translation from the English sentence “history
is a great teacher .” to the German sentence “die Geschichte ist ein großer Lehrer .”. Dark
shades of blue indicate high attention weights.

Figure 7: Multi-head attention with three attention heads.

An important generalization of attention is multi-head attention proposed by Vaswani
et al. (2017). The idea is to perform H attention operations instead of a single one where
H is the number of attention heads (usually H = 8). The query, key, and value vectors
for the attention heads are linear transforms of Q, K, and V . The output of multi-head
attention is the concatenation of the outputs of each attention head. The dimensionality of
the attention heads is usually divided by H to avoid increasing the number of parameters.
Formally, it can be described as follows (Vaswani et al., 2017):

MultiHeadAttention(K,V,Q) = Concat(head1, . . . , headH)WO (9)

with weight matrix WO ∈ Rd×d where

headh = Attention(KWK
h , V W

V
h , QW

Q
h ) (10)

with weight matrices WK
h ,W

V
h ,W

Q
h ∈ Rd×

d
H for h ∈ [1, H]. Fig. 7 shows a multi-head

attention module with three heads. Multi-head attention can be viewed as multiple networks
running in parallel with different views on the key-value set (e.g. to capture varying linguistic
phenomena) and map them to different subspaces of the output representation.6 However,

6. We thank one of the anonymous reviewers for making this point.
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the first cold shower <pad> <pad>
even the monkey seems to want
a little coat of straw <pad>

Figure 8: A tensor containing a batch of three source sentences of different lengths (“the
first cold shower”, “even the monkey seems to want”, “a little coat of straw” – a haiku by
Basho (Basho & Reichhold, 2013)). Short sentences are padded with <pad>. The training
loss and attention masks are visualized with green (enabled) and red (disabled) background.

it is not obvious anymore how to derive a single attention weight matrix A like shown in
Fig. 6. Therefore, models using multi-head attention tend to be more difficult to interpret.

The concept of attention is no longer just a technique to improve the translation of long
sentences. Since its introduction by Bahdanau et al. (2015) it has become a vital part of
various NMT architectures, culminating in the Transformer architecture (Sec. 6.5) which is
entirely attention-based. Attention has also been proven effective for, inter alia, object recog-
nition (Larochelle & Hinton, 2010; Ba et al., 2014; Mnih et al., 2014), image caption gener-
ation (Xu et al., 2015), video description (Yao et al., 2015), speech recognition (Chorowski
et al., 2014; Chan et al., 2016), cross-lingual word-to-phone alignment (Duong et al., 2016),
bioinformatics (Sønderby et al., 2015), text summarization (Rush et al., 2015), text nor-
malization (Sproat & Jaitly, 2016), grammatical error correction (Yuan & Briscoe, 2016),
question answering (Hermann et al., 2015; Yang et al., 2016; Sukhbaatar et al., 2015), nat-
ural language understanding and inference (Dong & Lapata, 2016; Shen et al., 2018a; Im
& Cho, 2017; Liu et al., 2016), uncertainty detection (Adel & Schütze, 2017), photo optical
character recognition (Lee & Osindero, 2016), and natural language conversation (Shang
et al., 2015).

6.2 Attention Masks and Padding

NMT usually groups sentences into batches to make more efficient use of the available
hardware and to reduce noise in gradient estimation. However, the central data structure
for many machine learning frameworks (Bastien et al., 2012; Abadi et al., 2016) are tensors
– multi-dimensional arrays with fixed dimensionality. Re-arranging source sentences as
tensor often results in some unused space as the sentences may vary in length. In practice,
shorter sentences are filled up with a special padding symbol <pad> to match the length
of the longest sentence in the batch (Fig. 8). Most implementations work with masks to
avoid taking padded positions into account when computing the training loss. Attention
layers also have to be restricted to non-padding symbols which is also usually realized by
multiplying the attention weights by a mask that sets the attention weights for padding
symbols to zero. Sentences of similar lengths are often grouped into batches to minimize
padding and thereby increase the efficiency.

6.3 Recurrent Neural Machine Translation

This section contains a complete formal description of the RNNsearch architecture of Bah-
danau et al. (2015) which was the first NMT model using attention. Recall that NMT
uses the chain rule to decompose the probability P (y|x) of a target sentence y = yJ1 given
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Figure 9: The RNNsearch model following Bahdanau et al. (2015). The color coding indi-
cates weight sharing. Gray arrows represent attention.

a source sentence x = xI1 into left-to-right conditionals (Eq. 5). RNNsearch models the
conditionals as follows (Bahdanau et al., 2015, Eq. 2,4):

P (y|x)
Eq. 5
=

J∏
j=1

P (yj |yj−1
1 ,x) =

J∏
j=1

g(yj |yj−1, sj , cj(x)). (11)

Similarly to Eq. 6, the function g(·) encapsulates the decoder network which computes
the distribution for the next target token yj given the last produced token yj−1, the RNN
decoder state sj ∈ Rn, and the context vector cj(x) ∈ Rm. The sizes of the encoder and
decoder hidden layers are denoted with m and n. The context vector cj(x) is a distributed
representation of the relevant parts of the source sentence. In NMT without attention
(Sec. 5), the context vector is constant and thus needs to encode the whole source sentence.
Adding an attention mechanism results in different context vectors for each target sentence
position j. This effectively addresses issues in NMT due to the limited capacity of a fixed
context vector as illustrated in Fig. 9.

As outlined in Sec. 6.1, the context vectors cj(x) are weighted sums of source sentence
annotations h = (h1, . . . , hI). The annotations are produced by the encoder network. In
other words, the encoder converts the input sequence x to a sequence of annotations h of
the same length. Each annotation hi ∈ Rm encodes information about the entire source
sentence x “with a strong focus on the parts surrounding the i-th word of the input se-
quence” (Bahdanau et al., 2015, Sec. 3.1). RNNsearch uses a bidirectional RNN (Fig. 5c)
to generate the annotations. A BiRNN consists of two independent RNNs. The forward
RNN

→
f reads x in the original order (from x1 to xI). The backward RNN

←
f consumes x in

reversed order (from xI to x1):
→
h i =

→
f (xi,

→
h i−1) (12)

←
h i =

←
f (xi,

←
h i+1). (13)

The RNNs
→
f (·) and

←
f (·) are usually LSTM or GRU cells. The annotation hi is the con-

catenation of the hidden states
→
h i and

←
h i (Bahdanau et al., 2015, Sec. 3.2):

hi = [
→
h
ᵀ

i ;
←
h
ᵀ

i ]
ᵀ. (14)
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Figure 10: Illustration of the attention mechanism in RNNsearch (Bahdanau et al., 2015).

The context vectors cj(x) ∈ Rm are computed from the annotations as weighted sums with
weights αj ∈ [0, 1]I (Bahdanau et al., 2015, Eq. 5):

cj(x) =

I∑
i=1

αj,ihi. (15)

The weights are determined by the alignment model a(·):

αj,i =
1

Z
exp(a(sj−1, hi)) with Z =

I∑
k=1

exp(a(sj−1, hk)) (16)

where a(sj−1, hi) is a feedforward neural network which estimates the importance of anno-
tation hi for producing the j-th target token given the current decoder state sj−1 ∈ Rn. In
the terminology of Sec. 6.1, hi represent the keys and values, sj are the queries, and a(·) is
the attention scoring function.

The function g(·) in Eq. 11 not only takes the previous target token yj−1 and the context
vector cj but also the decoder hidden state sj .

sj = f(sj−1, yj−1, cj) (17)

where f(·) is modelled by a GRU or LSTM cell. The function g(·) is defined as follows.

g(yj |yj−1, sj , cj) ∝ exp(Wo max(tj , uj)) (18)

with
tj = Tssj + TyEyj−1 + Tccj (19)

uj = Ussj + UyEyj−1 + Uccj (20)

where max(·) is the element-wise maximum, and Wo ∈ R|Σtrg |×l, Ts, Us ∈ Rl×n, Ty, Uy ∈
Rl×k, E ∈ Rk×|Σtrg |, Tc, Uc ∈ Rl×m are weight matrices. The definition of g(·) can be seen
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(a) Standard convolution. (b) Pointwise convolution. (c) Depthwise convolution.

Figure 11: Types of 1D-convolution used in NMT. The color coding indicates weight sharing.

as connecting the output of the recurrent layer, a k-dimensional embedding of the previous
target token, and the context vector with a single maxout layer (Goodfellow et al., 2013)
of size l and using a softmax over the target language vocabulary (Bahdanau et al., 2015).
Fig. 10 illustrates the complete RNNsearch model.

6.4 Convolutional Neural Machine Translation

Although convolutional neural networks (CNNs) have first been proposed by Waibel et al.
(1989) for phoneme recognition, their traditional use case is computer vision (LeCun et al.,
1989, 1990, 1998). CNNs are especially useful for processing images because of two reasons.
First, they use a high degree of weight tying and thus reduce the number of parameters
dramatically compared to fully connected networks. This is crucial for high dimensional
input like visual imagery. Second, they automatically learn space invariant features. Spatial
invariance is desirable in vision since we often aim to recognize objects or features regardless
of their exact position in the image. In NLP, convolutions are usually one dimensional since
we are dealing with sequences rather than two dimensional images as in computer vision.
We will therefore limit our discussions to the one dimensional case. We will also exclude
concepts like pooling or strides as they are uncommon for sequence models in NLP.

The input to a 1D convolutional layer is a sequence ofM -dimensional vectors u1, . . . , uI .
The literature about CNNs usually refers to the M dimensions in each ui ∈ RM (i ∈ [1, I])
as channels, and to the i-axis as spatial dimension. The convolution transforms the input
sequence u1, . . . , uI to an output sequence of N -dimensional v1, . . . , vI of the same length
by moving a kernel of width K over the input sequence. The kernel is a linear transform
which maps the K-gram ui, . . . , ui+K−1 to the output vi for i ∈ [1, I] (we append K − 1
padding symbols to the input). Standard convolution parameterizes this linear transform
with a full weight matrix W std ∈ RKM×N :

StdConv:(vi)n =
M∑
m=1

K−1∑
k=0

W std
kM+m,n(ui+k)m (21)

355



Felix Stahlberg

Name Number of parameters

Standard convolution KMN
Pointwise convolution MN
Depthwise convolution KN
Depthwise separable convolution N(M+K)

Table 3: Types of convolution and their number of parameters.

(a) NMT with a convolutional encoder and a
convolutional decoder like in the ConvS2S ar-
chitecture (Gehring et al., 2017b).

(b) Purely attention-based NMT as proposed
by Vaswani et al. (2017) with two layers.

Figure 12: Convolutional and purely attention-based architectures. The color coding indi-
cates weight sharing. Gray arrows represent attention.

with i ∈ [1, I] and n ∈ [1, N ]. Standard convolution represents two kinds of dependen-
cies: Spatial dependency (inner sum in Eq. 21) and cross-channel dependency (outer sum
in Eq. 21). Pointwise and depthwise convolution factor out these dependencies into two
separate operations:

PointwiseConv:(vi)n =
M∑
m=1

W pw
m,n(ui)m = uiW

pw (22)

DepthwiseConv:(vi)n =
K−1∑
k=0

W dw
k,n(ui+k)n (23)

where W pw ∈ RM×N and W dw ∈ RK×N are weight matrices. Fig. 11 illustrates the differ-
ences between these types of convolution. The idea behind depthwise separable convolution
is to replace standard convolutional (Eq. 21) with depthwise convolution followed by point-
wise convolution. As shown in Tab. 3, the decomposition into two simpler steps reduces
the number of parameters and has been shown to make more efficient use of the parameters
than regular convolution in vision (Chollet, 2017; Howard et al., 2017).

Using convolution rather than recurrence in NMT models has several potential advan-
tages. First, they reduce sequential computation and are therefore easier to parallelize on
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GPU hardware. Second, their hierarchical structure connects distant words via a shorter
path than sequential topologies (Gehring et al., 2017b) which eases learning (Hochreiter
et al., 2001). Both regular (Kalchbrenner et al., 2016; Gehring et al., 2017b, 2017a) and
depthwise separable (Kaiser et al., 2017; Wu et al., 2019) convolution have been used for
NMT in the past. Fig. 12a shows the general architecture for a fully convolutional NMT
model such as ConvS2S (Gehring et al., 2017b) or SliceNet (Kaiser et al., 2017) in which
both encoder and decoder are convolutional. Stacking multiple convolutional layers increases
the effective context size which is needed for the translation of long sentences. Therefore,
convolutional models are comparably deeper, hence often more difficult to train (Chen et al.,
2018a). In the decoder, we need to mask the receptive field of the convolution operations to
make sure that the network has no access to future information (van den Oord et al., 2016).
Encoder and decoder are connected via attention. Gehring et al. (2017b) used attention
into the encoder representations after each convolutional layer in the decoder.

6.5 Self-Attention-Based Neural Machine Translation

Recall that Eq. 5 states that NMT factorizes P (y|x) into conditionals P (yj |yj−1
1 ,x). We

have reviewed two ways to model the dependency on the source sentence x in NMT: via
a fixed-length sentence encoding c(x) (Sec. 5) or via time-dependent context vectors cj(x)
which are computed using attention (Sec. 6.1). We have also presented two ways to imple-
ment the dependency on the target sentence prefix yj−1

1 : via a recurrent connection which
passes through the decoder state to the next time step (Sec. 6.3) or via convolution (Sec. 6.4).
A third option to model target side dependency is using self-attention. Using the terminol-
ogy introduced in Sec. 6.1, decoder self-attention derives all three components (queries, keys,
and values) from the decoder state. The decoder conditions on the translation prefix yj−1

1

by attending to its own states from previous time steps. Besides machine translation, self-
attention has been applied to various NLP tasks such as sentiment analysis (Cheng et al.,
2016a), natural language inference (Shen et al., 2018a; Parikh et al., 2016; Liu et al., 2016;
Shen et al., 2018b), text summarization (Paulus et al., 2017), headline generation (Daniil
et al., 2019), sentence embedding (Lin et al., 2017; Wu et al., 2018; Zhang et al., 2018a), and
reading comprehension (Hu et al., 2018). Similarly to convolution, self-attention introduces
short paths between distant words and reduces the amount of sequential computation. An
empirical investigation by Tang et al. (2018a) concludes that these short paths are especially
useful for learning strong semantic feature extractors, but less so for modelling long-range
subject-verb agreement. Furthermore, short paths in attention-based architectures also im-
prove the gradient flow in the backward pass which helps training.7 Like in convolutional
models we also need to mask future decoder states to prevent conditioning on future tokens
(cf. Sec. 6.2).

The general layout for self-attention-based NMT models is shown in Fig. 12b. The first
example of this new class of NMT models was the Transformer (Vaswani et al., 2017). The
Transformer uses attention for three purposes: 1) within the encoder to enable context-
sensitive word representations which depend on the whole source sentence, 2) between the
encoder and the decoder as in previous models, and 3) within the decoder to condition on

7. As one reviewer of this article pointed out, this is supported by the necessity of reversal of a sequence
by Sutskever et al. (2014), compared to Bahdanau et al. (2015).
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the current translation history. The Transformer uses multi-head attention (Sec. 6.1) rather
than regular attention. Using multi-head attention has been shown to be essential for the
Transformer architecture (Tang et al., 2018a; Chen et al., 2018a).

A challenge in self-attention-based models (and to some extent in convolutional models)
is that vanilla attention as introduced in Sec. 6.1 by itself has no notion of order. The
key-value pairs in the memory are accessed purely based on the correspondence between key
and query (content-based addressing) and not based on a location of the key in the memory
(location-based). This is less of a problem in recurrent NMT (Sec. 6.3) as queries, keys, and
values are derived from RNN states and already carry a strong sequential signal due to the
RNN topology. In the Transformer architecture, however, recurrent connections are removed
in favor of attention. Vaswani et al. (2017) tackled this problem using positional encodings.
Positional encodings are (potentially partial) functions PE : N 9 RD where D is the word
embedding size, i.e. they are D-dimensional representations of natural numbers. They are
added to the (input and output) word embeddings to make them (and consequently the
queries, keys, and values) position-sensitive. Vaswani et al. (2017) stacked sine and cosine
functions of different frequencies to implement PE(·):

PEsin(n)d =

{
sin(10000−

d
Dn) : d is even

cos(10000−
d
Dn) : d is odd

(24)

for n ∈ N and d ∈ [1, D]. Alternatively, positional encodings can be learned in an embedding
matrix (Gehring et al., 2017b):

PElearned(n) = W:,n (25)

with weight matrix W ∈ Rd×N for some sufficiently large N . The input to PE(·) is usually
the absolute position of the word in the sentence (Vaswani et al., 2017; Gehring et al.,
2017b), but relative positioning is also possible (Shaw et al., 2018). A disadvantage of
learned positional encodings is that they cannot generalize to sequences longer than N .

6.6 Comparison of the Fundamental Architectures

As outlined in the previous sections, NMT can come in one of three flavors: recurrent,
convolutional, or self-attention-based. In this section, we will discuss three concrete archi-
tectures in greater detail – one of each flavor. Fig. 13 visualizes the data streams in Google’s
Neural Machine Translation system (Wu et al., 2016, GNMT) as an example of a recurrent
network, the convolutional ConvS2S model (Gehring et al., 2017b), and the self-attention-
based Transformer model (Vaswani et al., 2017) in plate notation. We excluded components
like dropout (Srivastava et al., 2014), batch normalization (Ioffe & Szegedy, 2015), and layer
normalization (Ba et al., 2016) to simplify the diagrams.

All models fall in the general category of encoder-decoder networks, with the encoder in
the left column and the decoder in the right column. Output probabilities are generated by a
linear projection layer followed by a softmax activation at the end. They all use attention to
connect the encoder with the decoder, although the specifics differ. GNMT (Fig. 13a) uses
regular attention, ConvS2S (Fig. 13b) adds the source word encodings to the values, and the
Transformer (Fig. 13c) uses multi-head attention (Sec. 6.1). Residual connections (He et al.,
2016b) are used in all three architectures to encourage gradient flow in multi-layer networks.
Positional encodings are used in ConvS2S and the Transformer, but not in GNMT.
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(a) GNMT (Wu et al., 2016). (b) ConvS2S (Gehring et al., 2017b).

(c) Transformer (Vaswani et al., 2017). (d) RNMT+ (Chen et al., 2018a).

Figure 13: Comparison of NMT architectures. The three inputs to attention modules are
(from left to right): keys (K), values (V ), and queries (Q) as in Fig. 7.
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An interesting fusion is the RNMT+ model (Chen et al., 2018a) shown in Fig. 13d
which reintroduces ideas from the Transformer like multi-head attention into recurrent NMT.
Other notable mixed architectures include Gehring et al. (2017a) who used a convolutional
encoder with a recurrent decoder, Miculicich et al. (2018), Wang et al. (2019), Werlen et al.
(2018) who added self-attention connections to a recurrent decoder, Hao et al. (2019) who
used a Transformer encoder and a recurrent encoder in parallel, and Lin et al. (2018) who
equipped a recurrent decoder with a convolutional decoder to provide global target-side
context. Using recurrence rather than self-attention in the decoder avoids the quadratic
inference time complexity as only a single hidden state (not all previous hidden states) has
to be passed through to the next timestep. Ablation studies by Tang et al. (2018a), Chen
et al. (2018a), Domhan (2018), Tang et al. (2018b), Stahlberg et al. (2018b) provide further
insight into the different techniques used across these architectures.

7. Neural Machine Translation Decoding

So far we have described how NMT defines the translation probability P (y|x). However, in
order to apply these definitions directly, both the source sentence x and the target sentence
y have to be given. They do not directly provide a method for generating a target sentence
y from a given source sentence x which is the ultimate goal in machine translation. The
task of finding the most likely translation ŷ for a given source sentence x is known as the
decoding or inference problem:

ŷ = arg max
y∈Σ∗

trg

P (y|x). (26)

NMT decoding is non-trivial for mainly two reasons. First, the search space is vast as
it grows exponentially with the sequence length. For example, if we assume a common
vocabulary size of |Σtrg| = 32, 000, there are already more possible translations with 20
words or less than atoms in the observable universe (32, 00020 � 1082). Thus, complete
enumeration of the search space is impossible. Second, as we will see in Sec. 8, certain types
of model errors are very common in NMT. The mismatch between the most likely and the
“best” translation has deep implications on search as more exhaustive search often leads to
worse translations (Stahlberg & Byrne, 2019). We will discuss possible solutions to both
problems in the remainder of Sec. 7.

7.1 Greedy and Beam Search

The most popular decoding algorithms for NMT are greedy search and beam search. Both
search procedures are based on the left-to-right factorization of NMT in Eq. 5. Translations
are built up from left to right while partial translation prefixes are scored using the condi-
tionals P (yj |yj−1

1 ,x). This means that both algorithms work in a time-synchronous manner:
in each iteration j, partial hypotheses of (up to) length j are compared to each other, and a
subset of them is selected for expansion in the next time step. The algorithms terminate if
either all or the best of the selected hypotheses end with the end-of-sentence symbol </s> or
if some maximum number of iterations is reached. Fig. 14 illustrates the difference between
greedy search and beam search. Greedy search (highlighted in green) selects the single best
expansion at each time step: ‘c’ at j = 1, ‘a’ at j = 2, and ‘b’ at j = 3. However, greedy
search is vulnerable to the so-called garden-path problem: The algorithm selects ‘c’ in the
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Figure 14: Comparison between greedy (highlighted in green) and beam search (highlighted
in orange) with beam size 2.

first time step which turns out to be a mistake later on as subsequent distributions are
very smooth and scores are comparably low. However, greedy decoding cannot correct this
mistake later as it is already committed to this path. Beam search (highlighted in orange
in Fig. 14) tries to mitigate the risk of the garden-path problem by passing not one but n
possible translation prefixes to the next time step (n = 2 in Fig. 14). The n hypotheses
which survive a time step are called active hypotheses. At each time step, the accumulated
path scores for all possible continuations of active hypotheses are compared, and the n best
ones are selected. Thus, beam search not only expands ‘c’ but also ‘b’ in time step 1, and
thereby finds the high scoring translation prefix ‘ba’. Note that although beam search seems
to be the more accurate search procedure, it is not guaranteed to always find a translation
with higher or equal score as greedy decoding.8 It is therefore still prone to the garden-path
problem, although less so than greedy search. Stahlberg and Byrne (2019) demonstrated
that even beam search suffers from a high number of search errors.

7.2 Formal Description of Decoding for the RNNsearch Model

In this section, we will formally define decoding for the RNNsearch model (Bahdanau et al.,
2015). We will resort to the mathematical symbols used in Sec. 6.3 to describe the al-
gorithms. First, the source annotations h are computed and stored as this does not re-
quire any search. Then, we compute the distribution for the first target token y1 using
OneStepRNNsearch(sinit,<s>,h) (Alg. 1). The initial decoder state sinit is often a lin-
ear transform of the last encoder hidden state hI : sinit = WhI for some weight matrix
W ∈ Rn×m.

8. For example, imagine a series of high entropy conditionals after ‘baa’ and low entropy conditionals after
‘cab’ in Fig. 14
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Algorithm 1 OneStepRNNsearch(sprev, yprev,h)

1: α
Eq. 16← 1

Z [exp(a(sprev, hi))]i∈[1,I] {Attention weights (α ∈ RI , Z as in Eq. 16)}

2: c
Eq. 15←

∑I
i=1 αi · hi {Context vector update (c ∈ Rm)}

3: s
Eq. 17← f(sprev, yprev, c) {RNN state update (s ∈ Rn)}

4: p
Eq. 5← g(yprev, s, c) {p ∈ R|Σtrg| is the distribution over the next target token P (yj |·)}

5: return s, p

Algorithm 2 GreedyRNNsearch(sinit,h)

1: y← 〈〉
2: s← sinit
3: y ← <s>
4: while y 6= </s> do
5: s, p← OneStepRNNsearch(s, y,h)
6: y ← arg maxw ∈ Σtrg

πw(p)

7: y.append(y)
8: end while
9: return y

Algorithm 3 BeamRNNsearch(sinit,h, n ∈ N+)

1: Hcur ← {(ε, 0.0, sinit)} {Initialize with empty translation prefix and zero score}
2: repeat
3: Hnext ← ∅
4: for all (y, pacc, s) ∈ Hcur do
5: if y|y| = </s> then
6: Hnext ← Hnext ∪ {(y, pacc, s)} {Hypotheses ending with </s> are not extended}
7: else
8: s, p← OneStepRNNsearch(s, y|y|,h)
9: Hnext ← Hnext ∪

⋃
w ∈ Σtrg

(y · w, paccπw(p), s) {Add all possible continuations}
10: end if
11: end for
12: Hcur ← {(y, pacc, s) ∈ Hnext : |{(y′, p′acc, s

′) ∈ Hnext : p′acc > pacc}| < n} {Select n-best}
13: (ŷ, p̂acc, ŝ)← arg max(y, pacc, s) ∈ Hcur

pacc

14: until ŷ|ŷ| = </s>
15: return ŷ

Greedy decoding selects the most likely target token according to the returned distri-
bution and iteratively calls OneStepRNNsearch(·) until the end-of-sentence symbol </s> is
emitted (Alg. 2). We use the projection function πw(p) (Eq. 3) which maps the posterior
vector p ∈ R|Σtrg | to the w-th component.

The beam search strategy (Alg. 3) not only keeps the single best partial hypothesis but
a set of n promising hypotheses where n is the size of the beam. A partial hypothesis is
represented by a 3-tuple (y, pacc, s) with the translation prefix y ∈ Σ∗trg, the accumulated
score pacc ∈ R, and the last decoder state s ∈ Rn.
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Figure 15: Ensembling four NMT models.

7.3 Ensembling

Ensembling (Dietterich, 2000; Hansen & Salamon, 1990) is a simple yet very effective tech-
nique to improve the accuracy of NMT. The basic idea is illustrated in Fig. 15. The decoder
makes use of K NMT networks rather than only one which are either trained independently
(Sutskever et al., 2014; Neubig, 2016; Wu et al., 2016) or share some amount of training
iterations (Sennrich et al., 2016a; Cromieres et al., 2016; Durrani et al., 2016). The ensemble
decoder computes predictions for each of the individual models which are then combined
using the arithmetic (Sutskever et al., 2014) or geometric (Cromieres et al., 2016) average:

Sarith(yj |yj−1
1 ,x) =

1

K

K∑
k=1

Pk(yj |yj−1
1 ,x) (27)

Sgeo(yj |yj−1
1 ,x) =

K∑
k=1

logPk(yj |yj−1
1 ,x). (28)

Both Sarith(·) and Sgeo(·) can be used as drop-in replacement for the conditionals P (yj |yj−1
1 ,x)

in Eq. 5. The arithmetic average is more sound as Sarith(·) still forms a valid probability
distribution which sums up to one. However, the geometric average Sarith(·) is numerically
more stable as log-probabilities can be directly combined without converting them to prob-
abilities. Another difference is that the geometric average favors consensus of the models
while the arithmetic average favors the most confident model. Note that the core idea of
ensembling is similar to language model interpolation used in statistical machine translation
or speech recognition.

Ensembling consistently outperforms single NMT by a large margin. All top systems in
recent machine translation evaluation campaigns ensemble a number of NMT systems (Bojar
et al., 2016, 2017, 2018, 2019; Sennrich et al., 2016a, 2017a; Neubig, 2016; Cromieres et al.,
2016; Durrani et al., 2016; Stahlberg et al., 2018b; Wang et al., 2017; Junczys-Dowmunt,
2018b; Wang et al., 2018b), perhaps most famously taken to the extreme by the WMT18
submission of Tencent that ensembled up to 72 translation models (Wang et al., 2018b).
However, the decoding speed is significantly worse since the decoder needs to apply K NMT
models rather than only one. This means that the decoder has to perform K more forward
passes through the networks, and has to apply the expensive softmax function K more times
in each time step. Ensembling also often increases the number of CPU/GPU switches and
the communication overhead between CPU and GPU when averaging is implemented on
the CPU. Ensembling is also often more difficult to implement than single system NMT.
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Knowledge distillation (Buciluǎ et al., 2006; Kim & Rush, 2016; Zhang et al., 2018; Freitag
et al., 2017) is one method to deal with the shortcomings of ensembling. Stahlberg and
Byrne (2017) proposed to unfold the ensemble into a single network and shrink the unfolded
network afterwards for efficient ensembling.

In NMT, all models in an ensemble usually have the same size and topology and are
trained on the same data. They differ only due to the random weight initialization and
the randomized order of the training samples. Notable exceptions include Freitag and Al-
Onaizan (2016) who use ensembling to prevent over-fitting in domain adaptation, He et al.
(2018) who combined models that selected their training data based on marginal likelihood,
and the UCAM submission to WMT18 (Stahlberg et al., 2018b) that ensembled different
NMT architectures with each other.

When all models are equally powerful and are trained with the same data, it is surpris-
ing that ensembling is so effective. One common narrative is that different models make
different mistakes, but the mistake of one model can be outvoted by the others in the en-
semble (Rokach, 2010). This explanation is plausible for NMT since translation quality
can vary widely between training runs (Sennrich et al., 2016c). The variance in translation
performance may also indicate that the NMT error surface is highly non-convex such that
the optimizer often ends up in local optima.9 Ensembling might mitigate this problem.
Ensembling may also have a regularization effect on the final translation scores (Goodfellow
et al., 2016).

Checkpoint averaging (Junczys-Dowmunt et al., 2016b, 2016a) is a technique which is
often discussed in conjunction with ensembling (Liu et al., 2018b). Checkpoint averaging
keeps track of the few most recent checkpoints during training, and averages their weight
matrices to create the final model. This results in a single model and thus does not increase
the decoding time. Therefore, it has become a very common technique in NMT (Vaswani
et al., 2017; Popel & Bojar, 2018; Stahlberg et al., 2018b). Checkpoint averaging addresses
a quite different problem than ensembling as it mainly smooths out minor fluctuations in
the training curve which are due to the optimizer’s update rule or noise in the gradient
estimation due to mini-batch training. In contrast, the weights of independently trained
models are very different from each other, and there is no obvious direct correspondence
between neuron activities across the models. Therefore, checkpoint averaging cannot be
applied to independently trained models.

7.4 Decoding Direction

Standard NMT factorizes the probability P (y|x) from left to right (L2R) according Eq. 5.
Mathematically, the left-to-right order is rather arbitrary, and other arrangements such as
a right-to-left (R2L) factorization are equally correct:

P (y|x) =
J∏
j=1

P (yj |yj−1
1 ,x)︸ ︷︷ ︸

=P (y1|x)·P (y2|y1,x)·P (y3|y1,y2,x)···

=

J∏
j=1

P (yj |yJj+1,x)︸ ︷︷ ︸
=P (yJ |x)·P (yJ−1|yJ ,x)·P (yJ−2|yJ−1,yJ ,x)···

. (29)

9. Another plausible explanation for this variance are search errors as discussed in Sec. 8.
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NMT models which produce the target sentence in reverse order have led to some gains in
evaluation systems when combined with left-to-right models (Sennrich et al., 2016a; Wang
et al., 2017; Stahlberg et al., 2018b; Wang et al., 2018b). A common combination scheme is
based on rescoring: A strong L2R ensemble first creates an n-best list which is then rescored
with a R2L model (Liu et al., 2016; Sennrich et al., 2016a). Stahlberg et al. (2018b) used
R2L models via a minimum Bayes risk framework. The L2R and R2L systems are normally
trained independently, although some recent work proposes joint training schemes in which
each direction is used as a regularizer for the other direction (Zhang et al., 2018d; Yang
et al., 2018c). Other orderings besides L2R and R2L have also been proposed such as
middle-out (Mehri & Sigal, 2018), top-down in a binary tree (Welleck et al., 2019), insertion-
based (Gu et al., 2019; Stern et al., 2019; Östling & Tiedemann, 2017; Gu et al., 2019), or
in source sentence order (Stahlberg et al., 2018).

7.5 Efficiency

NMT decoding is very fast on GPU hardware and can reach up to 5000 words per sec-
ond.10 However, GPUs are very expensive, and speeding up CPU decoding to the level of
SMT remains more challenging. Therefore, how to improve the efficiency of neural sequence
decoding algorithms is still an active research question. One bottleneck is the sequential
left-to-right order of beam search which makes parallelization difficult. Stern et al. (2018)
suggested to compute multiple time steps in parallel and validate translation prefixes af-
terwards. Kaiser et al. (2018) reduced the amount of sequential computation by learning a
sequence of latent discrete variables which is shorter than the actual target sentence, and
generating the final sentence from this latent representation in parallel. Di Gangi and Fed-
erico (2018) sped up recurrent NMT by using a simplified architecture for recurrent units.
Another line of research tries to reintroduce the idea of hypothesis recombination to neural
models. This technique is used extensively in traditional SMT (see Koehn, 2010 for an
overview). The idea is to keep only the better of two partial hypotheses if it is guaranteed
that both will be scored equally in the future. For example, this is the case for n-gram
language models if both hypotheses end with the same n-gram. The problem in neural
sequence models is that they condition on the full translation history. Therefore, hypothesis
recombination for neural sequence models does not insist on exact equivalence but clus-
ters hypotheses based on the similarity between RNN states or the n-gram history (Zhang
et al., 2018e; Liu et al., 2014). A similar idea was used by Lecorvé and Motlicek (2012)
to approximate RNNs with WFSTs which also requires mapping histories into equivalence
classes.

It is also possible to speed up beam search by reducing the beam size. Wu et al. (2016),
Freitag and Al-Onaizan (2017) suggested to use a variable beam size, using various heuristics
to decide the beam size at each time step. Alternatively, the NMT model training can
be tailored towards the decoding algorithm (Goyal et al., 2018; Wiseman & Rush, 2016;
Collobert et al., 2019; Gu et al., 2017b). Wiseman and Rush (2016) proposed a loss function
for NMT training which penalizes when the reference falls off the beam during training. Kim
and Rush (2016) reported that knowledge distillation (Buciluǎ et al., 2006) reduces the gap
between greedy decoding and beam decoding significantly. Greedy decoding can also be

10. https://marian-nmt.github.io/features/
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improved by using a small actor network which modifies the hidden states in an already
trained model (Gu et al., 2017b; Chen et al., 2018b).

Non- or partially autoregressive NMT which aims to reduce or remove the sequential
dependency on the translation prefix inside the decoder for enhanced parallelizability has
been studied by Wang et al. (2018a), Gu et al. (2017a), Guo et al. (2018), Wang et al. (2019),
Libovický and Helcl (2018), Lee et al. (2018), Akoury et al. (2019).

7.6 Generating Diverse Translations

An issue with using beam search is that the hypotheses found by the decoder are very similar
to each other and often differ only by one or two words (Li & Jurafsky, 2016; Li et al., 2016b;
Gimpel et al., 2013). The lack of diversity is problematic for several reasons. First, natural
language in general and translation in particular often come with a high level of ambiguity
that is not represented well by non-diverse n-best lists. Second, it impedes user interaction
as NMT is not able to provide the user with alternative translations if needed. Third,
collecting statistics about the search space such as estimating the probabilities of n-grams
for minimum Bayes-risk decoding (Goel et al., 2000; Kumar & Byrne, 2004; Tromble et al.,
2008; Iglesias et al., 2018; Stahlberg et al., 2018b, 2017) or risk-based training (Shen et al.,
2016) is much less effective.

Cho (2016) added noise to the activations in the hidden layer of the decoder network to
produce alternative high scoring hypotheses. This is justified by the observation that small
variations of a hidden configuration encode semantically similar context (Bengio et al., 2013).
Li and Jurafsky (2016), Li et al. (2016b) proposed a diversity promoting modification of the
beam search objective function. They added an explicit penalization term to the NMT score
based on a maximum mutual information criterion which penalizes hypotheses from the same
parent node. Note that both extensions can be used together (Cho, 2016). Vijayakumar
et al. (2016) suggested to partition the active hypotheses in groups, and use a dissimilarity
term to ensure diversity between groups. Park et al. (2016) found alternative translations
by k-nearest neighbor search from the greedy translation in a translation memory. However,
none of these techniques have been adopted widely in production systems.

8. NMT Model Errors

NMT is highly effective in assigning scores (or probabilities) to translations because, in stark
contrast to SMT, it does not make any conditional independence assumptions in Eq. 5 to
model sentence-level translation. A potential drawback of such a powerful model is that it
prohibits the use of sophisticated search procedures. Compared to hierarchical SMT systems
like Hiero (Chiang, 2007) that explore very large search spaces, NMT beam search appears
to be overly simplistic. This observation suggests that translation errors in NMT are more
likely due to search errors (the decoder does not find the highest scoring translation) than
model errors (the model assigns a higher probability to a worse translation). Interestingly,
this is not necessarily the case. Search errors in NMT have been studied by Niehues et al.
(2017), Stahlberg et al. (2018), Stahlberg and Byrne (2019). In particular, Stahlberg and
Byrne (2019) demonstrated the high number of search errors in NMT decoding. However, as
we will show in this section, NMT also suffers from various kinds of model errors in practice
despite its theoretical advantage.
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Figure 16: Performance of a Transformer model on English-German (WMT15) under varying
beam sizes. The BLEU score peaks at beam size 10, but then suffers from a length ratio
(hypothesis length / reference length) below 1. The log-probabilities are shown as a ratio
with respect to greedy decoding.

8.1 Sentence Length

Increasing the beam size exposes one of the most noticeable model errors in NMT. The
red curve in Fig. 16 plots the BLEU score (Papineni et al., 2002) of a recent Transformer
NMT model against the beam size. A beam size of 10 is optimal on this test set. Wider
beams lead to a steady drop in translation performance because the generated translations
are becoming too short (green curve). However, as expected, the log-probabilities of the
found translations (blue curve) are decreasing as we increase the beam size. NMT seems
to assign too much probability mass to short hypotheses which are only found with more
exhaustive search. Sountsov and Sarawagi (2016) argue that this model error is due to the
locally normalized maximum likelihood training objective in NMT that underestimates the
margin between the correct translation and shorter ones if trained with regularization and
finite data. A similar argument was made by Murray and Chiang (2018) who pointed out the
difficulty for a locally normalized model to estimate the “budget” for all remaining (longer)
translations in each time step. Kumar and Sarawagi (2019) demonstrated that NMT models
are often poorly calibrated, and that calibration issues can cause the length deficiency in
NMT. A similar case is illustrated in Fig. 17. The NMT model underestimates the combined
probability mass of translations continuing after “Stadtrat” in time step 7 and overestimates
the probability of the period symbol. Greedy decoding does not follow the green translation
since “der” is more likely in time step 7. However, beam search with a large beam keeps the
green path and thus finds the shorter (incomplete) translation with better score. In fact,
Stahlberg and Byrne (2019) linked the bias of large beam sizes towards short translations
with the reduction of search errors.

At first glance this seems to be good news: fast beam search with a small beam size is
already able to find good translations. However, fixing the model error of short translations
by introducing search errors with a narrow beam seems like fighting fire with fire. In practice,
this means that the beam size is yet another hyper-parameter which needs to be tuned for
each new NMT training technique (eg. label smoothing (Szegedy et al., 2016) usually requires
a larger beam), NMT architecture (the Transformer model is usually decoded with a smaller
beam than typical recurrent models), and language pair (Koehn & Knowles, 2017). More
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Figure 17: The length deficiency in NMT translating the English source sentence “Her
husband is a former Tory councillor.” into German following Murray and Chiang (2018).
The NMT model assigns a better score to the short translation “Ihr Mann ist ein ehemaliger
Stadtrat.” than to the greedy translation “Ihr Mann ist ein ehemaliger Stadtrat der Tory.”
even though it misses the former affiliation of the husband with the Tory Party.

importantly, it is not clear whether there are gains to be had from reducing the number of
search errors with wider beams which are simply obliterated by the NMT length deficiency.

8.1.1 Model-Agnostic Length Models

The first class of approaches to alleviate the length problem is model-agnostic. Methods
in this class treat the NMT model as a black box but add a correction term to the NMT
score to bias beam search towards longer translations. A simple method is called length
normalization which divides the NMT probability by the sentence length (Jean et al., 2015b;
Boulanger-Lewandowski et al., 2013):

SLN(y|x) =
logP (y|x)

|y|
(30)

Wu et al. (2016) proposed an extension of this idea by introducing a tunable parameter α:

SLN-GNMT(y|x) = logP (y|x)
(1 + 5)α

(1 + |y|)α
(31)

Alternatively, like in SMT we can use a word penalty γ(j,x) which rewards each word in
the sentence:

SWP(y|x) =

J∑
j=1

γ(j,x) + logP (yj |yj−1
1 ,x) (32)

A constant reward which is independent of x and j can be found with minimum-error-rate-
training (He et al., 2016c) or with a gradient-based learning scheme (Murray & Chiang,
2018). Alternative policies which reward words with respect to some estimated sentence
length were suggested by Huang et al. (2017), Yang et al. (2018b).
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8.1.2 Source-Side Coverage Models

Tu et al. (2016) connected the sentence length issue in NMT with the lack of an explicit
mechanism to check the source-side coverage of a translation. Traditional SMT keeps track
of a coverage vector CSMT ∈ {0, 1}I which contains 1 for source words which are already
translated and 0 otherwise. CSMT is used to guard against under-translation (missing transla-
tions of some words) and over-translation (some words are unnecessarily translated multiple
times). Since vanilla NMT does not use an explicit coverage vector it can be prone to both
under- and over-translation (Tu et al., 2016; Yang et al., 2018a) and tends to prefer fluency
over adequacy (Kong et al., 2018). There are two popular ways to model coverage in NMT,
both make use of the encoder-decoder attention weight matrix A introduced in Sec. 6.1.
The simpler methods combine the scores of an already trained NMT system with a cover-
age penalty cp(x,y) without retraining. This penalty represents how much of the source
sentence is already translated. Wu et al. (2016) proposed the following term:

cp(x,y) = β

I∑
i=1

log
(

min(

J∑
j=1

Ai,j , 1.0)
)
. (33)

A very similar penalty was suggested by Li et al. (2018):

cp(x,y) = α
I∑
i=1

log
(

max(
J∑
j=1

Ai,j , β)
)

(34)

where α and β are hyper-parameters that are tuned on the development set.
An even tighter integration can be achieved by changing the NMT architecture itself

and jointly training it with a coverage model (Tu et al., 2016; Mi et al., 2016a). Tu et al.
(2016) reintroduced an explicit coverage matrix C ∈ [0, 1]I×J to NMT. Intuitively, the j-th
column C:,j stores to what extent each source word has been translated in time step j. C
can be filled with an RNN-based controller network (the “neural network based” coverage
model of Tu et al. (2016)). Alternatively, we can directly use A to compute the coverage
(the “linguistic” coverage model of Tu et al. (2016)):

Ci,j =
1

Φi

j∑
k=1

Ai,k (35)

where Φi is the estimated number of target words the i-th source word generates which is
similar to fertility in SMT. Φi is predicted by a feedforward network that conditions on the
i-th encoder state. In both the neural network based and the linguistic coverage model, the
decoder is modified to additionally condition on C. The idea of using fertilities to prevent
over- and under-translation has also been explored by Malaviya et al. (2018). A coverage
model for character-based NMT was suggested by Kazimi and Costa-Jussá (2017).

All approaches discussed in this section operate on the attention weight matrix A and are
thus only readily applicable to models with single encoder-decoder attention like GNMT,
but not to models with multiple encoder-decoder attention modules such as ConvS2S or
the Transformer (see Sec. 6.6 for detailed descriptions of GNMT, ConvS2S, and the Trans-
former).
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Vocabulary size Number of parameters
Embeddings Rest Total

30K 55.8M 27.9M 83.7M
50K 93.1M 27.9M 121.0M
150K 279.2M 27.9M 307.1M

Table 4: Number of parameters in the original RNNsearch model (Bahdanau et al., 2015)
as presented in Sec. 6.3 (1000 hidden units, 620-dimensional embeddings). The model size
highly depends on the vocabulary size.

8.1.3 Controlling Mechanisms for Output Length

In some sequence prediction tasks such as headline generation or text summarization, the
approximate desired output length is known in advance. In such cases, it is possible to
control the length of the output sequence by explicitly feeding in the desired length to the
neural model. The length information can be provided as additional input to the decoder
network (Fan et al., 2018; Liu et al., 2018a), at each time step as the number of remaining
tokens (Kikuchi et al., 2016), or by modifying Transformer positional embeddings (Takase &
Okazaki, 2019). However, these approaches are not directly applicable to machine translation
as the translation length is difficult to predict with sufficient accuracy.

9. Open Vocabulary Neural Machine Translation

As discussed in Sec. 3, NMT and other neural NLP models use embedding matrices to
represent words as real-valued vectors. Embedding matrices need to have a fixed shape to
make joint training with the translation model possible, and thus can only be used with a
fixed and pre-defined vocabulary. This has several major implications for NMT.

9.1 Using Large Output Vocabularies

One problem with large output vocabularies is that the size of the embedding matrices
grows with the vocabulary size. As shown in Tab. 4, the embedding matrices make up
most of the model parameters of a standard RNNsearch model. Increasing the vocabulary
size inflates the model drastically. Large models require a small batch size because they
take more space in the (GPU) memory, but reducing the batch size often leads to noisier
gradients, slower training, and eventually worse model performance (Popel & Bojar, 2018).
Furthermore, a large softmax output layer is computationally very expensive. In contrast,
traditional (symbolic) MT systems can easily use very large vocabularies (Heafield et al.,
2013; Lin & Dyer, 2010; Chiang, 2007; Koehn, 2010). Besides these practical issues, training
embedding matrices for large vocabularies is also complicated by the long-tail distribution
of words in a language. Zipf’s law (Zipf, 1946) states that the frequency of any word and
its rank in the frequency table are inversely proportional to each other. Fig. 18 shows that
843K of the 875K distinct words (96.5%) occur less than 100 times in an English text with
140M running words – that is less than 0.00007% of the entire text. It is difficult to train
robust word embeddings for such rare words. Word-based NMT models address this issue
by restricting the vocabulary to the n most frequent words, and replacing all other words by
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Figure 18: Distribution of words in the English portion of the English-German WMT18
training set (5.9M sentences, 140M words).

a special token UNK. A problem with that approach is that the UNK token may appear in
the generated translation. In fact, limiting the vocabulary to the 30K most frequent words
results in an out-of-vocabulary rate (OOV) of 2.9% on the training set (Fig. 18). That means
an UNK token can be expected to occur every 35 words. In practice, the number of UNKs is
usually even higher. One simple reason is that the test set OOV rate is often higher than on
the training set because the distribution of words and phrases naturally varies across genre,
corpora, and time. Another observation is that word-based NMT often prefers emitting
UNK even if a more appropriate word is in the NMT vocabulary. This is possibly due to
the misbalance between the UNK token and other words: replacing all rare words with the
same UNK token leads to an over-representation of UNK in the training set, and therefore
a strong bias towards UNK during decoding.

9.1.1 Translation-Specific Approaches

Jean et al. (2015a) distinguished between translation-specific and model-specific approaches.
Translation-specific approaches keep the shortlist vocabulary in the original form, but correct
UNK tokens afterwards. For example, the UNK replace technique (Luong et al., 2015b; Le
et al., 2016) keeps track of the positions of source sentence words which correspond to
the UNK tokens. In a post-processing step, they replaced the UNK tokens with the most
likely translation of the aligned source word according to a bilingual word-level dictionary
which was extracted from a word-aligned training corpus. Gulcehre et al. (2016) followed a
similar idea but used a special pointer network for referring to source sentence words. These
approaches are rather ad-hoc because simple dictionary lookup without context is not a
very strong model of translation. Li et al. (2016) replaced each OOV word with a similar
in-vocabulary word based on the cosine similarity between their distributed representations
in a pre-processing step. However, this technique cannot tackle all OOVs as it is based on
vector representations of words which are normally only available for a closed vocabulary.
Moreover, the replacements might differ from the original meaning significantly. Further
UNK replacement strategies were presented by Li et al. (2017, 2017), Miao et al. (2017),
but all share the inevitable limitation of all translation-specific approaches, namely that the
translation model itself is indiscriminative between a large number of OOVs.
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9.1.2 Model-Specific Approaches

Model-specific approaches change the NMT model to make training with large vocabularies
feasible. For example, Nguyen and Chiang (2018) improved the translation of rare words in
NMT by adding a lexical translation model which directly connects corresponding source
and target words. Another very popular idea is to train networks to output probability
distributions without using the full softmax (Andreas & Klein, 2015). Noise-contrastive
estimation (Gutmann & Hyvärinen, 2010; Dyer, 2014, NCE) trains a logistic regression
model which discriminates between real training examples and noise. For example, to train
an embedding for a word w, Mnih and Kavukcuoglu (2013) treat w as a positive example,
and sample from the global unigram word distribution in the training data to generate
negative examples. The logistic regression model is a binary classifier and thus does not
need to sum over the full vocabulary. NCE has been used to train large vocabulary neural
sequence models such as language models (Mnih & Teh, 2012). The technique falls into the
category of self-normalizing training (Andreas & Klein, 2015) because the model is trained
to emit normalized distributions without explicitly summing over the output vocabulary.
Devlin et al. (2014) encouraged the network to learn parameters which generate normalized
output by adding the value of the partition function to the training loss.

Another approach (sometimes referred to as vocabulary selection) is to approximate the
partition function of the full softmax by using only a subset of the vocabulary. This subset
can be selected in different ways. For example, Jean et al. (2015a) applied importance
sampling to select a small set of words for approximating the partition function. Both
softmax sampling and UNK replace have been used in one of the winning systems at the
WMT’15 evaluation on English-German (Jean et al., 2015b). Various methods have been
proposed to select the vocabulary to normalize over during decoding, such as fetching all
possible translations in a conventional phrase table (Mi et al., 2016c), using the vocabulary of
the translation lattices from a traditional MT system (Stahlberg et al., 2016), and attention-
based (Sankaran et al., 2017) and embedding-based (L’Hostis et al., 2016) methods.

9.2 Character-Based NMT

Arguably, both translation-specific and model-specific approaches to word-based NMT are
fundamentally flawed. Translation-specific techniques like UNK replace are indiscriminative
between translations that differ only by OOV words. A translation model which assigns
exactly the same score to a large number of hypotheses is of limited use by its own. Model-
specific approaches suffer from the difficulty of training embeddings for rare words (Sec. 9.1).
Compound or morpheme splitting can mitigate this issue to a certain extent (Hans & Milton,
2016; Tamchyna et al., 2017). More importantly, however, a fully-trained NMT system even
with a very large vocabulary cannot be extended with new words. Customizing systems
to new domains (and thus new vocabularies) is a crucial requirement for commercial MT.
Moreover, many OOV words are proper names which can be passed through untranslated.
Hiero (Chiang, 2007) and other symbolic systems can easily be extended with new words
and phrases.

More recent attempts try to alleviate the vocabulary issue in NMT by departing from
words as modelling units. These approaches decompose the word sequences into finer-
grained units and model the translation between those instead of words. To the best of
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our knowledge, Ling et al. (2015) were the first who proposed an NMT architecture which
translates between sequences of characters. The core of their NMT network is still on the
word-level, but the input and output embedding layers are replaced with subnetworks that
compute word representations from the characters of the word. Such a subnetwork can be
recurrent (Ling et al., 2015; Johansen et al., 2016) or convolutional (Costa-jussà & Fonollosa,
2016; Kim et al., 2016). This idea was extended to a hybrid model by Luong and Manning
(2016) who used the standard lookup table embeddings for in-vocabulary words and the
LSTM-based embeddings only for OOVs.

Having a word-level model at the core of a character-based system does circumvent
the closed vocabulary restriction of purely word-based models, but it is still segmentation-
dependent: The input text has to be preprocessed with a tokenizer that separates words
by blank symbols in languages without word boundary markers, optionally applies com-
pound or morpheme splitting in morphologically rich languages, and isolates punctuation
symbols. Since tokenization is by itself error-prone and can degrade the translation perfor-
mance (Domingo et al., 2018), it is desirable to design character-level systems that do not
require any prior segmentation. Chung et al. (2016) used a bi-scale recurrent neural network
that is similar to dynamically segmenting the input using jointly learned gates between a slow
and a fast recurrent layer. Lee et al. (2017), Yang et al. (2016) used convolution to achieve
segmentation-free character-level NMT. Costa-jussà et al. (2017) took character-level NMT
one step further and used bytes rather than characters to help multilingual systems. Gul-
cehre et al. (2017) added a planning mechanism to improve the attention weights between
character-based encoders and decoders.

9.3 Subword-Unit-Based NMT

As a compromise between characters and full words, compression methods like Huffman
codes (Chitnis & DeNero, 2015), word piece models (Schuster & Nakajima, 2012; Wu et al.,
2016), or byte pair encoding (Sennrich et al., 2016c) can be used to transform the words to se-
quences of subword units. Subwords have been used rarely for traditional SMT (Kunchukut-
tan & Bhattacharyya, 2017, 2016; Liu et al., 2018), but are currently the most common
translation units for NMT. Byte pair encoding (Gage, 1994, BPE) initializes the set of
available subword units with the character set of the language. This set is extended itera-
tively in subsequent merge operations. Each merge combines the two units with the highest
number of co-occurrences in the text.11 This process terminates when the desired vocabu-
lary size is reached. This vocabulary size is often set empirically, but can also be tuned on
data (Salesky et al., 2018).

Given a fixed BPE vocabulary, there are often multiple ways to segment an unseen
text.12 The ambiguity stems from the fact that symbols are still part of the vocabulary
even after they are merged. Most BPE implementations select a segmentation greedily by
preferring longer subword units. Interestingly, the ambiguity can also be used as source of
noise for regularization. Kudo (2018) reported large gains by augmenting the training data

11. Wu and Zhao (2018) proposed alternatives to the co-occurrence counts. The wordpiece model (Schuster
& Nakajima, 2012; Wu et al., 2016) can also be seen as replacing the co-occurrence counts with a language
model objective.

12. This is not true for other subword compression algorithms. For example, Huffman codes (Chitnis &
DeNero, 2015) are prefix codes and thus unique.
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Character-based NMT Subword-based NMT

+ Better at transliteration (Sennrich,
2017).

+ Dynamic segmentation favors charac-
ters (Kreutzer & Sokolov, 2018).

+ More robust against noise (Durrani et al.,
2018; Belinkov & Bisk, 2017).

+ Better modelling of morphology (Dur-
rani et al., 2018).

+ Character-level decoders better than
subword-based ones in some stud-
ies (Chung et al., 2016; Cherry et al.,
2018).

− Character-based NMT computationally
more expensive than subword-based
NMT (Cherry et al., 2018).

− More prone to vanishing gradi-
ents (Chung et al., 2016).

− Long-range dependencies have to be
modelled over longer time-spans (Lee
et al., 2017).

+ More grammatical (Sennrich, 2017).

+ Iterative BPE segmentation favors larger
vocabulary sizes (Salesky et al., 2018).

+ Better at syntax (Durrani et al., 2018).

+ Tends to outperform character-based
models in recent MT evaluations (Bojar
et al., 2016, 2017, 2018).

Table 5: Summary of studies comparing characters and subword-units for neural machine
translation.

with alternative subword segmentations and by decoding from multiple segmentations of the
same source sentence.

Segmentation approaches differ in the level of constraints they impose on the subwords. A
common constraint is that subwords cannot span over multiple words (Sennrich et al., 2016c).
However, enforcing this constraint again requires a tokenizer which is a potential source of
errors (see Sec. 9.2). The SentencePiece model (Kudo & Richardson, 2018) is a tokenization-
free subword model that is estimated on raw text. On the other side of the spectrum, it has
been observed that automatically learned subwords generally do not correspond to linguistic
entities such as morphemes, suffixes, affixes etc. However, linguistically-motivated subword
units as proposed by Huck et al. (2017), Macháček et al. (2018), Ataman et al. (2017), Pinnis
et al. (2017) that also take morpheme boundaries into account do not always improve over
completely data-driven ones.

9.4 Words, Subwords, or Characters?

There is no conclusive agreement in the literature whether characters or subwords are the
better translation units for NMT. Tab. 5 summarizes some of the arguments. The tendency
seems to be that character-based systems have the potential of outperforming subword-
based NMT, but they are technically difficult to deploy. Therefore, most systems in the
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WMT18 evaluation are based on subwords (Bojar et al., 2018). On a more profound level,
we do see the shift towards small modelling units not without some concern. Chung et al.
(2016) noted that “we often have a priori belief that a word, or its segmented-out lexeme,
is a basic unit of meaning, making it natural to approach translation as mapping from a
sequence of source-language words to a sequence of target-language words.” Translation is
the task of transferring meaning from one language to another, and it makes intuitive sense
to model this process with meaningful units. The decades of research in traditional SMT
were characterized by a constant movement towards larger translation units – starting from
the word-based IBM models (Brown et al., 1993) to phrase-based MT (Koehn, 2004) and
hierarchical SMT (Chiang, 2007) that models syntactic structures. Expressions consisting
of multiple words are even more appropriate units than words for translation since there is
rarely a 1:1 correspondence between source and target words. In contrast, the starting point
for character- and subword-based models is the language’s writing system. Most writing
systems are not logographic but alphabetic or syllabaric and thus use symbols without any
relation to meaning. The introduction of symbolic word-level and phrase-level information
to NMT is one of the main motivations for NMT-SMT hybrid systems (Sec. 13).

10. Using Monolingual Training Data

In practice, parallel training data for MT is hard to acquire and expensive, whereas un-
translated monolingual data is usually abundant. This is one of the reasons why language
models (LMs) are central to traditional SMT. For example, in Hiero (Chiang, 2007), the
translation grammar spans a vast space of possible translations but is weak in assigning
scores to them. The LM is mainly responsible for selecting a coherent and fluent translation
from that space. However, the vanilla NMT formalism does not allow the integration of an
LM or monolingual data in general.13

There are several lines of research which investigate the use of monolingual training data
in NMT. Gulcehre et al. (2015, 2017) suggested to integrate a separately trained RNN-
LM into the NMT decoder. Similarly to traditional SMT (Koehn, 2004) they started out
with combining RNN-LM and NMT scores via a log-linear model (‘shallow fusion’). They
reported even better performance with ‘deep fusion’ which uses a controller network that
dynamically adjusts the weights between RNN-LM and NMT. Both deep fusion and n-best
reranking with count-based language models have led to some gains in WMT evaluation
systems (Jean et al., 2015b; Wang et al., 2017). The ‘simple fusion’ technique (Stahlberg
et al., 2018a) trains the translation model to predict the residual probability of the training
data added to the prediction of a pre-trained and fixed LM.

The second line of research makes use of monolingual text via data augmentation. The
idea is to add monolingual data in the target language to the natural parallel training cor-
pus. Different strategies for filling in the source side for these sentences have been proposed
such as using a single dummy token (Sennrich et al., 2016b) or copying the target sentence
over to the source side (Currey et al., 2017). The most successful strategy is called back-
translation (Schwenk, 2008; Sennrich et al., 2016b) which employs a separate translation
system in the reverse direction to generate the source sentences for the monolingual target

13. An exception is the neural noisy channel model of Yu et al. (2016) that uses a language model as the
unconditional source model.
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language sentences. The back-translating system is usually smaller and computationally
cheaper than the final system for practical reasons, although with enough computational
resources improving the quality of the reverse system can affect the final translation per-
formance significantly (Burlot & Yvon, 2018). Iterative approaches that back-translate
with systems that were by themselves trained with back-translation can yield improve-
ments (Hoang et al., 2018; Niu et al., 2018; Zhang et al., 2018c) although they are not
widely used due to their computational costs. Back-translation has become a very com-
mon technique and has been used in nearly all neural submissions to recent evaluation
campaigns (Sennrich et al., 2016a; Bojar et al., 2017, 2018).

A major limitation of back-translation is that the amount of synthetic data has to be
balanced with the amount of real parallel data (Sennrich et al., 2016b, 2016a; Poncelas et al.,
2018). Therefore, the back-translation technique can only make use of a small fraction of the
available monolingual data. An imbalance between synthetic and real data can be partially
corrected by over-sampling – duplicating real training samples a number of times to match
the synthetic data size. However, very high over-sampling rates often do not work well in
practice. Recently, Edunov et al. (2018a) proposed to add noise to the back-translated sen-
tences to provide a stronger training signal from the synthetic sentence pairs. They showed
that adding noise not only improves the translation quality but also makes the training more
robust against a high ratio of synthetic against real sentences. The effectiveness of using
noise for data augmentation in NMT has also been confirmed by Wang et al. (2018b). These
methods increase the variety of the training data and thus make it harder for the model to
fit which ultimately leads to stronger training signals. The variety of synthetic sentences
in back-translation can also be increased by sampling multiple sentences from the reverse
translation model (Imamura et al., 2018).

A third class of approaches changes the NMT training loss function to incorporate mono-
lingual data. For example, Cheng et al. (2016b), Tu et al. (2017), Escolano et al. (2018)
proposed to add autoencoder terms to the training objective which capture how well a
sentence can be reconstructed from its translated representation. Using the reconstruction
error is also central to (unsupervised) dual learning approaches (He et al., 2016a; Hassan
et al., 2018; Wang et al., 2018c). However, training with respect to the new loss is often
computationally intensive and requires approximations. Alternatively, multi-task learning
has been used to incorporate source-side (Zhang & Zong, 2016b) and target-side (Domhan &
Hieber, 2017) monolingual data. Another way of utilizing monolingual data in both source
and target language is to warm start Seq2Seq training from pre-trained encoder and decoder
networks (Ramachandran et al., 2017; Skorokhodov et al., 2018). An extreme form of lever-
aging monolingual training data is unsupervised NMT which removes the need for parallel
training data entirely (Lample et al., 2017; Artetxe et al., 2017b).

11. NMT Training

NMT models are normally trained using backpropagation (Rumelhart et al., 1988) and a
gradient-based optimizer like Adadelta (Zeiler, 2012) with cross-entropy loss. Modern NMT
architectures like the Transformer, ConvS2S, or recurrent networks with LSTM or GRU cells
help to address known training problems like vanishing gradients (Hochreiter et al., 2001).
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However, there is evidence that the optimizer still fails to exploit the full potential of NMT
models and often gets stuck in suboptima:

1. NMT models vary greatly in performance, even if they use exactly the same architec-
ture, training data, and are trained for the same number of iterations. Sennrich et al.
(2016c) observed up to 1 BLEU difference between different models.

2. NMT ensembling (Sec. 15) combines the scores of multiple separately trained NMT
models of the same kind. NMT ensembles consistently outperform single NMT by
a large margin. The achieved gains through ensembling might indicate difficulties in
training of the single models.

Training is therefore still a very active and diverse research topic. We will sketch some of
the challenges in this section, but refer to the publication list in Sec. 14 for further insight.

Deep encoders and decoders consisting of multiple layers have now superseded earlier
shallow architectures. However, since the gradients have to be back-propagated through
more layers, deep architectures – especially recurrent ones – are prone to vanishing gradi-
ents (Pascanu et al., 2013) and are thus harder to train. A number of tricks have been
proposed recently that make it possible to train deep NMT models reliably. Residual con-
nections (He et al., 2016b) are direct connections that bypass more complex sub-networks in
the layer stack. For example, all the architectures presented in Sec. 6.6 (GNMT, ConvS2S,
Transformer, RNMT+) add residual connections around attentional, recurrent, or convolu-
tional cells to ease learning (Fig. 13). Another technique to counter vanishing gradients is
called batch normalization (Ioffe & Szegedy, 2015) which normalizes the hidden activations
in each layer in a mini-batch to a mean of zero and a variance of 1. An extension of batch
normalization which is independent of the batch size and is especially suitable for recurrent
networks is called layer normalization (Ba et al., 2016). Layer normalization is popular for
training deep NLP models like the Transformer.

11.1 Regularization

Modern NMT architectures are vastly over-parameterized (Stahlberg & Byrne, 2017) to help
training (Livni et al., 2014). For example, a subword-unit-level Transformer in a standard
“big” configuration can easily have 200-300 million parameters (Stahlberg et al., 2018b).
The large number of parameters potentially makes the model prone to over-fitting: The
model fits the training data perfectly, but the performance on held-out data suffers as the
large number of parameters allows the optimizer to marginally improve training loss at
the cost of generalization as training proceeds. Techniques that aim to prevent over-fitting
in over-parameterized neural networks are called regularizers. Perhaps the two simplest
regularization techniques are L1 and L2 regularization. The idea is to add terms to the loss
function that penalize the magnitude of weights in the network. Intuitively, such penalties
draw many parameters towards zero and limit their significance. Thus, L1 and L2 effectively
serve as soft constraints on the model capacity.

The three most popular regularization techniques for NMT are early stopping, dropout,
and label smoothing. Early stopping can be seen as regularization in time as it stops training
as soon as the performance on the development set does not improve anymore. Dropout (Sri-
vastava et al., 2014) is arguably one of the key techniques that have made deep learning
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practical. Dropout randomly sets the activities of hidden and visible units to zero during
training. Thus, it can be seen as a strong regularizer for simultaneously training a large
collection of networks with extensive weight sharing. Label smoothing has been derived
for expectation–maximization training by Byrne (1993), and has been applied to large-scale
computer vision by Szegedy et al. (2016). Label smoothing changes the training objective
such that the model produces smoother distributions. Other popular methods to mitigate
over-fitting include gradient and weight noise, gradient clipping/scaling, learning rate sched-
ules, and adding input noise (e.g. by masking, swapping, or dropping input tokens).

12. Explainable Neural Machine Translation

Explaining the predictions of deep neural models is hard because they consist of tens of
thousands of neurons and millions of parameters. Therefore, explainable and interpretable
deep learning is still an open research question (Ribeiro et al., 2016; Doshi-Velez & Kim,
2017; Lipton, 2018; Montavon et al., 2018; Alishahi et al., 2019).

12.1 Post-Hoc Interpretability

Post-hoc interpretability refers to the idea of sidestepping the model complexity by treating it
as a black-box and not trying to understand the inner workings of the model. Montavon et al.
(2018) defines post-hoc interpretability as follows: “A trained model is given and our goal is
to understand what the model predicts (e.g. categories) in terms what is readily interpretable
(e.g. the input variables)”. In NMT, this means that we try to understand the target tokens
(“what the model predicts”) in terms of the source tokens (“the input variables”). Post-hoc
intepretability methods such as layer-wise relevance propagation (Bach et al., 2015) are
often visualized with heat maps representing the importance of input variables – pixels in
computer vision or source words in machine translation.

Applying post-hoc interpretability methods to sequence-to-sequence prediction has re-
ceived some attention in the literature (Schwarzenberg et al., 2019). Alvarez-Melis and
Jaakkola (2017) proposed a causal model which finds related source-target pairs by feeding
in perturbed versions of the source sentence. Ma et al. (2018) derived relevance scores for
NMT by comparing the predictive probability distributions before and after zeroing out
a particular source word. Feng et al. (2018) point out some general limitations of such
post-hoc analyses in NLP.

12.2 Model-Intrinsic Interpretability

Unlike the black-box methods for post-hoc interpretability, another line of research tries
to understand the functions of individual hidden neurons or layers in the NMT network.
Different methods have been proposed to visualize the activities or gradients in hidden
layers (Karpathy et al., 2015; Li et al., 2016a; Ding et al., 2017; Cashman et al., 2018).
Belinkov et al. (2017) shed some light on NMT’s ability to handle morphology by investi-
gating how well a classifier can predict part-of-speech or morphological tags from the last
encoder hidden layer. Bau et al. (2018), Dalvi et al. (2018, 2019) found individual neurons
that capture certain linguistic properties with different forms of regression analysis. Bau
et al. (2018) were even able to alter the translation (e.g. change the gender) by manipulating
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the activities in these neurons. Other researchers have focused on the attention layer. Tang
et al. (2018b) suggested that attention at different layers of the Transformer serves different
purposes. They also showed that NMT does not use the means of attention for word sense
disambiguation. Ghader and Monz (2017) provide a detailed analysis of how NMT uses
attention to condition on the source sentence.

12.3 Confidence Estimation in Translation

Obtaining word level or sentence level confidence scores for translations is not only very
useful for practical MT, it also improves the explainability and trustworthiness of the MT
system. An obvious candidate for confidence scores from an NMT system are the probabil-
ities the model assigns to tokens or sentences. However, there is some disagreement in the
literature on how well NMT models are calibrated (Ott et al., 2018; Kumar & Sarawagi,
2019). Poorly calibrated models do not assign probabilities according to the true data
distribution. Such models might still assign high scores to high quality translations, but
their output distributions are not a reliable source for deriving word-level confidence scores.
While confidence estimation has been explored for traditional SMT (de Gispert et al., 2013;
Bach et al., 2011; Ueffing & Ney, 2005), it has received almost no attention since the advent
of neural machine translation. The only work on confidence in NMT we are aware of is
from Rikters and Fishel (2017) and Rikters (2018) who aim to use attention to estimate
word-level confidences.

In contrast, the related field of Quality Estimation for MT enjoys great popularity, with
well-attended annual WMT evaluation campaigns – by now in their seventh edition (Specia
et al., 2018). Quality estimation aims to find meaningful quality metrics which are more
accepted by users and customers than abstract metrics like BLEU (Papineni et al., 2002), and
are more correlated to the usefulness of MT in a real-world scenario. Possible applications
for quality estimation include estimating post-editing efficiency (Specia, 2011) or selecting
sentences in the MT output which need human revision (Bach et al., 2011).

13. NMT-SMT Hybrid Systems

Neural models were increasingly used as features in traditional SMT until NMT evolved as
a new paradigm. Without question, NMT has become the prevalent approach to machine
translation in recent years. There is a large body of research comparing NMT and SMT
(Tab. 6). Most studies have found superior overall translation quality of NMT models in
most settings, but complementary strengths of both paradigms. Therefore, the literature
about hybrid NMT-SMT systems is also vast. We distinguish between two categories of
approaches for blending SMT and NMT.

Approaches in the first category do not employ a full SMT system but borrow only key
ideas or components from SMT to address specific issues in NMT. It is straightforward to
combine NMT scores with other features normally used in SMT (like language models) in
a log-linear model (Gulcehre et al., 2015; He et al., 2016c).14 Conventional symbolic SMT-
style lexical translation tables can be incorporated into the NMT decoder by using the soft

14. Note that this is still different from using neural features in an SMT system as the standard left-to-right
NMT decoder is used.
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Neural machine translation Statistical machine translation

+ Much better overall translation qual-
ity than SMT with enough training
data (Koehn & Knowles, 2017; Toral
& Sánchez-Cartagena, 2017; Bentivogli
et al., 2016, 2018; Castilho et al., 2017b;
Junczys-Dowmunt et al., 2016a; Volkart
et al., 2018).

+ More fluent than SMT (Bentivogli et al.,
2016; Toral & Sánchez-Cartagena, 2017;
Castilho et al., 2017b; Mahata et al.,
2018; Castilho et al., 2017a).

+ Better handles a variety of linguistic phe-
nomena than SMT (Bentivogli et al.,
2016, 2018; Isabelle et al., 2017).

− Adequacy issues due to lack of explicit
coverage mechanism (Tu et al., 2016;
Yang et al., 2018a; Kong et al., 2018; Ma-
hata et al., 2018; Castilho et al., 2017a).

− Lack of hypothesis diversity (Sec. 7.6).

− Neural models perform not as well as
specialized symbolic models on several
monotone seq2seq tasks (Schnober et al.,
2016).

+ Outperforms NMT in low-resource sce-
narios (Koehn & Knowles, 2017; Men-
acer et al., 2017; Dowling et al., 2018;
Jauregi Unanue et al., 2018; Mahata
et al., 2018; Ojha et al., 2018).

+ Produces richer output lat-
tices (Stahlberg et al., 2016).

+ More robust against noise (Ruiz et al.,
2017; Khayrallah & Koehn, 2018).

+ Translation quality degrades less on
very long sentences than NMT (Toral
& Sánchez-Cartagena, 2017; Bentivogli
et al., 2016).

+ Less errors in the translation of proper
nouns (Bentivogli et al., 2018).

◦ NMT and SMT require comparable
amounts of (document-level) post-
editing (Jia et al., 2019; Castilho et al.,
2017b).

Table 6: Summary of studies comparing traditional statistical machine translation and
neural machine translation.

alignment weights of the standard NMT attention model (He et al., 2016c; Arthur et al.,
2016; Zhang & Zong, 2016a; Neubig, 2016; Tang et al., 2016). Cohn et al. (2016) proposed
to enhance the attention model in NMT by implementing basic concepts from the original
word alignment models (Brown et al., 1993; Vogel et al., 1996) like fertility and relative
distortion.

The second category of hybrid systems is related to system combination. The idea
is to combine a fully trained SMT system with an independently trained NMT system.
Popular examples in this category are rescoring and reranking methods (Neubig et al., 2015;
Stahlberg et al., 2016; Khayrallah et al., 2017; Grundkiewicz & Junczys-Dowmunt, 2018;
Avramidis et al., 2016; Marie & Fujita, 2018; Zhang et al., 2017), although these models
may be too constraining if the neural system is much stronger. Stahlberg et al. (2016)
proposed a finite state transducer based loose combination scheme that combines NMT and
SMT translations via an edit distance based loss. The minimum Bayes risk (MBR) based
approach of Stahlberg et al. (2017) biases an unconstrained NMT decoder towards n-grams
which are likely according to the SMT system, and therefore also does not constrain the
system to the SMT search space. MBR-based combination of NMT and SMT has been
used in WMT evaluation systems (Stahlberg et al., 2018b, 2019) and in industry (Iglesias
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et al., 2018). NMT and SMT can also be combined in a cascade, with SMT providing
the input to a post-processing NMT system (Niehues et al., 2016; Zhou et al., 2017) or
vice versa (Du & Way, 2017). Wang et al. (2017, 2018a) interpolated NMT posteriors with
word recommendations from SMT and jointly trained NMT together with a gating function
which assigns the weight between SMT and NMT scores dynamically. The AMU-UEDIN
submission to WMT16 let SMT take the lead and used NMT as a feature in phrase-based
MT (Junczys-Dowmunt et al., 2016b). In contrast, Long et al. (2016) translated most of
the sentence with an NMT system, and just used SMT to translate technical terms in a
post-processing step. Dahlmann et al. (2017) proposed a hybrid search algorithm in which
the neural decoder expands hypotheses with phrases from an SMT system. SMT can also
be used as regularizer in unsupervised NMT (Ren et al., 2019).

14. Further Reading

A number of current research efforts are not covered by this article. The following list
provides initial reading suggestions for advanced topics in NMT.

• Multimodal NMT (Elliott et al., 2015; Hitschler et al., 2016; Barrault et al., 2018;
Calixto & Liu, 2019)

• Tree- or lattice-based NMT (Currey & Heafield, 2018; Aharoni & Goldberg, 2017;
Saunders et al., 2018; Nadejde et al., 2017; Sperber et al., 2017; Su et al., 2017),

• Factored NMT (Koehn & Hoang, 2007; Sennrich & Haddow, 2016; García-Martínez
et al., 2016, 2017)

• Document-level context (Bawden et al., 2018; Läubli et al., 2018; Müller et al., 2018;
Bojar et al., 2019; Yu et al., 2020)

• NMT model shrinking and reduced precision (Wu et al., 2016; See et al., 2016; Kim
& Rush, 2016; Freitag et al., 2017; Zhang et al., 2018)

• Multilingual NMT (Johnson et al., 2017; Dabre et al., 2019; Aharoni et al., 2019)

• Low-resource NMT (Koehn & Knowles, 2017; Tong et al., 2018; Bojar et al., 2019,
2018, 2017)

• Unsupervised NMT (Conneau et al., 2017; Artetxe et al., 2017a; Hoshen & Wolf, 2018;
Lample et al., 2017; Artetxe et al., 2017b)

• Domain adaptation (Chu & Wang, 2018; Chu et al., 2018; Luong & Manning, 2015;
Thompson et al., 2019; Saunders et al., 2019)

• Data filtering (Resnik, 1999; Khayrallah & Koehn, 2018; Carpuat et al., 2017; Junczys-
Dowmunt, 2018a; Rossenbach et al., 2018; Junczys-Dowmunt, 2018b)

• Word alignments (Mi et al., 2016b; Alkhouli & Ney, 2017; Alkhouli et al., 2016; Zenkel
et al., 2019; Alkhouli et al., 2018; Stahlberg et al., 2018)
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• Various extensions to the Transformer architecture (Shaw et al., 2018; Ahmed et al.,
2017; Guo et al., 2019; Medina & Kalita, 2018)

• Memory-augmented NMT (Wang et al., 2016; Feng et al., 2017; Li et al., 2019; Xiong
et al., 2018)

• Variational methods (Zhang et al., 2016; Su et al., 2018; Bastings et al., 2019; Shah
& Barber, 2018)

• Non- or partially autoregressive architectures (Wang et al., 2018a; Gu et al., 2017a;
Guo et al., 2018; Wang et al., 2019; Libovický & Helcl, 2018; Lee et al., 2018; Akoury
et al., 2019)

• Simultaneous translation (Lewis, 2015; Mieno et al., 2015; Cho & Esipova, 2016; Gu
et al., 2017)

• Large batch training (Popel & Bojar, 2018; McCandlish et al., 2018; Stahlberg et al.,
2018b; Saunders et al., 2018; Neishi et al., 2017; Morishita et al., 2017)

• Reinforcement learning and risk-based training (Ranzato et al., 2015; Wu et al., 2016,
2018; Shen et al., 2016; Edunov et al., 2018b)

• Adversarial training (Zhang et al., 2018b; Yang et al., 2018; Wu et al., 2017).

For even more insight into the field of neural machine translation, we refer the reader to
other overview papers from Neubig (2017), Cromieres et al. (2017), Koehn (2017), Popescu-
Belis (2019).

15. Conclusion

Neural machine translation (NMT) has become the de facto standard for large-scale machine
translation in a very short period of time. This article traced back the origin of NMT to word
and sentence embeddings and neural language models. We reviewed the most commonly
used building blocks of NMT architectures – recurrence, convolution, and attention – and
discussed popular concrete architectures such as RNNsearch, GNMT, ConvS2S, and the
Transformer. We discussed the advantages and disadvantages of several important design
choices that have to be made to design a good NMT system with respect to decoding,
training, and segmentation. We then shortly explored advanced topics in NMT research
such as explainability and NMT-SMT hybrid systems.
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