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Abstract— We propose a self-supervised approach for learn-
ing representations and robotic behaviors entirely from un-
labeled videos recorded from multiple viewpoints, and study
how this representation can be used in two robotic imitation
settings: imitating object interactions from videos of humans,
and imitating human poses. Imitation of human behavior
requires a viewpoint-invariant representation that captures the
relationships between end-effectors (hands or robot grippers)
and the environment, object attributes, and body pose. We train
our representations using a metric learning loss, where multiple
simultaneous viewpoints of the same observation are attracted
in the embedding space, while being repelled from temporal
neighbors which are often visually similar but functionally
different. In other words, the model simultaneously learns to
recognize what is common between different-looking images,
and what is different between similar-looking images. This
signal causes our model to discover attributes that do not
change across viewpoint, but do change across time, while
ignoring nuisance variables such as occlusions, motion blur,
lighting and background. We demonstrate that this represen-
tation can be used by a robot to directly mimic human poses
without an explicit correspondence, and that it can be used as
a reward function within a reinforcement learning algorithm.
While representations are learned from an unlabeled collection
of task-related videos, robot behaviors such as pouring are
learned by watching a single 3rd-person demonstration by a
human. Reward functions obtained by following the human
demonstrations under the learned representation enable effi-
cient reinforcement learning that is practical for real-world
robotic systems. Video results, open-source code and dataset
are available at sermanet.github.io/imitate

I. INTRODUCTION

While supervised learning has been successful on a range
of tasks where labels can be easily specified by humans,
such as object classification, many problems that arise in in-
teractive applications like robotics are exceptionally difficult
to supervise. For example, it would be impractical to label
every aspect of a pouring task in enough detail to allow a
robot to understand all the task-relevant properties. Pouring
demonstrations could vary in terms of background, contain-
ers, and viewpoint, and there could be many salient attributes
in each frame, e.g. whether or not a hand is contacting a
container, the tilt of the container, or the amount of liquid
currently in the target vessel or its viscosity. Ideally, robots
in the real world would be capable of two things: learning
the relevant attributes of an object interaction task purely
from observation, and understanding how human poses and
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Fig. 1: Time-Contrastive Networks (TCN): Anchor and positive
images taken from simultaneous viewpoints are encouraged to be
close in the embedding space, while distant from negative images
taken from a different time in the same sequence. The model trains
itself by trying to answer the following questions simultaneously:
What is common between the different-looking blue frames? What
is different between the similar-looking red and blue frames? The
resulting embedding can be used for self-supervised robotics in
general, but can also naturally handle 3rd-person imitation.

object interactions can be mapped onto the robot, in order
to imitate directly from third-person video observations.

In this work, we take a step toward addressing these
challenges simultaneously through the use of self-supervision
and multi-viewpoint representation learning. We obtain the
learning signal from unlabeled multi-viewpoint videos of
interaction scenarios, as illustrated in Figure [I] By learning
from multi-view videos, the learned representations effec-
tively disentangle functional attributes such as pose while
being viewpoint and agent invariant. We then show how
the robot can learn to link this visual representation to a
corresponding motor command using either reinforcement
learning or direct regression, effectively learning new tasks
by observing humans.

The main contribution of our work is a representation
learning algorithm that builds on top of existing semantically
relevant features (in our case, features from a network
trained on the ImageNet dataset [[1, [2]) to produce a metric
embedding that is sensitive to object interactions and pose,
and insensitive to nuisance variables such as viewpoint and
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appearance. We demonstrate that this representation can be
used to create a reward function for reinforcement learning of
robotic skills, using only raw video demonstrations for super-
vision, and for direct imitation of human poses, without any
explicit joint-level correspondence and again directly from
raw video. Our experiments demonstrate effective learning of
a pouring task with a real robot, moving plates in and out of
a dish rack in simulation, and real-time imitation of human
poses. Although we train a different TCN embedding for
each task in our experiments, we construct the embeddings
from a variety of demonstrations in different contexts, and
discuss how larger multi-task embeddings might be con-
structed in future work.

II. RELATED WORK

Imitation learning: Imitation learning [3]] has been widely
used for learning robotic skills from expert demonstra-
tions [4, 5, 6, [7] and can be split into two areas: be-
havioral cloning and inverse reinforcement learning (IRL).
Behavioral cloning considers a supervised learning problem,
where examples of behaviors are provided as state-action
pairs [8[9]. IRL on the other hand uses expert demonstrations
to learn a reward function that can be used to optimize
an imitation policy with reinforcement learning [10]. Both
types of imitation learning typically require the expert to
provide demonstrations in the same context as the learner. In
robotics, this might be accomplished by means of kinesthetic
demonstrations [11] or teleoperation [12], but both methods
require considerable operator expertise. If we aim to endow
robots with wide repertoires of behavioral skills, being able
to acquire those skills directly from third-person videos of
humans would be dramatically more scalable. Recently, a
range of works have studied the problem of imitating a
demonstration observed in a different context, e.g. from a
different viewpoint or an agent with a different embodiment,
such as a human [13} [14} [15)]. Liu et al. [16] proposed to
translate demonstrations between the expert and the learner
contexts to learn an imitation policy by minimizing the
distance to the translated demonstrations. However, Liu et
al. explicitly exclude from consideration any demonstrations
with domain shift, where the demonstration is performed by a
human and imitated by the robot with clear visual differences
(e.g., human hands vs. robot grippers). In contrast, our TCN
models are trained on a diverse range of demonstrations
with different embodiments, objects, and backgrounds. This
allows our TCN-based method to directly mimic human
demonstrations, including demonstrations where a human
pours liquid into a cup, and to mimic human poses without
any explicit joint-level alignment. To our knowledge, our
work is the first method for imitation of raw video demon-
strations that can both mimic raw videos and handle the
domain shift between human and robot embodiment.

Label-free training signals: Label-free learning of visual
representations promises to enable visual understanding from
unsupervised data, and therefore has been explored exten-
sively in recent years. Prior work in this area has studied
unsupervised learning as a way of enabling supervised learn-

ing from small labeled datasets [17], image retrieval [18],
and a variety of other tasks [19, 20, 21, 22]. In this
paper, we focus specifically on representation learning for
the purpose of model interactions between objects, humans,
and their environment, which requires implicit modeling of
a broad range of factors, such as functional relationships,
while being invariant to nuisance variables such as viewpoint
and appearance. Our method makes use of simultaneously
recorded signals from multiple viewpoints to construct an
image embedding. A number of prior works have used
multiple modalities and temporal or spatial coherence to
extract embeddings and features. For example, [23| [24]
used co-occurrence of sounds and visual cues in videos to
learn meaningful visual features. [20] also propose a multi-
modal approach for self-supervision by training a network for
cross-channel input reconstruction. [25 26] use the spatial
coherence in images as a self-supervision signal and [27]
use motion cues to self-supervise a segmentation task. These
methods are more focused on spatial relationships, and the
unsupervised signal they provide is complementary to the
one explored in this work.

A number of prior works use temporal coherence [28
29,130, 131]]. Others also train for viewpoint invariance using
metric learning [22, 32, 33]]. The novelty of our work is to
combine both aspects in opposition, as explained in Sec.
[A] [19] uses a triplet loss that encourages first and last frames
of a tracked sequence to be closer together in the embedding,
while random negative frames from other videos are far
apart. Our method differs in that we use temporal neighbors
as negatives to push against a positive that is anchored by a
simultaneous viewpoint. This causes our method to discover
meaningful dimensions such as attributes or pose, while
[19] focuses on learning intraclass invariance. Simultaneous
multi-view capture also provides exact correspondence while
tracking does not, and can provide a rich set of correspon-
dences such as occlusions, blur, lighting and viewpoint.

Other works have proposed to use prediction as a learning
signal [34] 35]. The resulting representations are typically
evaluated primarily on the realism of the predicted images,
which remains a challenging open problem. A number of
other prior methods have used a variety of labels and priors
to learn embeddings. [36] use a labeled dataset to train a
pose embedding, then find the nearest neighbors for new
images from the training data for a pose retrieval task.
Our method is initialized via ImageNet training, but can
discover dimensions such as pose and task progress (e.g., for
a pouring task) without any task-specific labels. [37] explore
various types of physical priors, such as the trajectories of
objects falling under gravity, to learn object tracking without
explicit supervision. Our method is similar in spirit, in that it
uses temporal co-occurrence, which is a universal physical
property, but the principle we use is general and broadly
applicable and does not require task-specific input of physical
rules.

Mirror Neurons: Humans and animals have been shown, ex-
perimentally, to possess viewpoint-invariant representations
of objects and other agents in their environment [38], and



the well known work on “mirror neurons” has demonstrated
that these viewpoint invariant representations are crucial for
imitation [39). Our multi-view capture setup in Fig. 2] is
similar to the experimental setup used by [38], and our
robot imitation setup, where a robot imitates human motion
without ever receiving ground truth pose labels, examines
how self-supervised pose recognition might arise in a learned
system.

III. IMITATION WITH TIME-CONTRASTIVE NETWORKS

Our approach to imitation learning is to only rely on
sensory inputs from the world. We achieve this in two
steps. First, we learn abstract representations purely from
passive observation. Second, we use these representations
to guide robotic imitations of human behaviors and learn
to perform new tasks. We use the term imitation rather
than demonstrations because our models also learn from
passive observation of non-demonstration behaviors. A robot
needs to have a general understanding about everything it
sees in order to better recognize an active demonstration.
We purposely insist on only using self-supervision to keep
the approach scalable in the real world. In this work, we
explore a few ways to use time as a signal for unsupervised
representation learning. We also explore different approaches
to self-supervised robotic control below.

A. Training Time-Contrastive Networks

Fig. 2: Multi-view capture with two operators equipped with
smartphones. Moving the cameras around freely introduces a rich
variety of scale, viewpoint, occlusion, motion-blur and background
correspondences between the two cameras.

We illustrate our time-contrastive (TC) approach in Fig.[T]
The method uses multi-view metric learning via a triplet
loss [40]. The embedding of an image x is represented by
f(x) € R? The loss ensures that a pair of co-occuring
frames x¢ (anchor) and xf (positive) are closer to each other
in embedding space than any image x}' (negative). Thus, we
aim to learn an embedding f such that

1£(@f) = F@D)l3 +a < | f(=f) = fFaP)]3
V(f@@f), f@7), f(@i) €T,
where « is a margin that is enforced between positive and
negative pairs, and 7 is the set of all possible triplets in the
training set. The core idea is that two frames (anchor and
positive) coming from the same time but different viewpoints
(or modalities) are pulled together, while a visually similar
frame from a temporal neighbor is pushed apart. This sig-
nal serves two purposes: learn disentangled representations
without labels and simultaneously learn viewpoint invariance

for imitation. The cross-view correspondence encourages
learning invariance to viewpoint, scale, occlusion, motion-
blur, lighting and background, since the positive and anchor
frames show the same subject with variations along these
factors. For example, Fig. [T exhibits all these transformations
between the top and bottom sequences, except for occlusion.
In addition to learning a rich set of visual invariances, we
are also interested in viewpoint invariance for 3rd-person
to Ist-person correspondence for imitation. How does the
time-contrastive signal lead to disentangled representations?
It does so by introducing competition between temporal
neighbors to explain away visual changes over time. For
example, in Fig. [I] since neighbors are visually similar, the
only way to tell them apart is to model the amount of liquid
present in the cup, or to model the pose of hands or objects
and their interactions. Another way to understand the strong
training signal that TCN's provide is to recognize the two con-
straints being simultaneously imposed on the model: along
the view axis in Fig. [T] the model learns to explain what is
common between images that look different, while along the
temporal axis it learns to explain what is different between
similar-looking images. Note that while the natural ability
for imitation of this approach is important, its capability
for learning rich representations without supervision is an
even more significant contribution. The key ingredient in
our approach is that multiple views ground and disambiguate
the possible explanations for changes in the physical world.
We show in Sec. [V] that the TCN can indeed discover
correspondences between different objects or bodies, as well
as attributes such as liquid levels in cups and pouring stages,
all without supervision. This is a somewhat surprising finding
as no explicit correspondence between objects or bodies is
ever provided. We hypothesize that manifolds of different but
functionally similar objects naturally align in the embedding
space, because they share some functionality and appearance.

Multi-view data collection is simple and can be captured
with just two operators equipped with smartphones, as shown
in Fig. 2} One operator keeps a fixed point of view of the
region of interest while performing the task, while the other
moves the camera freely to introduce the variations discussed
above. While more cumbersome than single-view capture, we
argue that multi-view capture is cheap, simple, and practical,
when compared to alternatives such as human labeling.

We can also consider time-contrastive models trained on
single-view video as shown in Fig. [3] In this case, the positive
frame is randomly selected within a certain range of the
anchor. A margin range is then computed given the positive
range. Negatives are randomly chosen outside of the margin
range and the model is trained as before. We empirically
chose the margin range to be 2 times the positive range,
which is itself set to 0.2s. While we show in Sec. [V] that
multi-view TCN performs best, the single-view version can
still be useful when no multi-view data is available.

B. Learning Robotic Behaviors with Reinforcement Learning

In this work, we consider an imitation learning scenario
where the demonstrations come from a 3rd-person video
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Fig. 3: Single-view TCN: positives are selected within a small
window around anchors, while negatives are selected from distant
timesteps in the same sequence.

observation of an agent with an embodiment that differs
from the learning agent, e.g. robotic imitation of a human.
Due to differences in the contexts, direct tracking of the
demonstrated pixel values does not provide a sensible way of
learning the imitation behavior. As described in the previous
section, the TCN embedding provides a way to extract
image features that are invariant to the camera angle and the
manipulated objects, and can explain physical interactions in
the world. We use this insight to construct a reward function
that is based on the distance between the TCN embedding of
a human video demonstration and camera images recorded
with a robot camera. As shown in Sec. [[V-B] by optimizing
this reward function through trial and error we are able to
mimic demonstrated behaviors with a robot, utilizing only
its visual input and the video demonstrations for learning.
Although we use multiple multi-view videos to train the
TCN, the video demonstration consists only of a single video
of a human performing the task from a random viewpoint.

Let V = (v1,...vy) be the TCN embeddings of each
frame in a video demonstration sequence. For each camera
image observed during a robot task execution, we compute
TCN embeddings W = (wq,...wrp). We define a reward
function R(vy, w;) based on the squared Euclidean distance
and a Huber-style loss:

R(ve,wy) = —allwy — vi||3 — By/7 + [[we — ve[3

where « and § are weighting parameters (empirically cho-
sen), and ~ is a small constant. The squared Euclidean
distance (weighted by «) gives us stronger gradients when
the embeddings are further apart, which leads to larger
policy updates at the beginning of learning. The Huber-style
loss (weighted by ) starts prevailing when the embedding
vectors are getting very close ensuring high precision of the
task execution and fine-tuning of the motion towards the end
of the training.

In order to learn robotic imitation policies, we optimize
the reward function described above using reinforcement

learning. In particular, for optimizing robot trajectories, we
employ the PILQR algorithm [41]. This algorithm combines
approximate model-based updates via LQR with fitted time-
varying linear dynamics, and model-free corrections. We
notice that in our tasks, the TCN embedding provides a
well-behaved low-dimensional (32-dimensional in our ex-
periments) representation of the state of the visual world
in front of the robot. By including the TCN features in the
system state (i.e. state = joint angles + joint velocities + TCN
features), we can leverage the linear approximation of the
dynamics during the model-based LQR update and signifi-
cantly speed up the training. The details of the reinforcement
learning setup can be found in Appendix

C. Direct Human Pose Imitation

In the previous section, we discussed how reinforcement
learning can be used with TCNs to enable learning of
object interaction skills directly from video demonstrations
of humans. In this section, we describe another approach for
using TCNs: direct imitation of human pose. While object
interaction skills primarily require matching the functional
aspects of the demonstration, direct pose imitation requires
learning an implicit mapping between human and robot
poses, and therefore involves a much more fine-grained
association between frames. Once learned, a human-robot
mapping could be used to speed up the exploration phase of
RL by initializing a policy close to the solution.

We learn a direct pose imitation through self-regression.
It is illustrated in Fig. [] and Fig. [§] in the context of self-
supervised human pose imitation. The idea is to directly
predict the internal state of the robot given an image of
itself. Akin to looking at itself in the mirror, the robot can
regress its prediction of its own image to its internal states.
We first train a shared TCN embedding by observing human
and robots performing random motions. Then the robot trains
itself with self-regression. Because it uses a TCN embedding
that is invariant between humans and robots, the robot can
then naturally imitate humans after training on itself. Hence
we obtain a system that can perform end-to-end imitation
of human motion, even though it was never given any
human pose labels nor human-to-robot correspondences. We
demonstrate a way to collect human supervision for end-to-
end imitation in Fig. @] However contrary to time-contrastive
and self-regression signals, the human supervision is very
noisy and expensive to collect. We use it to benchmark our
approach in Sec.[[V-C|and show that large quantities of cheap
supervision can effectively be mixed with small amounts of
expensive supervision.

IV. EXPERIMENTS

Our experiments aim to study three questions. First, we
examine whether the TCN can learn visual representations
that are more indicative of object interaction attributes,
such as the stages in a pouring task. This allows us to
comparatively evaluate the TCN against other self-supervised
representations. Second, we study how the TCN can be
used in conjunction with reinforcement learning to acquire
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Fig. 4: Training signals for pose imitation: time-contrastive,
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lets the model learn rich representations of humans or robots
individually. Self-regression allows the robot to predict its own
joints given an image of itself. The human supervision signal is
collected from humans attempting to imitate robot poses.

complex object manipulation skills in simulation and on
a real-world robotic platform. Lastly, we demonstrate that
the TCN can enable a robot to perform continuous, real-
time imitation of human poses without explicitly specifying
any joint-level correspondences between robots and humans.
Together, these experiments illustrate the applicability of the
TCN representation for modeling poses, object interactions,
and the implicit correspondences between robot imitators and
human demonstrators.

A. Discovering Attributes from General Representations

1) Liquid Pouring: In this experiment, we study what the
TCN captures simply by observing a human subject pouring
liquids from different containers into different cups. The
videos were captured using two standard smartphones (see
Fig. 2), one from a subjective point of view by the human
performing the pouring, and the other from a freely moving
third-person viewpoint. Capture is synchronized across the
two phones using an off-the-shelf app and each sequence is
approximately 5 seconds long. We divide the collected multi-
view sequences into 3 sets: 133 sequences for training (about
11 minutes total), 17 for validation and 30 for testing. The
training videos contain clear and opaque cups, but we restrict
the testing videos to clear cups only in order to evaluate if
the model has an understanding of how full the cups are.

2) Models: In all subsequent experiments, we use a cus-
tom architecture derived from the Inception architecture [2]
that is similar to [42]. It consists of the Inception model
up until the layer “Mixed_S5d” (initialized with ImageNet
pre-trained weights), followed by 2 convolutional layers, a
spatial softmax layer [42] and a fully-connected layer. The

embedding is a fully connected layer with 32 units added on
top of our custom model. This embedding is trained either
with the multi-view TC loss, the single-view TC loss, or
the shuffle & learn loss [31]]. For the TCN models, we use
the triplet loss from [40] without modification and with a
gap value of 0.2. Note that, in all experiments, negatives
always come from the same sequence as positives. We also
experiment with other metric learning losses, namely npairs
[43]] and lifted structured [44], and show that results are
comparable. We use the output of the last layer before the
classifier of an ImageNet-pretrained Inception model [} [2]
(a 2048-dimensional vector) as a baseline in the following
experiments, and call it “Inception-ImageNet”. Since the
custom model is initialized from ImageNet pre-training, it
is a natural point of comparison which allows us to control
for any invariances that are introduced through ImageNet
training rather than other approaches. We compare TCN
models to a shuffle & learn baseline trained on our data,
using the same hyper-parameters taken from the paper (tmax
of 60, tmin of 15, and negative class ratio of 0.75). Note that
in our implementation, neither the shuffle & learn baseline
nor TCN benefit from a biased sampling to high-motion
frames. To investigate the differences between multi-view
and single-view, we compare to a single-view TCN, with a
positive range of 0.2 seconds and a negative multiplier of 2.

3) Model selection: The question of model selection
arises in unsupervised training. Should you select the best
model based on the validation loss? Or hand label a small
validation for a given task? We report numbers for both
approaches. In Table [I] we select each model based on the
its lowest validation loss, while in Table [[V] we select based
on a classification score from a small validation set labeled
with the 5 attributes described earlier. As expected, models
selected by validation classification score perform better on
the classification task. However models selected by loss
perform only slightly worse, except for shuffle & learn,
which suffers a bigger loss of accuracy. We conclude that
it is reasonable for TCN models to be selected based on
validation loss, not using any labels.

4) Training time: We observe in Table [[V] that the multi-
view TCN (using triplet loss) outperforms single-view mod-
els while requiring 15x less training time and while being
trained on the exact same dataset. We conclude that taking
advantage of temporal correspondences greatly improves
training time and accuracy.

Method alignment | classif. | training
error error | iteration
Random 28.1% 54.2% -
Inception-ImageNet 29.8% 51.9% -
shuffle & learn [31]] 22.8% 27.0% 575k
single-view TCN (triplet) 25.8% 24.3% 266k
multi-view TCN (npairs) 18.1% 22.2% 938k
multi-view TCN (triplet) 18.8% 21.4% 397k
multi-view TCN (lifted) 18.0% 19.6% 119k

TABLE I: Pouring alignment and classification errors: all models
are selected at their lowest validation loss. The classification error
considers 5 classes related to pouring detailed in Table El



5) Quantitative Evaluation: We present two metrics in
Table [I| to evaluate what the models are able to capture. The
alignment metric measures how well a model can seman-
tically align two videos. The classification metric measures
how well a model can disentangle pouring-related attributes,
that can be useful in a real robotic pouring task. All results
in this section are evaluated using nearest neighbors in
embedding space. Given each frame of a video, each model
has to pick the most semantically similar frame in another
video. The "Random” baseline simply returns a random
frame from the second video.

The sequence alignment metric is particularly relevant
and important when learning to imitate, especially from
a third-party perspective. For each pouring test video, a
human operator labels the key frames corresponding to the
following events: the first frame with hand contact with the
pouring container, the first frame where liquid is flowing, the
last frame where liquid is flowing, and the last frame with
hand contact with the container. These keyframes establish a
coarse semantic alignment which should provide a relatively
accurate piecewise-linear correspondence between all videos.
For any pair of videos (v1, v2) in the test set, we embed each
frame given the model to evaluate. For each frame of the
source video v;, we associate it with its nearest neighbor in
embedding space taken from all frames of vy. We evaluate
how well the nearest neighbor in v5 semantically aligns with
the reference frame in v;. Thanks to the labeled alignments,
we find the proportional position of the reference frame with
the target video vo, and compute the frame distance to that
position, normalized by the target segment length.

We label the following attributes in the test and validation
sets to evaluate the classification task as reported in Table
is the hand in contact with the container? (yes or no); is the
container within pouring distance of the recipient? (yes or
no); what is the tilt angle of the pouring container? (values
90, 45, 0 and -45 degrees); is the liquid flowing? (yes or
no); does the recipient contain liquid? (yes or no). These
particular attributes are evaluated because they matter for im-
itating and performing a pouring task. Classification results
are normalized by class distribution. Note that while this
could be compared to a supervised classifier, as mentioned
in the introduction, it is not realistic to expect labels for every
possible task in a real application, e.g. in robotics. Instead, in
this work we aim to compare to realistic general off-the-shelf
models that one might use without requiring new labels.

In Table [ we find that the multi-view TCN model
outperforms all baselines. We observe that single-view TCN
and shuffle & learn are on par for the classification metric
but not for the alignment metric. We find that general
off-the-shelf Inception features significantly under-perform
compared to other baselines. Qualitative examples and t-SNE
visualizations of the embedding are available in Appendix [C}
We encourage readers to refer to supplementary videos to
better grasp these results.

B. Learning Object Interaction Skills

In this section, we use the TCN-based reward function de-

scribed in Sec. [[II=Bl to learn robotic imitation behaviors from

Method hand

contact pouring angle is has
with container distance flowing liquid
container
49.9%
47.4%
17.2%

within container liquid recipient

48.9%
45.2%
17.8%
14.4%
9.0%
10.0%
9.0%

74.5%
71.8%
46.3%
41.2%
35.9%
34.8%
35.4%

49.2%
48.8%
25.7%
21.6%
24.7%
22.7%
17.9%

48.4%
49.2%
28.0%
31.9%
35.5%
31.5%
27.7%

Random

Imagenet Inception
shuffle & learn
single-view TCN (triplet) 12.6%
multi-view TCN (npairs) 8.0%
multi-view TCN (triplet) 7.8%
multi-view TCN (lifted) 7.8%

TABLE II: Detailed attributes classification errors, for model
selected by validation loss.

Fig. 5: Simulated dish rack task. Left: Third-person VR demon-
stration of the dish rack task. Middle: View from the robot camera
during training. Right: Robot executing the dish rack task.

third-person demonstrations through reinforcement learning.
We evaluate our approach on two tasks, plate transfer in a
simulated dish rack environment (Fig. [5] using the Bullet
physics engine [45]) and real robot pouring from human
demonstrations (Fig. [6).

1) Task Setup: The simulated dish rack environment con-
sists of two dish racks placed on a table and filled with plates.
The goal of the task is to move plates from one dish rack
to another without dropping them. This requires a complex
motion with multiple stages, such as reaching, grasping,
picking up, carrying, and placing of the plate. We record the
human demonstrations using a virtual reality (VR) system to
manipulate a free-floating gripper and move the plates (Fig. 3]
left). We record the videos of the VR demonstrations by
placing first-view and third-person cameras in the simulated
world. In addition to demonstrations, we also record a range
of randomized motions to increase the generalization ability
of our TCN model. After recording the demonstrations, we
place a simulated 7-DoF KUKA robotic arm inside the dish
rack environment (Fig. [3]right) and attach a first-view camera
to it. The robot camera images (Fig. [5| middle) are then used
to compute the TCN reward function. The robot policy is
initialized with random Gaussian noise.

For the real robot pouring task, we first collect the multi-
view data from multiple cameras to train the TCN model.
The training set includes videos of humans performing pour-
ing of liquids recorded on smartphone cameras and videos of
robot performing pouring of granular beads recorded on two
robot cameras. We not only collect positive demonstrations
of the task at hand, we also collect various interactions that
do not actually involve pouring, such as moving cups around,
tipping them over, spilling beads, etc, to cover the range
of possible events the robot might need to understand. The
pouring experiment analyzes how TCNs can implicit build
correspondences between human and robot manipulation of
objects. The dataset that we used to train the TCN consisted
of ~20 minutes of humans performing pouring tasks, as well
as ~20 additional minutes of humans manipulating cups and



Fig. 6: Real robot pouring task. Left: Third-person human demon-

stration of the pouring task. Middle: View from the robot camera
during training. Right: Robot executing the pouring task.

bottles in ways other than pouring, such as moving the cups,
tipping them over, etc. In order for the TCN to be able to
represent both human and robot arms, and implicitly put
them into correspondence, it must also be provided with data
that allows it to understand the appearance of robot arms.
To that end, we added data consisting of ~20 minutes of
robot arms manipulating cups in pouring-like settings. Note
that this data does not necessarily need to itself illustrate
successful pouring tasks: the final demonstration that is
tracked during reinforcement learning consists of a human
successfully pouring a cup of fluid, while the robot performs
the pouring task with orange beads. However, we found that
providing some clips featuring robot arms was important
for the TCN to acquire a representation that could correctly
register the similarities between human and robot pouring.
Using additional robot data is justified here because it would
not be realistic to expect the robot to do well while having
never seen its own arm. Over time however, the more tasks
are learned the less needed this should become. While the
TCN is trained with approximately 1 hour of pouring-related
multi-view sequences, the robot policy is only learned from a
single liquid pouring video provided by a human (Fig. [f]left).
With this video, we train a 7-DoF KUKA robot to perform
the pouring of granular beads as depicted in Fig. [§] (right).
We compute TCN embeddings from the robot camera images
(Fig. [l middle) and initialize the robot policy using random
Gaussian noise. We set the initial exploration higher on the
wrist joint as it contributes the most to the pouring motion
(for all compared algorithms).

2) Quantitative Evaluation: Fig.[]|shows the pouring task
performance of using TCN models for reward computation
compared to the same baselines evaluated in the previous
section. After each roll-out, we measure the weight of the
beads in the receiving container. We perform runs of 10
roll-outs per iteration. Results in Fig. [7] are averaged over
4 runs per model (2 runs for 2 fixed random seeds). Already
after the first several iterations of using the multi-view TCN
model (mvTCN), the robot is able to successfully pour sig-
nificant amount of the beads. After 10 iterations, the policy
converges to a consistently successful pouring behavior. In
contrast, the robot fails to accomplish the task with other
models. Interestingly, we observe a low performance for
single-view models (single-view TCN and shuffle & learn)
despite being trained on the exact same multi-view data
as mvTCN. We observe the same pattern in Fig. [T2] when
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Fig. 7: Learning progress of the pouring task, using a single 3rd-
person human demonstration, as shown in Fig.[6] This graph reports
the weight in grams measured from the target recipient after each
pouring action (maximum weight is 189g) along with the standard
deviation of all 10 rollouts per iteration. The robot manages to
successfully learn the pouring task using the multi-view TCN model
after only 10 iterations.

using a different human demonstration. This suggests taking
advantage of multi-view correspondences is necessary in
this task for correctly modeling object interaction from a
3rd-person perspective. The results show that mvTCN does
provide the robot with suitable guidance to understand the
pouring task. In fact, since the PILQR [41] method uses both
model-based and model-free updates, the experiment shows
that mvTCN not only provides good indicators when the
pouring is successful, but also useful gradients when it isn’t;
while the other tested representations are insufficient to learn
this task. This experiment illustrates how self-supervised
representation learning and continuous rewards from visual
demonstrations can alleviate the sample efficiency problem
of reinforcement learning.

3) Qualitative Evaluation: As shown in our supplemen-
tary video, both dish rack and pouring policies converge to
robust imitated behaviors. In the dish rack task, the robot is
able to gradually learn all of the task components, including
the arm motion and the opening and closing of the gripper. It
first learns to reach for the plate, then grasp and pick it up and
finally carry it over to another dish rack and place it there.
The learning of this task requires only 10 iterations, with
10 roll-outs per iteration. This shows that the TCN reward
function is dense and smooth enough to efficiently guide the
robot to a complex imitation policy.

In the pouring task, the robot starts with Gaussian ex-
ploration by randomly rotating and moving the cup filled
with beads. The robot first learns to move and rotate the cup
towards the receiving container, missing the target cup and
spilling large amount of the beads in the early iterations.
After several more iterations, the robot learns to be more
precise and eventually it is able to consistently pour most
of the beads in the last iteration. This demonstrates that our
method can efficiently learn tasks with non-linear dynamic
object transitions, such as movement of the granular media
and liquids, an otherwise difficult task to perform using



conventional state estimation techniques.

C. Self-Regression for Human Pose Imitation

In the previous section, we showed that we can use the
TCN to construct a reward function for learning object
manipulation with reinforcement learning. In this section,
we also study how the TCN can be used to directly map
from humans to robots in real time, as depicted in Fig. @
in addition to understanding object interaction, we can use
the TCN to build a pose-sensitive embedding either un-
supervised, or with minimal supervision. The multi-view
TCN is particularly well suited for this task because, in
addition to requiring viewpoint and robot/human invariance,
the correspondence problem is ill-defined and difficult to
supervise. Apart from adding a joints decoder on top of the
TCN embedding and training it with a self-regression signal,
there is no fundamental difference in the method. Throughout
this section, we use the robot joint vectors corresponding to
the human-to-robot imitation described in Fig. ] as ground
truth. Human images are fed into the imitation system, and
the resulting joints vector are compared against the ground
truth joints vector.

Time-Contrastive | Self-Regression M

joints
decoder

— —p TCN embedding

deep network v
agent imitates

ey

Fig. 8: TCN for self-supervised human pose imitation: architec-
ture, training and imitation. The embedding is trained unsupervised
with the time-contrastive loss, while the joints decoder can be
trained with self-supervision, human supervision or both. Output
joints can be used directly by the robot planner to perform the
imitation. Human pose is never explicitly represented.

Supervision Robot joints distance error %
Random (possible) joints 424 +0.1
Self 38.8+0.1
Human 33.4+£04
Human + Self 33.0£0.5
TC + Self 32.1+0.3
TC + Human 29.7+0.1
TC + Human + Self 29.5+£0.2

TABLE III: Imitation error for different combinations of su-
pervision signals. The error reported is the joints distance between
prediction and groundtruth. Note perfect imitation is not possible.

By comparing different combinations of supervision sig-
nals, we show in Table that training with all signals
performs best. We observe that adding the time-contrastive
signal always significantly improves performance. In general,
we conclude that relatively large amounts of cheap weakly-
supervised data and small amounts of expensive human
supervised data is an effective balance for our problem. In-
terestingly, we find that the self-supervised model (TC+self)
outperforms the human-supervised one. It should however be
noted that the quantitative evaluation is not as informative
here: since the task is highly subjective and different human
subjects imitate the robot differently, matching the joint
angles on held-out data is exceedingly difficult. We invite the
reader to watch the accompanying video for examples of im-
itation, and observe that there is a close connection between
the human and robot motion, including for subtle elements
of the pose such as crouching: when the human crouches
down, the robot lowers the torso via the prismatic joint in
the spine. In the video, we observe a complex human-robot
mapping is discovered entirely without human supervision.
This invites to reflect on the need for intermediate human
pose detectors when correspondence is ill-defined as in this
case. In Fig. [I4] we visualize the TCN embedding for pose
imitation and show that pose across humans and robots is
consistent within clusters, while being invariant to viewpoint
and backgrounds. More analysis is available in Appendix

V. CONCLUSION

In this paper, we introduced a self-supervised represen-
tation learning method (TCN) based on multi-view video.
The representation is learned by anchoring a temporally
contrastive signal against co-occuring frames from other
viewpoints, resulting in a representation that disambiguates
temporal changes (e.g., salient events) while providing invari-
ance to viewpoint and other nuisance variables. We show that
this representation can be used to provide a reward function
within a reinforcement learning system for robotic object
manipulation, and to provide mappings between human and
robot poses to enable pose imitation directly from raw video.
In both cases, the TCN enables robotic imitation from raw
videos of humans performing various tasks, accounting for
the domain shift between human and robot bodies. Although
the training process requires a dataset of multi-viewpoint
videos, once the TCN is trained, only a single raw video
demonstration is used for imitation. Limitations and future
work are discussed in Appendix [A]
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APPENDIX
A. Future Work

One of the limitations of our approach is that the repre-
sentation requires multi-viewpoint video for training, which
is not as widely available (e.g. from the Internet) as stan-
dard video. We do analyze a single-viewpoint variant of
our approach, and find that it also achieves improvement
over baseline ImageNet-trained features, but that the multi-
viewpoint TCN achieves substantially better results. How-
ever, as robots become more ubiquitous, recording multi-
viewpoint video autonomously, for example by using stereo
cameras, seems like a promising direction. Our method can
also be viewed as a specific instance of a more general class
of multi-modal embedding methods, where temporally co-
occuring events in multiple sensory modalities are embedded
into the same space. Viewed in this light, the exploration of
broader modalities, such as audio and tactile sensing, would
be an exciting avenue for future work. Another limitation in
our experiments is that we train a separate TCN for each task
(pouring, pose imitation, etc.). While the TCN for a given
task, such as pouring, is trained on videos that include clips
of failed pouring, moving cups, and so on, the embedding is
only used to learn a single task, namely pouring. In principle,
the embeddings learned by the TCN should be task agnostic,
though considerably larger datasets may be required in this
case. An interesting avenue for future work would be to study
how multiple tasks could be embedded in the same space,
essentially creating a universal representation for imitation of
object interaction behaviors. While in this paper we explored
learning representations using time as a supervision signal,
in the future, models should learn simultaneously from a
collection of diverse yet complementary signals.

B. Reinforcement Learning Details

Let p(u|x¢) be a robot policy, which defines a probability
distribution over actions u; conditioned on the system state
x; at each time step ¢t of a task execution. We employ
policy search to optimize the policy parameters 6. Let 7 =
(x1,uy,...,x7,ur) be a trajectory of states and actions.
Given a cost functiorﬂ c(x¢,uy), we define the trajectory
cost as ¢(7) = Z;T:l ¢(x¢, ut). The policy is optimized with
respect to the expected cost of the policy

J(6) = E, [e(r)] = / e(r)p(r)dr |

IWe use a cost function instead of the reward function as it is more
common in the trajectory optimization theory.

10

where p(7) is the policy trajectory distribution given the
system dynamics p (X¢1[X¢, Us)
T
p(T) = p(x1) HP(Xt+1|Xtvut)p(ut|Xt)~
t=1

One policy class that allows us to employ very efficient
reinforcement learning methods is the time-varying linear-
Gaussian (TVLG) controller p(uy|x;) = N (Kyx; + k¢, ).
In this work, we apply a reinforcement learning method
PILQRJ[41]] to learn these TVLG controllers on a real robot,
which combines model-based and model-free policy updates
for an efficient learning of tasks with complex system
dynamics.

Let S(x¢, ut) = e(xy, ut)JrZ;TF:t_H ¢(x;,u;) be the cost-
to-go of a trajectory starting in state x; by performing action
u; and following the policy p(uy|x;) afterwards. In each
iteration ¢, PILQR performs a KL-constrained optimization
of S (Xta Ut):

Hl(igl E, o [S(x¢,ur)] s.t. Epwfl)[DKL (P(i)HP(Fl))} <e
i

where limiting the KL-divergence between the new policy
p and the old policy pli~1) leads to a better conver-
gence behavior. The optimization is divided into two steps.
In the first step, we perform a fast model-based update
using an algorithm LQR-FLM [46], which is based on
the iterative linear-quadratic regulator (iLQR) [47]] and ap-
proximates S(x;,u;) with a linear-quadratic cost S(x;, u;).
In the second step, the residual cost-to-go S(x;,u;) =
S(xy,u;)—S(x;, uy) is optimized using a model-free method
P12 [48] 49] to produce an unbiased policy update.

C. Objects Interaction Analysis

Here, we visualize the embeddings from the ImageNet-
Inception and multi-view TCN models with t-SNE using
a coloring by groundtruth labels. Each color is a unique
combination of 5 attribute values defined earlier, i.e. if each
color is well separated the model can identify uniquely all
possible combinations of our 5 attributes. Indeed we observe
in Fig. |1 1| some amount of color separation for the TCN but
not for the baseline.

Method alignment | classif. | training
error error | iteration
Random 28.1% 54.2% -
Inception-ImageNet 29.8% 51.9% -
single-view TCN (triplet) 26.6% 23.6% 738k
shuffle & learn [31]] 20.9% 23.2% 743k
multi-view TCN (lifted) 19.1% 21.4% 927k
multi-view TCN (triplet) 17.5% 20.3% 47k
multi-view TCN (npairs) 17.5% 19.3% 224k

TABLE IV: Pouring alignment and classification errors: these
models are selected using the classification score on a small labeled
validation set, then ran on the full test set. We observe that multi-
view TCN outperforms other models with 15x shorter training
time. The classification error considers 5 classes related to pouring:
”hand contact with recipient”, "within pouring distance”, “container

angle”, “liquid is flowing” and “recipient fullness”.
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Fig. 9: Label-free pouring imitation: nearest neighbors (right) for
each reference image (left) for different models (multi-view TCN,
shuffle & learn and ImageNet-Inception). These pouring test images
show that the TCN model can distinguish different hand poses
and amounts of poured liquid simply from unsupervised ob-
servation while being invariant to viewpoint, background, objects
and subjects, motion-blur and scale.

reference frame

Fig. 10: Label-free pose imitation: nearest neighbors (right) for
each reference frame (left) for each row. Although only trained
with self-supervision (no human labels), the multi-view TCN can
understand correspondences between humans and robots for poses
such as crouching, reaching up and others while being invariant to
viewpoint, background, subjects and scale.

D. Pose Imitation Analysis

1) Pose Imitation Data: The human training data consists
of sequences distinguished by human subject and cloth-
ing pair. Each sequence is approximately 4 minutes. For
the label-free TC supervision we collected approximately
30 human pairs (about 2 hours) where humans imitate a
robot but the joint labels are not recorded, along with
50 robot sequences with random motion (about 3 hours,
trivial to collect). For human supervision, we collected 10
human/clothing pairs (about 40 minutes, very expensive
collection) while also recording the joints labels. Each
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Fig. 11: t-SNE colored by attribute combinations: TCN (bottom)
does a better job than ImageNet-Inception (top) at separating
combinations of attributes.

recorded sequence is captured by 3 smartphone cameras
fixed on tripods at specific angles (0°, 60° and 120°) and
distance. The validation and testing sets each consist of
6 human/clothing pairs not seen during training (about 24
minutes, very expensive collection).

The distance error is normalized by the full value range
of each joint, resulting in a percentage error. Note that the
Human Supervision signal is quite noisy, since the imitation
task is subjective and different human subjects interpret
the mapping differently. In fact, a perfect imitation is not
possible due to physiological differences between human
bodies and the Fetch robot. Therefore, the best comparison
metric available to us is to see whether the joint angles
predicted from a held-out human observation match the
actual joint angles that the human was attempting to imitate.

2) Models: We train our model using the 3 different
signals as described in Fig. ] The model consists of a TCN
as described in Sec.[[V-A2] to which we add a joint decoder
network (2 fully-connected layers above TC embedding:
— 128 — 8, producing 8 joint values). We train the joints
decoder with L2 regression using the self-supervision or
human supervision signals. The model can be trained with
different combinations of signals; we study the effects of
each combination in section Fig. [I3] The datasets used are
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Fig. 12: Learning progress of the pouring task, using a single
3rd-person human demonstration that is different that the one shown
in Fig.[] This graph reports the weight in grams measured from the
target recipient after each pouring action (maximum weight is 189g)
along with the standard deviation of all 10 rollouts per iteration.
The robot manages to successfully learn the pouring task using the
multi-view TCN model after 20 iterations.

approximately 2 hours of random human motions, 3 hours of
random robot motions and 40 minutes of human supervision,
as detailed in Appendix At test time, the resulting joints
vector can then directly be fed to the robot stack to update its
joints (using the native Fetch planner) as depicted in Fig. [§]
This results in an end-to-end imitation from pixels to joints
without any explicit representation of human pose.
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Fig. 13: Comparing types and amounts of supervision: Self-
supervised imitation ("TC+self”) outperforms human-supervised
imitation ("Human”).

3) Supervision Analysis: As shown in Fig. [8] our imitation
system can be trained with different combinations of signals.
Here we study how our self-supervised imitation system
compares to the other possible combinations of training
signals. The performance of each combination is reported
in Table using the maximum amounts of data available
(10 sequences for Human supervision and 30 sequences
for TC supervision), while Fig. varies the amount of
human supervision. Models such as the "TC + Self” or
”Self” do not make use of any human supervision, hence
only appear as single points on the vertical axis. Models
that do not include TC supervision are simply trained as
end-to-end regression problems. For example the Self model
is trained end-to-end to predict internal joints from third
person observations of the robot, and then that model is
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applied directly to the human imitation task. For reference,
we compute a random baseline which samples joints values
within physically possible ranges. In general, we observe
that more human supervision decreases the L2 robot joints
error. It is interesting to note that while not given any labels,
the self-supervised model ("TC + Self”) still significantly
outperforms the fully-supervised model ("Human”). The
combination of all supervision signals performs the best.
Overall, we observe that adding the TC supervision to any
other signal significantly decreases the imitation error. In
Fig. [I5] we vary the amount of TC supervision provided
and find the imitation error keeps decreasing as we increase
the amount of data. Based on these results, we can make
the argument that relatively large amounts of cheap weakly-
supervised data and small amounts of expensive human
supervised data is an effective balance for our problem. A
non-extensive analysis of viewpoint and scale invariance in
Sec. [E| seems to indicate that the model remains relatively
competitive when presented with viewpoints and scales not
seen during training.

4) Analysis by Joint: In Fig. [I6] we examine the error
of each joint individually for 4 models. Interestingly, we
find that for all joints excepts for “shoulder pan”, the
unsupervised "TC+Self” models performs almost as well as
the human-supervised "TC+Human+Self”. The unsupervised
model does not seem to correctly model the shoulder pan and
performs worse than Random. Hence most of the benefits of
human supervision found in Fig. come from correcting
the shoulder pan prediction.

5) Qualitative Results: We offer multiple qualitative eval-
uations: k-Nearest Neighbors (kNN) in Fig. [I0} imitation
strips in Fig. [2I] and a t-SNE visualization in Fig. [I4]
Video strips do not fully convey the quality of imitation,
we strongly encourage readers to watch the videos accom-
panying this paper. kKNN: In Fig. [I0] we show the nearest
neighbors of the reference frames for the self-supervised
model "TC+Self” (no human supervision). Although never
trained across humans, it learned to associate poses such as
crouching or reaching up between humans never seen during
training and with entirely new backgrounds, while exhibiting
viewpoint, scale and translation invariance. Imitation strips:
In Fig. [21] we present an example of how the self-supervised
model has learned to imitate the height level of humans
by itself (easier to see in supplementary videos) using the
“torso” joint (see Fig.[T6). This stark example of the complex
mapping between human and robot joints illustrates the need
for learned mappings, here we learned a non-linear mapping
from many human joints to a single “torso” robot joint
without any human supervision. t-SNE: We qualitatively
evaluate the arrangement of our learned embedding using
t-SNE representations with perplexity of 30 and learning
rate of 10. In Fig. [T4 we show that the agent-colored
embedding exhibits local coherence with respect to pose
while being invariant to agent and viewpoint. More kNN
examples, imitation strips and t-SNE visualizations from
different models are available in Sec. [H



Fig. 14: t-SNE embedding colored by agent for model
”TC+Self”. We show that images are locally coherent with respect
to pose while being invariant to agent or viewpoint.
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Fig. 15: Varying the amount of unsupervised data: increasing the
number of unsupervised sequences decreases the imitation error for
both models.

E. Imitation Invariance Analysis

In this section, we explore how much invariance is cap-
tured by the model. In Fig. [[9 we test the L2 imitation
error from new viewpoints (30°, 90° and 150°) different from
training viewpoints (0°, 60° and 120°). We find that the error
increases but the model does not break down and keeps a
lower accuracy than the Human model in Fig. [I3] We also
evaluate in Fig. the accuracy while bringing the camera
closer than during training (about half way) and similarly
find that while the error increases, it remains competitive
and lower than the human supervision baseline. From these
experiments, we conclude that the model is somewhat robust
to viewpoint changes (distance and orientation) even though
it was trained with only 3 fixed viewpoints.

F. Imitation Examples

t-SNE: We qualitatively evaluate the arrangement of our
learned embedding using t-SNE representations with per-
plexity of 30 and learning rate of 10. In this section we
show the embedding before and after training, and colorize
points by agent in Fig. [I8] and by view in Fig. The
representations show that the embedding initially clusters

13

50% W Random
W Human
TC + Self

M TC + Human + Self

4

=}

%
0%
20%

10%

L2 robat joints distance eror %

Y, b h % N T/
o G, % A Yy . G

L %, "
% R

£

Robot joints

Fig. 16: L2 robot error break-down by robot joints. From left to
right, we report errors for the 8 joints of the Fetch robot, followed
by the joints average, followed by the joints average excluding the
”shoulder pan” join.

views and agents together, while after training points from
a same agent or view spread over the entire manifold,
indicating view and agent invariance.
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Fig. 17: t-SNE embedding before (top) and after (bottom) train-
ing, colored by view. Before training, we observe concentrated
clusters of the same color, indicating that the manifold is organized
in a highly view-specific way, while after training each color is
spread over the entire manifold.
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Fig. 18: t-SNE embedding before (top) and after (bottom) train-
ing, colored by agent. Before training, we observe concentrated
clusters of the same color, indicating that the manifold is organized
in a highly agent-specific way, while after training each color is
spread over the entire manifold.
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Fig. 19: Testing TC+Human+Self model for orientation invari-
ance: while the error increases for viewpoints not seen during
training (30°, 90° and 150°), it remains competitive.
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Fig. 20: Testing for scale invariance: while the error increases
when decreasing the distance of the camera to the subject (about
half way compared to training), it remains competitive and lower
than the human-supervised baseline.
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Fig. 21: Self-supervised imitation examples. Although not trained using any human supervision (model "TC+Self”), the TCN is able to
approximately imitate human subjects unseen during training. Note from the rows (1,2) that the TCN discovered the mapping between the
robot’s torso joint (up/down) and the complex set of human joints commanding crouching. In rows (3,4), we change the capture conditions
compared to training (see rows 1 and 2) by using a free-form camera motion, a close-up scale and introduction some motion-blur and
observe that imitation is still reasonable.
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