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Series Foreword

The goal of building systems that can adapt to their environments and learn from
their experience has attracted researchers from many fields, including computer
science, engineering, mathematics, physics, neuroscience, and cognitive science.
Out of this research has come a wide variety of learning techniques that have
the potential to transform many scientific and industrial fields. Recently, several
research communities have converged on a common set of issues surrounding su-
pervised, unsupervised, and reinforcement learning problems. The MIT Press series
on Adaptive Computation and Machine Learning seeks to unify the many diverse
strands of machine learning research and to foster high-quality research and inno-
vative applications.

Thomas Dietterich






Preface

During the last years, semi-supervised learning has emerged as an exciting new
direction in machine learning reseach. It is closely related to profound issues of how
to do inference from data, as witnessed by its overlap with transductive inference
(the distinctions are yet to be made precise).

At the same time, dealing with the situation where relatively few labeled training
points are available, but a large number of unlabeled points are given, it is directly
relevant to a multitude of practical problems where is it relatively expensive to
produce labeled data, e.g., the automatic classification of web pages. As a field,
semi-supervised learning uses a diverse set of tools and illustrates, on a small scale,
the sophisticated machinery developed in various branches of machine learning such
as kernel methods or Bayesian techniques.

As we work on semi-supervised learning, we have been aware of the lack of
an authoritative overview of the existing approaches. In a perfect world, such an
overview should help both the practitioner and the researcher who wants to enter
this area. A well researched monograph could ideally fill such a gap; however, the
field of semi-supervised learning is arguably not yet sufficiently mature for this.
Rather than writing a book which would come out in three years, we thus decided
instead to provide an up-to-date edited volume, where we invited contributions by
many of the leading proponents of the field. To make it more than a mere collection
of articles, we have attempted to ensure that the chapters form a coherent whole
and use consistent notation. Moreover, we have written a short introduction, a
dialogue illustrating some of the ongoing debates in the underlying philosophy of
the field, and we have organized and summarized a comprehensive benchmark of
semi-supervised learning.

Benchmarks are helpful for the practitioner to decide which algorithm should be
chosen for a given application. At the same time, they are useful for researchers
to choose issues to study and further develop. By evaluating and comparing the
performance of many of the presented methods on a set of eight benchmark
problems, this book aims at providing guidance in this respect. The problems are
designed to reflect and probe the different assumptions that the algorithms build
on. All data sets can be downloaded from the book web page, which can be found
at http://www.kyb.tuebingen.mpg.de/ssl-book/.

Finally, we would like to give thanks to everybody who contributed towards the
success of this book project, in particular to Karin Bierig, Sabrina Nielebock, Bob
Prior, to all chapter authors, and to the chapter reviewers.






Introduction to Semi-Supervised Learning

1.1 Supervised, Unsupervised, and Semi-Supervised Learning

unsupervised
learning

supervised
learning

generative
methods

In order to understand the nature of semi-supervised learning, it will be useful first
to take a look at supervised and unsupervised learning.

1.1.1 Supervised and Unsupervised Learning

Traditionally, there have been two fundamentally different types of tasks in machine
learning.

The first one is unsupervised learning. Let X = (z1,...,2,) be a set of n examples
(or points), where z; € X for all i € [n] := {1,...,n}. Typically it is assumed
that the points are drawn i.i.d. (independently and identically distributed) from
a common distribution on X. It is often convenient to define the (n x d)-matrix
X = (%T)je[n] that contains the data points as its rows. The goal of unsupervised
learning is to find interesting structure in the data X. It has been argued that the
problem of unsupervised learning is fundamentally that of estimating a density
which is likely to have generated X. However, there are also weaker forms of
unsupervised learning, such as quantile estimation, clustering, outlier detection,
and dimensionality reduction.

The second task is supervised learning. The goal is to learn a mapping from
x to y, given a training set made of pairs (z;,y;). Here, the y; € Y are called
the labels or targets of the examples x;. If the labels are numbers, y = (yi);[n]
denotes the column vector of labels. Again, a standard requirement is that the pairs
(z4,y;) are sampled i.i.d. from some distribution which here ranges over X x Y.
The task is well defined, since a mapping can be evaluated through its predictive
performance on test examples. When Y = R or Y = R? (or more generally, when the
labels are continuous), the task is called regression. Most of this book will focus on
classification (there is some work on regression in chapter 23), i.e., the case where
y takes values in a finite set (discrete labels). There are two families of algorithms
for supervised learning. Generative algorithms try to model the class-conditional
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density p(x|y) by some unsupervised learning procedure.l A predictive density can
then be inferred by applying Bayes theorem:

p(zly)p(y)

Pke) Jy p(aly)p(y)dy (L)
In fact, p(z|y)p(y) = p(x,y) is the joint density of the data, from which pairs
(x;,y;) could be generated. Discriminative algorithms do not try to estimate how
the x; have been generated, but instead concentrate on estimating p(y|z). Some
discriminative methods even limit themselves to modeling whether p(y|x) is greater
than or less than 0.5; an example of this is the support vector machine (SVM). It
has been argued that discriminative models are more directly aligned with the goal
of supervised learning and therefore tend to be more efficient in practice. These two
frameworks are discussed in more detail in sections 2.2.1 and 2.2.2.

1.1.2 Semi-Supervised Learning

Semi-supervised learning (SSL) is halfway between supervised and unsupervised
learning. In addition to unlabeled data, the algorithm is provided with some super-
vision information — but not necessarily for all examples. Often, this information
will be the targets associated with some of the examples. In this case, the data
set X = (¥i)ic[n) can be divided into two parts: the points X; := (21,...,2;), for
which labels Y; := (y1,...,¥;) are provided, and the points X, := (241, .., Titu),
the labels of which are not known. This is “standard” semi-supervised learning as
investigated in this book; most chapters will refer to this setting.

Other forms of partial supervision are possible. For example, there may be
constraints such as “these points have (or do not have) the same target” (cf.
Abu-Mostafa, 1995). This more general setting is considered in chapter 5. The
different setting corresponds to a different view of semi-supervised learning: In
chapter 5, SSL is seen as unsupervised learning guided by constraints. In contrast,
most other approaches see SSL as supervised learning with additional information
on the distribution of the examples x. The latter interpretation seems to be more
in line with most applications, where the goal is the same as in supervised learning;:
to predict a target value for a given x;. However, this view does not readily apply
if the number and nature of the classes are not known in advance but have to be
inferred from the data. In constrast, SSL as unsupervised learning with constraints
may still remain applicable in such situations.

A problem related to SSL was introduced by Vapnik already several decades ago:
so-called transductive learning. In this setting, one is given a (labeled) training set
and an (unlabeled) test set. The idea of transduction is to perform predictions only
for the test points. This is in contrast to inductive learning, where the goal is to

1. For simplicity, we are assuming that all distributions have densities, and thus we restrict
ourselves to dealing with densities.
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self-learning

transductive
inference
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output a prediction function which is defined on the entire space X. Many methods
described in this book will be transductive; in particular, this is rather natural for
inference based on graph representations of the data. This issue will be addressed
again in section 1.2.4.

1.1.3 A Brief History of Semi-Supervised Learning

Probably the earliest idea about using unlabeled data in classification is self-
learning, which is also known as self-training, self-labeling, or decision-directed
learning. This is a wrapper-algorithm that repeatedly uses a supervised learning
method. It starts by training on the labeled data only. In each step a part of
the unlabeled points is labeled according to the current decision function; then
the supervised method is retrained using its own predictions as additional labeled
points. This idea has appeared in the literature already for some time (e.g., Scudder
(1965); Fralick (1967); Agrawala (1970)).

An unsatisfactory aspect of self-learning is that the effect of the wrapper depends
on the supervised method used inside it. If self-learning is used with empirical risk
minimization and 1-0-loss, the unlabeled data will have no effect on the solution
at all. If instead a margin maximizing method is used, as a result the decision
boundary is pushed away from the unlabeled points (cf. chapter 6). In other cases
it seems to be unclear what the self-learning is really doing, and which assumption
it corresponds to.

Closely related to semi-supervised learning is the concept of transductive
inference, or transduction, pioneered by Vapnik (Vapnik and Chervonenkis, 1974;
Vapnik and Sterin, 1977). In contrast to inductive inference, no general decision rule
is inferred, but only the labels of the unlabeled (or test) points are predicted. An
early instance of transduction (albeit without explicitly considering it as a concept)
was already proposed by Hartley and Rao (1968). They suggested a combinatorial
optimization on the labels of the test points in order to maximize the likelihood of
their model.

It seems that semi-supervised learning really took off in the 1970s when the
problem of estimating the Fisher linear discriminant rule with unlabeled data
was counsidered (Hosmer, 1973; McLachlan, 1977; O’Neill, 1978; McLachlan and
Ganesalingam, 1982). More precisely, the setting was in the case where each class-
conditional density is Gaussian with equal covariance matrix. The likelihood of
the model is then maximized using the labeled and unlabeled data with the help
of an iterative algorithm such as the expectation-maximization (EM) algorithm
(Dempster et al., 1977). Instead of a mixture of Gaussians, the use of a mixture
of multinomial distributions estimated with labeled and unlabeled data has been
investigated in (Cooper and Freeman, 1970).

Later, this one component per class setting has been extended to several com-
ponents per class (Shahshahani and Landgrebe, 1994) and further generalized by
Miller and Uyar (1997).

Learning rates in a probably approximately correct (PAC) framework (Valiant,
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1984) have been derived for the semi-supervised learning of a mixture of two
Gaussians by Ratsaby and Venkatesh (1995). In the case of an identifiable mixture,
Castelli and Cover (1995) showed that with an infinite number of unlabeled points,
the probability of error has an exponential convergence (w.r.t. the number of labeled
examples) to the Bayes risk. Identifiable means that given P(x), the decomposition
in Zy P(y)P(x|y) is unique. This seems a relatively strong assumption, but it is
satisfied, for instance, by mixtures of Gaussians. Related is the analysis in (Castelli
and Cover, 1996) in which the class-conditional densities are known but the class
priors are not.

Finally, the interest in semi-supervised learning increased in the 1990s, mostly
due to applications in natural language problems and text classification (Yarowsky,
1995; Nigam et al., 1998; Blum and Mitchell, 1998; Collins and Singer, 1999;
Joachims, 1999).

Note that, to our knowledge, Merz et al. (1992) were the first to use the term
“semi-supervised” for classification with both labeled and unlabeled data. It has
in fact been used before, but in a different context than what is developed in this
book; see, for instance, (Board and Pitt, 1989).

1.2 When Can Semi-Supervised Learning Work?

smoothness
assumption

A natural question arises: is semi-supervised learning meaningful? More precisely:
in comparison with a supervised algorithm that uses only labeled data, can one
hope to have a more accurate prediction by taking into account the unlabeled
points? As you may have guessed from the size of the book in your hands, in
principle the answer is “yes.” However, there is an important prerequisite: that the
distribution of examples, which the unlabeled data will help elucidate, be relevant
for the classification problem.

In a more mathematical formulation, one could say that the knowledge on p(z)
that one gains through the unlabeled data has to carry information that is useful
in the inference of p(y|z). If this is not the case, semi-supervised learning will not
yield an improvement over supervised learning. It might even happen that using
the unlabeled data degrades the prediction accuracy by misguiding the inference;
this effect is investigated in detail in chapter 4.

One should thus not be too surprised that for semi-supervised learning to work,
certain assumptions will have to hold. In this context, note that plain supervised
learning also has to rely on assumptions. In fact, chapter 22 discusses a way of
formalizing assumptions of the kind given below within a PAC-style framework.
One of the most popular such assumptions can be formulated as follows.
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Smoothness assumption of supervised lecwnmg:2 If two points x1, 2 are close, then
so should be the corresponding outputs y1, ys-

Clearly, without such assumptions, it would never be possible to generalize from
a finite training set to a set of possibly infinitely many unseen test cases.

1.2.1 The Semi-Supervised Smoothness Assumption

We now propose a generalization of the smoothness assumption that is useful
for semi-supervised learning; we thus call it the “semi-supervised smoothness
assumption”. While in the supervised case according to our prior beliefs the output
varies smoothly with the distance, we now also take into account the density of
the inputs. The assumption is that the label function is smoother in high-density
regions than in low-density regions:

Semi-supervised smoothness assumption: If two points x1, x5 in a high-density region
are close, then so should be the corresponding outputs yi, y2.

Note that by transitivity, this assumption implies that if two points are linked by
a path of high density (e.g., if they belong to the same cluster), then their outputs
are likely to be close. If, on the other hand, they are separated by a low-density
region, then their outputs need not be close.

Note that the semi-supervised smoothness assumption applies to both regression
and classification. In the next section, we will show that in the case of classification,
it reduces to assumptions commonly used in SSL. At present, it is less clear how
useful the assumption is for regression problems. As an alternative, chapter 23
proposes a way to use unlabeled data for model selection that applies to both
regression and classification.

1.2.2 The Cluster Assumption

Suppose we knew that the points of each class tended to form a cluster. Then the
unlabeled data could aid in finding the boundary of each cluster more accurately:
one could run a clustering algorithm and use the labeled points to assign a class
to each cluster. That is in fact one of the earliest forms of semi-supervised learning
(see chapter 2). The underlying, now classical, assumption may be stated as follows:

Cluster assumption: If points are in the same cluster, they are likely to be of the
same class.

This assumption may be considered reasonable on the basis of the sheer existence

2. Strictly speaking, this assumption only refers to continuity rather than smoothness;
however, the term smoothness is commonly used, possibly because in regression estimation
y is often modeled in practice as a smooth function of z.
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of classes: if there is a densly populated continuum of objects, it may seem unlikely
that they were ever distinguished into different classes.

Note that the cluster assumption does not imply that each class forms a single,
compact cluster: it only means that, usually, we do not observe objects of two
distinct classes in the same cluster.

The cluster assumption can easily be seen as a special case of the above-proposed
semi-supervised smoothness assumption, considering that clusters are frequently
defined as being sets of points that can be connected by short curves which traverse
only high-density regions.

The cluster assumption can be formulated in an equivalent way:

Low density separation: The decision boundary should lie in a low-density region.

The equivalence is easy to see: A decision boundary in a high-density region
would cut a cluster into two different classes; many objects of different classes in
the same cluster would require the decision boundary to cut the cluster, i.e., to go
through a high-density region.

Although the two formulations are conceptually equivalent, they can inspire
different algorithms, as we will argue in section 1.3. The low-density version
also gives additional intuition why the assumption is sensible in many real-world
problems. Consider digit recognition, for instance, and suppose that one wants to
learn how to distinguish a handwritten digit “0” against digit “1”. A sample point
taken exactly from the decision boundary will be between a 0 and a 1, most likely
a digit looking like a very elongated zero. But the probability that someone wrote
this “weird” digit is very small.

1.2.3 The Manifold Assumption

A different but related assumption that forms the basis of several semi-supervised
learning methods is the manifold assumption:

Manifold assumption: The (high-dimensional) data lie (roughly) on a low-dimensional
manifold.

How can this be useful? A well-known problem of many statistical methods and
learning algorithms is the so-called curse of dimensionality (cf. section 11.6.2). It is
related to the fact that volume grows exponentially with the number of dimensions,
and an exponentially growing number of examples is required for statistical tasks
such as the reliable estimation of densities. This is a problem that directly affects
generative approaches that are based on density estimates in input space. A related
problem of high dimensions, which may be more severe for discriminative methods,
is that pairwise distances tend to become more similar, and thus less expressive.

If the data happen to lie on a low-dimensional manifold, however, then the
learning algorithm can essentially operate in a space of corresponding dimension,
thus avoiding the curse of dimensionality.

As above, one can argue that algorithms working with manifolds may be seen
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as approximately implementing the semi-supervised smoothness assumption: such
algorithms use the metric of the manifold for computing geodesic distances. If we
view the manifold as an approximation of the high-density regions, then it becomes
clear that in this case, the semi-supervised smoothness assumption reduces to the
standard smoothness assumption of supervised learning, applied on the manifold.

Note that if the manifold is embedded into the high-dimensional input space in a
curved fashion (i.e., it is not just a subspace), geodesic distances differ from those in
the input space. By ensuring more accurate density estimates and more appropriate
distances, the manifold assumption may be useful for classification as well as for
regression.

1.2.4 Transduction

As mentioned before, some algorithms naturally operate in a transductive setting.
According to the philosophy put forward by Vapnik, high-dimensional estimation
problems should attempt to follow the following principle:

Vapnik’s principle: When trying to solve some problem, one should not solve a more
difficult problem as an intermediate step.

Consider as an example supervised learning, where predictions of labels y cor-
responding to some objects x are desired. Generative models estimate the density
of r as an intermediate step, while discriminative methods directly estimate the
labels.

In a similar way, if label predictions are only required for a given test set,
transduction can be argued to be more direct than induction: while an inductive
method infers a function f : X — Y on the entire space X, and afterward returns
the evaluations f(z;) at the test points, transduction consists of directly estimating
the finite set of test labels, i.e., a function f : X, — Y only defined on the test
set. Note that transduction (as defined in this book) is not the same as SSL: some
semi-supervised algorithms are transductive, but others are inductive.

Now suppose we are given a transductive algorithm which produces a solution
superior to an inductive algorithm trained on the same labeled data (but discarding
the unlabeled data). Then the performance difference might be due to one of the
following two points (or a combination thereof):

1. transduction follows Vapnik’s principle more closely than induction does, or

2. the transductive algorithm takes advantage of the unlabeled data in a way similar
to semi-supervised learning algorithms.

There is ample evidence for improvements being due to the second of these
points. We are presently not aware of empirical results that selectively support
the first point. In particular, the evaluation of the benchmark associated with this
book (chapter 21) does not seem to suggest a systematic advantage of transductive
methods. However, the properties of transduction are still the topic of debate, and
chapter 25 tries to present different opinions.
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1.3 Classes of Algorithms and Organization of This Book

mixture models

Although many methods were not explicitly derived from one of the above assump-
tions, most algorithms can be seen to correspond to or implement one or more
of them. We try to organize the semi-supervised learning methods presented in
this book into four classes that roughly correspond to the underlying assumption.
Although the classification is not always unique, we hope that this organization
makes the book and its contents more accessible to the reader, by providing a
guiding scheme.

For the same reason, this book is organized in “parts.” There is one part for each
class of SSL algorithms and an extra part focusing on generative approaches. Two
further parts are devoted to applications and perspectives of SSL. In the following
we briefly introduce the ideas covered by each book part.

1.3.1 Generative Models

Part I presents history and state of the art of SSL with generative models. Chapter 2
starts with a thorough review of the field.

Inference using a generative model involves the estimation of the conditional
density p(z|y). In this setting, any additional information on p(x) is useful. As
a simple example, assume that p(z|y) is Gaussian. Then one can use the EM
algorithm to find the parameters of the Gaussian corresponding to each class. The
only difference to the standard EM algorithm as used for clustering is that the
“hidden variable” associated with any labeled example is actually not hidden, but
it is known and equals its class label. It implements the cluster assumption (cf.
section 2.2.1), since a given cluster belongs to only one class.

This small example already highlights different interpretations of semi-supervised
learning with a generative model:

® Jt can be seen as classification with additional information on the marginal
density.

® [t can be seen as clustering with additional information. In the standard setting,
this information would be the labels of a subset of points, but it could also come
in the more general form of constraints. This is the topic of chapter 5.

A strength of the generative approach is that knowledge of the structure of the
problem or the data can naturally be incorporated by modeling it. In chapter 3,
this is demonstrated for the application of the EM algorithm to text data. It is
observed that, when modeling assumptions are not correct, unlabeled data can
decrease prediction accuracy. This effect is investigated in depth in chapter 4.

In statistical learning, before performing inference, one chooses a class of func-
tions, or a prior over functions. One has to choose it according to what is known
in advance about the problem. In the semi-supervised learning context, if one has
some ideas about what the structure of the data tells about the target function, the
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choice of this prior can be made more precise after seeing the unlabeled data: one
could typically put a higher prior probability on functions that satisfy the cluster
assumption. From a theoretical point, this is a natural way to obtain bounds for
semi-supervised learning as explained in chapter 22.

1.3.2 Low-Density Separation

Part II of this book aims at describing algorithms which try to directly implement
the low-density separation assumption by pushing the decision boundary away from
the unlabeled points.

The most common approach to achieving this goal is to use a maximum margin
algorithm such as support vector machines. The method of maximizing the margin
for unlabeled as well as labeled points is called the transductive SVM (TSVM).
However, the corresponding problem is nonconvex and thus difficult to optimize.

One optimization algorithm for the TSVM is presented in chapter 6. Starting
from the SVM solution as trained on the labeled data only, the unlabeled points are
labeled by SVM predictions, and the SVM is retrained on all points. This is iterated
while the weight of the unlabeled points is slowly increased. Another possibility is
the semi-definite programming SDP relaxation suggested in chapter 7.

Two alternatives to the TSVM are then presented that are formulated in a
probabilistic and in an information theoretic framework, respectively. In chapter
8, binary Gaussian process classification is augmented by the introduction of a null
class that occupies the space between the two regular classes. As an advantage over
the TSVM, this allows for probabilistic outputs.

This advantage is shared by the entropy minimization presented in chapter 9. It
encourages the class-conditional probabilities P(y|z) to be close to either 1 or 0 at
labeled and unlabeled points. As a consequence of the smoothness assumption, the
probability will tend to be close to 0 or 1 throughout any high-density region, while
class boundaries correspond to intermediate probabilities.

A different way of using entropy or information is the data-dependent regulariza-
tion developed in chapter 10. As compared to the TSVM, this seems to implement
the low-density separation even more directly: the standard squared-norm regular-
izer is multiplied by a term reflecting the density close to the decision boundary.

1.3.3 Graph-Based Methods

During the last couple of years, the most active area of research in semi-supervised
learning has been in graph-based methods, which are the topic of part III of this
book. The common denominator of these methods is that the data are represented
by the nodes of a graph, the edges of which are labeled with the pairwise distances
of the incident nodes (and a missing edge corresponds to infinite distance). If the
distance of two points is computed by minimizing the aggregate path distance over
all paths connecting the two points, this can be seen as an approximation of the
geodesic distance of the two points with respect to the manifold of data points.
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Thus, graph methods can be argued to build on the manifold assumption.

Most graph methods refer to the graph by utilizing the graph Laplacian. Let
g = (V, E) be a graph with real edge weights given by w : E — R. Here, the weight
w(e) of an edge e indicates the similarity of the incident nodes (and a missing edge
corresponds to zero similarity). Now the weighted adjacency matrix (or weight
matrix, for short) W of the graph g = (V, E) is defined by

W, = { w(e) ife=(i,j) €FE,

0 if e = (i,7) € E. 12)

The diagonal matrix D defined by D;; = > ; Wij is called the degree matrix of
g. Now there are different ways of defining the graph Laplacian, the two most
prominent of which are the normalized graph Laplacian, £, and the unnormalized
graph Laplacian, L:

L = I-D'2WD /2

L = D-W. (1.3)

Many graph methods that penalize nonsmoothness along the edges of a weighted
graph can in retrospect be seen as different instances of a rather general family of
algorithms, as is outlined in chapter 11. Chapter 13 takes a more theoretical point
of view, and transfers notions of smoothness from the continuous case onto graphs
as the discrete case. From that, it proposes different regularizers based on a graph
representation of the data.

Usually the prediction consists of labels for the unlabeled nodes. For this reason,
this kind of algorithm is intrinsically transductive, i.e., it returns only the value of
the decision function on the unlabeled points and not the decision function itself.
However, there has been recent work in order to extend graph-based methods to
produce inductive solutions, as discussed in chapter 12.

Information propagation on graphs can also serve to improve a given (possibly
strictly supervised) classification, taking unlabeled data into account. Chapter 14
presents a probabilistic method for using directed graphs in this manner.

Often the graph g is constructed by computing similarities of objects in some
other representation, e.g., using a kernel function on Euclidean data points. But
sometimes the original data already have the form of a graph. Examples include
the linkage pattern of webpages and the interactions of proteins (see chapter 20).
In such cases, the directionality of the edges may be important.

1.3.4 Change of Representation

The topic of part IV is algorithms that are not intrinsically semi-supervised, but
instead perform two-step learning:

1. Perform an unsupervised step on all data, labeled and unlabeled, but ignoring
the available labels. This can, for instance, be a change of representation, or the
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construction of a new metric or a new kernel.

2. Ignore the unlabeled data and perform plain supervised learning using the new
distance, representation, or kernel.

This can be seen as direct implementation of the semi-supervised smoothness
assumption, since the representation is changed in such a way that small distances
in high-density regions are conserved.

Note that the graph-based methods (part III) are closely related to the ones
presented in this part: the very construction of the graph from the data can be
seen as an unsupervised change of representation. Consequently, the first chapter
of part IV, chapter 15, discusses spectral transforms of such graphs in order to build
kernels. Spectral methods can also be used for nonlinear dimensionality reduction,
as extended in chapter 16. Furthermore, in chapter 17, metrics derived from graphs
are investigated, for example, those derived from shortest paths.

1.3.5 Semi-Supervised Learning in Practice

Semi-supervised learning will be most useful whenever there are far more unlabeled
data than labeled. This is likely to occur if obtaining data points is cheap, but
obtaining the labels costs a lot of time, effort, or money. This is the case in many
application areas of machine learning, for example:

® In speech recognition, it costs almost nothing to record huge amounts of speech,
but labeling it requires some human to listen to it and type a transcript.

® Billions of webpages are directly available for automated processing, but to
classify them reliably, humans have to read them.

= Protein sequences are nowadays acquired at industrial speed (by genome sequenc-
ing, computational gene finding, and automatic translation), but to resolve a three-
dimensional (3D) structure or to determine the functions of a single protein may
require years of scientific work.

Webpage classification is introduced in chapter 3 in the context of generative
models.

Since unlabeled data carry less information than labeled data, they are required
in large amounts in order to increase prediction accuracy significantly. This implies
the need for fast and efficient SSL algorithms. Chapters 18 and 19 present two
approaches to dealing with huge numbers of points. In chapter 18 methods are
developed for speeding up the label propagation methods introduced in chapter 11.
In chapter 19 cluster kernels are shown to be an efficient SSL method.

Chapter 19 also presents the first of two approaches to an important bioinformat-
ics application of semi-supervised learning: the classification of protein sequences.
While here the predictions are based on the protein sequences themselves, Chap-
ter 20 moves on to a somewhat more complex setting: The information is here
assumed to be present in the form of graphs that characterize the interactions of
proteins. Several such graphs exist and have to be combined in an appropriate way.
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This book part concludes with a very practical chapter: the presentation and
evaluation of the benchmarks associated with this book (chapter 21). It is intended
to give hints to the practitioner on how to choose suitable methods based on the
properties of the problem.

1.3.6 Outlook

The last part of the book, part VI, is devoted to some of the most interesting
directions of ongoing research in SSL.

Until now this book has mostly resticted itself to classification. Chapter 23
introduces another approach to SSL that is suited for both classification and
regression, and derives algorithms from it. Interestingly it seems not to require
the assumptions proposed in chapter 1.

Further, this book mostly presented algorithms for SSL. While the assumptions
discussed above supply some intuition on when and why SSL works, and chapter 4
investigates when and why it can fail, it would clearly be more satisfactory to have
a thorough theoretical understanding of SSL in total. Chapter 22 offers a PAC-style
framework that yields error bounds for SSL problems.

In chapter 24 inductive semi-supervised learning and transduction are compared
in terms of Vapnik-Chervonenkis (VC) bounds and other theoretical and philosoph-
ical concepts.

The book closes with a hypothetical discussion (chapter 25) between three
machine learning researchers on the relationship of (and the differences between)
semi-supervised learning and transduction.
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We propose a simple taxonomy of probabilistic graphical models for the semi-
supervised learning problem. We give some broad classes of algorithms for each
of the families and point to specific realizations in the literature. Finally, we shed
more detailed light on the family of methods using input-dependent regularization
(or conditional prior distributions) and show parallels to the co-training paradigm.

2.1 The Semi-Supervised Learning Problem

The semi-supervised learning (SSL) problem has recently drawn large attention
in the machine learning community, mainly due to its significant importance in
practical applications. In this section we define the problem and introduce the
notation to be used in the rest of this chapter.

In statistical machine learning, we distinguish between unsupervised and super-
vised learning. In the former scenario we are given a sample {x;} of patterns in X
drawn independently and identically distributed (i.i.d.) from some unknown data
distribution with density P(x). Our goal is to estimate the density or a (known)
functional thereof. Supervised learning consists of estimating a functional relation-
ship @ — y between a covariate x € X and a class variable! ye{l,...,M}, with
the goal of minimizing a functional of the (joint) data distribution P(x,y) such
as the probability of classification error. The marginal data distribution P(x) is
referred to as input distribution. Classification can be treated as a special case of
estimating the joint density P(x,y), but this is wasteful since & will always be
given at prediction time, so there is no need to estimate the input distribution.

The terminology “unsupervised learning” is a bit unfortunate: the term density

1. We restrict ourselves to classification scenarios in this chapter.
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estimation should probably be preferred. Traditionally, many techniques for density
estimation propose a latent (unobserved) class variable y and estimate P(x) as
mizture distribution Zi‘il P(x|y)P(y). Note that y has a fundamentally different
role than in classification, in that its existence and range c is a modeling choice
rather than observable reality. However, in other density estimation techniques,
such as nonlinear dimensionality reduction, the term “unsupervised” does not make
sense.

The semi-supervised learning problem belongs to the supervised category, since
the goal is to minimize the classification error, and an estimate of P(x) is not
sought after.2 The difference from a standard classification setting is that along
with a labeled sample D; = {(x;,y;)|¢ = 1,...,n} drawn iid. from P(x,y) we
also have access to an additional unlabeled sample D,, = {@p4;|j =1,...,m} from
the marginal P(x). We are especially interested in cases where m > n which may
arise in situations where obtaining an unlabeled sample is cheap and easy, while
labeling the sample is expensive or difficult. We denote X; = (x1,...,x,), Y] =
(y1,---,yn) and X, = (®ny1,-..,Lnitm). The unobserved labels are denoted
Yy = (Ynt1s -+ Yntm). In a straightforward generalization of SSL (not discussed
here) uncertain information about Y, is available.

There are two obvious baseline methods for SSL. We can treat it as a supervised
classification problem by ignoring D,, or we can treat y as a latent class variable
in a mixture estimate of P(x) which is fitted using an unsupervised method, then
associate latent groups with observed classes using D; (see section 2.3.1 for more
details). One would agree that any valid SSL technique should outperform both
baseline methods significantly in a range of practically relevant situations. If this
sounds rather vague, note that in general for a fized SSL method it should be easy to
construct data distributions for which either of the baseline methods does better.3
In our view, SSL is much more a practical than a theoretical problem. A useful
SSL technique should be configurable to the specifics of the task in a similar way as
Bayesian learning, through the choice of prior and model. While some theoretical
work has been done for SSL, the bulk of relevant work so far has tackled real-world
applications.

2. While this statement is probably open to debate, it is in fact agreed upon in statistics.
In our opinion, methods should be classified foremost according to the problem they try to
solve, not by which sources of data they make use of. On the other hand, there are problems
in which density estimation is the goal and labeled data are treated as an auxiliary source.
However, these fall into a category with very different characteristics and are not in the
scope of this chapter. In our opinion, it would be very confusing to lump them together
with methods we classify as SSL here. A label like “semi-unsupervised learning” would be
more appropriate.

3. This is a “no free lunch” statement for SSL, but in practice it seems to be a more
serious problem than in the purely supervised context (where a “no free lunch” statement
holds as well). See chapter 4 for some examples.
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2.2 Paradigms for Semi-Supervised Learning

Since SSL methods are supervised learning techniques, they can be classified
according to the standard taxonomy into generative and diagnostic paradigms. In
this section we present these paradigms and highlight their differences in the case
of SSL. We also note that this taxonomy, which originated for purely supervised
methods, can be ambiguous when applied to SSL, and we suggest how the borderline
can be drawn exactly.

In the figures of this section, we employ a convenient graphical notation frequently
used in statistics and machine learning (Lauritzen, 1996; Jordan, 1999). These so-
called directed graphical models (or independence diagrams) have the following
intuitive semantics. Nodes represent random variables. The parents of a node i are
the nodes j for which a directed edge 7 — i exists.? Tt is possible to sample the
value of a node once the values of all its parents are known. Thus, a graphical model
is a simple way of representing the sampling mechanism from a distribution over
several variables. As such, the graphical model encodes conditional independency
constraints that have to hold for the distribution. In order to sample from the
distribution, we start with nodes without parents and work in the directions of the
edges. We also make use of plates which are rectangular boxes grouping a set of
nodes. This means that the group is sampled repeatedly and independently from
the same distribution (i.i.d.) conditioned on all nodes which are parents of any
plate member. For example, the figure of section 2.2.1 means that we first sample
0 and 7 independently (neither has parents), then draw a sample {(z;,y;)} i.i.d.
conditioned on 6, 7w (which are parents of the plate).

Note that we describe the generative and diagnostic paradigm from an explicitly
Bayesian viewpoint. This is somewhat a matter of personal choice here, and
certainly one could sketch these classes without ever mentioning concepts like prior
distributions. On the other hand, the Bayesian view avoids many unnecessary
complications, in that all variables are random, no difference has to be made
between functional and probabilistic independence, and so on, so we do not think
our presentation lacks clarity or generality because of this choice.

4. Directed cycles are not allowed. In other words, it must be impossible to return to a
node by moving along edges and respecting their direction.
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2.2.1 The Generative Paradigm

We refer to architectures following the generative paradigm
as generative methods. Within such, we model the class dis- @
tributions P(x|y) using model families { P(z|y, 0)}, further-
more the class priors P(y) by m, = P(y|w), ™ = (my)y-
We refer to an architecture of this type as a joint density
model, since we are modeling the full joint density P(z,y)
by m,P(x|y,8). For any fixed 6,7, an estimate of P(y|a) @4—@

can then be computed by Bayes’ formula:

P2y, 8)
SR, —.
Zy’:l Ty P(zly', 0)
This is sometimes referred to as plug-in estimate. Alternatively, one can obtain
the Bayesian predictive distribution P(y|x, D;) by averaging P(y|x, 0, 7) over the
posterior P(@,7|D;).> Within the generative paradigm, a model for the marginal
P(xz) emerges naturally as

P(x|0,7) = Zﬂ'y x|y, 0)

If labeled and unlabeled data are available, a natural criterion emerges as the joint
log likelihood of both D; and D,

P(ylz,0,7) =

n+m

Zlogﬂyl (zly:, 0) Z logZﬂy (xily, 0), (2.1)

i=n+1 y=1

or alternatively the posterior P(0,|Dy, Du).6 This is essentially an issue of max-
imum likelihood in the presence of missing data (treating y as a latent variable),
which can in principle be attacked by the expectation-maximization (EM) algorithm
(see section 2.3.1) or by direct gradient descent.

Some researchers have been quick in hailing this strategy as an obvious solution
to the SSL problem, but this is not the case, in about the same sense as generative
methods often do not provide good solutions to classification problems. Generative
techniques provide an estimate of P(x) along the way, although this is not required
for classification, and in general this proves wasteful given limited data. For ex-

5. In a sense, the predictive distribution is a Bayesian’s best estimate of the underlying
true data distribution P(y|x). It is, however, obtained as posterior expectation, not by
maximizing some criterion.

6. To predict, we average P(y|x, 8, ) over the posterior. If we know that x is drawn from
P(x) and independent from D, we should rather employ the posterior P(6,7|D;, Dy, x).
However, in this case the test set usually forms a part of D,,, and the two posteriors are
the same.
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ample, maximizing the joint likelihood of a finite sample need not lead to a small
classification error, because depending on the model it may be possible to increase
the likelihood more by improving the fit of P(x) than the fit of P(y|x). This is an
instance of the general problem of balancing the impact of D; and D,, on the final
predictions, especially in the case m > n. This issue is discussed in section 2.3.1.
Furthermore, in the SSL setting y is a latent variable which has to be summed
out on D,, leading to highly multimodal posteriors, so that likelihood or posterior
maximization techniques are plagued by the presence of very many (local) minima.

2.2.2 The Diagnostic Paradigm

In diagnostic methods, we model the conditional distribu-

tion P(y|x) directly using the family {P(y|x,0)}. To arrive @
at a complete sampling model for the data, we also have to

model P(x) by a family P(x|un); however if we are only in-

terested in updating our belief in @ or in predicting y on y y

unseen points, this is not necessary, as we will see next.
Under this model, 8 and p are a priori independent, i.e.
P(8, 1) = P(0)P(n).

The likelihood factors as

P(Di, Dul6, 1) = P(Y1| X1,0)P(Xy, Dulp),

which implies that P(0|D;, D,) x P(Y;|X;,0)P(0), i.e. P(0|D;,D,) = P(0|D,),
and @ and p are a posteriori independent. Furthermore, P(0|D;,pu) = P(0|Dy).
This means that neither knowledge of the unlabeled data D, nor any knowledge
of p changes the posterior belief P(8|D;) of the labeled sample. Therefore, in the
standard data generation model for diagnostic methods, unlabeled data D, cannot
be used for Bayesian inference, and modeling the input distribution P(x) is not
necessary. There are non-Bayesian diagnostic techniques in which we can make use
of D, (see section 2.3.2), but the impact of doing so (as opposed to ignoring D,,) is
usually very limited. In order to make significant use of unlabeled data in diagnostic
methods, the data generation model discussed above has to be modified as discussed
in the following section.

2.2.3 Regularization Depending on the Input Distribution

When learning from a sample D; of limited size, typically very many associations
x — y are consistent with the data. The idea of reqularization is to bias our choice
of classifier toward “simpler” hypotheses, by adding a regularization functional
to the criterion to be minimized which grows with complexity. Here, the notion of
simplicity depends on the task and the model setup. For example, for a linear model
it is customary to penalize a norm of the weight vector, and for some commonly
used regularization functionals this can be shown to be equivalent to placing a
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zero-mean prior distribution on the weight vector. From now on we will only be
interested in regularization by priors and will use the terms interchangeably.

We have seen in section 2.2.2 that with straight diagnostic Bayesian methods
for classification, we cannot make use of additional unlabeled data D.,,, because @
(parameterizing P(y|x)) and p (parameterizing P(x)) are a priori independent. In
other words, the model family { P(y|x, 0)} is regularized independently of the input
distribution.

If we allow prior dependencies between 6@ and u, e.g.

P(0.1) = P(O|w)P(n) and P(8) = [ P(Olw)P()dp (as @
shown in the independence diagram to the right), the situ-

ation is different. The conditional prior P(8|u) in principle

allows information about p to be transferred to 6. In gen- y y

eral, @ and D, will be dependent given the labeled data Dj,
therefore unlabeled data can change our posterior belief in
6.

We conclude that to make use of additional unlabeled data within the context
of diagnostic Bayesian supervised techniques, we have to allow an a priori depen-
dence between the latent function representing the conditional probability and the
input probability itself. In other words, we have to use a regularization of the latent
function which depends on the input distribution. The potential gain can be demon-
strated by the following argument. Note that conditional priors imply a marginal
prior P(0) which is a mixture distribution: P(8) = [ P(6|n)P(p) dp. By condi-
tioning on the unlabeled data, this is replaced by P(0|D,) = [ P(6|pn)P(p|D,) dp
which can have a much smaller entropy than P(@), implying that the posterior be-
lief P(6|D;, D,,) can be much narrower than P(@|D;). On the other hand, the same
argument can be used to demonstrate that using additional unlabeled data D,, can
hurt instead of help. Namely, if the priors P(@|u) enforce certain constraints very
rigidly, but these happen to be violated in the true distribution P(x,y), the con-
ditional “prior” P(0|D,,) will assign much lower probability than P(@) to models
P(ylz,0) close to the truth, and the posterior P(0|D;, D,,) can be concentrated
around suboptimal models. While it is certainly easy to construct artificial situ-
ations where additional unlabeled data hurt, it is worrying that such failures do
happen quite unexpectedly in practically relevant settings as well. For a more thor-
ough analysis of this problem, see Cozman and Cohen (chapter 4 in this volume).

We note that while the modification to the standard data generation model
for diagnostic methods suggested here is straightforward, choosing appropriate
conditional priors P(0|u) suitable for a task at hand can be challenging. However,
several general techniques for SSL can actually be seen as realizing input-dependent
regularization, as is demonstrated in section 2.3.3.

The reader may feel uneasy at this point. If we use a priori dependent 8 and g, the
final predictive distribution depends on the prior P(u) over the input distribution.
This forces us to model the input distribution itself, in contrast to the situation
for standard diagnostic methods. In this case, will our method still be a diagnostic
one? Is it not the case that any method which models P(x) in some way must
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automatically be generative? Diagnostic methods can be much more parsimonious
simply because P(x) need not be estimated. In order to implement input-dependent
regularization, do we have to use a generative model with the drawbacks discussed
in section 2.2.17 There is indeed some ambiguity here, but we will try to clarify this
point in section 2.2.4. Under this general viewpoint, input-dependent regularization
is indeed a diagnostic SSL technique.

In the diagnostic paradigm for purely supervised tasks, 8 and p are treated
as a priori independent, leading to the fact that no aspects of P(x) have to be
estimated. While this is convenient, it is not clear whether we should really believe
in such independence for a real-world task. For example, suppose that P(0) enforces
smoothness of the relationship P(y|x,@). Is it sensible to enforce smoothness of
x — y around all @, or should we not rather penalize rough behavior only where
P(x) has significant volume? The former is more conservative and possibly more
robust, but also risks ignoring valuable information sources (see section 2.3.3.1 for
an example).

2.2.4 The Borderline between the Paradigms

While the borderline between supervised and unsupervised methods is clearly
drawn, the distinction between generative and diagnostic techniques can be am-
biguous, especially if we apply this taxonomy to SSL. In this section we give two
criteria for a clear discrimination: a simple and a more elaborate one. In a sense
they are both based on the same issue, namely the role that the P(x) estimate
plays for the prediction.

Recall that we restrict ourselves to methods whose ultimate goal it is to estimate
P(y|x). Traditionally, generative methods achieve this by modeling the joint dis-
tribution P(y, «) and fit this model to data by capturing characteristics of the true
joint data distribution. An estimate of P(x) can always be obtained by marginaliz-
ing the joint estimate. In contrast, diagnostic methods concentrate on modeling the
conditional distribution P(y|x) only, and an estimate of P(x) cannot be extracted.
However, in the SSL case we do have to model P(x) in order to profit from D,,. So
are all SSL methods generative? We argue against this viewpoint and try to classify
SSL techniques according to the role which the P(x) estimate actually plays.

While it is true that any SSL method has to model P(x) in some way, in a
generative technique we model the class-conditional distributions P(x|y) explicitly,
so that the model for P(x) is a mixture of those. From these estimates (and
the estimates of P(y)) we obtain an estimate of P(y|x) using the Bayes formula.
Characteristics of the predictive estimate (such as the function class in a parametric
situation) depend entirely on the class-conditional models. For example, if the latter
are Gaussian with the same covariance matrix, the predictive estimates will be
based on linear functions. In a nutshell, we specify the P(x|y) using our modeling
toolbox, which implies the form of our P(y|x) and P(x) estimates (the latter is a
mixture of the P(x|y)). The only way to encode specific properties for the latter
estimates is to find P(x|y) candidates which are both tractable to work with and
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imply the desired properties of P(y|x) and P(x). In contrast to that, in a diagnostic
method we model P(y|x) directly, and also typically have considerable freedom in
modeling P(x). In SSL we regularize the P(y|x) estimates using information from
P(x), but we do not have to specify the class-conditional distributions explicitly.”
While this definition is workable for the SSL methods mentioned here, it may be too
restrictive on the generative side. For example, the “many-centers-per-class” model
of section 2.3.1 is clearly generative, but works with a mixture model for P(x)
which has several components for each class y, and P(x|y) is modeled indirectly
via P(x|y) = Y, my By P(x|k), i.e., as a mixture itself. In the following paragraph
we suggest an alternative view which leaves more freedom for generative techiques.

The practical success of SSL has shown that unlabeled data, i.e., knowledge about
P(x), can be useful for supervised tasks, but it is not necessarily the same type
of knowledge that would lead to a good estimate of P(x) according to common
performance criteria for density estimation. In fact, it is actually a few general
characteristics of P(a) which seem to help classification (see e.g.: section 2.3.3.1).
For example, if we convert a purely diagnostic technique such as SVM or logistic
regression into an SSL technique by employing a regularizer penalizing P(y|x)
estimates which violate certain aspects of P(x) such as the cluster assumption (see
section 2.3.3.1), the influence of P(x) on the final P(y|x) estimate is restricted
to just these aspects that we hope are important for better classification. These
restrictions are engineered by us because we want to make best use of D,, in order to
predict P(y|z). In contrast, if we perform SSL by maximizing a suitably reweighted
version of the joint log likelihood (2.1) of a mixture model (see section 2.3.1), such
a restriction to classification-relevant aspects is not given or at least not directly
planned. In fact the joint model is designed in much the same way as we would do
for density estimation.

For example, consider the framework of conditional priors of section 2.2.3. While
it is essential to learn about P(x) in SSL, the impact of an oversimple model for
P(x) on the final prediction is much less severe than in density estimation. This is
because a suitable regularization will only depend on certain aspects of P(x) (e.g.,
on the coarse locations of high-density regions under the cluster assumption; see
section 2.3.3.1), and our model for the x distribution only has to be able to capture
those accurately.

2.3 Examples

In this section we provide examples of SSL methods falling in each of the categories
introduced in the previous section. We do not try to provide a comprehensive

7. There are, of course, class-conditional distributions which are implied by the models of
P(ylz) and P(x) (use the Bayes formula), but importantly we do not have to work with
them directly, so that their form is not restricted by tractability requirements.
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literature review here (see (Seeger, 2000b) for review of work up to about 2001),
but are selective in order to point out characteristics of and differences between the
categories. Note that in this context (and also in (Seeger, 2000b)) some methods are
classified as “baseline methods.” This does not constitute a devaluation, and in fact
some of these methods belong to the top performers on some tasks. Furthermore, we
think that theoretical analyses of such methods are of great value, not least because
many practitioners use them. Our label applies to methods which can be derived
fairly straightforwardly from standard unsupervised or supervised methods, and
we hope that truly novel proposals are in fact compared against the most closely
related baseline methods.

2.3.1 Generative Techniques

Recall from section 2.2.1 that generative techniques use a model family { P(x,y|@,w)}
in order to model the joint data distribution P(x,y). The simplest idea is to run a
mixture density estimation method for P(z) on X;UX ,, treating y as a latent class
variable, then using the labeled sample D; in order to associate latent classes with
actual ones. An obvious problem with this approach is that the labeling provided by
the unsupervised method may be inconsistent with D;, in which case the clustering
should be modified to achieve consistency with D;. Castelli and Cover (Castelli
and Cover, 1995) provide a simple analysis of this baseline method under fairly
unrealistic identifiability conditions. Namely, they assume that the data distribu-
tion is exactly identifiable by the unsupervised method at hand, which employs a
mixture model with one component for each class. It is not clear how to achieve
this in practice, even if P(z) is exactly known.8 In the large-sample limit, all class
distributions can be learned perfectly, but the assignment of classes to label names
obviously remains completely open. However, only a few additional labeled points
are required in order to learn this assignment. In fact, it is easy to see that the
error rate converges to the Bayes error exponentially fast (in the number of labeled
examples drawn from P(x,y)).

Another baseline method consists of maximizing the joint likelihood of Eq. 2.1.
For m > 0, the criterion to be minimized is not convex and typically multimodal,
so we have to contend ourselves with finding a local maximum. This can be
done by direct gradient descent or more conveniently by applying the expectation-
mazimization (EM) algorithm (Dempster et al., 1977). The latter is an iterative
procedure which is guaranteed to converge to a local maximum of the likelihood.
If all data in Eq. 2.1 were labeled, a local maximum would be found by a single
optimization over 6. In fact, if the class-conditional distributions P(x|y, @) are from

8. It is not unrealistic to assume that P(x) is exactly known, or that m — oco. The
problem is that they assume that if P(x) is viewed as mixture distribution, then the
model can fit the class distributions P(z|y) exactly. This is not realistic for real-world
problems, especially if the quantities of interest are simply good estimates of P(y|z) or a
small generalization error of the resulting classifier.
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an exponential family, the global maximum can be found analytically. EM works by
assigning label distributions ¢(y|x;) to all points x;. For a labeled point, the label
is represented in that g(y|x;) = dy,4,. If x; is unlabeled, we use the conditional
posterior (for the current 8), ie. ¢(y|x;) x 7, P(x;|y,0). Intuitively, this choice
reflects our best current point estimate for the label of ;. The E step in EM
consists of computing ¢(y|x;) for all points. In the M step, the parameters 8, w are
updated by maximizing the expected log likelihood under the ¢ distributions:

n+m M

o0, %) = 3 3 alylwi) log 7, P(aily, 0').

i=1 y=1

E and M steps are iterated until convergence. It is easy to show that ¢ is a lower
bound on the joint log likelihood (2.1) for any choice of ¢ on the unlabeled points.
The bound becomes an equality if the ¢ are chosen as posteriors and the parameters
0, 7 are not changed. Furthermore, under this choice the gradient of lower bound
and joint log likelihood are the same at 8, 7, so that if EM converges we have found
a local maximum of Eq. 2.1.

The idea of using EM on a joint generative model to train on labeled and
unlabeled data is almost as old as EM itself. Titterington et.al. (Titterington et al.,
1985, section 5.7) review early theoretical work on the problem of discriminant
analysis in the presence of additional unlabeled data. The most common assumption
is that the data have been generated from a mixture of two Gaussians with equal
covariance matrices, in which case the Bayes discriminant is linear. They analyze
the “plug-in” method from the generative paradigm (see section 2.2.1) in which the
parameters of the class distributions are estimated by maximum likelihood. If the
two Gaussians are somewhat well separated, the asymptotic gain of using unlabeled
samples is very significant. For details, see (O’Neill, 1978; Ganesalingam and
McLachlan, 1978, 1979). McLachlan (McLachlan, 1975) gives a practical algorithm
for this case which is essentially a “hard” version of EM, i.e. in every E step the
unlabeled points are allocated to one of the populations, using the discriminant
derived from the mixture parameters of the previous step (note that the general
EM algorithm had not been proposed at that time). He proves that for “moderate-
sized” training sets from each population and for a pool D, of points sampled
from the mixture, if the algorithm is initialized with the maximum-likelihood (ML)
solution based on the labeled data, the solutions computed by the method converge
almost surely against the true mixture distribution with |D,| = m — oo. These
early papers provide some important insight into properties of the semi-supervised
problem, but their strict assumptions limit the conclusions that can be drawn for
large real-world problems.

The EM algorithm has been applied to text classification by Nigam et.al. (see
(Nigam et al., 2000), or chapter 3 in this book). From Eq. 2.1 we see that in the
joint log likelihood, labeled and unlabeled data are weighted at the ratio n to m.
This “natural” weighting makes sense if the likelihood is taken at face value, i.e. as
a correct description of the sampling mechanism for the data, but it is somewhat
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irrelevant to the problem of SSL where a strong sampling bias is present whose
exact size is usually unknown. In other words, unlabeled data are often available
in huge quantities simply because they can be obtained much cheaper than labeled
data. If we use the natural weighting in the interesting case m > n, the labeled data
Dy are effectively ignored. Nigam et.al. suggest reweighting the terms in Eq. 2.1 by
(1—X)/n and \/m respectively (the natural weighting is given by A =m/(m+n))
and adjusting A\ by standard techniques such as cross-validation on Dj.

Note that y is treated as the latent class variable as far
as the estimation of P(x) from D, is concerned, and we can
just as well allow for more mixture components than classes.
Namely, we can introduce an additional separator variable k
such that under the model = and y are independent given
k. This means that all the information & contains about its
class y is already captured in k. This fact is illustrated in the
independence model on the right.

The reweighted joint log-likelihood is

17)\n An-i-7n
— 237 e Pk, 0) + = ] P(x;|k,0),

where m, = P(k|@) and B, = P(ylk,0). It is straightforward to maximize
this criterion using EM. Miller and Uyar (Miller and Uyar, 1997) present some
results using this model together with Gaussian components P(x|k, 0). The “many-
centers-per-class” case in (Nigam et al., 2000) is equivalent to this method.

Some drawbacks of this simple generative mixture model approach have already
been mentioned in section 2.2.1. First, the weighting A between the labeled and
unlabeled data sources has to be chosen carefully; for example, the natural weighting
is usually not appropriate. A selection of A\ by cross-validation on D; is robust in
principle, but bound to fail if n is very small. Second, for A not close to 0 the
joint log likelihood has many (local) maxima, and for A — 1 consistency with
D; is less and less enforced. Both problems are adressed in a principal manner
by Corduneanu and Jaakkola (Corduneanu and Jaakkola, 2002). Under suitable
identifiability conditions? on P(z|y, ) the maximum point for A = 0 (labeled data
only) is unique, while for A = 1 (unlabeled data only) there are many equivalent
maximum points at least due to label permutation symmetry. Therefore, as we
trace the maximum point for growing A starting from 0, the path must split at
a first critical A* > 0. The authors argue that the maximum point of the log
likelihood at this A* provides a promising solution to the SSL problem (in this
generative setting) in that it still fully incorporates the label information. Also, the
path up to A* is unique, while it splits for larger A\, and the decision of which one to

9. These are not very restrictive; for example, they hold for all (regular) exponential
families.
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follow is independent of the label information. They show how to employ homotopy
continuation (path-following) methods in order to trace the solution path up to A*
fairly efficiently. By restricting themselves to A < A* they circumvent the many
(local) maxima problem, and their choice of A = A* is well motivated.

Murray and Titterington [1978] (see also (Titterington et al., 1985), ex. 4.3.11)
suggest using D; for each class to obtain kernel-based estimates of the densities
P(x|y). They fix these estimates and use EM in order to maximize the joint
likelihood of Dy, D, w.r.t. the mixing coefficients m; only.10 This procedure is
robust, but does not make a lot of use of the unlabeled data. If D; is small, the
kernel-based estimates of the P(x|y) will be poor, and even if D, can be used to
obtain better values for the mixing coefficients, this is not likely to rescue the final
discrimination. Furthermore, the procedure has been suggested for situations where
the natural weighting between D;, D, is appropriate, which is typically not the case
for SSL.

Shahshahani and Landgrebe (Shahshahani and Landgrebe, 1994) provide an
analysis aimed toward the general question whether unlabeled data can help in
classification, based on methods originating in asymptotic maximum-likelihood
theory. Their argumentation is somewhat unclear and has been criticized by various
other authors (e.g., (Nigam et al., 2000; Zhang and Oles, 2000)). They do not define
model classes and seem to confuse asymptotic and finite-sample terms. After all,
their claim seems to be that unlabeled data can reduce the asymptotic variance of
an estimator, but they do not worry about the fact that such modifications could
actually introduce new bias, especially in the interesting case where m > n. On the
practical side, the algorithm they suggest is the joint EM scheme discussed above.

Another analysis of SSL which also employs Fisher information, is given by Zhang
and Oles (Zhang and Oles, 2000). The authors show that for purely diagnostic
models, unlabeled data cannot help (this fact has of course been known for a long
time; see also section 2.2.2). In the generative setup, they show that D, can only
help. While this is true under their assumptions, it draws on asymptotic concepts
and may not be relevant in practical situations. The Fisher information charac-
terizes the minimal asymptotic variance of an unbiased estimator only, and the
maximum-likelihood estimator is typically only asymptotically unbiased. Applying
such concepts to the case where D; is small cannot lead to strong conclusions, and
the question of (even asymptotic) bias remains in the case where m grows much
faster than n. On the practical side, some empirical evidence is presented on a
text categorization task which shows that unlabeled data can lead to instabilities
in common transduction algorithms and therefore “hurt” (see comments in section

2.2.3).

10. EM w.r.t. the mixing coefficients only always converges to a unique global optimum.
It is essentially a variant of the Blahut-Arimoto algorithm to compute the rate distortion
function which is important for quantization (see (Cover and Thomas, 1991)).
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2.3.2 Diagnostic Techniques

We noted in section 2.2.2 that unlabeled data cannot be used in Bayesian diagnostic
methods if @ and p are a priori independent, so in order to make use of D, we
have to employ conditional priors P(@|u). Unlabeled data may still be useful in
non-Bayesian settings. An example has been given by Tong and Koller (Tong and
Koller, 2000) under the name of restriced Bayes optimal classification (RBOC).
Consider a diagnostic method in which the sum of an empirical loss term and a
regularization functional is minimized. The empirical loss term is the expectation
w.r.t. the labeled sample D; of a loss function relevant to the problem (e.g., the zero-
one loss L(x,y,h) = I{y+n(a)}). The authors suggest incorporating unlabeled data
D, by estimating P(x,y) from D;UD,,, then replacing the empirical loss term by the
expectation of the loss under this estimate. The regularization term is not changed.
We can compare this method directly with input-dependent regularization (see
section 2.2.3). In the former, the empirical loss part (the negative log likelihood for
a probabilistic model) is modified based on D,,; in the latter it is the regularization
term. We would not expect RBOC to produce very different results from the
corresponding diagnostic technique, especially if n is rather small (which is the
interesting case in practice). This is somewhat confirmed by the weak results in
(Tong and Koller, 2000). A very similar idea is proposed in (Chapelle et al., 2001)
in order to modify the diagnostic SVM framework.

Anderson (Anderson, 1979) suggested an interesting modification of logistic
regression in which unlabeled data can be used. In binary logistic regression, the log
odds are modeled as linear function, which gives P(x|1) = exp(8” )P(x|2) and
P(x) = (m exp(8T ) +1—m)P(x|2), where m; = P{t = 1}. Anderson now chooses
the parameters 3, m; and P(x|2) in order to maximize the likelihood of both D
and D, subject to the constraints that P(x|1) and P(x|2) are normalized. For
finite X, this problem can be transformed into an unconstrained optimization w.r.t.
the parameters 3, 71. For a continuous input variable «, Anderson advocates using
the form of P(x|2) derived for the “finite X” case, although this is not a smooth
function. Unfortunately, it is not clear how to generalize this idea to more realistic
models, for example how to “kernelize” it, and the form of P(x|2) is inadequate for
many problems with infinite X.

2.3.3 Input-Dependent Regularization

We discussed in section 2.2.3 that unlabeled data D, can be useful within a
diagnostic technique if @ and p are dependent a priori. In order to implement
this idea, we have to specify conditional priors P(0|u) encoding our belief in how
characteristics of & — y depend on knowledge about P(x).
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2.3.3.1 The Cluster Assumption

It is not hard to construct “malicious” examples of P(x,y) which defy any given
dependence assumption on @, p. However, in practice it is often the case that
cluster structure in the data for & indeed is mostly consistent with the labeling.
It is not very fruitful to speculate about why this is the case, although certainly
there is a selection bias toward features (i.e. components in @) which are relevant
w.r.t. the labeling process, which means they should group in the same way (w.r.t.
a simple distance) as labelings. The cluster assumption (CA) (e.g., (Seeger, 2000b))
provides a general way of exploiting this observation for SSL. It postulates that two
points &', " should have the same label i with high probability if there is a “path”
between them in X which moves through regions of significant density P(x) only. In
other words, a discrimination function between the classes should be smooth within
connected high-density regions of P(a). Thus, the CA can be compared directly
with global smoothness assumptions requiring the discriminant to change smoothly
everywhere, independent of P(a). While the latter penalize sharp changes also in
regions which will be sparsely populated by training and test data, the CA remains
indifferent there.

The CA is implemented (to different extent) in a host of methods proposed
for SSL. Most prominent are probably label propagation methods (Szummer and
Jaakkola, 2002b; Belkin and Niyogi, 2003b; Zhu et al., 2003b). The rough idea
is to construct a graph with vertices from X; U X, which contains the test
set to be labeled and all of X;. Nearest neighbors are joined by edges with a
weight proportional to local correlation strength. We then initialize the nodes
corresponding to X; with the labels Y; and propagate label distributions over the
remaining nodes in the manner of a Markov chain on the graph (Szummer and
Jaakkola, 2002b). It is also possible to view the setup as a Gaussian field with
the graph and edge weights specifying the inverse covariance matrix (Zhu et al.,
2003b). Label propagation techniques implement the CA relative to unsupervised
spectral clustering (Belkin and Niyogi, 2003b). The CA has been implemented for
kernel machines by way of the cluster kernel (Chapelle et al., 2003). Furthermore,
the generative SSL techniques of section 2.3.1 can be seen as implementing the CA
relative to a mixture model clustering.

A generalization of the CA has been given by Corduneanu and Jaakkola (see
chapter 10 in this book) who show how to obtain a regularizer for the conditional
distribution P(y|x) from information-theoretic arguments.

2.3.3.2 The Fisher Kernel

The Fisher kernel was proposed in (Jaakkola and Haussler, 1999) in order to
exploit additional unlabeled data within a kernel-based support vector machine
(SVM) framework for detecting remote protein homologies. The idea is to fit a
generative model P(xz|u) to D, by maximum likelihood (resulting in fi, say). If
x are DNA sequences, a hidden Markov model (HMM) can be employed. P(x|f)
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represents the knowledge extracted from D,,, and the Fisher kernel is a general way
of constructing a covariance kernel K, which depends on this knowledge. We can
then fit an SVM or a Gaussian process (GP) classifier to D,, using the kernel K.
Identifying this setup as an instance of input-dependent regularization is easiest in
the GP context. Here, 8 is a process representing the discriminant function (we
assume ¢ = 2 for simplicity), and P(@|u) is a GP distribution with zero-mean
function and covariance kernel K,,. In the ML context, P(u|D,,) is approximated
by the delta distribution d.

Define the Fisher score to be Fj;(x) = Vi log P(x|p) (the gradient w.r.t. g is
evaluated at f1). The Fisher information matrix is F = Ep(a) [Fa(z)Fa(z)T].
The naive Fisher kernel is K, (z,2') = Fa(z)TF 'Fai(z'). In a variant, F is
replaced by al for a scale parameter «. Other variants of the Fisher kernel are
obtained by using the Fisher score Fy,(x) as feature vector for  and plugging
these into a standard kernel such as the Gaussian radial basis function (RBF) one.
The latter “embeddings” seem to be more useful in practice. The Fisher kernel can
be motivated from various angles (see (Jaakkola and Haussler, 1999)), for example,
as first-order approximation to a sample mutual information between x, x’ (Seeger,
2002).

2.3.3.3 Co-Training

Co-training was introduced by Blum and Mitchell (Blum and Mitchell, 1998) and is
related to earlier work on unsupervised learning (Becker and Hinton, 1992). The idea
is to make use of different “views” on the objects to be classified (here we restrict
ourselves to binary classification, ¢ = 2, and to two views). For example, a webpage
can be represented by the text on the page, but also by the text of hyperlinks
referring to the page. We can train classifiers separately which are specialized to
each of the views, but in this context unlabeled data D, can be helpful in that,
although the true label is missing, it must be the same for all the views. It turns out
that co-training can be seen as a special case of Bayesian inference using conditional
priors (see section 2.2.3), as is demonstrated below in this section.

Let X = XM x X® be a finite or countable input space. If z = (1), 2(?), the
21 are different “views” on . We are also given spaces ©) of concepts (binary
classifiers) 8Y). Elements 8 = (6,0) € © = 6 x ©®@ are called concepts
over X, although we may have 8 (1)) £ 62 (2?) for some = (), 2?) € X.
Whenever the 8% agree, we write 8(xz) = 00 (zM). If A C X, we say that
a concept 8 = (0, 0@) is compatible with A if 61 () = 0@ (@) for all
x = (M, 2?)) € A. Denote by ©(A) the space of all concepts compatible with
A If Q(z) is a distribution over X with support S = supp Q(z) = {z|Q(x) > 0},
we say that a concept 0 is compatible with the distribution @ if it is compatible

11. In order not to run into trivial problems, we assume that @(A) is never empty, which
can be achieved by adding the constant concept 1 to both ©).
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with S.

In the co-training setting, there is an unknown input distribution P(x). A
target concept 0 is sampled from some unknown distribution over ©, and the
data distribution is P(y|x) = Itgx)=y; if 8 € ©({x}), 1/2 otherwise.12 However,
the central assumption is that the target concept 6 is compatible with the input
distribution P(x). More specifically, the support of the concept distribution must be
contained in ©(supp P(x)). Therefore, unlabeled data D,, can be used by observing
that ©(supp P(xz)) C ©(D,UX), so the effective concept space can be shrunk from
O to @(Du U Xl)

We demonstrate that co-training can be understood as Bayesian inference with
conditional priors encoding the compatibility assumption. We model P(x) by
{P(x|p)} and introduce the variable S = supp P(x|u) for convenience, then define
P(B|p) = P(6]S) as

P(0]5) = fs(0)lipco(s);, S CX,

where fs(@) > 0, and all P(0|S) are properly normalized. For example, if ©(S)
is finite, we can choose fs(0) = |©(S)|~!. The likelihood is given by P(y|z,8) =
(1/2)(Ligm (m)=yy + Lo (@2)=yy) (noiseless case). Since P(0|S) = 0 for 6 ¢
O(59), the conditional prior encodes the compatibility assumption. The posterior
belief about 8 is given by

P(6]D1, Du) % Ti6(2)—pr. i1} / P(6]S)P(S|X 1. Dy) dS,

so that P(0|D;,D,) # 0 iff @ is consistent with the labeled data D; and 8 €
©(D, U X). Namely, if § ¢ ©(D,, U X;), then P(0|S) = 0 for all S which contain
D,UX, and P(S|D,, X ;) = 0 for all other S. On the other hand, if § € ©(D,UX)),
then we have P(6|S) > 0 and P(S|Dy, X;) > 0 at least for S = D, U X;. In the
terminology of Blum and Mitchell, supp P(0|D;, D,,) is equal to the “version space”
given all the data. The biases for the learning methods on ©) may be encoded in
the potentials fs(0).

Once co-training is understood within a Bayesian framework with conditional
priors, one can employ standard techniques in order to perform inference. In fact,
we showed in (Seeger, 2000a) that the co-training algorithm suggested by Blum
and Mitchell can be seen as a variant of (sequential) EM on the probabilistic model
sketched above. This viewpoint allows us to generalize co-training along various
dimensions, e.g., allowing for noise, smoother prior distributions, using batch rather
than online training, uncertain rather than fixed labels on the test points, etc. We
refer to (Seeger, 2000a) for details.

12. Here, I is 1 if E is true, 0 otherwise. The scenario is called noiseless because the only
source of randomness is the uncertainty in the target function.
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2.4 Conclusions

In this chapter we have described a simple taxonomy of methods for semi-supervised
learning and given many examples of SSL methods for each of the categories.
Advantages and potential pitfalls of each group have been discussed. We have
underlined the importance of using conditional priors in diagnostic Bayesian SSL
techniques and have given several examples of methods proposed in the literature
which fall into this category.
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For several decades, statisticians have advocated using a combination of labeled and
unlabeled data to train classifiers by estimating parameters of a generative model
through iterative expectation-maximization (EM) techniques. This chapter explores
the effectiveness of this approach when applied to the domain of text classification.
Text documents are represented here with a bag-of-words model, which leads to
a generative classification model based on a mixture of multinomials. This model
is an extremely simplistic representation of the complexities of written text. This
chapter explains and illustrates three key points about semi-supervised learning
for text classification with generative models. First, despite the simplistic repre-
sentation, some text domains have a high positive correlation between generative
model probability and classification accuracy. In these domains, a straightforward
application of EM with the naive Bayes text model works well. Second, some text
domains do not have this correlation. Here we can adopt a more expressive and ap-
propriate generative model that does have a positive correlation. In these domains,
semi-supervised learning again improves classification accuracy. Finally, EM suffers
from the problem of local maxima, especially in high-dimension domains such as
text classification. We demonstrate that deterministic annealing, a variant of EM,
can help overcome the problem of local maxima and increase classification accuracy
further when the generative model is appropriate.

3.1 Introduction

The idea of learning classifiers from a combination of labeled and unlabeled data
is an old one in the statistics community. At least as early as 1968, it was
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suggested that labeled and unlabeled data could be combined to build classifiers
with likelihood maximization by testing all possible class assignments (Hartley
and Rao, 1968). The seminal paper by Day (1969) presents an iterative EM-like
approach for parameters of a mixture of two normals with known covariances
from unlabeled data alone. Similar iterative algorithms for building maximum-
likelihood classifiers from labeled and unlabeled data with an explicit generative
model followed, primarily for mixtures of normal distributions (McLachlan, 1975;
Titterington, 1976).

Dempster et al. (1977) presented the theory of the EM framework, bringing to-
gether and formalizing many of the commonalities of previously suggested iterative
techniques for likelihood maximization with missing data. Its applicability to es-
timating maximum likelihood (or maximum a posteriori) parameters for mixture
models from labeled and unlabeled data (Murray and Titterington, 1978) and then
using this for classification (Little, 1977) was recognized immediately. Since then,
this approach continues to be used and studied (McLachlan and Ganesalingam,
1982; Ganesalingam, 1989; Shahshahani and Landgrebe, 1994). Using likelihood
maximization of mixture models for combining labeled and unlabeled data for clas-
sification has more recently made its way to the machine learning community (Miller
and Uyar, 1996; Nigam et al., 1998; Baluja, 1999).

The theoretical basis for expectation-maximization shows that with sufficiently
large amounts of unlabeled data generated by the model class in question, a more
probable model can be found than if using just the labeled data alone. If the
classification task is to predict the latent variable of the generative model, then
with sufficient data a more probable model will also result in a more accurate
classifier.

This approach rests on the assumption that the generative model is correct.
When the classification task is one of classifying human-authored texts (as we
consider here) the true generative model is impossible to parameterize, and instead
practitioners tend to use very simple representations. For example, the commonly
used naive Bayes classifier represents each authored document as a bag of words,
discarding all word-ordering information. The generative model for this classifier
asserts that documents are created by a draw from a class-conditional multinomial.
As this is an extreme simplification of the authoring process, it is interesting to
ask whether such a generative modeling approach to semi-supervised learning is
appropriate or beneficial in the domain of text classification.

This chapter demonstrates that generative approaches are appropriate for semi-
supervised text classification when the selected generative model probabilities are
well correlated with classification accuracy, and when suboptimal local maxima
can be mostly avoided. In some cases, the naive Bayes generative model, despite its
simplicity, is sufficient. We find that model probability is strongly correlated with
classification accuracy, and expectation-maximization techniques yield classifiers
with unlabeled data that are significantly more accurate than those built with
labeled data alone. In other cases, the naive Bayes generative model is not well
correlated with classification accuracy. By adopting a more expressive generative
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model, accuracy and model probability correlations are restored, and again EM
yields good results.

One of the pitfalls of EM is that it only guarantees the discovery of local maxima
and not global maxima in model probability space. In domains like text classifica-
tion, with a very large number of parameters, this effect can be very significant.
We show that when model probability and classification are well correlated, the use
of deterministic annealing, an alternate modeling estimation process, finds more
probable and thus more accurate classifiers.

Nongenerative approaches have also been used for semi-supervised text classifica-
tion. Joachims (1999) uses transductive support vector machines to build discrimi-
native classifiers for several text classification tasks. Blum and Mitchell (1998) use
the co-training setting to build naive Bayes classifiers for webpages, using anchor
text and the page itself as two different sources of information about an instance.
Zelikovitz and Hirsh (2000) use unlabeled data as background knowledge to aug-
ment a nearest-neighbor classifier. Instead of matching a test example directly to
its closest labeled example, they instead match a test example to a labeled example
by measuring their similarity to a common set of unlabeled examples.

This chapter proceeds as follows. Section 3.2 presents the generative model used
for text classification and shows how to perform semi-supervised learning with EM.
Section 3.3 shows an example where this approach works well. Section 3.4 presents
a more expressive generative model that works when the naive Bayes assumption
is not sufficient, and experimental results from a domain that needs it. Section 3.5
presents deterministic annealing and shows that this finds model parameterizations
that are much more probable than those found by EM, especially when labeled data
are sparse.

3.2 A Generative Model for Text

This section presents a framework for characterizing text documents and shows how
to use this to train a classifier from labeled and unlabeled data. The framework
defines a probabilistic generative model, and embodies three assumptions about
the generative process: (1) the data are produced by a mixture model, (2) there
is a one-to-one correspondence between mixture components and classes, and (3)
the mixture components are multinomial distributions of individual words. These
are the assumptions used by the naive Bayes classifier, a commonly used tool
for standard supervised text categorization (Lewis, 1998; McCallum and Nigam,
1998a).

We assume documents are generated by a mizture of multinomials model, where
each mixture component corresponds to a class. Let there be M classes and a
vocabulary of size |X|; each document x; has |z;| words in it. How do we create a
document using this model? First, we roll a biased M-sided die to determine the
class of our document. Then, we pick up the biased |X|-sided die that corresponds
to the chosen class. We roll this die |z;| times, and count how many times each
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word occurs. These word counts form the generated document.

Formally, every document is generated according to a probability distribution
defined by the parameters for the mixture model, denoted 6. The probability
distribution consists of a mixture of components ¢; € [M ].1 A document, xz;, is
created by first selecting a mixture component according to the mixture weights
(or class probabilities), P(c;|6), then using this selected mixture component to
generate a document according to its own parameters, with distribution P(xz;|c;; 0).
Thus, the likelihood of seeing document x; is a sum of total probability over all
mixture components:

P(zild) = Y P(e|0)P(wile;:6). (3.1)

JE[M]

Each document has a class label. We assume a one-to-one correspondence between
mixture model components and classes, and thus use c¢; to indicate the jth mixture
component, as well as the jth class. The class label for a particular document z; is
written y;. If document x; was generated by mixture component c; we say y; = c;.

A document, z;, is a vector of word counts. We write x;; to be the number of
times word w; occurs in document x;. When a document is to be generated by a
particular mixture component a document length, |x;| = Z‘till T, 1s first chosen
independently of the component.2 Then, the selected mixture component is used
to generate a document of the specified length, by drawing from its multinomial
distribution.

From this we can expand the second term from (3.1), and express the probability
of a document given a mixture component in terms of its constituent features: the
document length and the words in the document.3

P(x;le;;0) o P(|zil) [T Plweles;0)™. (3.2)
wi€X

This formulation embodies the standard naive Bayes assumption: that the words
of a document are conditionally independent of the other words in the same
document, given the class label.

Thus the parameters of an individual mixture component define a multinomial
distribution over words, i.e. the collection of word probabilities, each written
Ow,|c,» such that 0, = P(wilcj;0), where t € [|X|] and 7, P(wilc;;0) = 1.
Since we assume that for all classes, document length is identically distributed, it
does not need to be parameterized for classification. The only other parameters

1. We use the notation [M] to refer to the set {1,..., M}.

2. This assumes that document length is independent of class, though length could also
be modeled and parameterized on a class-by-class basis.

3. We omit here the multinomial coefficients for notational simplicity. For classification
purposes, these coefficients cancel out.
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of the model are the mixture weights (class probabilities),f., = P(c;|0), which
indicate the probabilities of selecting the different mixture components. Thus the
complete collection of model parameters, 6, defines a set of multinomials and class
probabilities: 0 = {0,,|., : we € X,c; € [M]; O, : ¢; € [M]}.

To summarize, the full generative model, given by combining Egs. 3.1 and 3.2,
assigns probability P(z;|0) to generating document x; as follows:

P(x;l0) o P(lzil) Y Pejl0) JT Plwele; 0)* (3-3)

JE[M] wy€X

where the set of word counts x;; is a sufficient statistic for the parameter vector 6
in this generative model.

3.2.1 Supervised Text Classification with Generative Models

Learning a naive Bayes text classifier from a set of labeled documents consists of
estimating the parameters of the generative model. The estimate of the parameters
0 is written 6. Naive Bayes uses the maximum a posteriori (MAP) estimate, thus
finding arg maxp P(0|X,Y"). This is the value of # that is most probable given the
evidence of the training data and a prior.

Our prior distribution is formed with the product of Dirichlet distributions—one
for each class multinomial and one for the overall class probabilities. The Dirichlet
is the commonly used conjugate prior distribution for multinomial distributions.
The form of the Dirichlet is

P (O, je;l0) o< ] Plweles)™ . (3.4)
wi€X

where the a; are constants greater than zero. We set all a; = 2, which corresponds
to a prior that favors the uniform distribution. This is identical to Laplace and
m-estimate smoothing. A well-presented introduction to Dirichlet distributions is
given by Stolcke and Omohundro (1994).

The parameter estimation formulas that result from maximization with the data
and our prior are the familiar smoothed ratios of empirical counts. The word
probability estimates éwt|cj are

~ ~ 1 + ) 51 iy
9wt|cj = P(wt|6]7 0) = %\LMEX gt 7
X+ 22020 2oaex 0igis
where d;; is given by the class label: 1 when y; = ¢; and 0 otherwise.

The class probabilities, écj, are estimated in the same manner, and also involve
a ratio of counts with smoothing:

(3.5)
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s 5 _ L+ Y6y
0., = P(c;|0) = W (3.6)

The derivation of these ratios-of-counts formulas comes directly from maximum
a posteriori parameter estimation. Finding the 6 that maximizes P(0|X,Y) is
accomplished by first breaking this expression into two terms by the Bayes rule:
P(0|X,Y) x P(X,Y|0)P(f). The first term is calculated by the product of all
the document likelihoods (from Eq. 3.1). The second term, the prior distribution
over parameters, is the product of Dirichlets. The whole expression is maximized
by solving the system of partial derivatives of log(P(0|X,Y)), using Lagrange
multipliers to enforce the constraint that the word probabilities in a class must
sum to one. This maximization yields the ratio of counts seen above.

Given estimates of these parameters calculated from labeled training documents,
it is possible to turn the generative model backward and calculate the probability
that a particular mixture component generated a given document to perform
classification. This follows from an application of the Bayes rule:

P(Cj|é)P(33f|cj; é)

Pail) A
- Af(cjm HwtexP(wHCj;@)“i . 57)
> =1 P(ckl0) Hwtex P(we|ey; 0)m

If the task is to classify a test document x; into a single class, then the class with
the highest posterior probability, arg max; P(y; = ¢;|z;;6), is selected.

P(yi = ¢jlzi;0) =

3.2.2 Semi-Supervised Text Classification with EM

In the semi-supervised setting with labeled and unlabeled data, we would still like
to find MAP parameter estimates, as in the supervised setting above. Because there
are no labels for the unlabeled data, the closed-form equations from the previous
section are not applicable. However, using the EM technique, we can find locally
MAP parameter estimates for the generative model.

The EM technique as applied to the case of labeled and unlabeled data with
naive Bayes yields a straightforward and appealing algorithm. First, a naive Bayes
classifier is built in the standard supervised fashion from the limited amount of
labeled training data. Then, we perform classification of the unlabeled data with
the naive Bayes model, noting not the most likely class but the probabilities
associated with each class. Then, we rebuild a new naive Bayes classifier using all the
data—Ilabeled and unlabeled—using the estimated class probabilities as true class
labels. This means that the unlabeled documents are treated as several fractional
documents according to these estimated class probabilities. We iterate this process
of classifying the unlabeled data and rebuilding the naive Bayes model until it
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converges to a stable classifier and set of labels for the data. This is summarized in
algorithm 3.1.

Algorithm 3.1 Basic EM algorithm for semi-supervised learning of a text classifier

e Inputs: Collections X; of labeled documents and X,, of unlabeled documents.

e Build an initial naive Bayes classifier, é, from the labeled documents, X;, only.
Use maximum a posteriori parameter estimation to find 6 = arg maxy P(X;|0)P(0)
(see Egs. 3.5 and 3.6).

e Loop while classifier parameters improve, as measured by the change in [(6|X,Y)
(the log probability of the labeled and unlabeled data, and the prior) (see Equa-
tion 3.8):
o (E step) Use the current classifier, 0, to estimate component membership
of each unlabeled document, i.e., the probability that each mixture component
(and class) generated each document, P(c;|z;;0) (see Eq. 3.7).

e (M step) Re-estimate the classifier, é, given the estimated component mem-
bership of each document. Use maximum a posteriori parameter estimation to
find 6 = argmaxy P(X,Y|0)P(0) (see Egs. 3.5 and 3.6).
e Output: A classifier, é, that takes an unlabeled document and predicts a class
label.

More formally, learning a classifier is approached as calculating a maximum
a posteriori estimate of 6, i.e. argmaxyP(9)P(X,Y]0), which is equivalent to
maximizing the log of the same. Consider the second term of the maximization, the
probability of all the observable data. The probability of an individual unlabeled
document is a sum of total probability over all the classes, as in Eq. 3.1. For the
labeled data, the generating component is already given by label y; and we do not
need to refer to all mixture components—just the one corresponding to the class.
Using X, to refer to the unlabeled examples, and X; to refer to the examples for
which labels are given, the expected log probability of the full data is

101X,Y) = log(P(0))+ > log Y P(c|0)P(wile;;0)
T, €Xy JE[M]
+ ) log (P(ys = ¢|0)P(ily: = ¢;30)) . (3.8)

(We have dropped the constant terms for convenience.) Notice that this equation
contains a log of sums for the unlabeled data, which makes a maximization by
partial derivatives computationally intractable. The formalism of EM (Dempster
et al., 1977) provides an iterative hill-climbing approach to finding local maxima
of model probability in parameter space. The E step of the algorithm estimates
the expectations of the missing values (i.e., unlabeled class information) given the
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latest iteration of the model parameters. The M step maximizes the likelihood of
the model parameters using the previously computed expectations of the missing
values as if they were the true ones.

In practice, the E step corresponds to performing classification of each unlabeled
document using Eq. 3.7. The M step corresponds to calculating a new maximum a
posteriori (MAP) estimate for the parameters, 0, using Fgs. 3.5 and 3.6 with the
current estimates for P(cj|z;; 0).

Essentially all initializations of the parameters lead to some local maxima with
EM. Many instantiations of EM begin by choosing a starting model parameteri-
zation randomly. In our case, we can be more selective about the starting point
since we have not only unlabeled data but also some labeled data. Our iteration
process is initialized with a priming M step, in which only the labeled documents
are used to estimate the classifier parameters, é, as in Egs. 3.5 and 3.6. Then the
cycle begins with an E step that uses this classifier to probabilistically label the
unlabeled documents for the first time.

The algorithm iterates until it converges to a point where 6 does not change
from one iteration to the next. Algorithmically, we determine that convergence
has occurred by observing a below-threshold change in the log-probability of the
parameters (Eq. 3.8), which is the height of the surface on which EM is hill-
climbing.

3.2.3 Discussion

The justifications for this approach depend on the assumptions stated in section 3.2,
namely, that the data are produced by a mixture model, and that there is a one-
to-one correspondence between mixture components and classes. If the generative
modeling assumptions were correct, then maximizing model probability would be
a good criterion indeed for training a classifier. In this case the Bayes optimal
classifier, when the number of training examples approaches infinity, corresponds
to the MAP parameter estimates of the model. When these assumptions do not
hold—as certainly is the case in real-world textual data—the benefits of unlabeled
data are less clear. With only labeled data, the naive Bayes classifier does a good job
of classifying text documents (Lewis and Ringuette, 1994; Craven et al., 2000; Yang
and Pedersen, 1997; Joachims, 1997; McCallum et al., 1998). This observation is
explained in part by the fact that classification estimation is only a function of the
sign (in binary classification) of the function estimation (Domingos and Pazzani,
1997; Friedman, 1997). The faulty word independence assumption exacerbates the
tendency of naive Bayes to produce extreme (almost 0 or 1) class probability
estimates. However, classification accuracy can be quite high even when these
estimates are inappropriately extreme.

Semi-supervised learning leans more heavily on the correctness of the modeling
assumptions than supervised learning. The next section will show empirically that
this method can indeed dramatically improve the accuracy of a document classifier,
especially when there are only a few labeled documents.
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Figure 3.1 Classification accuracy on the 20 Newsgroups data set, both with and without
10,000 unlabeled documents. With small amounts of training data, using EM yields more
accurate classifiers. With large amounts of labeled training data, accurate parameter
estimates can be obtained without the use of unlabeled data, and classification accuracies
of the two methods begin to converge.

3.3 Experimental Results with Basic EM

In this section we demonstrate that semi-supervised learning with labeled and
unlabeled data provides text classifiers that are more accurate than those provided
by supervised learning using only the labeled data. This is an interesting result
as the mixture of multinomials generative model is a dramatic simplification of
the true authoring process. However, we demonstrate that for some domains, the
optimization criteria of model probability are strongly correlated with classification
accuracy.

Experiments in this section use the well-known 20 Newsgroups text classifica-
tion data set (Mitchell, 1997), consisting of about 20,000 Usenet articles evenly
distributed across 20 newsgroups. The task is to classify an article into the news-
group to which it was posted. For preprocessing, stopwords are removed and word
counts of each document are scaled such that each document has constant length,
with potentially fractional word counts. As the data have timestamps, a test set
is formed from the last 20% of articles from each newsgroup. An unlabeled set is
formed by randomly selecting 10,000 articles from those remaining. Labeled train-
ing sets are formed by partitioning the remaining documents into nonoverlapping
sets. We create up to ten training sets per size of the set, as data are available.
When posterior model probability is reported and shown on graphs, some additive
and multiplicative constants are dropped, but the relative values are maintained.

Figure 3.1 shows the effect of using EM with unlabeled data on this data set. The
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Figure 3.2 A scatterplot showing the correlation between the posterior model proba-
bility and the accuracy of a model trained with labeled and unlabeled data. The strong
correlation implies that model probability is a good optimization criteria for the 20 News-
groups data set.

0%

vertical axis indicates average classifier accuracy on test sets, and the horizontal axis
indicates the amount of labeled training data on a log scale. We vary the amount of
labeled training data, and compare the classification accuracy of traditional naive
Bayes (no unlabeled documents) with an EM learner that has access to 10.000
unlabeled documents.

EM performs significantly better than traditional naive Bayes. For example,
with 300 labeled documents (15 documents per class), naive Bayes reaches 52%
accuracy while EM achieves 66%. This represents a 30% reduction in classification
error. Note that EM also performs well even with a very small number of labeled
documents; with only 20 documents (a single labeled document per class), naive
Bayes obtains 20%, EM 35%. As expected, when there are a lot of labeled data,
and the naive Bayes learning curve is close to a plateau, having unlabeled data
does not help nearly as much, because there are already enough labeled data to
accurately estimate the classifier parameters. With 5500 labeled documents (275
per class), classification accuracy increases from 76% to 78%. Each of these results
is statistically significant (p < 0.05).4

How does EM find more accurate classifiers? It does so by optimizing on posterior
model probability, not classification accuracy directly. If our generative model were
perfect, then we would expect model probability and accuracy to be correlated and

4. When the number of labeled examples is small, we have multiple trials, and use paired
t-tests. When the number of labeled examples is large, we have a single trial, and report
results instead with a McNemar test. These tests are discussed further by Dietterich (1998).
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EM to be helpful. But we know that our simple generative model does not capture
many of the properties contained in the text. Our 20 Newsgroups results show that
we do not need a perfect model for EM to help text classification. Generative models
are representative enough for the purposes of text classification if model probability
and accuracy are correlated, allowing EM to indirectly optimize accuracy.

To illustrate this more definitively, let us look again at the 20 Newsgroups
experiments, and empirically measure this correlation. Figure 3.2 demonstrates the
correlation—each point in the scatterplot is one of the labeled and unlabeled splits
from figure 3.1. The labeled data here are used only for setting the EM initialization
and are not used during iterations. We plot classification performance as accuracy
on the test data and show the posterior model probability.

For this data set, classification accuracy and model probability are in good
correspondence. The correlation coefficient between accuracy and model probability
is 0.9798, a very strong correlation indeed. We can take this as a post hoc verification
that this data set is amenable to using unlabeled data via a generative model
approach. The optimization criterion of model probability is applicable here because
it is in tandem with accuracy.

3.4 Using a More Expressive Generative Model

The second assumption of the generative model of section 3.2 states that there
is a one-to-one correspondence between classes and components in the mixture
model. In some text domains, it is clear that such an assumption is a dangerous
one. Consider the task of text filtering, where we want to identify a small well-
defined class of documents from a very large pool or stream of documents. One
example might be a system that watches a network administrator’s incoming emails
to identify the rare emergency situation that would require paging her on vacation.
Modeling the nonemergency emails as the negative class with only one multinomial
distribution will result in an unrepresentative model. The negative class contains
emails with a variety of subtopics: personal emails, nonemergency requests, spam,
and many more.

What would be a more representative model? Instead of modeling a sea of
negative examples with a single mixture component, it might be better to model
it with many components. In this way, each negative component could, after
maximization, capture one clump of the sea of examples. This section takes exactly
the approach suggested by this example for text data, and relaxes the assumption of
a one-to-one correspondence between mixture components and classes. We replace it
with a less restrictive assumption: a many-to-one correspondence between mixture
components and classes. This allows us to model the subtopic structure of a class.



44

Semi-Supervised Text Classification Using EM

3.4.1 Multiple Mixture Components per Class

The new generative model must account for a many-to-one correspondence between
mixture components and classes. As in the old model, we first pick a class with a
biased die roll. Each class has several subtopics; we next pick one of these subtopics,
again with a biased die roll. Now that the subtopic is determined, the document’s
words are generated. We do this by first picking a length (independently of subtopic
and class) and then draw the words from the subtopic’s multinomial distribution.

Unlike previously, there are now two missing values for each unlabeled document—
its class and its subtopic. Even for the labeled data there are missing values; al-
though the class is known, its subtopic is not. Since we do not have access to
these missing class and subtopic labels, we must use a technique such as EM to
estimate local MAP generative parameters. As in section 3.2.2, EM is instantiated
as an iterative algorithm that alternates between estimating the values of missing
class and subtopic labels, and calculating the MAP parameters using the estimated
labels. After EM converges to high-probability parameter estimates the generative
model can be used for text classification by turning it around with the Bayes rule.

The new generative model specifies a separation between mixture components
and classes. Instead of using c¢; to denote both of these, ¢; € [N] now denotes only
the jth mixture component (subtopic). We write t, € [M] for the ath class; when
component ¢; belongs to class t,, then g,; = 1, and otherwise 0. This represents the
predetermined, deterministic, many-to-one mapping between mixture components
and classes. We indicate the class label and subtopic label of a document by y; and
z;, respectively. Thus if document x; was generated by mixture component c; we
say z; = c;j, and if the document belongs to class t,, then we say y; = t,.

If all the class and subtopic labels were known for our data set, finding MAP
estimates for the generative parameters would be a straightforward application of
closed-form equations similar to those for naive Bayes seen in section 3.2.1. The
formula for the word probability parameters is identical to Eq. 3.5 for naive Bayes:

N N 143, ex 0ijTit
Ow,lc, = P(wi|cj;0) = ] i€ .
|X] 4+ 222t D ex 0ijTis

The class probabilities are analogous to Eq. 3.6, but using the new notation for

(3.9)

classes instead of components:

~ A~ 1 + Z‘)_(I 5ia

0, = P(ty|) = —=&=L"2 3.10
t ( a| ) M + |X| ( )

The subtopic probabilities are similar, except they are estimated only with reference

to other documents in that component’s class:
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At classification time, we must estimate class membership probabilities for an

unlabeled document. This is done by first calculating subtopic membership and
then summing over subtopics to get overall class probabilities. Subtopic membership

acj-\ta = P(Cj|ta; é) =

(3.11)

is calculated analogously to mixture component membership for naive Bayes, with
a small adjustment to account for the presence of two priors (class and subtopic)
instead of just one:
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Overall class membership is calculated with a sum of probability over all of the
class’s subtopics:

(3.12)

P(yl = ta|$i;é) = Z qajP(Zi = Cj|.’L‘i;é). (313)
JE[N]

These equations for supervised learning are applicable only when all the training
documents have both class and subtopic labels. Without these we use EM. The
M step, as with basic EM, builds maximum a posteriori parameter estimates for
the multinomials and priors. This is done with Eqs. 3.9, 3.10, and 3.11, using the
probabilistic class and subtopic memberships estimated in the previous E step. In
the E step, for the unlabeled documents we calculate probabilistically weighted
subtopic and class memberships (Eqgs. 3.12 and 3.13). For labeled documents, we
must estimate subtopic membership. But we know from its given class label that
many of the sub-topic memberships must be zero—those subtopics that belong to
other classes. Thus we calculate subtopic memberships as for the unlabeled data,
but setting the appropriate ones to zero, and normalizing the non-zero ones over
only those topics that belong to its class.

If we are given a set of class-labeled data, and a set of unlabeled data, we can now
apply EM if there is some specification of the number of subtopics for each class.
However, this information is not typically available. As a result we must resort to
some techniques for model selection. There are many commonly used approaches
to model selection such as cross-validation, Akaike information criterion (AIC),
bayesian information criterion (BIC) and others. Since we do have the availability
of a limited number of labeled documents, we use cross-validation to select the
number of subtopics for classification performance.
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Table 3.1 Classification accuracy of binary classifiers on Reuters with traditional naive
Bayes (NB1), basic EM (EM1) with labeled and unlabeled data, multiple mixture compo-
nents using just labeled data (NB*), and multiple mixture components EM with labeled
and unlabeled data (EM*). For NB* and EM*, the number of components is selected
optimally for each trial, and the median number of components across the trials used for
the negative class is shown in parentheses. Note that the multicomponent model is more
natural for Reuters, where the negative class consists of many topics. Using both unlabeled
data and multiple mixture components per class increases performance over either alone,
and over naive Bayes.

Category NB1 EM1 NB* EM*

acq 86.9 81.3 88.0 (4) 93.1 (10)
corn 94.6 93.2 96.0 (10) 97.2 (40)
crude 94.3 94.9 95.7 (13) 96.3 (10)
earn 94.9 95.2 95.9 (5) 95.7 (10)
grain 04.1 93.6 96.2 (3) 96.9 (20)
interest 91.8 87.6 95.3 (5) 95.8 (10)
money-fx 93.0 90.4 94.1 (5) 95.0 (15)
ship 94.9 04.1 96.3 (3) 95.9 (3)
trade 91.8 90.2 94.3 (5) 95.0 (20)
wheat 94.0 94.5 96.2 (4) 97.8 (40)

3.4.2 Experimental Results

Here, we provide empirical evidence that to use unlabeled data with a generative
modeling approach, more expressive generative models are sometimes necessary.
With the original generative model, classification accuracy and model probability
can be negatively correlated, leading to lower classification accuracy when unlabeled
data are used. With a more expressive generative model, a moderate positive
correlation is achieved, leading to improved classification accuracies.

The Reuters 21578 Distribution 1.0 data set consists of about 13,000 news articles
from the Reuters newswire labeled with 90 topic categories. Documents in this
data set have multiple class labels, and each category is traditionally evaluated
with a binary classifier. Following several other studies (Joachims, 1998; Liere and
Tadepalli, 1997) we build binary classifiers for each of the ten most populous classes
to identify the topic. We use a stoplist, but do not stem. The vocabulary size for
each Reuters trial is selected by optimizing accuracy as measured by leave-one-out
cross-validation on the labeled training set. The standard ModApte train/test split
is used, which is time-sensitive. Seven thousand of the 9603 documents available
for training are left unlabeled. From the remaining, we randomly select up to
ten nonoverlapping training sets of just ten positively labeled documents and 40
negatively labeled documents.

The first two columns of results in table 3.1 repeat the experiments of section 3.3
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Figure 3.3 Scatterplots showing the relationship between model probability and classi-
fication accuracy for the Reuters acq task. On the left, with only one mixture component
for the negative class, probability and accuracy are inversely proportional, exactly what
we would not want. On the right, with ten mixture components for negative, there is a
moderate positive correlation between model probability and classification accuracy.

with basic EM on the Reuters data set. Here we see that for most categories,
classification accuracy decreases with the introduction of unlabeled data. For each
of the Reuters categories EM finds a significantly more probable model, given the
evidence of the labeled and unlabeled data. But frequently this more probable model
corresponds to a lower-accuracy classifier—mnot what we would hope for.

The first graph in figure 3.3 provides insight into why unlabeled data hurt. With
one mixture component per class, the correlation between classification accuracy
and model probability is very strong (r = —0.9906), but in the wrong direction!
Models with higher probability have significantly lower classification accuracy. By
examining the solutions found by EM, we find that the most probable clustering of
the data has one component with the majority of negative documents and the second
with most of the positive documents, but significantly more negative documents.
Thus, the classes do not separate with high-probability models.

The documents in this data set often have multiple class labels. With the basic
generative model, the negative class covers up to 89 distinct categories. Thus, it is
unreasonable to expect to capture such a broad base of text with a single mixture
component. For this reason, we relax the generative model and model the positive
class with a single mixture component and the negative class with between one and
forty mixture components, both with and without unlabeled data.

The second half of table 3.1 shows results of using multiple mixtures per class
generative model. Note two different results. First, with labeled data alone (NB*),
classification accuracy improves over the single component per class case (NB1).
Second, with unlabeled data, the new generative model results (EM*) are generally
better than the other results. This increase with unlabeled data, measured over all
trials of Reuters, is statistically significant (p < 0.05).

With ten mixture components the correlation between accuracy and model
probability is quite different. Figure 3.3 on the right shows the correlation between
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Table 3.2 Performance of using multiple mixture components when the number of
components is selection via cross-validation (EM*CV) compared to the optimal selection
(EM*) and straight naive Bayes (NB1). Note that cross-validation usually selects too few
components.

Category NB1 EM* EM*CV EM*CV vs NB1
acq 86.9 93.1 (10) 91.1 (5) +4.2
corn 94.6 97.2 (40) 93.2 (3) 14
crude 94.3 96.3 (10) 95.4 (3) +1.1
earn 94.9 95.7 (10) 95.2 (1) +0.3
grain 94.1 96.9 (20) 94.7 (3) +0.6
interest 91.8 95.8 (10) 92.0 (3) +0.2
money-fx 93.0 95.0 (15) 92.3 (3) 0.7
ship 94.9 95.9 (3) 94.4 (3) 0.5
trade 91.8 95.0 (20) 90.7 (3) 11
wheat 94.0 97.8 (40) 96.3 (6) +2.3

accuracy and model probability when using ten mixture components to model the
negative class. Here, there is a moderate correlation between model probability
and classification accuracy in the right direction (r = 0.5474). For these solutions,
one component covers nearly all the positive documents and some, but not many,
negatives. The other ten components are distributed through the remaining negative
documents. This model is more representative of the data for our classification task
because classification accuracy and model probability are correlated. This allows
the beneficial use of unlabeled data through the generative model approach.

One obvious question is how to automatically select the best number of mixture
components without having access to the test set labels. We use leave-one-out cross-
validation. Results from this technique (EM*CV), compared to naive Bayes (NB1)
and the best EM (EM*), are shown in table 3.2. Note that cross-validation does
not perfectly select the number of components that perform best on the test set.
The results consistently show that selection by cross-validation chooses a smaller
number of components than is best.

3.4.3 Discussion

There is tension in this model selection process between complexity of the model
and data sparsity. With as many subtopics as there are documents, we can perfectly
model the training data—each subtopic covers one training document. With still a
large number of subtopics, we can accurately model existing data, but generalization
performance will be poor. This is because each multinomial will have its many
parameters estimated from only a few documents and will suffer from sparse
data. With very few subtopics, the opposite problem will arise. We will very
accurately estimate the multinomials, but the model will be overly restrictive,
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and not representative of the true document distribution. Cross-validation should
help in selecting a good compromise between these tensions with specific regard to
classification performance.

Note that our use of multiple mixture components per class allows us to capture
some dependencies between words on the class level. For example, consider a sports
class consisting of documents about both hockey and baseball. In these documents,
the words ice and puck are likely to co-occur, and the words bat and base are
likely to co-occur. However, these dependencies cannot be captured by a single
multinomial distribution over words in the sports class. With multiple mixture
components per class, one multinomial can cover the hockey subtopic, and another
the baseball subtopic. In the hockey subtopic, the word probability for ice and
puck will be significantly higher than they would be for the whole class. This makes
their co-occurrence more likely in hockey documents than it would be under a single
multinomial assumption.

3.5 Overcoming the Challenges of Local Maxima

In cases where the likelihood in parameter space is well correlated with classifi-
cation accuracy, our optimization yields good classifiers. However, local maxima
significantly hinder our progress. For example, the local maxima we discover with
just a few labeled examples in section 3.3 are more than 40 percentage points below
the classification accuracy provided when labeled data are plentiful. Thus it is im-
portant to consider alternative approaches that can help bridge this gap, especially
when labeled data are sparse.

Typically variants of, or alternatives to, EM are created for the purpose of
speeding up the rate of convergence (McLachlan and Krishnan, 1997). In the domain
of text classification, however, we have seen that convergence is very fast. Thus, we
can easily consider alternatives to EM that improve the local maxima situation
at the expense of slower convergence. Deterministic annealing makes exactly this
tradeoff.

3.5.1 Deterministic Annealing

The intuition behind deterministic annealing is that it begins by maximizing on a
very smooth, convex surface that is only remotely related to our true probability
surface of interest. Initially we can find the global maximum of this simple surface.
Ever so slowly, we change the surface to become both more bumpy, and more close
to the true probability surface. If we follow the original maximum as the surface
gets more complex, then when the original surface is given, we’ll still have a highly
probable maximum. In this way, it avoids many of the local maxima that EM would
otherwise get caught in.

One can think of our application of EM in the previous sections as an optimization
problem where the loss function is the negation of the likelihood function (Eq. 3.8).
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The iterations of EM are a hill-climbing algorithm in parameter space that locally
minimizes this loss.
Consider the closely related set of loss functions:

01X,Y) = Y log > [Ple;|0)P(xile;:0))°
r,€Xy c; €[M]

+ Y log([P(ys = ¢j10)P(ily; = ¢;:0)]%), (3.14)
z;€X)

where (3 varies between zero and one. When 3 = 1 we have our familiar probability
surface of the previous sections, with good correlation to classification accuracy,
but with many harmful local maximum. In the limit as 8 approaches zero, the
surface value of the loss function in parameter space becomes convex with just
a single global maximum. But, at this extreme, the provided data have no effect
on the loss function, so the correlation with classification accuracy is poor. Values
between zero and one represent various points in the tradeoff between smoothness
of the parameter space and the similarity to the well-correlated probability surface
provided by the data.

This insight is the one that drives the approach called deterministic annealing
(Rose et al., 1992), first used as a way to construct a hierarchy during unsupervised
clustering. It has also been used to estimate the parameters of a mixture of
Gaussians from unlabeled data (Ueda and Nakano, 1995) and to construct a text
hierarchy from unlabeled data (Hofmann and Puzicha, 1998).

For a fixed value of 3, we can find a local maximum given the loss function by
iterating the following steps:

® E step: Calculate the expected value of the class assignments,

[P(c;16")P(wile;; 6*))°

A(k+1) ik
2 :E[yl:clgjhe ] = — — . (315)
] ] S [P(eld)P(ailers 6)°
cr€[M]
= M step: Find the most likely model using the expected class assignments,
0*+Y = argmax,P(0|X;Y;2V). (3.16)

The M step is identical to that of section 3.2.2, while the E step includes reference
to the loss constraint through 3.

Formally, ( is a Lagrange multiplier when solving for a fixed loss in the likelihood
space subject to an optimization criterion of maximum entropy (or minimum
relative entropy to the prior distribution). A § near zero corresponds to finding
the maximum entropy parameterization for a model with a very large allowable
loss.

Consider how model likelihood (Eq. 3.14) is affected by different target losses.
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When the target loss is very large, 8 will be very close to zero; the probability of
each model will very nearly be its prior probability as the influence of the data will
be negligible. In the limit as § goes to zero, the probability surface will be convex
with a single global maximum. For a somewhat smaller loss target, 8 will be small
but not negligible. Here, the probability of the data will have a stronger influence.
There will no longer be a single global maximum, but several. When 3 = 1 we have
our familiar probability surface of the previous chapters, with many local maxima.

These observations suggest an annealing-like process for finding a low-loss model.
If we initialize 3 to be very small, we can easily find the global maximum a posteriori
solution with EM, as the surface is convex. When we raise (3 the probability surface
will get slightly more bumpy and complex, as the data likelihood will have a larger
impact on the probability of the model. Although more complex, the new maximum
will be very close to the old maximum if we have lowered the temperature (1/3) only
slightly. Thus, when searching for the maximum with EM, we can initialize it with
the old maximum and will converge to a good maximum for the new probability
surface. In this way, we can gradually raise (, while tracking a highly probable
solution. Eventually, when (8 becomes 1, we will have a good local maximum for
our generative model assumptions. Thus, we will have found a high-probability local
maximum from labeled and unlabeled data that we can then use for classification.

Note that the computational cost of deterministic annealing is significantly higher
than EM. While each iteration takes the same computation, there are many more
iterations with deterministic annealing, as the temperature is reduced very slowly.
For example, in our experiments, we performed 390 iterations for deterministic
annealing, and only seven for EM. When this extra computation can be afforded,
the benefit may be more accurate classifiers.

3.5.2 Experimental Results

In this section we see empirically that deterministic annealing finds more probable
parameters and more accurate classifiers than EM when labeled training data are
sparse.

For the experimental results, we use the Newsb data set, a subset of 20 Newsgroups
containing the five confusable comp.* classes. We fix a single vocabulary for all
experiments as the top 4000 words as measured by mutual information over the
entire labeled data set. For running the deterministic annealing, we initialize 3 to
0.02, and at each iteration we increase 8 by a multiplicative factor of 1.01 until
0 = 1. We made little effort to tune these parameters. Since each time we increase
[ the probability surface changes only slightly, we run only one iteration of EM
at each temperature setting. Six hundred random documents per class (3000 total)
are treated as unlabeled. A fixed number of labeled examples per class are also
randomly selected. The remaining documents are used as a test set.

Figure 3.4 compares classification accuracy achieved with deterministic annealing
to that achieved by regular EM. The initial results indicate that the two methods
perform essentially the same when labeled data are plentiful, but deterministic an-
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Figure 3.4 The performance of deterministic annealing compared to EM. If class-to-
component assignment was done perfectly deterministic annealing would be considerably
more accurate than EM when labeled data are sparse. Although the default correspondence
is poor, this can be corrected with a small amount of domain knowledge.

nealing actually performs worse when labeled data are sparse. For example, with
two labeled examples per class (ten total) EM gives 58% accuracy where deter-
ministic annealing gives only 51%. A close investigation of the confusion matrices
shows that there is a significant detrimental effect of incorrect class-to-component
correspondence with deterministic annealing when labeled data are sparse. This
occurs because, when the temperature is very high, the global maximum will have
each multinomial mixture component very close to its prior, and the influence of
the labeled data is minimal. Since the priors are the same, each mixture component
will be essentially identical. As the temperature lowers and the mixture compo-
nents become more distinct, one component can easily track the cluster associated
with the wrong class, when there are insufficient labeled data to pull it toward the
correct class.

In an attempt to remedy this, we alter the class-to-cluster correspondence based
on the classification of each labeled example after deterministic annealing is com-
plete. Figure 3.4 shows both the accuracy obtained by empirically selected corre-
spondence, and also the optimal accuracy achieved by perfect correspondence. We
see that by empirically setting the correspondence, deterministic annealing improves
accuracy only marginally. Where before it got 51%, by changing the correspondence
we increase this to 55%, still not better than EM at 58%. However if we could per-
form perfect class correspondence, accuracy with deterministic annealing would be
67%, considerably higher than EM.

To verify that the higher accuracy of deterministic annealing comes from finding
more probable models, figure 3.5 shows a scatterplot of model probability versus



8.5 Owvercoming the Challenges of Local Maxima 53

100%
90% E
"
80% E
70% P N i
+ o+
. 60% | L g i
3 o N ¥
5 50% [ + + = i
8 ha
<
40% | A 1
30% [ " EM: One Regular Starting Point ~ + E
Deterministic Annealing =
20% E
10% E

0%
log Probability of Model
Figure 3.5 A scatterplot comparing the model probabilities and accuracies of EM and

deterministic annealing. The results show that deterministic annealing succeeds because
it finds models with significantly higher probability.

accuracy for deterministic annealing (with optimal class assignment) and EM. Two
results of note stand out. The first is that indeed deterministic annealing finds much
more probable models, even with a small amount of labeled data. This accounts
for the added accuracy of deterministic annealing. A second note of interest is
that models found by deterministic annealing still lie along the same probability-
accuracy correlation line. This provides further evidence that model probability and
accuracy are strongly correlated for this data set, and that the correlation is not
just an artifact of EM.

3.5.3 Discussion

The experimental results show that deterministic annealing indeed could help clas-
sification considerably if class-to-component correspondence were solved. Determin-
istic annealing successfully avoids getting trapped in some poor local maxima and
instead finds more probable models. Since these high-probability models are cor-
related with high-accuracy classifiers, deterministic annealing makes good use of
unlabeled data for text classification.

The class-correspondence problem is most severe when there are only limited
labeled data. This is because with fewer labeled examples, it is more likely that
small perturbations can lead the correspondence astray. However, with just a
little bit of human knowledge, the class-correspondence problem can typically be
solved trivially. In all but the largest and most confusing classification tasks, it is
straightforward to identify a class given its most indicative words, as measured by
a metric such as the weighted log-likelihood ratio. For example, the top ten words
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Table 3.3 The top ten words per class of the News5 data set, Usenet groups in the
comp hierarchy. The words are sorted by the weighted log-likelihood ratio. Note that from
just these ten top words, any person with domain knowledge could correctly correspond
clusters and classes.

graphics  os.ms-windows.misc  sys.ibm.pc.hardware sys.mac.hardware windows.x
jpeg windows scsi apple window
image el ide mac widget
graphics win drive lc motif
images um controller duo xterm
gif dos bus nubus server
format ms dx fpu lib
pub ini bios centris entry
ray microsoft drives quadra openwindows
tiff nt mb iisi usr
siggraph el card powerbook sun

per class of our data set by this metric are shown in table 3.3. From just these ten
words, any person with even the slightest bit of domain knowledge would have no
problem perfectly assigning classes to components. Thus, it is not unreasonable to
require a small amount of human effort to correct the class correspondence after
deterministic annealing has finished. This effort can be positioned within the active
learning framework. Thus, when labeled training data are sparsest, and a modest
investment by a trainer is available to map class labels to cluster components,
deterministic annealing will successfully find more probable and more accurate
models than traditional EM.

Even when this limited domain knowledge or human effort is not available, it
should be possible to estimate the class correspondence automatically. One could
perform both EM and deterministic annealing on the data. Since EM solutions
generally have the correct class correspondence, this model could be used to fix the
correspondence of the deterministic annealing model. That is, one could measure the
distance between each EM class multinomial and each deterministic annealing class
multinomial (with Kullback-Leibler divergence, for example). Then, this matrix of
distances could be used to assign the class labels of the EM multinomials to their
closest match to a multinomial in the deterministic annealing model.

3.6 Conclusions and Summary

This chapter has explored the use of generative models for semi-supervised learn-
ing with labeled and unlabeled data in domains of text classification. The widely
used naive Bayes classifier for supervised learning defines a mixture of multino-
mials mixture models. In some domains, model likelihood and classification accu-
racy are strongly correlated, despite the overly simplified generative model. Here,
expectation-maximization finds more likely models and improved classification ac-
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curacy. In other domains, likelihood and accuracy are not well correlated with the
naive Bayes model. Here, we can use a more expressive generative model that allows
for multiple mixture components per class. This helps restore a moderate correla-
tion between model likelihood and classification accuracy, and again, EM finds
more accurate models. Finally, even with a well-correlated generative model, local
maxima are a significant hindrance with EM. Here, the approach of deterministic
annealing does provide much higher likelihood models, but often loses the corre-
spondence with the class labels. When class label correspondence is easily corrected,
high accuracy models result.
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Empirical and theoretical results have often testified favorably to the semi-
supervised learning of generative classifiers, as described in other chapters of this
book. However, the literature has also brought to light a number of situations
where semi-supervised learning fails to produce good generative classifiers. Here
some clarification is due. We are not simply concerned with classifiers that pro-
duce high classification error — this can also happen in supervised learning. Our
concern is this: it is frequently the case that we would be better off just discard-
ing the unlabeled data and employing a supervised method, rather than taking a
semi-supervised route. Thus we worry about the embarrassing situation where the
addition of unlabeled data degrades the performance of a classifier.

How can this be? Typically we do not expect to be better off by discarding data;
how can we understand this aspect of semi-supervised learning? In this chapter we
focus on the effect of modeling errors in semi-supervised learning, and show how
modeling errors can lead to performance degradation.

4.1 Do Unlabeled Data Improve or Degrade Classification Performance?

Perhaps it would be reasonable to expect an average improvement in classification
performance for any increase in the number of samples (labeled or unlabeled):
the more data, the better. In fact, existing literature presents empirical findings
that attribute positive value to unlabeled data; other chapters present some of
these results. O’Neill’s statement that “unclassified observations should certainly
not be discarded” (O’Neill, 1978) seems to be confirmed by theoretical studies,
most notably by Castelli (1994), Castelli and Cover (1995, 1996), and Ratsaby and
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Venkatesh (1995).

The gist of these previous theoretical investigations is this. Suppose samples
(z4,y;) are realizations of random variables X, and Y, that are distributed according
to distribution p(X,,Y,). Suppose one learns a parametric model p(X,,Y,|0) such
that p(X,, Y,|0) is equal to p(X,,Y,) for some value of § — that is, the “model is
correct” in the sense that it can exactly represent p(X,, Yv).1 Then one is assured
to have an expected reduction in classification error as more and more data are
collected (labeled or unlabeled). Moreover, labeled data are exponentially more
effective in reducing classification error than unlabeled data. In these optimistic
results, unlabeled data can be profitably used whenever available.

However, a more detailed analysis of current empirical results does reveal some
puzzling aspects of unlabeled data. For example, Shahshahani and Landgrebe
(1994) report experiments where unlabeled data degraded the performance of naive
Bayes classifiers with Gaussian variables. They attribute such cases to deviations
from modeling assumptions, such as outliers and “samples of unknown classes”
— they even suggest that unlabeled samples should be used with care, and only
when the labeled data alone produce a poor classifier. Another representative
example is the work by Nigam et al. (2000) on text classification, where classifiers
sometimes display performance degradation. They suggest several possible sources
of difficulties: numerical problems in the learning algorithm, mismatches between
the natural clusters in feature space and the actual labels. Additional examples
are easy to find. Baluja (1999) used naive Bayes and tree-augmented naive Bayes
(TAN) classifiers (Friedman et al., 1997) to detect faces in images, but there were
cases where unlabeled data degraded performance. Bruce (2001) used labeled and
unlabeled data to learn Bayesian network classifiers, from naive Bayes classifiers
to fully connected networks; the naive Bayes classifiers displayed bad classification
performance, and in fact the performance degraded as more unlabeled data were
used (more complex networks also displayed performance degradation as unlabeled
samples were added). A final example: Grandvalet and Bengio (2004) describe
experiments where outliers are added to a Gaussian model, causing generative
classifiers to degrade with unlabeled data.

Figure 4.1 shows a number of experiments that corroborate this anecdotal
evidence. All of them involve binary classification with categorical variables; in all
of them X, is actually a vector containing several attributes X,;. In all experiments
the generative classifiers were learned by maximum likelihood using the expectation-
maximization (EM) algorithm (chapters 2, 3). Figure 4.1(a) shows the performance
of naive Bayes classifiers learned with increasing amounts of unlabeled data (for
several fixed amounts of labeled data), where the data are distributed according to
naive Bayes assumptions. That is, the data were generated by randomly generated

1. Note that here and in the remainder of the chapter we employ p to denote distributions
and densities (for discrete/continuous variables using appropriate measures); we indicate
the type of object we deal with whenever it is not clear from the context.
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statistical models that comply with the independence assumptions of naive Bayes
classifiers. In the naive Bayes model, all attributes X, are independent of each
other given the class Y,: p(X,,Y,) = p(Ys) [[ p(Xvi)- The result is simple: the more
unlabeled data, the better. Figure 4.1(b) shows an entirely different picture. Here
a series of naive Bayes classifiers were learned with data distributed according to
TAN assumptions: each attribute is directly dependent on the class and on at most
another attribute — the attributes form a “tree” of dependencies, hence the name
tree-augmented naive Bayes (Friedman et al., 1997). That is, in figure 4.1(b) the
“model is incorrect.” The graphs in figure 4.1(b) indicate performance degradation
with increasing amounts of unlabeled data.

Figure 4.1(c) depicts a more complex scenario. Again a series of naive Bayes
classifiers were learned with data distributed according to TAN assumptions, so
the “model is incorrect.” Note that two of the graphs show a trend of decreasing
error (as the number of unlabeled samples increases), while the other graph shows a
trend of increasing error. Here unlabeled data improve performance in the presence
of a few labeled samples, but unlabeled data degrade performance when added to
a larger number of labeled samples. A larger set of experiments with artificial data
is described by Cozman and Cohen (2002).

Figure 4.1(d) shows the result of learning naive Bayes classifiers using different
combinations of labeled and unlabeled data sets for the adult classification problem
(using the training and testing data sets available in the UCI repository 2 ). We see
that adding unlabeled data can improve classification when the labeled data set is
small (30 labeled data), but degrade performance as the labeled data set becomes
larger. Thus the properties of this real data set lead to behavior similar to figure
4.1(c).

Finally, figure 4.1(e) and 4.1(f) shows the result of learning naive Bayes and TAN
classifiers using data set 8 in the benchmark data (chapter 21). Both show similar
trends as those displayed in previous graphs.

4.2 Understanding Unlabeled Data: Asymptotic Bias

We can summarize the previous section as follows. First, there are results that
guarantee benefits from unlabeled data when the learned generative classifier
is based on a “correct” model. Second, there is strong empirical evidence that
unlabeled data may degrade performance of classifiers. Performance degradation
may occur whenever the modeling assumptions adopted for a particular classifier
do not match the characteristics of the distribution generating the data.3 This is

2. ftp://ftp.ics.uci.edu/pub/machine-learning-databases/adult

3. As we show in this and subsequent sections, performance degradation occurs even in
the absence of numerical errors or existence of local optima for parameter estimation.
In fact our presentation is independent of numerical techniques, so that results are not
clouded by the intricacies of numerical analysis.



Risks of Semi-Supervised Learning

0.13} 04l
0.12
N 30 Labeled 0350
20.11 S
£ £
Q GJ
S S 0.3
2 01 z
= = 30 Labeled
2 0.09 3
go Foasy
o o
0.08 300 Labeled
0.2H
0.07, — 300 Labeled
3000 Labeled =
06 . , . . 0.15[] , 3000 Labeled .
10’ 10' 10° 10° 10* 10’ 10' 10° 10° 10*
Number of Unlabeled records Number of Unlabeled records

(a) (b)

0.1
05
0.09f
0.45
0.08f
s S 0.4f 30 Labeled
£ £
So.07} s
> 2035}
3 0.06¢ 300 Labeled 3
S g 03r
& 0.05 £
0.25¢
0.04 300 Labeled
02
0.03- 3000 Labeled 3000 Labeled
10’ 10' 10° 10° 10* 10’ 10' 10° 10° 10*
Number of Unlabeled records Number of Unlabeled records
(c) (d)
nE LK

10 Lataied |

e 1
4

_\-I_
: 95 Lobylgy -

L. Toul Labsiad

- i
+ +—— 1
. ATHEY LAl 1ol __'_'_.'r . QeI LALalid .
| — | o
2K = [ : : n 3
1] i i o 1) =] 1] 1] 14 vy [}

Figure 4.1 (a) Naive Bayes classifiers learned from data distributed according to naive
Bayes assumptions with ten attributes; attributes with two to four values. (b) Naive Bayes
classifiers learned from data distributed according to TAN assumptions with ten attributes.
(c) Naive Bayes classifiers learned from data distributed according to TAN assumptions
with 49 attributes. (d) Naive Bayes classifiers generated from the adult database. (e) Naive
Bayes classifiers generated from the data set SecStr, benchmark data (chapter 21). (f)
TAN classifiers generated from the data set SecStr, benchmark data (chapter 21). In all
graphs, points summarize ten runs of each classifier on testing data (bars cover 30th to
70th percentiles).
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troubling because it is usually difficult, if not impossible, to guarantee a priori that
a particular statistical model is a “correct” one.

The key to understanding the vagaries of semi-supervised learning is to study
asymptotic bias. In this section we present an intuitive discussion, leaving more
formal analysis to section 4.3. Our arguments here and in the remainder of this
chapter focus on generative classifiers learned by maximum-likelihood methods. As
most of our arguments are asymptotic, the same rationale will apply to maximum a
posteriori and other Bayesian estimators, as their asymptotic behavior is dominated
by the likelihood function (DeGroot, 1970).

The gist of the argument is as follows. As we formally show in section 4.3, the
asymptotic bias of the maximum-likelihood estimator produced with labeled data
can be different from the asymptotic bias of the maximum- likelihood estimator
produced with unlabeled data, for the same classifier. Suppose then that one learns
a classifier with a reasonable amount of labeled data. The resulting classifier may
be relatively close to its asymptotic limit, yielding some classification error. Now
suppose one takes a much larger amount of unlabeled data, and learns the same
classifier with all available data. Now the classifier may be tending to the asymptotic
limit for unlabeled data — and the performance for this limiting classifier may
be worse than the performance for the first “labeled” limiting classifier. The net
result is that by adding a large number of unlabeled samples one produces a worse
classifier.

However puzzling, this situation can be found even in seemingly innocent situa-
tions, and does not require sophisticated modeling errors. We now discuss a simple
example where unlabeled data degrade the performance of a generative classifier;
this (fictitious) example may help the reader grasp the sometimes unexpected effects
of unlabeled data.

Consider the following classification problem. We are interested in predicting a
baby’s gender (G = Boy or G = Girl) at the 20th week of pregnancy based on two
attributes: whether the mother craved chocolate in the first trimester (Ch = Yes
or Ch = No), and whether the mother’s weight gain was more or less than 15 lb
(W = More or W = Less). Suppose that W and G are independent conditional
on Ch; that is, the direct dependencies in the domain are expressed by the graph
G — Ch — W, leading to the following decomposition of the joint distribution:
P(G,Ch,W) = P(G)P(Ch|G)P(W|Ch). Suppose also that data are distributed
according to

P(G =Boy) = 0.5,

P(Ch =No|G =Boy) = 0.1,
P(Ch =No|G = Girl) = 0.8,
P(W = Less|Ch = No) 0.7,
P(W = Less|Ch = Yes) = 0.2.

Note that from the above distribution we can compute the probabilities of W given
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G to get

P(W = Less|G = Boy) = 0.25,
P(W = Less|G = Girl) = 0.6.

To classify the baby’s gender given weight gain and chocolate craving, we compute
the a posteriori probability of G given W and Ch (which, from the independence
stated above, depends only on Ch):

P(G = Girl|Ch = No) = 0.89,
P(G = Boy|Ch = No) 0.11,
P(G = Girl|Ch = Yes) = 0.18,
P(G =Boy|Ch =Yes) = 0.82.

From the a posteriori probabilities, the optimal classification rule (the Bayes rule,
discussed in the next section) is

if Ch = No, choose G = Girl; if Ch = Yes, choose G = Boy. (4.1)

The Bayes error rate (i.e., the probability of error under the Bayes rule) for this
problem can be easily computed and found to be at about 15%.

Suppose that we incorrectly assume a naive Bayes model for the problem; that is,
we assume that dependencies are expressed by the graph Ch «— G — W. Thus we
incorrectly assume that weight gain is independent of chocolate craving given the
gender; thus we incorrectly assume that the factorization of the joint probability
distribution can be written as P(G, Ch, W) = P(G)P(Ch|G)P(W|G). Suppose that
a friend gave us the “true” values of P(Ch|G), so we do not have to estimate
these quantities. We wish to estimate P(G) and P(W|G) using maximum-likelihood
techniques.

In the case where only labeled data are available, estimators are obtained by
relative frequencies, with zero bias and variance inversely proportional to the
size of the database. Thus even a relatively small database will produce excellent
estimates of probability values. The estimate for P(G) will most likely be close to
0.5; likewise, estimates of P(W = Less|G = Girl) will be close to 0.6 and estimates
of P(W = Less|G = Boy) will be close to 0.25. With these estimated parameters
and the assumed decomposition of the joint probability distribution, the a posteriori
probabilities for G will likely be close to

P(G = Girl|Ch, W) | P(G = Boy|Ch, W)
Ch = No, W = Less 0.95 0.05,
Ch = No, W = More 0.81 0.19,
Ch = Yes, W = Less 0.35 0.65,
Ch = Yes, W = More 0.11 0.89.

Suppose we take these estimates and classify incoming observations using the
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maximum a posteriori value of G. Even though the bias from the “true” a posteriori
probabilities is not zero, this will produce the same optimal Bayes rule 4.1; that is,
the “labeled” classifier is likely to yield the minimum classification error.

Now suppose that unlabeled data are available. As more and more unlabeled
samples are collected, the ratio between the number of labeled samples and the
total number of samples goes to zero. In section 4.3 we show how to compute the
asymptotic estimates in this case. The computation, which is performed in closed
form for this case, yields the following asymptotic estimates: P(G = Boy) = 0.5,
P(W = Less|G = Girl) = 0.78, P(W = Less|G = Boy) = 0.07. The a posteriori
probabilities for G will therefore tend to

P(G = Girl|Ch, W) | P(G = Boy|Ch, W)
Ch = No, W = Less 0.99 0.01,
Ch = No, W = More 0.55 0.45,
Ch = Yes, W = Less 0.71 0.29,
Ch = Yes, W = More 0.05 0.95.

Classification using the maximum a posteriori value of G yields

if {Ch = No, W = Less}, choose G = Girl;

if {Ch = No, W = More}, choose G = Girl;
if {Ch = Yes, W = Less}, choose G = Girl;
if {Ch = Yes, W = More}, choose G = Boy.

Here we see that the prediction has changed from the optimal in the case {Ch =
Yes, W = Less}; instead of predicting {G = Boy}, we predict {G = Girl}. We can
easily find the expected error rate to be at 22%, an increase of 7% in error.

What happened? The labeled data take us to a particular asymptotic limit, and
the unlabeled data take us to a distinct limit. In section 4.3 we will see that this
transition is smooth as unlabeled samples are collected. Because the latter limit is
worse (from the point of view of classification) than the former, the gradual addition
of unlabeled samples degrades performance.

Consider again figure 4.1(a). The graphs there illustrate the situation where
the “model is correct”: labeled and unlabeled data lead to identical asymptotic
estimates. The other graphs in figure 4.1 illustrate situations where the “model is
incorrect.” In these cases the asymptotic estimates tend to the “unlabeled” classifier
as more and more unlabeled data are available — depending on the amount of
labeled data, the graphs start above or below this “unlabeled” limit.

4.3 The Asymptotic Analysis of Generative Semi-Supervised Learning

We start by collecting a few assumptions in this section, at the cost of repeating
definitions already stated in previous chapters. The goal here is to classify a vector
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of attributes X,,. Each instantiation z of X, is a sample. There exists a class variable
Y, that takes values in a set of labels. To simplify the discussion, we assume that
Y, is a binary variable with values —1 and +1. We assume 0-1 loss, hence our
objective is to minimize the probability of classification errors. If we knew exactly
the joint distribution p(X,,Y,), the optimal rule would be to select the label with
highest posterior probability; this is the Bayes rule, and it produces the smallest
classification error, referred to as the Bayes error (Devroye et al., 1996). A classifier
is learned using n independent samples in a database; there are [ labeled samples
and u labeled samples (n = [ + u), and without loss of generality we assume that
the samples are ordered with labeled ones coming first. We assume that a sample
has probability (1 — \) of having its label hidden (the same distribution p(X,|Y,)
generates the labeled and the unlabeled samples).

Consider that a generative model is adopted as a representation for the joint
distribution p(X,,Y,). Suppose that a parametric representation p(X,,Y,|0) with
parameters @ is employed, and a database containing training samples is available
to produce estimates 6. All samples x; are collected in a database denoted by X,
and all samples y; are collected in a database denoted by Y. We consider “plug-in”
classification: compute the optimal rule pretending that p(Y,|X,, é) is the correct
posterior density of Y.

Throughout the chapter we denote the distributions/densities generating the
data by p(-) and the statistical models that are employed to learn the distribution
by p(:|0). Several smoothness and measurability assumptions on these distribu-
tions/densities are necessary to proceed with asymptotic analysis and are adopted
throghout.4

Two principles often used to generate estimates are mazimum likelihood and
mazimization of posterior loss (DeGroot, 1970); the computation of estimates using
these principles generally requires iterative methods, the most popular of which is
the EM algorithm (Dempster et al., 1977). Generative models are well suited for
semi-supervised learning by maximum likelihood, because the likelihood is directly
affected by unlabeled data — as opposed to discriminative models, where the
associated likelihood is not affected by unlabeled data (Zhang and Oles, 2000).

We take that estimates 6 are produced by maximizing the likelihood

L(0) = TIi_y p(wi, 4il0) [T}—141 p(a10). When a sample is unlabeled, its likeli-
hood can be written as a mixture p(X,|Y, = +1,0)p(Y, = +1]0) + p(X,|Y, =
—1,0)p(Y, = —1]0); we assume that such mixtures are identifiable (Redner and
Walker, 1984).

We use the following known result (Berk, 1966; Huber, 1967; White, 1982). Con-

4. Distributions must be defined on measurable Euclidean spaces, with measurable Radon-
Nikodym densities. The dependence of p(Xy, Y, |#) on 6 must be continuous so that second
derivatives exist (and first derivatives must be measurable). Likelihoods, their derivatives
and second derivatives, must be dominated by integrable functions. Finally, expected
values E,(z) [log p(Z|6)] must exist for Z equal to X, Y, and (X,,Y,). These conditions
are listed in detail by Cozman et al. (2003b).
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sider a parametric model p(Z|f) and a sequence of maximum-likelihood estimates

0,,, obtained by maximization of > log p(z;]6), with an increasing number n of in-

dependent samples z;, all identically distributed according to p(Z). Then 0,, — 0* as

n — oo for § in an open neighborhood of #*, where 6* maximizes E,z) [log p(Z|0)].

If 6* is interior to the parameter space, then estimates are asymptotically Gaussian.
central result Extending the result above to semi-supervised learning we have:

Theorem 4.1 The limiting value 0* of mazximum-likelihood estimates is
arg max (AEp(x, v, [log p(Xy, Yo|0)] + (1 — NEp(x, v,) logp(X,|0)]) . (4.2)

Proof 1In semi-supervised learning, the samples are realizations of (X,,Y,) with
probability A, and of X,, with probability (1 — A). Denote by Y, a random variable

that assumes the same values of Y, plus the “unlabeled” value 0. We have p(Y, #
0) = A. The actually observed samples are realizations of (X,,Y,), thus

(X0, Vo = y) = (X, Yy = ) o200 (1 = Mp(X,)) 7=y @)

where p(X,) is a mixture density. Accordingly, the parametric model adopted for
(X,,Y,) has the same form:

B(Xo, Yo = y10) = (X, Yy = y]6)) o0 @ (1 — N)p(X,[0)) =00 ),

The value 6" that maximizes E; v ., |logp(Xo, Y,|0)| is

arg m;%X Eﬁ(Xv,f’v) |:I{Yv;£0}(i/v) (log )‘p(Xm Yv|0)) + I{ffvzo} (Yv) (log(l - A)p(XUW))] :
Hence 6* maximizes

B+ By, 51, [T, 0y (F) 108 D(X0, Yal0)| + By, 5, [T, =0y (Vo) Tog p(X,16)]

where 8 = Aog A+ (1—X)log(1— ). As 3 does not depend on 6, we must only max-
imize the last two terms, which are equal to AE; x ., [logp(Xv7 Y, |0)|Y, # 0} +

(1=NE;x, v, [logp(Xv|9)|l7v = O] As we have j(X,, Y,|Y, # 0) = p(X,,Y,) and

P(X,|Y, = 0) = p(X,), the last expression is equal to \E,(x, v,) [log p(X, Yo |0)] +
(1 =MNEpx,.v,) [logp(X,]0)]. Thus we obtain expression 4.2. ]

Results by White (1982) can also be adapted to the context of semi-supervised
learning to prove that generally the variance of estimates decreases with increasing
n. The asymptotic variance depends on the inverse of the Fisher information; the
Fisher information is typically larger for larger proportions of labeled data (Castelli,
1994; Castelli and Cover, 1995, 1996).

Expression 4.2 indicates that the objective function in semi-supervised learn-

semi-supervised ing can be viewed asymptotically as a “convex” combination of objective func-
learning as tions for supervised learning (E [logp(X,,Y,|0)]) and for unsupervised learning
“convex” (E [logp(Xy|6)]). Denote by 65 the value of § that maximizes expression 4.2 for

combination
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a given A. Denote by 6] the “labeled” limit 67 and by 6 the “unlabeled” limit
05‘.5 We note that, with a few additional assumptions on the modeling densities,
theorem 4.1 and the implicit function theorem can be used to prove that 07 is a con-
tinuous function of A\ — that is, the “path” followed by the solution is a continuous
one.

We can now present more formal versions of the arguments sketched in section 4.2.
Suppose first that the family of distributions p(X,, Y,|6) contains the distribution
p(Xy,Y,); that is, p(X,,Y,|07) = p(X,,Y,) for some 6+, so the “model is correct.”
When such a condition is satisfied, 0] = 0; = 0+ given identifiability, and then

Y = O, for any 0 < A < 1, is a maximum-likelihood estimate. In this case,
maximum likelihood is consistent, the asymptotic bias is zero, and classification
error converges to the Bayes error. As variance decreases with increasing numbers
of labeled and unlabeled data, the addition of both kinds of data eventually reaches
the “correct” distribution and the Bayes error.

We now study the scenario that is more relevant to our purposes, where the
distribution p(X,,Y,) does not belong to the family of distributions p(X,,Y,|0).
Denote by e(f) the classification error with parameter 6, and suppose e(0},) > e(6})
(as in the Boy-Girl example and in the other examples presented later). If we observe
a large number of labeled samples, the classification error is approximately e(6;).
If we then collect more samples, most of which are unlabeled, we eventually reach
a point where the classification error approaches e(#%). So, the net result is that
we started with a classification error close to e(6}), and by adding a great number
of unlabeled samples, classification performance degraded towards e(6}). A labeled
data set can be dwarfed by a much larger unlabeled data set: the classification
error using the whole data set can be larger than the classification error using only
labeled data.

To summarize, we have the following conclusions. First, labeled and unlabeled
data contribute to a reduction in variance in semi-supervised learning under
maximum-likelihood estimation. Second, when the model is “correct,” maximum-
likelihood methods are asymptotically unbiased both with labeled and unlabeled
data. Third, when the model is “incorrect,” there may be different asymptotic bi-
ases for different values of A\. Asymptotic classification error may also vary with A
— an increase in the number of unlabeled samples may lead to a larger estimation
asymptotic bias and to a larger classification error. If the performance obtained
with a given set of labeled data is better than the performance with infinitely many
unlabeled samples, then at some point the addition of unlabeled data must decrease
performance.

5. We have to handle a difficulty with the classification error for 8;,: given only unlabeled
data, there is no information to decide the labels for decision regions, and the classification
error is 1/2 (Castelli, 1994). Thus we always reason with A — 0 instead of A = 0.
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The previous discussion alluded to the possibility that e(6}) > e(6;) when the model
is “incorrect.” To understand a few important details about this phenomenon,
consider another example.

Suppose we have attributes X,; and X2 from two classes —1 and +1. We know
that (X,1, Xy2) is a Gaussian vector with mean (0,3/2) conditional on {Y, = —1},
and mean (3/2,0) conditional on {Y, = +1}; variances for X,; and for X,
conditional on Y, are equal to 1. We believe that X,; and X,o are independent
given Y, but actually X,; and X,» are dependent conditional on {Y, = +1}:
the correlation p = E [(Xy1 — E [X,1|Y, = 4+1])(Xp2 — E [X2]Y, = +1))|Y, = +1]
is equal to 4/5 (X,1 and X2 are independent conditional on {Y, = —1}). Data
are sampled from a distribution such that n = P(Y, = —1) = 3/5, but we do not
know this probability. If we knew the value of p and 7, we would easily compute the
optimal classification boundary on the plane X,; x X2 (this optimal classification
boundary is quadratic). By mistakenly assuming that p is zero we are generating a
naive Bayes classifier that approximates P(Y,| X1, Xy2).

Under the incorrect assumption that p = 0, the “optimal” classification boundary
is linear: @2 = 1 + 2log((1 — 7)/7)/3. With labeled data we can easily obtain
7 (a sequence of Bernoulli trials); then 7 = 3/5 and the classification boundary
is given by x,2 = x,1 — 0.27031. Note that this (linear) boundary obtained with
labeled data and the generative naive Bayes classifier assumption is not the best
possible linear boundary minimizing the classification error. We can in fact find the
best possible linear boundary of the form z,o = x,1 + 7. The classification error
can be written as a function of v that has positive second derivative; consequently
the function has a single minimum that can be found numerically (the minimizing
v is —0.45786). If we consider the set of lines of the form z,2 = x,1 4+, we see that
the farther we go from the best line, the larger the classification error. Figure 4.2
shows the linear boundary obtained with labeled data and the best possible linear
boundary. The boundary from labeled data is “above” the best linear boundary.

Now consider the computation of 7}, the asymptotic estimate with unlabeled
data. By theorem 4.1, we must obtain:

arg Ig[%ﬁ]/ / 90(Tv1, Tp2) 10g(Ng1 (21, Tp2) + (1 — 1) g3(@01, To2))dTy2da,,
n ’ —o00 J —00

where

go(To1,702) = (3/5)g1(Tv1,Tv2) + (2/5)g2(201, To2),
91(Tp1, To2) N([0,3/2]", diag[1, 1]),

gg(l‘vl,l‘vg) = N <[3/2,0]T, [ 1 4/5 ‘|> ,

4/5 1
g3(zu1,202) = N([3/2,0]7,diag[1,1]).
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Figure 4.2 Graphs for the Gaussian example. On the left, contour plots of the mixture
p(Xov1, Xv2), the optimal classification boundary (quadratic curve), and the best possible
classification boundary of the form x,2 = x,1 + . On the right, the same contour plots,
and the best linear boundary (lower line), the linear boundary obtained from labeled data
(middle line), and the linear boundary obtained from unlabeled data (upper line).

The second derivative of this double integral is always negative (as can be seen by
interchanging differentiation with integration), so the function is concave and there
is a single maximum. We can search for the zero of the derivative of the double
integral with respect to 7. We obtain this value numerically, 1, = 0.54495. Using
this estimate, the linear boundary from unlabeled data is z,2 = z,1 — 0.12019.
This line is “above” the linear boundary from labeled data, and, given the previous
discussion, leads to a larger classification error than the boundary from labeled
data. The boundary obtained from unlabeled data is also shown in figure 4.2. The
classification error for the best linear boundary is 0.06975, while e(n;) = 0.07356
and e(n}) = 0.08141.

This example suggests the following situation. Suppose we collect a large number
[ of labeled samples from P (Y, X1, Xy2), with n = 3/5 and p = 4/5. The labeled
estimates form a sequence of Bernoulli trials with probability 3/5, so the estimates
quickly approach 7, (the variance of 7 decreases as 6/(25()). If we then add a very
large amount of unlabeled data to our data, 7 approaches n;; and the classification
error increases.

By changing the values of 5 and p, we can produce other interesting situations. For
example, if n = 3/5 and p = —4/5, the best linear boundary is z,2 = x,1 — 0.37199,
the boundary from labeled data is x,2 = x,1 — 0.27031, and the boundary from
unlabeled data is x,5 = x,1 — 0.34532; the latter boundary is “between” the other
two — additional unlabeled data lead to improvement in classification performance!
As another example, if n = 3/5 and p = —1/5, the best linear boundary is
Tya = Ty — 0.29044, the boundary from labeled data is x,2 = z,3 — 0.27031,
and the boundary from unlabeled data is x,5 = x,1 — 0.29371. The best linear
boundary is “between” the other two. In this case we attain the best possible linear
boundary by mixing labeled and unlabeled data with A = 0.08075.
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We have so far found that taking larger and larger amounts of unlabeled data
changes not only the variance of estimates but also their average behavior. The
Gaussian example shows that we cannot always expect labeled data to produce a
better classifier than the unlabeled data. Still, one would intuitively expect labeled
data to provide more guidance to a learning procedure than unlabeled data. Is there
anything that can be said about the (intuitively plausible and empirically visible)
more valuable status of labeled data?

One informal argument is this. Suppose we have an estimate 0. 1t is typically the
case that the smaller the value of the expected Kullback-Leibler divergence between
p(Yy| X,) and p(Yy| Xy, 0), the smaller the classification error, where the Kullback-
Leibler divergence is EKL(0) = E [log(p(Yy|Xy)/p(Ys| Xy, 0)] (Garg and Roth,
2001; Cover and Thomas, 1991). Direct minimization of expected Kullback-Leibler
divergence yields EK L(6;) where 6 = arg maxg E [log p(Y,| X, 8)]. Now unlabeled
data asymptotically yield EKL(6%) where 0% = argmaxg E [log p(X,|0)], and la-
beled data asymptotically yield EK L(0;) where 0] = arg maxy E [log p(Y,| X, 0)]+
E [logp(X,|0)]. Note the following pattern. We are interested in minimizing
E [logp(Yy| Xy, 0)]. While labeled data allow us to minimize a combination of
this quantity plus E [logp(X,|0)], unlabeled data only allow us to minimize
E [logp(X,|0)]. When the “model is incorrect,” this last quantity may in fact be
far from the “true” E [log p(X,)], and we may be getting less help from unlabeled
data than we might get from labeled data. This informal argument seems to be at
the core of the perception that labeled data should be more valuable than unla-
beled data when the “model is incorrect.” The analysis presented in this chapter
adds to this perception the following comment: by trying to (asymptotically) min-
imize an expected value E [log p(X,)|f] that may even be unrelated to the “true”
E [logp(X,)], we may in fact be led astray by the unlabeled data.

4.5 Finite Sample Effects

many attributes

Asymptotic analysis can provide insight into complex phenomena, but finite sample
effects are also important. In practice one may have very little labeled data, and the
estimates @ from labeled data may be so poor that the addition of unlabeled data is
a positive move. This can be explained as follows. A small number of labeled samples
may lead to estimators with high variance, thus likely to yield high classification
error (Friedman, 1997). In those circumstances the inclusion of unlabeled data may
lead to a substantial decrease in variance and a decrease in classification error, even
as the bias is negatively affected by the unlabeled data.

In general, the more parameters one has to estimate, the larger the variance of
estimators for the same amount of data. If we have a classifier with a large number
of attributes and we have only a few labeled samples, the variance of estimators is
likely to be large, and classification performance is likely to be poor — the addition
of unlabeled data is then a reasonable action to take. Consider again figure 4.1(c).
Here we have a naive Bayes classifier with 49 attributes. If we have a relatively large
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amount of labeled data, we start close to the “labeled” limit e(6;), and then we
observe performance degradation as we move toward e(6}). However, if we have few
labeled samples, we start with very poor performance, and we decrease classification
error by moving toward e(6%).

We note that text classification is an important problem where many attributes
are often available (often thousands of attributes), and where generative semi-
supervised learning has been successful (Nigam et al., 2000).

4.6 Model Search and Robustness

looking for
correct models

In semi-supervised learning we must always consider the possibility that a more
accurate statistical model will lead to significant gains from unlabeled data. That
is, we should look for the “correct” model whenever possible. In fact, the literature
has described situations where a fixed-structure classifier, like the naive Bayes,
performs poorly, while model search schemes can lead to excellent classifiers (Bruce,
2001; Cohen et al., 2003, 2004). In particular, Cohen et al. (2004) discuss and
compare different model search strategies with labeled and unlabeled data for
Bayesian network classifiers. Results show that TAN classifiers, learned with the
EM algorithm (Meila, 1999), can sometimes improve classification and eliminate
performance degradation with unlabeled data compared to the simpler naive Bayes.
In contrast, structure learning algorithms that maximize the likelihood of class
and attributes, such as those proposed by Friedman (1998) and van Allen and
Greiner (2000), are not likely to find structures yielding good classifiers in a
semi-supervised manner, because of their focus on fitting the joint distribution
rather than the a posteriori distribution (as also argued by Friedman et al. (1997)
for the purely supervised case). The class of independence-based methods for
structure learning, also known as constraint-based or test-based methods, is another
alternative for attempting to learn the correct model. However, these methods do
not easily adapt to the use of unlabeled data. Such a modification of algorithms
by Cheng et al. (1997) is presented in Cohen et al. (2004), showing either none
or marginal improvement compared to the EM version of TAN, while requiring
much greater computational complexity. A third alternative is to perform structure
search, attempting to maximize classification accuracy directly. Cohen et al. (2004)
proposed using a stochastic structure search algorithm (Markov chain Monte Carlo),
accepting or rejecting models based on their classification accuracy (estimated
using the labeled training data), while learning the parameters of each model
using maximume-likelihood estimation with both labeled and unlabeled data. This
strategy yielded very good results for data sets with a moderate number of labeled
samples (and a much larger number of unlabeled samples), but did not work well for
data sets with a very small number of labeled samples, because of its dependence
on estimation of the classification error during the search.

Given the results in this chapter, unlabeled data can also be useful in testing
modeling assumptions. If the addition of unlabeled data to an existing pool of
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labeled data degrades performance, then there is clear indication that modeling
detecting assumptions are incorrect. In fact one can test whether differences in performance
incorrect models are statistically significant, using results by O’Neill (1978); once one finds that a
particular set of modeling assumptions is flawed, a healthy process of model revision
may be started. In fact, one might argue that model search/revision should always
be an important component in the tool set of semi-supervised learning (Cozman
et al., 2003a).

4.7 Conclusion

Given the possibility of performance degradation, it seems that some care must be
taken in generative semi-supervised learning. Statements that are intuitively and
provably true when models are “correct” may fail (sometimes miserably!) when
models are “incorrect.” Apparently mild modeling errors may cause unlabeled data
to degrade performance, even in the absence of numerical errors, and even in sit-
uations where more labeled data would be beneficial. Examples of performance
degradation from outliers and other common modeling errors can be easily con-
cocted (Cozman et al., 2003b).

In the absence of modeling errors, labeled data differ from unlabeled data only
on the “information they carry about the decisions associated with the decision
regions” (Castelli and Cover, 1995). However, as we consider the possibility of
modeling errors, labeled data and unlabeled data also differ in the biases they induce
on estimates. The analysis in sections 4.2, 4.3, and 4.4 focused on asymptotic bias,
a strategy that avoids distractions from finite sample effects and numerical errors.
However, we note that finite sample effects may be important in practice, as we
discuss in section 4.5.

At this point it is perhaps useful to add a few comments of methodological

methodology character. Given a pool of labeled and unlabeled data, generative semi-supervised
learning is an attractive strategy. However, one should always start by learning a
supervised classifier with the labeled data. This “baseline” classifier can then be
compared to other semi-supervised classifiers through cross-validation or similar
techniques. Whenever modeling assumptions seem inaccurate, unlabeled data can
be used to test modeling assumptions. If time and resources are available, a model
search should be conducted, attempting to reach a “correct” model — that is, a
model where unlabeled data will be truly beneficial. Techniques discussed in section
4.6 can be employed in this setting. An additional step is to compare the baseline
classifier to nongenerative methods. There are many semi-supervised nongenerative
classifiers, as discussed in other chapters of this book. There are also a significant
number of methods that use labeled and unlabeled data for different purposes — for
example, methods where the unlabeled data are used only to conduct dimensionality
reduction (chapter 12). However we should warn that a few empirical results in the
literature suggest the possibility of performance degradation in nongenerative semi-
supervised learning paradigms, such as transductive support vector machine (SVM)
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(Zhang and Oles, 2000) and co-training (Ghani, 2002).

A final methodological comment concerns active learning — that is, the option of
labeling selected samples among the unlabeled data. This option should be seriously
considered whenever possible. It may be that the most profitable use of unlabeled
data in a particular problem is exactly as a pool of samples from which some
samples can be carefully selected and labeled. In general, we should take the value
of a labeled sample to be considerably higher than the value of an unlabeled sample.
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In certain clustering tasks it is possible to obtain limited supervision in the form of
pairwise constraints, i.e., pairs of instances labeled as belonging to same or different
clusters. The resulting problem is known as semi-supervised clustering, an instance
of semi-supervised learning stemming from a traditional unsupervised learning set-
ting. Several algorithms exist for enhancing clustering quality by using supervision
in the form of constraints. These algorithms typically utilize the pairwise constraints
to either modify the clustering objective function or to learn the clustering distor-
tion measure. This chapter describes an approach that employs hidden Markov
random fields (HMRFs) as a probabilistic generative model for semi-supervised
clustering, thereby providing a principled framework for incorporating constraint-
based supervision into prototype-based clustering. The HMRF-based model allows
the use of a broad range of clustering distortion measures, including Bregman diver-
gences (e.g., squared Euclidean distance, Kullback-Leibler divergence) and direc-
tional distance measures (e.g., cosine distance), making it applicable to a number
of domains. The model leads to the HMRF-KMEANS algorithm which minimizes
an objective function derived from the joint probability of the model, and allows
unification of constraint-based and distance-based semi-supervised clustering meth-
ods. Additionally, a two-phase active learning algorithm for selecting informative
pairwise constraints in a query-driven framework is derived from the HMRF model,
facilitating improved clustering performance with relatively small amounts of su-
pervision from the user.
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5.1 Introduction

semi-supervised
clustering with
constraints

must-link and
cannot-link
constraints

constraint-based
and
distance-based
methods

This chapter focuses on semi-supervised clustering with constraints, the problem of
partitioning a set of data points into a specified number of clusters when limited
supervision is provided in the form of pairwise constraints. While clustering is
traditionally considered to be a form of unsupervised learning since no class labels
are given, inclusion of pairwise constraints makes it a semi-supervised learning task,
where the performance of unsupervised clustering algorithms can be improved using
the limited training data.

Pairwise supervision is typically provided as must-link and cannot-link constraints
on data points: a must-link constraint indicates that both points in the pair should
be placed in the same cluster, while a cannot-link constraint indicates that two
points in the pair should belong to different clusters. Alternatively, must-link
and cannot-link constraints are sometimes called equivalence and nonequivalence
constraints respectively. Typically, the constraints are “soft”, that is, clusterings
that violate them are undesirable but not prohibited.

In certain applications, supervision in the form of class labels may be unavailable,
while pairwise constraints are easily obtained, creating the need for methods that
exploit such supervision. For example, complete class labels may be unknown in
the context of clustering for speaker identification in a conversation (Bar-Hillel
et al., 2003), or clustering GPS data for lane-finding (Wagstaff et al., 2001). In
some domains, pairwise constraints occur naturally, e.g., the database of interacting
proteins (DIP) data set in biology contains information about proteins co-occurring
in processes, which can be viewed as must-link constraints during clustering.
Moreover, in an interactive learning setting, a user who is not a domain expert can
sometimes provide feedback in the form of must-link and cannot-link constraints
more easily than class labels, since providing constraints does not require the user
to have significant prior knowledge about the categories in the data set.

Proposed methods for semi-supervised clustering fall into two general categories
that we call constraint-based and distance-based. Constraint-based methods use the
provided supervision to guide the algorithm toward a data partitioning that avoids
violating the constraints (Demiriz et al., 1999; Wagstaff et al., 2001; Basu et al.,
2002). In distance-based approaches, an existing clustering algorithm that uses
a particular distance function between points is employed; however, the distance
function is parameterized and the parameter values are learned to bring must-linked
points together and take cannot-linked points further apart (Bilenko and Mooney,
2003; Cohn et al., 2003; Klein et al., 2002; Xing et al., 2003).

This chapter describes an approach to semi-supervised clustering based on hidden
Markov random fields (HMRFs) that combines the constraint-based and distance-
based approaches in a unified probabilistic model. The probabilistic formulation
leads to a clustering objective function derived from the joint probability of ob-
served data points, their cluster assignments, and generative model parameters.
This objective function can be optimized using an expectation-maximimzation
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(EM)-style clustering algorithm, HMRF-KMEANS, that finds a local minimum of
the objective function. HMRF-KMEANS can be used to perform semi-supervised
clustering using a broad class of distortion (distance) functions,!
divergences (Banerjee et al., 2005b), which include a wide variety of useful dis-
tances, e.g., KL divergence, squared Euclidean distance, I divergence, and Itakuro-
Saito distance. In a number of applications, such as text clustering based on a
vector-space model, a directional distance measure based on the cosine of the angle
between vectors is more appropriate (Baeza-Yates and Ribeiro-Neto, 1999). Clus-
tering algorithms have been developed that utilize distortion measures appropriate
for directional data (Dhillon and Modha, 2001; Banerjee et al., 2005a), and the
HMRF-KMEANS framework naturally extends them.

A practical aspect of semi-supervised clustering with constraints is how maxi-

namely Bregman

mally informative constraints can be acquired in a real-life setting, where a limited
set of queries can be made to a user in an interactive learning setting (McCallum
and Nigam, 1998b). In that case, fewer queries should be posed to the user to obtain
constraints that can significantly enhance the clustering accuracy. To this end, a
new method for active learning is presented—it selects good pairwise constraints for
semi-supervised clustering by asking queries to the user of the form “Are these two
examples in same or different classes?” leading to improved clustering performance.

5.2 HMRF Model for Semi-Supervised Clustering

problem setting

Partitional prototype-based clustering is the underlying unsupervised clustering set-
ting under consideration. In such a setting, a set of data points is partitioned into a
prespecified number of clusters, where each cluster has a representative (or “proto-
type”), so that a well-defined cost function, involving a distortion measure between
the points and the cluster representatives, is minimized. A well-known unsupervised
clustering algorithm that follows this framework is K-Means (MacQueen, 1967).
Our semi-supervised clustering model considers a sample of n data points X =
(1,...,2p), each z; € R? being a d-dimensional vector, with x;,, representing
its mth component. The model relies on a distortion measure d4 used to compute
distance between points: d4 : R¢ x RY — R, where A is the set of distortion measure
parameters. Supervision is provided as two sets of pairwise constraints: must-link
constraints Carr = {(x;,2;)} and cannot-link constraints Ccor, = {(x;, z;)}, where
(xi,x;) € Cmr implies that z; and x; are labeled as belonging to the same cluster,
while (z;,z;) € Ccr, implies that x; and z; are labeled as belonging to different
clusters. The constraints may be accompanied by associated violation costs W,
where w;; represents the cost of violating the constraint between points x; and x;
if such a constraint exists, that is, either (z;, ;) € Car or (24, x;) € Cor. The task

1. In this chapter, “distance measure” is used synonymously with “distortion measure”:
both terms refer to the distance function used for clustering.
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is to partition the data points X into K disjoint clusters (X1,..., Xk) so that the
total distortion between the points and the corresponding cluster representatives is
minimized according to the given distortion measure d 4, while constraint violations
are kept to a minimum.

5.2.1 HMRF Model Components

The HMRF probabilistic framework (Zhang et al., 2001) for semi-supervised con-
strained clustering consists of the following components:

® An observable set X = (x1,...,2,) corresponding to the given data points X.
Note that we overload notation and use X to refer to both the given set of data
points and their corresponding random variables.

® An unobservable (hidden) set Y = (y1,...,yn) corresponding to cluster assign-
ments of points in X. Each hidden variable y; encodes the cluster label of the point
x; and takes values from the set of cluster indices (1,..., K).

= An unobservable (hidden) set of generative model parameters ©, which consists
of distortion measure parameters A and cluster representatives M = (1, ..., fix):
0={A M}

= An observable set of constraint variables C' = (ci2,c¢13,...,¢n-1,n). Bach ¢;
is a tertiary variable taking on a value from the set (—1,0,1), where ¢;; = 1
indicates that (z;,z;) € Camr, ¢;j = —1 indicates that (z;,2;) € Cor, and ¢;; =0
corresponds to pairs (x;, ;) that are not constrained.

Since constraints are fully observed and the described model does not attempt
to model them generatively, the joint probability of X, Y, and © is conditioned on
the constraints encoded by C.

Figure 5.1 shows a simple example of an HMRF. X consists of five data points
with corresponding variables (z1,...,25) that have cluster labels Y = (y1,...,ys),
which may each take on values (1,2,3) denoting the three clusters. Three pairwise
constraints are provided: two must-link constraints (x1,x2) and (z1,24), and one
cannot-link constraint (x2,z3). Corresponding constraint variables are c13 = 1,
c14 = 1, and co3 = —1; all other variables in C are set to zero. The task is to
partition the five points into three clusters. Figure 5.1 demonstrates one possible
clustering configuration which does not violate any constraints. The must-linked
points z1, x3, and x4 belong to cluster 1; the point x3, which is cannot-linked with
To, is assigned to cluster 2; x5, which is not involved in any constraints, belongs to
cluster 3.

5.2.2 Markov Random Field over Labels
Each hidden random variable y; € Y representing the cluster label of z; € X is

associated with a set of neighbors N;. The set of neighbors is defined as all points
to which z; is must-linked or cannot-linked: N; = {y;|(z;,z;) € Cur or (x;,x;) €
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Figure 5.1 A hidden Markov random field.

Ccr}. The resulting random field defined over the hidden variables Y is a Markov
random field (MRF), where the conditional probability distribution over the hidden
variables obeys the Markov property:

Thus the conditional probability of y; for each x;, given the model parameters and
the set of constraints, depends only on the cluster labels of the observed variables
that are must-linked or cannot-linked to z;. Then, by the Hammersley-Clifford
theorem (Hammersley and Clifford, 1971), the prior probability of a particular
label configuration Y can be expressed as a Gibbs distribution (Geman and Geman,
1984), so that

P(Y|0,C) = %exp (—v(Y)) = %exp <— Z UN, (Y)) ) (5.2)

N;eN

where N is the set of all neighborhoods, Z is the partition function (normalizing
term), and v(Y') is the overall label configuration potential function, which can
be decomposed into a sum of functions vy, (Y'), each denoting the potential for
every neighborhood N; in the label configuration Y. Since the potentials for every
neighborhood are based on pairwise constraints in C' (and model parameters 0),
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Figure 5.2 Graphical plate model of variable dependence.

-

the label configuration can be further decomposed as

P(Y|®,C):%exp —Zv(i,j) ) (5.3)

4,9

where each constraint potential function v(7, j) has the following form:

wij fur (i, j)  if ¢y =1 and y; # yj,
v(i,j) = ¢ wijfor(i,j) if ci; = —1and y; = y;, (5.4)
0 otherwise.

The penalty functions fa;r and for encode the lowered probability of observing
configurations of Y where constraints encoded by C' are violated. To this end,
function fjs;, penalizes violated must-link constraints and function fo; penalizes
violated cannot-link constraints. These functions are chosen to correspond with the
distortion measure by employing same model parameters ©, and will be described
in detail in section 5.3. Overall, this formulation for observing the label assignment
Y results in higher probabilities being assigned to configurations in which cluster
assignments do not violate the provided constraints.

5.2.3 Joint Probability in HMRF

The joint probability of X, Y, and O, given C, in the described HMRF model can
be factorized as follows:

P(X,Y,0[C) = P(0|C) P(Y]©,C) P(X]|Y,0,0). (5.5)

The graphical plate model (Buntine, 1994) of the dependence between the random
variables in the HMRF is shown in figure 5.2, where the unshaded nodes represent
the hidden variables, the shaded nodes are the observed variables, the directed links
show dependencies between the variables, while the lack of an edge between two
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variables implies conditional independence. The prior probability of © is assumed to
be independent of C'. The probability of observing the label configuration Y depends
on the constraints C' and current generative model parameters ©. Observed data
points corresponding to variables X are generated using the model parameters
© based on cluster labels Y, independent of the constraints C. The variables X
are assumed to be mutually independent: each z; is generated individually from
a conditional probability distribution P(z|y, ®). Then, the conditional probability
P(X]Y,0,C) can be written as

P(X]Y,0,0) = P(X[Y,0) = [ p(zily:. ©). (5-6)
i=1
where p(-|y;, ©) is the parameterized probability density function for the y;th
cluster, from which x; is generated. This probability density is related to the
clustering distortion measure d 4, as described below in section 5.2.4.
From Egs. 5.3, 5.5, and 5.6, it follows that maximizing the joint probability on
the HMRF is equivalent to maximizing

P(X,Y,0|0) P(@)(%exp =Y (i) )(ﬁp(zi|yi,®)>. (5.7)

ci;€C

The joint probability in Eq. (5.7) has three factors. The first factor describes a
probability distribution over the model parameters preventing them from converg-
ing to degenerate values, thereby providing regularization. The second factor is the
conditional probability of observing a particular label configuration given the pro-
vided constraints, effectively assigning a higher probability to configurations where
the cluster assignments do not violate the constraints. Finally, the third factor is
the conditional probability of generating the observed data points given the labels
and the parameters: if maximum-likelihood (ML) estimation was performed on the
HMREF, the goal would have been to maximize this term in isolation.

Overall, maximizing the joint HMRF probability in (5.7) is equivalent to jointly
maximizing the likelihood of generating data points from the model and the
probability of label assignments that respect the constraints, while regularizing
the model parameters.

5.2.4 Semi-Supervised Clustering Objective Function on HMRF

Formulation 5.7 suggests a general framework for incorporating constraints into
clustering. The choice of the conditional probability p(z|y,®) in a particular
instantiation of the framework is directly connected to the choice of the distortion
measure appropriate for the clustering task.

When considering the conditional probability p(x;|y;, ®)—the probability of
generating a data point x; from the y;th cluster—our attention is restricted to
probability densities from the exponential family, where the expectation parameter
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corresponding to the y;th cluster is p,,, the mean of the points of that cluster.
Using this assumption and the bijection between regular exponential distributions
and regular Bregman divergences (Banerjee et al., 2005b), the conditional density
for observed data can be represented as

p(ily:, ©) = Zig exp(—da(zs, un)), (5.8)

where d(x;, fty;) is the Bregman divergence between x; and p,,, corresponding to
the exponential density p, and Zg is the normalizer.2 Different clustering models
fall into this exponential form:

® If z; and p,, are vectors in Euclidean space, and d4 is the square of the Lo
distance parameterized by a positive semidefinite weight matrix A (da(xi, fy,) =
lzi — py, ||i), then the cluster conditional probability is a Gaussian with covariance
encoded by A~! (Kearns et al., 1997);

® If z; and p,, are probability distributions and d4 is the KL divergence
(da(xi, ;) = de:1 Tim log -2-), then the cluster conditional probability is a
Y

;m

multinomial distribution (Dhillon and Guan, 2003).

The relation in Eq. 5.8 holds even if d4 is not a Bregman divergence but
a directional distance measure like cosine distance. For example, if x; and p,,
are vectors of unit 1er;gth and d4 is one minus the dot-product of the vectors
(da(mi,py,) = 1 — W), then the cluster conditional probability is a
von Mises Fisher (vMF) dist;libution with unit concentration parameter (Banerjee
et al., 2005a), which is essentially the spherical analog of a Gaussian. The connection
between specific distortion measures studied in this chapter and their corresponding
cluster conditional probabilities is discussed in more detail in section 5.3.3.

Putting Eq. 5.8 into 5.7 and taking logarithms gives the following cluster objective
function, minimizing which is equivalent to maximizing the joint probability over

the HMRF in Eq. 5.7:

Jobj = Z da(xi, py,) + Z v(i,7) —log P(O) +log Z + nlog Zg. (5.9)
zr;€X ci;eC

Thus, the task is to minimize Jon; over the hidden variables Y and © (note that
given Y, the means M = (u1, ..., tix) are uniquely determined).

2. When A = I (identity matrix), the bijection result (Banerjee et al., 2005b) ensures that
the normalizer Zg is 1. In general, there are additional multiplicative terms that depend
only on z, and hence can be safely ignored for parameter estimation purposes.
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5.3 HMRF-KMEANS Algorithm

normalizer
approximation

Since the cluster assignments and the generative model parameters are unknown in
a clustering setting, minimizing Eq. 5.9 is an “incomplete-data problem”. A popular
solution technique for such problems is the ezpectation-mazimization (EM) algo-
rithm (Dempster et al., 1977). The K-MEANS algorithm (MacQueen, 1967) is known
to be equivalent to the EM algorithm with hard clustering assignments, under cer-
tain assumptions (Kearns et al., 1997; Basu et al., 2002; Banerjee et al., 2005b). This
section describes a K-MEANS-type hard partitional clustering algorithm, HMRF-
KMEANS, that finds a local minimum of the semi-supervised clustering objective
function Job; in Eq. 5.9.

5.3.1 Normalizing Component Estimation

Before describing the details of the clustering algorithm, it is important to consider
the normalizing components: the MRF partition function log Z and the distortion
function normalizer log Zg in Eq. 5.9. Estimation of the partition function cannot
be performed in closed form for most nontrivial dependency structures, and ap-
proximate inference methods must be employed for computing it (Wainwright and
Jordan, 2003).

Estimation of the distortion normalizer log Zg depends on the distortion measure
d 4 used by the model. This chapter considers three parameterized distortion mea-
sures: parameterized squared Euclidean distance, parameterized cosine distance,
and parameterized Kullback-Leibler (KL) divergence. For Euclidean distance, Zg
can be estimated in closed form, and this estimation is performed while minimizing
the clustering objective function Job; in Eq. 5.9. For the other distortion measures,
estimating the distortion normalizer Zg cannot be performed in closed form, and
approximate inference must be again used (Banerjee et al., 2005a).

Since approximate inference methods can be very expensive computationally,
two simplifying assumptions can be made: the MRF partition function may be
considered to be constant in the clustering process, and the distortion normalizer
may be assumed constant for all distortion measures that do not provide its closed-
form estimate. With these assumptions, the objective function Jopj in Eq. 5.9 no
longer exactly corresponds to a joint probability on an HMRF. However, minimizing
this simplified objective has been shown to work well empirically (Bilenko et al.,
2004; Basu et al., 2004b). However, if in some applications it is important to preserve
the semantics of the underlying joint probability model, then the normalizers Z and
Zo must be estimated by approximate inference methods.
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5.3.2 Parameter Priors

Following the definition of © in section 5.2.1, the prior term log P(©) in (5.9) and
the subsequent equations can be factored as follows:

log P(©) = log(P(A)P(M)) = logP(A) + Py,

where the distortion parameters A are assumed to be independant of the cluster
centroids M = (u1,...,uK), and uniform priors are considered over the cluster
centroids (leading to the constant term Pys). For different distortion measures,
parameter values may exist that lead to degenerate solutions of the optimization
problem. For example, for squared Euclidean distance, the zero matrix A = 0 is
one such solution. To prevent degenerate solutions, P(A) is used to regularize the
parameter values using a prior distribution.

If the standard Gaussian prior was used on the parameters of the distortion
function, it would allow the parameters to take negative values. Since it is desirable
to constrain the parameter values to be non-negative, it is more appropriate to use
the Rayleigh distribution (Papoulis and Pillai, 2001). Assuming independence of
the parameters a;; € A, the prior term based on the Rayleigh distribution is the
following:

PA) =[] a’ems# (5.10)

aj;€EA

where s is the width parameter.
5.3.3 Adaptive Distortion Measures

Selecting an appropriate distortion measure d4 for a clustering task typically
involves knowledge about properties of the particular domain and data set. For
example, squared Euclidean distance is most appropriate for low-dimensional data
with distribution close to Gaussian, while cosine distance best captures distance
between data described by vectors in high-dimensional space where differences in
angles are important but vector lengths are not.

Distortion measures from two families are considered in this chapter: Bregman
divergences (Banerjee et al., 2005b), which include parameterized squared Euclidean
distance and KL divergence, and distortion measures based on directional similarity
functions, which include cosine similarity and Pearson’s correlation (Mardia and
Jupp, 2000). The distortion measure for directional functions is chosen to be the
directional similarity measure subtracted from a constant sufficiently large so that
the resulting value is non-negative. For both Bregman divergences and cosine
distance, there exist efficient K-Means-type iterative relocation algorithms that
minimize the corresponding clustering objective (Banerjee et al., 2005a,b), which
the HMRF-KMEANS naturally extends to incorporate pairwise supervision.
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For many realistic data sets, off-the-shelf distortion measures may fail to capture
the correct notion of similarity in a clustering setting. While some unsupervised
measures like squared Euclidean distance and Pearson’s distance attempt to correct
distortion estimates using the global mean and variance of the data set, these mea-
sures may still fail to estimate distances accurately if the attributes’ true contribu-
tions to the distance are not correlated with their variance. Several semi-supervised
clustering approaches exist that incorporate adaptive distortion measures, including
parameterizations of Jensen-Shannon divergence (Cohn et al., 2003) and squared
Euclidean distance (Bar-Hillel et al., 2003; Xing et al., 2003). However, these tech-
niques use only constraints to learn the distortion measure parameters and exclude
unlabeled data from the parameter learning step, as well as separate the parameter
learning step from the clustering process.

Going a step further, the HMRF model provides an integrated framework
which incorporates both learning the distortion measure parameters and constraint-
sensitive cluster assignments. In HMRF-KMEANS, the parameters of the distortion
measure are learned iteratively as the clustering progresses, utilizing both unlabeled
data and pairwise constraints. The parameters are modified to decrease the param-
eterized distance between violated must-linked constraints and increase it between
violated cannot-link constraints, while allowing constraint violations if they accom-
pany a more cohesive clustering.

This section presents three examples of distortion functions and their parame-
terizations for use with HMRF-KMEANS: squared Euclidean distance, cosine dis-
tance, and KL divergence. Through parameterization, each of these functions be-
comes adaptive in a semi-supervised clustering setting, permitting clusters of vary-
ing shapes.

Once a distortion measure is chosen for a given domain, the functions fasr
and for, introduced in section 5.2.2 for penalizing must-link and cannot-link
constraint violations, respectively, must be defined. These functions typically follow
a functional form identical or similar to the corresponding distortion measure, and
are chosen as follows:

fML(ivj) = Lp(ivj% (5'11)
fCL(ivj) = (pmax - @(17])7 (512)

where ¢ : X x X — R7T is a non-negative function that penalizes constraint

max s an upper bound on the maximum value of ¢ over any pair

violation, and ¢
of points in the data set; examples of such bounds for specific distortion functions
are shown below. The function ¢ is chosen to correlate with the distortion measure,
assigning higher penalties to violations of must-link constraints between points that
are distant with respect to the current parameter values of the distortion measure.
Conversely, penalties for violated cannot-link constraints are higher for points that
have low distance between them. With this formulation of the penalty functions,

constraint violations lead to changes in the distortion measure parameters that
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attempt to mend the violations. The ¢ function for different clustering distortion
measures is discussed in the following sections.
Accordingly, the potential function v(4,5) in (5.4) becomes

wijga(xi, .Z‘j) lf Cij = 1 and Yi 7£ yj
v(i,7) = ¢ wij (™ — p(zi, 7)) ife;=-landy, =y; , (5.13)
0 otherwise

and the objective function for semi-supervised clustering in (5.9) can be expressed
as

Jovj = Y dalwin(D) + Y wipl(wi,z;)

z;,€X (zi,25)€CrmrL
s.t. YiAy;
+ 3wy (¢ — (e, x;)) — log P(A) + nlog Ze. (5.14)
(zi,z;)€ECCL
s.t. Yyi=y;

Note that as discussed in section 5.3.1, the MRF partition function term log Z has
been dropped from the objective function.

5.3.3.1 Parameterized Squared FEuclidean Distance

Squared Euclidean distance is parameterized using a symmetric positive-definite
matrix A as follows:

deucs (w3, 77) = || — 255 = (20 — 25)" Az — 25). (5.15)

This form of the parameterized squared Euclidean distance is equivalent to Maha-
lanobis distance with an arbitrary positive semidefinite weight matrix A in place
of the inverse covariance matrix, and it was previously used for semi-supervised
clustering by (Xing et al., 2003) and (Bar-Hillel et al., 2003). Such formulation can
also be viewed as a projection of every instance x onto a space spanned by A'/2:
z— AV 2.

To use parameterized squared Euclidean distance as the adaptive distortion mea-
sure for clustering, the ¢ function that penalizes constraint violations is defined
as @(24, ;) = deycs (Ti,x;). One possible initialization of the upper bound for
max Z(mi,mj)ecm deyen (Ti, ), which guarantees that
the penalty is always positive. Using these definitions along with (5.14), the fol-

cannot-link penalties is pgi,

lowing objective function is obtained for semi-supervised clustering with adaptive
squared Euclidean distance:
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geucA - Z deuc,q (-rl;,ul(l)) + Z wijdeucA (l’i,ﬂ?j)

z;,€X (zi,25)€CnmL
s.t. yiFAY;
+ Z wij (Peney — deues (i, 75)) —log P(A) — nlogdet(A).
(zi,x5)€CoL
s.t. Yi=y;

(5.16)

Note that as discussed in section 5.3.1, the log Zg term is computable in closed-
form for a Gaussian distribution with covariance matrix A~!, which is the underly-
ing cluster conditional probability distribution for parameterized squared Euclidean
distance. The logdet(A) term (5.16) corresponds to the log Zg term in this case.

5.3.3.2 Parameterized Cosine Distance

Cosine distance can be parameterized using a symmetric positive-definite matrix
A, which leads to the following distortion measure:

T
x; Az

I E—— 5.17
Tealalle;la (5:17)

deos (i, ;) =1
Because for realistic high-dimensional domains computing the full matrix A would
be computationally expensive, a diagonal matrix is considered in this case, such
that a = diag(A) is a vector of positive weights.

To use parameterized squared Euclidean distance as the adaptive distortion
measure for clustering, the ¢ function is defined as ¢(z;, ;) = dcos, (®i, ;). Using
this definition along with Eq. 5.14, and setting ¢™** = 1 as an upper bound on
@(x;,x;), the following objective function is obtained for semi-supervised clustering
with adaptive cosine distance:

gcosA = Z dCOSA(Iivu(i)) + Z wijdcosA(Ihxj)

r;€X (zi,x;)€ECMmL
st YiFY;
+ Z wi; (1 = deos , (%5, 7)) — log P(A). (5.18)
(zi,2;)€CcL
s.t. Yyi=y;

Note that as discussed in section 5.3.1, it is difficult to compute the log Z¢g term
in closed form for parameterized cosine distance. So, the simplifying assumption is
made that log Zg is constant during the clustering process and the normalizer term
is dropped from (5.18).
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5.3.3.3 Parameterized KL Divergence

In certain domains, data are described by probability distributions, e.g., text

documents can be represented as probability distributions over words generated

by a multinomial model (Pereira et al., 1993). KL divergence is a widely used
. d .

distance measure for such data: dgp (i, ;) = >, _; Timlog ij:, where z; and

x; are probability distributions over d events: Zf;:l Tim = an:l ZTjm = 1. In
previous work, Cohn et al. (2003) parameterized KL divergence by multiplying the
mth component by a weight v,,: dy (zi,2;) = de:1 Y Tim log i;:

In our framework, KL distance is parameterized using a diagonal matrix A, where

= diag(A) is a vector of positive weights. This parameterization of KL by A
converts it to I divergence, a function that also belongs to the class of Bregman
divergences (Banerjee et al., 2005b). I divergence has the form: dj(z;,z;) =
anzl Tim log% - anzl(a:im — Zjm), where z; and z; no longer need to be

probability distributions but can be any non-negative vectors.3 The following
parameterization of KL is used:

d

= am(@im — Tjm), (5.19)

m=1

d[A 3?171'] E AmTim,

which can be interpreted as scaling every component of the original probability
distribution by a weight contained in the corresponding component of A, and then
taking I divergence between the transformed distributions.

For every distortion measure, the clustering framework described in section 5.2.4
requires defining an appropriate constraint potential function that is symmetric,
since the constraint pairs are unordered. To meet this requirement, a sum of
weighted I divergences from x; and z; to the mean vector HT% is used. This
parameterized I divergence to the mean, dras,, is analogous to Jensen-Shannon
divergence (Cover and Thomas, 1991), the symmetric KL divergence to the mean,
and is defined as follows:

d
d (24, 4) a x — = 4 log —— ), 5.20
IMa\Liy Lyj Z m zm zim+1:jm+ jm gl'im‘i’xjm) ( )
To use parameterized squared Euclidean distance as the adaptive distortion
measure for clustering, the ¢ function is defined as ¢(z;,z;) = dram, (%4, ;). Using
this definition along with Eq. 5.14, the following objective function is obtained for
semi-supervised clustering with adaptive KL distance:

3. For probability distributions, I divergence and KL divergence are equivalent.
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generalized EM

HIA = Z d[A(.’El,,LL(Z)) + Z wideMA(xi7xj)

z,€X (z5,25)€CnmL
s.t. yiFAY;
+ Y wi (AR — di (@i, 75)) — log P(A). (5.21)
(;Ei,wj)ECCL
s.t. yi=y;

max

The upper bound d}f, can be initialized as djyf, = de:1 @, which follows
from the fact that unweighted Jensen-Shannon divergence is bounded above by
1 (Lin, 1991).

Note that as discussed in section 5.3.1, it is difficult to compute the log Zg term in
closed form for parameterized KL distance. So, analogously to the parameterized
cosine distance case, the simplifying assumption is made that log Zg is constant
during the clustering process and that term is dropped from Eq. 5.21.

5.3.4 EM Framework

As discussed earlier in this section, Job; can be minimized by a K-Means-type
iterative algorithm HMRF-KMEANS. The outline of the algorithm is presented in
algorithm 5.1. The basic idea of HMRF-KMEANS is as follows: the constraints
are used to get a good initialization of the clustering. Then in the E step, given
the current cluster representatives, every data point is reassigned to the cluster
which minimizes its contribution to Jop;. In the M step, the cluster representatives
M = (u1,...,ux) are re-estimated from the cluster assignments to minimize Jqp;
for the current assignment. The clustering distortion measure d4 is subsequently
updated in the M step to reduce the objective function by modifying the parameters
A of the distortion measure.

Note that this corresponds to the generalized EM algorithm (Neal and Hinton,
1998; Dempster et al., 1977), where the objective function is reduced but not
necessarily minimized in the M step. Effectively, the E step minimizes Jobn; over
cluster assignments Y, the M step (A) minimizes Job; over cluster representatives
M, and the M step (B) reduces Jop; over the parameters A of the distortion measure
da. The E step and the M step are repeated till a specified convergence criterion is
reached. The specific details of the E step and M step are discussed in the following
sections.

5.3.5 Initialization

Good initial centroids are essential for the success of partitional clustering algo-
rithms such as K-Means. Good centroids are inferred from both the constraints
and unlabeled data during initialization. For this, a two-stage initialization process
is used.
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Algorithm 5.1 HMRF-KMEANS algorithm.

Input: Set of data points X = (z1,...,z,), number of clusters K, set of
constraints C, constraint violation costs W, distortion measure D.
Output: Disjoint K-partitioning (Xi,..., Xk ) of X such that objective

function Jop; in Eqn. (3.9) is (locally) minimized.
Method:
1. Initialize the K clusters centroids M} = (,ugo), U ,42)), set t < 0
2. Repeat until convergence
2a. E-step: Given centroids M and distortion parameters A},

re-assign cluster labels Y (1) = (49 )y 65 X to minimize Jobj-

2b. M-step(A): Given cluster labels Y *+1) and distortion parameters A(t+1),
(u! (t+1) ) (t+1))

re-calculate centroids M (t+1) = to minimize Jop;-
2c. M-step(B): Given cluster labels Y(t“) and centroids M1,

re-estimate parameters A1) of the distortion measure to reduce Jobj-
2d. t « t+1

Neighborhood Inference At first, the transitive closure of the must-link con-
straints is taken to get connected components consisting of points connected by
must-links. Let there be A connected components, which are used to create A neigh-
borhoods. These correspond to the must-link neighborhoods in the MRF over the
hidden cluster variables.

Cluster Selection The A neighborhood sets produced in the first stage are used
to initialize the HMRF-MEANS algorithm. If A = K, A cluster centers are initialized
with the centroids of all the A neighborhood sets. If A < K, A clusters are initialized
from the neighborhoods, and the remaining K — A clusters are initialized with points
obtained by random perturbations of the global centroid of X. If A > K, a weighted
variant of farthest-first traversal (Hochbaum and Shmoys, 1985) is applied to the
centroids of the A neighborhoods, where the weight of each centroid is proportional
to the size of the corresponding neighborhood. Weighted farthest-first traversal
selects neighborhoods that are relatively far apart as well as large in size, and
the chosen neighborhoods are set as the K initial cluster centroids for HMRF-
KMEANS.

Overall, this two-stage initialization procedure is able to take into account both
unlabeled and labeled data to obtain cluster representatives that provide a good
initial partitioning of the data set.

5.3.6 E Step

In the E step, assignments of data points to clusters are updated using the current
estimates of the cluster representatives. In the general unsupervised K-Means
algorithm, there is no interaction between the cluster labels, and the E step is
a simple assignment of every point to the cluster representative that is nearest to
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greedy ICM
assignment

it according to the clustering distortion measure. In contrast, the HMRF model
incorporates interaction between the cluster labels defined by the random field
over the hidden variables. As a result, computing the assignment of data points to
cluster representatives to find the global minimum of the objective function, given
the cluster centroids, is NP-hard in any nontrivial HMRF model, similar to other
graphical models such as MRFs and belief networks (Roth, 1996).

There exist several techniques for computing cluster assignments that approx-
imate the optimal solution in this framework, e.g., iterated conditional modes
(ICM) (Besag, 1986; Zhang et al., 2001), belief propagation (Pearl, 1988; Segal
et al., 2003b), and linear programming relaxation (Kleinberg and Tardos, 1999).
ICM is a greedy strategy that sequentially updates the cluster assignment of each
point, keeping the assignments for the other points fixed. In many settings it has
comparable performance to more expensive global approximation techniques, but is
computationally more efficient; it has been compared with several other approaches
by Bilenko and Basu (2004), while in more recent work Lange et al. (2005) have
described an alternative efficient method based on the mean-field approximation.
ICM performs sequential cluster assignment for all the points in random order. Each
point z; is assigned to the cluster representative p;, that minimizes the point’s con-
tribution to the objective function Jop; (i, tn):

obj (@i, pin) = da(wi, pn) + Z wijp(ws, ;5)
(wi,2;)€Ch L,

s.t. yi£y;
+ > wi (™™ = p(xi,75)) — log P(A), (5.22)
(Zi,Ij)ECéL
s.t. Y=y,

where Cziw ;, and Cé ;, are the subsets of Cy, and Ccyp respectively in which z;
appears in the constraints. The optimal assignment for every point minimizes the
distortion between the point and its cluster representative (first term of Jop;) along
with incurring a minimal penalty for constraint violations caused by this assignment
(second and third terms of Jop;j). After all points are assigned, they are randomly
reordered, and the assignment process is repeated. This process proceeds until no
point changes its cluster assignment between two successive iterations.

Overall, the assignment of points to clusters incorporates pairwise supervision by
discouraging constraint violations proportionally to their severity, which guides the
algorithm toward a desirable partitioning of the data.

5.3.7 M Step

The M step of the algorithm consists of two parts: centroid re-estimation and
distortion measure parameter update.
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5.3.7.1 M Step (A): Centroid Re-estimation

In the first part of the M step, the cluster centroids M are re-estimated from points
currently assigned to them, to decrease the objective function Job; in Eq. 5.9. For
Bregman divergences and cosine distance, the cluster representative calculated in
the M step of the EM algorithm is equivalent to the expectation value over the
points in that cluster, which is equal to their arithmetic mean (Banerjee et al.,
2005a,b). Additionally, it has been experimentally demonstrated that for clustering
with distribution-based measures, e.g., KL divergence, smoothing cluster represen-
tatives by a prior using a deterministic annealing schedule leads to considerable
improvements (Dhillon and Guan, 2003). With smoothing controlled by a positive
parameter «, each cluster representative uy, is estimated as follows when dj, is the
distortion measure:

(a1 Dsiex, Vi |«
= —1]. 5.23
Fn 1+« < | X + n (5:23)

For directional measures, each cluster representative is the arithmetic mean
projected onto unit sphere (Banerjee et al., 2005a). Taking the distortion parameters
into account, centroids are estimated as follows when dcqs , is the distortion measure:

T T ' (5.24)
eI, a6 x, illa

5.3.7.2 M Step (B): Update of Distortion Parameters

In the second part of the M step, the parameters of the parameterized distortion
measure are updated to decrease the objective function. In general, for parameter-
ized Bregman divergences or directional distances with general parameter priors,
it is difficult to attain a closed-form update for the parameters of the distortion
measure that can minimize the objective function.? Gradient descent provides an
alternative avenue for learning the distortion measure parameters.

For squared Euclidean distance, a full paarameter matrix A is updated during
e,

gradient descent using the rule: A = A 4 n—574 (where 7 is the learning rate).
Using (5.16), 835% can be expressed as

4. For the specific case of parameterized squared Euclidean distance, a closed-form update
of the parameters can be obtained (Bilenko et al., 2004).
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ageuc,q _ Z adeuc,q(ajivu(l)) + Z wij adeucA(xiamj)

0A 0A 0A
z,€X (zs,25)€CML
s.t. YiFy;
a@gfc); adeucA ('Iia -Tj) 0 log P(A) 0 log det(A)
LD “’”{aA oA } o4 " aa
(z4,z5)€CoL
s.t. Yyi=y;
(5.25)

The gradient of the parameterized squared FEuclidean distance is given by

Odeuen (xiy25) _ (@i — ) (2 — ;)"

0A
Gomax
The derivative of the upper bound @7 is 3952” = Z(%M)Ecm (x; —xj)(z; —
z;)T if o2 is computed as described in section 5.3.3.1.

When Rayleigh priors are used on the set of parameters A, the partial derivative

of the log-prior with respect to every individual parameter a,, € A, M%P(A), is
given by
O0logP(A) _ L am (5.26)

Oam, am 52

The gradient of the distortion normalizer log det(A) term is as follows:

Ologdet(A
Ologdet(A) _ o 41 _ giag(a-1y. (5.27)
0A
For parameterized cosine distance and KL divergence, a diagonal parameter
gradient update matrix A is considered, where a = diag(A) is a vector of positive weights. During
for diagonal A gradient descent, each weight a,, is individually updated as a,, = am, + n% (n

is the learning rate). Using (5.14), %H;bj can be expressed as

0dobs _ > Odal@i, p(i)) 3 Op(wi, x5)

Wiy

dan, z,€X Oam (z5,25)€CrmL dam
s.t. YiAy;
O™ Qp(xi,xj) 0logP(A)
- _ — X 2
. w[ e 2 (5.28)

(z5,2;)€CcL
s.t. yi=y;

5. In practice, one can initialize pg,c, with a sufficiently large constant, which would

make its derivative zero. Accordingly, an extra condition must be then inserted into
the algorithm to guarantee that penalties for violated cannot-link constraints are never
negative, in which case the constant must be increased.
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Calculation of the gradient % for cosine distance and KL divergence, which
are parameterized by a diagonal matrix A, needs the gradients of the corresponding
distortion measures and constraint potential functions, which are

i 125 1% +25 0, 111

Odecos , (i, ;) Timjm | Til| allzjll a4 — 2] Az; 2f[ws[allz; [a
dam, [E A EA 7
Ody, (x4, ;) x;
Odra, (zi, ;) 2%im 2% im,
——a L = gy log ———— 4 4y log ——— I — 5.29
aam im 108 LTim + xjm m & Tim + mjm’ ( )

x

while the gradient of the upper bound ag;‘: is 0 for parameterized cosine and 1 for
parameterized KL divergence, as follows from the expressions for these constants
in sections 5.3.3.2 and 5.3.3.3.

Overall, the distance learning step results in modifying the distortion measure
so that data points in violated must-link constraints are brought closer together,
while points in violated cannot-link constraints are pulled apart. This process leads
to a transformed data space that facilitates partitioning of the unlabeled data,
by attempting to mend the constraint violations as well as reflecting the natural
variance in the data. See part IV (chapters 15-17) for several alternative techniques
that change the data representation leading to better estimates of similarity between

data points.
5.3.8 Convergence of HMRF-KMEANS

The HMRF-KMEANS algorithm alternates between updating the assignment of
points to clusters, and updating the parameters. Since all updates ensure a de-
crease in the objective function, each iteration of HRMF-KMEANS monotonically
decreases the objective function. Let us inspect each step in the update to ensure
that this is indeed the case.

For analyzing the cluster assignment step, let us consider Eq. 5.14. Each point x;
moves to a new cluster h only if the following component, contributed by the point
x;, is decreased with the move:

da(ws, p(@)+ Y wyele,z)+ D wy (™ —p(ws,x;))—log P(A).
(i,2;)€Cx 1, (zi,2;)€CE
s.t. YiFY; s.t. Yyi=y;
Given a set of centroids and distortion parameters, the new cluster assignment of
points will decrease Job; or keep it unchanged.
For analyzing the centroid re-estimation step, let us consider an equivalent form
of Eq. 5.14:
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K
Jovj =y Y dalwimn)+ Y wiye(ri,a;)

h=1z;€Xp (xi,2,)€EC,
s.t. YiFY;
+ Z Wi (cpma" — (x4, :1:])) —logP(A). (5.30)
(wi,25)€CE,
s.t. Yi=y;

Each cluster centroid py, is re-estimated by taking the mean of the points in the
ziEX), da(z;, ,uh) of Jobj in Eq. 5.30
contributed by the partition Xj. The constraint potential and the prior term in the

partition X}, which minimizes the component

objective function do not take a part in centroid re-estimation, because they are
not explicit functions of the centroid. So, given the cluster assignments and the
distortion parameters, Jon; will decrease or remain the same in this step.

For the parameter estimation step, the gradient-descent update of the parameters
in M step (B) decreases Job;j or keeps it unchanged. Hence the objective function
decreases after every cluster assignment, centroid re-estimation, and parameter
re-estimation step. Now, note that the objective function is bounded below by
a constant: being the negative log likelihood of a probabilistic model with the
normalizer terms, Jopj is bounded below by zero. Even without the normalizers,
the objective function is bounded below by zero, since the distortion and potential
terms are non-negative due to the fact that A is positive definite. Since Jop; is
bounded below, and HMRF-KMEANS results in a decreasing sequence of objective
function values, the value sequence must have a limit. The limit in this case will
be a fixed point of Jopj since neither updating the assignments nor the parameters
can further decrease the value of the objective function. As a result, the HMRF-
KMEANS algorithm will converge to a fixed point of the objective. In practice,
convergence can be determined if subsequent iterations of HMRF-KMEANS result
in insignificant changes in Jop;.

5.4 Active Learning for Constraint Acquisition

In the semi-supervised setting where training data are not already available, getting
constraints on pairs of data points may be expensive. In this section an active
learning scheme for the HMRF model is presented, which can improve clustering
performance with as few queries as possible. Formally, the scheme has access to a
(noiseless) oracle that can assign a must-link or cannot-link label to a given pair
(x;,x;), and it can pose a constant number of queries to the oracle.6

In order to get pairwise constraints that are more informative than random in

6. The oracle can also give a don’t-know response to a query, in which case that response
is ignored (pair not considered as a constraint) and that query is not posed again later.
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the HMRF model, an active learning scheme for selecting pairwise constraints using
the farthest-first traversal scheme is developed. In farthest-first traversal, a starting
point is first selected at random. Then, the next point farthest from it is chosen and
added to the traversed set. After that, the next point farthest from the traversed
set (using the standard notion of distance from a set: d(z,S) = ming cgd(z,z’))
is selected, and so on. Farthest-first traversal gives an efficient approximation of
the K-center problem (Hochbaum and Shmoys, 1985), and has also been used to
construct hierarchical clusterings with performance guarantees at each level of the
hierarchy (Dasgupta, 2002).

Basu et al. (2002) observed that initializing K-MEANS with centroids esti-
mated from a set of labeled examples for each cluster gives significant perfor-
mance improvements. Under certain generative model-based assumptions, one can
connect the mixture of Gaussians model to K-Means with squared Euclidean dis-
tance (Kearns et al., 1997). A direct calculation using Chernoff bounds shows that
if a particular cluster with an underlying Gaussian model is seeded with points
drawn independently at random from the corresponding Gaussian distribution, the
deviation of the centroid estimates falls exponentially with the number of seeds;
hence seeding results in good initial centroids. Since good initial centroids are very
critical for the success of greedy algorithms such as K-MEANS, the same principle
is followed for the pairwise case: the goal is to get as many points as possible per
cluster (proportional to the actual cluster size) by asking pairwise queries, so that
HMRF-KMEANS is initialized from a very good set of centroids. The proposed
active learning scheme has two phases, EXPLORE and CONSOLIDATE, which are
discussed next.

5.4.1 Exploration

The EXPLORE phase explores the given data using farthest-first traversal to get K
pairwise disjoint non-null neighborhoods as fast as possible, with each neighborhood
belonging to a different cluster in the underlying clustering of the data. Note that
even if there is only one point per neighborhood, this neighborhood structure
defines a correct skeleton of the underlying clustering. Our algorithm EXPLORE
(algorithm 5.2) uses farthest-first traversal for getting a skeleton structure of the
neighborhoods, and terminates when it has run out of queries, or when at least
one point from all the clusters has been labeled. In the latter case, active learning
enters the consolidation phase.

5.4.2 Consolidation

The basic idea in CONSOLIDATE (algorithm 5.3) is as follows: since there is at least
one labeled point from all the clusters, the proper neighborhood of any unlabeled
point & can be determined within a maximum of (K — 1) queries. The queries will
be formed by taking a point y from each of the neighborhoods in turn and asking
for the label on the pair (z,y) until a must-link is obtained. Either a must-link reply
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Algorithm 5.2 EXPLORE

Input: Set of data points X = (zy,...,2,), access to an oracle that
answers pairwise queries, number of clusters K, total number
of queries Q.
Output: A < K disjoint neighborhoods N = (Ny,..., N,) corresponding
to the true clustering of X with at least one point per neighborhood.
Method:
1. Initialize: set all neighborhoods N, to null
2. Pick the first point z at random, add to Ny, A « 1
3. While queries are allowed and A < K
z +point farthest from existing neighborhoods N
if, by querying, it is found that 2 is cannot-linked to all
existing neighborhoods
A & A+ 1, start a new neighborhood Ny with z
else
add z to the neighborhood with which it is must-linked

is obtained in (K — 1) queries, or it can be inferred that the point is must-linked
to the remaining neighborhood. Note that it is practical to sort the neighborhoods
in increasing order of the distance of their centroids from x so that the correct
must-link neighborhood for x is encountered sooner in the querying process.

Algorithm 5.3 CONSOLIDATE

Input: Set of data points X = (z1,...,x,), access to an oracle that
answers pairwise queries, number of clusters K, total number
of queries @), K disjoint neighborhoods corresponding to true
clustering of X with at least one point per neighborhood.

Output: K disjoint neighborhoods corresponding to the true
clustering of X with higher number of points per neighborhood.

Method:

1. Estimate centroids (1, ..., k) of each of the neighborhoods

2. While queries are allowed

2a. randomly pick a point & not in the existing neighborhoods

2b. sort the indices h with increasing distances ||z — up||?

2c. for h=1to K

query x with each of the neighborhoods in sorted order
till a must-link is obtained, add = to that neighborhood

When the right number of clusters K is not known to the clustering algorithm,
K is also unknown to the active learning scheme. In this case, only EXPLORE is
used while queries are allowed. EXPLORE will keep discovering new clusters as fast
as it can. When it has obtained all the clusters, it will not have any way of knowing
this. However, from this point onward, for every farthest-first z it draws from the
data set, it will always find a neighborhood that is must-linked to it. Hence, after
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Figure 5.3 Clustering results for Dcos,  Figure 5.4 Clustering results for Dy, on
on News-Different-3 data set. News-Different-3 data set.

discovering all of the clusters, EXPLORE will essentially consolidate the clusters too.
However, when K is known, it makes sense to invoke CONSOLIDATE since (1) it adds
points to clusters at a faster rate than EXPLORE, and (2) it picks random samples
following the underlying data distribution, which is advantageous for estimating
good centroids (e.g., Chernoff bounds on the centroid estimates exist), while samples
obtained using farthest-first traversal may not have such properties.

5.5 Experimental Results
5.5.1 Data Sets

To demonstrate the effectiveness of our semi-supervised clustering framework,
we consider three data sets that have the characteristics of being sparse, high-
dimensional, and having a small number of points compared to the dimensionality
of the space. This is done for two reasons:

® When clustering sparse high-dimensional data, e.g., text documents represented
using the vector space model, it is particularly difficult to cluster small data sets,
as observed by clustering researchers (Dhillon and Guan, 2003). The purpose of
performing experiments on these subsets is to scale down the sizes of the data sets
for computational reasons but at the same time not scale down the difficulty of the
tasks.

® Clustering small number of sparse high-dimensional data points is a likely scenario
in realistic applications. For example, when clustering the search results in a
websearch engine like Vivisimo77 typically the number of webpages that are being
clustered is on the order of hundreds. However the dimensionality of the feature
space, corresponding to the number of unique words in all the webpages, is on
the order of thousands. Moreover, each webpage is sparse, since it contains only a

7. http://wuw.vivisimo.com
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on News-Similar-3 data set. News-Similar-3 data set.

small number of all the possible words. On such data sets, clustering algorithms
can easily get stuck in local optima: in such cases it has been observed that there is
little relocation of documents between clusters for most initializations, which leads
to poor clustering quality after convergence of the algorithm (Dhillon and Guan,
2003). Supervision in the form of pairwise constraints is most beneficial in such
cases and may significantly improve clustering quality.

We derived three data sets from the 20-Newsgroups collection.® This collection
has messages harvested from 20 different Usenet newsgroups, 1000 messages from
each newsgroup. From the original data set, a reduced data set was created by tak-
ing a random subsample of 100 documents from each of the 20 newsgroups. Three
data sets were created by selecting three categories from the reduced collection.
News-Similar-3 consists of three newsgroups on similar topics (comp.graphics,
comp.os.ms-windows, comp.windows.x) with significant overlap between clusters
due to cross-posting. News-Related-3 consists of three newsgroups on related top-
ics (talk.politics.misc, talk.politics.guns, and talk.politics.mideast).
News-Different-8 consists of articles posted in three newsgroups that cover differ-
ent topics (alt.atheism, rec.sport.baseball, sci.space) with well-separated

8. http://www.ai.mit.edu/people/jrennie/20Newsgroups
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clusters. The vector-space model of News-Similar-3 has 300 points in 1864 dimen-
sions, News-Related-3 has 300 points in 3225 dimensions, and News-Different-3 had
300 points in 3251 dimensions. Since the overlap between topics in News-Similar-3
and News-Related-3 is significant, they are more challenging data sets than News-
Different-3.

All the data sets were preprocessed by stopword removal, TF-IDF weighting, re-
moval of very high-frequency and low-frequency words, etc., following the method-
ology of Dhillon et al. (Dhillon and Modha, 2001).

5.5.2 Clustering Evaluation

We used normalized mutual information (NMI) as our clustering evaluation mea-
sure. NMI is an external clustering validation metric that estimates the quality of
the clustering with respect to a given underlying class labeling of the data: it mea-
sures how closely the clustering algorithm could reconstruct the underlying label
distribution in the data (Strehl et al., 2000; Dom, 2001). If C' is the random vari-
able denoting the cluster assignments of the points and K is the random variable
denoting the underlying class labels on the points (Banerjee et al., 2005a), then the
NMI measure is defined as

I(C; K)
(H(C)+ H(K))/2"
where I(X;Y) = H(X) — H(X]Y) is the mutual information between the random
variables X and Y, H(X) is the Shannon entropy of X, and H(X|Y) is the

conditional entropy of X given Y (Cover and Thomas, 1991). NMI effectively
measures the amount of statistical information shared by the random variables

NMI =

(5.31)

representing the cluster assignments and the user-labeled class assignments of the
data points.

5.5.3 Methodology

We generated learning curves using 20 runs of twofold cross-validation for each
data set. For studying the effect of constraints in clustering, 50% of the data
set is set aside as the test set at any particular fold. The different points along
the learning curve correspond to constraints that are given as input to the semi-
supervised clustering algorithm. These constraints are obtained from the training
set corresponding to the remaining 50% of the data by randomly selecting pairs
of points from the training set, and creating must-link or cannot-link constraints
depending on whether the underlying classes of the two points are same or different.
Unit constraint costs W and W were used for all constraints, original and inferred,
since the data sets did not provide individual weights for the constraints. Based
on a few pilot studies, gradient step size 7 was chosen to have values n = 1.75 for
clustering with Do, and 7 = 1.078 for clustering with Dj,; weights were restricted
to be non-negative. In a realistic setting, these parameters could be tuned using
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cross-validation with a holdout set. The clustering algorithm was run on the whole
data set, but NMI was calculated only on the test set. The learning curve results
were averaged over the 20 runs.

5.5.4 Results and Discussion

We compared the proposed HMRF-KMEANS algorithm with two ablations as well
as unsupervised K-Means clustering. The following variants were compared for
distortion measures D¢os, and Dy, as representatives for Bregman divergences and
directional measures respectively:

® KMEANS-I-C-D is the complete HMRF-KMEANS algorithm that includes use
of supervised data in initialization (I) as described in section 5.3.5, incorporates
constraints in cluster assignments (C) as described in section 5.3.6, and performs
distance learning (D) as described in section 5.3.7;

» KMEANS-I-C is an ablation of HMRF-KMEANS that uses pairwise supervision
for initialization and cluster assignments, but does not perform distance learning;

» KMEANS-I is a further ablation that only uses the constraints to initialize cluster
representatives;

= KMEANS is the unsupervised K-Means algorithm.

Figures 5.3, 5.5, and 5.7 demonstrate the results for experiments where weighted
cosine similarity Dcos, was used as the distortion measure, while figures 5.4, 5.6,
and 5.8 summarize experiments where weighted I divergence D, was used.

As the results demonstrate, the full HMRF-KMEANS algorithm outperforms the
unsupervised K-Means baseline as well as the ablated versions of HMRF-KMEANS
for both Do, and Dy, . Relative performance of KMEANS-I-C and KMEANS-
I indicates that using supervision for initializing cluster representatives is highly
beneficial, while the constraint-sensitive cluster assignment step does not lead to
significant additional improvements for D.qs,. For Dy, , KMEANS-I-C outperforms
KMEANS-I on News-Different-3 (figure 5.4) and News-Similar-3 (figure 5.8) which
indicates that incorporating constraints in the cluster assignment process is useful
for these data sets. This result is reversed for News-Related-3 (figure 5.6), implying
that in some cases using constraints in the E step may be unnecessary, which agrees
with previous results on other domains (Basu et al., 2002). However, incorporating
supervised data in all the three stages of the algorithm in KMEANS-I-C-D, namely
initialization, cluster assignment, and distance update, always leads to substantial
performance improvement.

As can be seen from results for 0 pairwise constraints in figures 5.3 through
5.8, distance learning is beneficial even in the absence of any pairwise constraints,
since it is able to capture the relative importance of the different attributes in the
unsupervised data. In the absence of supervised data or when no constraints are
violated, distance learning attempts to minimize the objective function by adjusting
the weights given the distortion between the unsupervised data points and their
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corresponding cluster representatives.

In realistic application domains, supervision in the form of constraints would be in
most cases provided by human experts, in which case it is important that any semi-
supervised clustering algorithm performs well with a small number of constraints.
KMEANS-I-C-D starts outperforming its variants and the unsupervised clustering
baseline early on in the learning curve, and is therefore a very appropriate algorithm
to use in actual semi-supervised data clustering systems.

Overall, our results show that the HMRF-KMEANS algorithm effectively incor-
porates labeled and unlabeled data in three stages, each of which improves the
clustering quality.

5.6 Related Work

The problem of integrating limited supervision in clustering algorithms has been
studied by a number of authors in recent work. Early approaches to semi-supervised
clustering relied on incorporating penalties for violating constraints into the objec-
tive function, leading to algorithms that avoid clusterings in which constraints are
not satisfied. COP-KMeans is one such method where constraint violations are ex-
plicitly avoided in the assignment step of the K-Means algorithm (Wagstaff et al.,
2001; Wagstaff, 2002). Another method, proposed by Demiriz et al. (1999), uti-
lizes genetic algorithms to optimize an objective function that combines cluster
compactness and cluster purity and that decreases with constraint violations.

In subsequent work, several approaches have been proposed that consider semi-
supervised clustering within a probabilistic framework. Segal et al. (2003b) describe
a model for semi-supervised clustering with constraints that combines a binary
Markov network derived from pairwise protein interaction data and a naive Bayes
Markov network modeling gene expression data. Another probabilistic approach
described by Shental et al. (2004) incorporates must-link constraints via modeling
them as chunklets, sets of points known to belong to the same class, while cannot-
link constraints are utilized via potentials in a binary Markov network. HMRF's have
previously been used for image segmentation by Zhang et al. (2001), who have also
described an EM-based clustering algorithm. More recently, Lange et al. (2005)
proposed an approach that incorporates labeled and unlabeled data within an
HMRF-like model, while a mean field approximation method for posterior inference
is used in the E step of the algorithm. The HMRF framework described in this
chapter differs from these approaches in that it explicitly incorporates learning of
the distortion measure parameters within the clustering algorithm and facilitates
the use of diverse distance measures; however, a number of the proposed methods
could be integrated within the HMRF framework.

Spectral clustering methods—algorithms that perform clustering by decompos-
ing the pairwise affinity matrix derived from data—have been increasingly popular
recently (Weiss, 1999; Ng et al., 2002), and several semi-supervised approaches have
been developed within the spectral clustering framework. Kamvar et al. (2003) have
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proposed directly injecting the constraints into the affinity matrix before subse-
quent clustering, while De Bie et al. (2004) reformulated the optimization problem
corresponding to spectral clustering by incorporating a separate label constraint
matrix. Additionally, spectral clustering methods can be viewed as variants of the
graph-cut approaches to clustering (Shi and Malik, 2000), a connection that mo-
tivated the correlation clustering method proposed by (Bansal et al., 2002), where
the constraints correspond to edge labels between vertices representing data points.

Another family of semi-supervised clustering methods has focused on modifying
the distance function employed by the clustering algorithm. In early work, Cohn
et al. (2003) proposed using a weighted variant of Jensen-Shannon divergence within
the EM clustering algorithm, with the weights learned using gradient descent based
on constraint violations. Within the family of hierarchical agglomerative clustering
algorithms, Klein et al. (2002) proposed modifying the squared Euclidean distance
using the shortest-path algorithm. Several researchers have proposed methods for
learning the parameters of the weighted Mahalanobis distance, a generalization of
Euclidean distance, within the context of semi-supervised clustering. Xing et al.
(2003) utilized convex optimization and iterative projections to learn the weight
matrix of Mahalanobis distance within K-Means clustering. Another approach
focused on parameterized Mahalanobis distance is the relevant component analysis
(RCA) algorithm proposed by Bar-Hillel et al. (2003), where convex optimization
is also used to learn the weight matrix.

Learning distance metrics within semi-supervised clustering relates to a large set
of approaches for transforming the data representation to make it more suitable
to a particular learning task. Within this book, part IV (chapters 15-17) describes
several advanced techniques for changing the geometry of the data space to obtain
better estimates of similarity between data points; integrating these methods with
clustering algorithms provides a number of promising avenues for future work.

5.7 Conclusions

In this chapter, a generative probabilistic framework for semi-supervised clustering
has been introduced. It relies on hidden random Markov fields (HMRFs) to utilize
both unlabeled data and supervision in the form of pairwise constraints during
the clustering process. The framework can be used with a number of distortion
(distance) measures, including Bregman divergences and directional measures, and
it facilitates training the distance parameters to adapt to specific data sets.

An algorithm HMRF-KMEANS for performing clustering in this framework
has been presented that incorporates pairwise supervision in different stages of
the clustering: initialization, cluster assignment, and parameter estimation. Three
particular instantiations of the algorithm, based on different distortion measures,
have been discussed: squared Euclidean distance, which is common for clustering
low-dimensional data, and KL divergence and cosine distance, which are popular
for clustering high-dimensional directional data. Finally, a new method has been
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presented for acquiring supervision from a user in the form of effective pairwise
constraints for semi-supervised clustering — such an active learning algorithm would
be useful in an interactive query-driven clustering framework.

The HMRF model can be viewed as a unification of constraint-based and
distance-based semi-supervised clustering approaches. It can be expanded to a
more general setting where every cluster has a corresponding distinct distortion
measure (Bilenko et al., 2004), leading to a clustering algorithm that can identify
clusters of different shapes. Empirical evaluation of the framework described in
this chapter can be found in several previous publications: active learning experi-
ments are discussed in (Basu et al., 2004a), while (Bilenko et al., 2004) and (Basu
et al., 2004b) contain results for low-dimensional and high-dimensional data sets
respectively, and (Bilenko and Basu, 2004) compares several approximate inference
methods for E Step discussed in section 5.3.6.

An important practical issue in using generative models for semi-supervised
learning is model selection. For semi-supervised clustering with constraints, the
key model selection issue is one of choosing the right number of clusters. One can
consider using a traditional model selection criterion suitable for the supervised
setting, or perform model selection by cross-validation. An alternative is to perform
model-selection using bounds on the test-set error rate such that valuable supervised
data are saved for learning. The PAC-MDL bounds (Blum and Langford, 2003)
provide such a tool that has been successfully applied to model selection for
clustering (Banerjee et al., 2005a), and can be readily extended to the semi-
supervised clustering setting. In fact, the semi-supervised clustering setting is
more natural since PAC-MDL bounds are applicable for transductive learning.
Alternative methods of model selection are a good topic for future research.
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6 Transductive Support Vector Machines

Thorsten Joachims TJQ@QCS.CORNELL.EDU

In contrast to learning a general prediction rule, V. Vapnik proposed the transduc-
tive learning setting where predictions are made only at a fixed number of known
test points. This allows the learning algorithm to exploit the location of the test
points, making it a particular type of semi-supervised learning problem. Transduc-
tive support vector machines (TSVMs) implement the idea of transductive learning
by including test points in the computation of the margin. This chapter will pro-
vide some examples for why the margin on the test examples can provide useful
prior information for learning, in particular for the problem of text classification.
The resulting optimization problems, however, are difficult to solve. The chapter re-
views exact and approximate optimization methods and discusses their properties.
Finally, the chapter discusses connections to other related semi-supervised learning
approaches like co-training and methods based on graph cuts, which can be seen
as solving variants of the TSVM optimization problem.

6.1 Introduction

The setting of transductive inference was introduced by Vapnik (e.g. (Vapnik,
1998)). As an example of a transductive learning task, consider the problem of
learning from relevance feedback in information retrieval (see (Baeza-Yates and
Ribeiro-Neto, 1999)). The user marks some documents returned by a search engine
in response to an initial query as relevant or irrelevant. These documents then serve
as a training set for a binary text classification problem. The goal is to learn a rule
that accurately classifies all remaining documents in the database according to their
relevance. Clearly, this problem can be thought of as a supervised learning problem.
But it is different from many other (inductive) learning problems in at least two
respects.

First, the learning algorithm does not necessarily have to learn a general rule,
but it only needs to predict accurately for a finite number of test examples (i.e.,
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the documents in the database). Second, the test examples are known a priori and
can be observed by the learning algorithm during training. This allows the learning
algorithm to exploit any information that might be contained in the location of
the test examples. Transductive learning is therefore a particular case of semi-
supervised learning, since it allows the learning algorithm to exploit the unlabeled
examples in the test set. The following focuses on this second point, while chapter 24
elaborates on the first point.

More formally, the transductive learning setting can be formalized as follows.
Given is a set

1

S=1{1,2,...n} (6.1)

that enumerates all n possible examples. In our relevance feedback example from
above, there would be one index ¢ for each document in the collection. We assume
that each example i is represented by a feature vector x; € R%. For text documents,
this could be a TFIDF vector representation (see e.g. (Joachims, 2002)), where
each document is represented by a scaled and normalized histogram of the words
it contains. The collection of feature vectors for all examples in S is denoted as

X = (X1,X2, ...y Xp). (6.2)
For the examples in S, labels

Y = (y1,¥2: - ¥n) (6.3)

are generated independently according to a distribution P(y1, ...,y») = [[1; P(yi)-
For simplicity, we assume binary labels y; € {—1,+1}.

As the training set, the learning algorithm can observe the labels of [ randomly
selected examples Strqin C S. The remaining v = n — [ examples form the test set
Stest =95 \ Strain~

Strain - {lh seey ll} Stest = {uh 7uu} (64)

When training a transductive learning algorithm £, it not only has access to the
training vectors Xy, qin and the training labels Yy, qin,

Xtrain = (Xll 3 Xlgy ey Xll) thrain = (Yll sy Yios - YU, )7 (65)
but also to the unlabeled test vectors
Kiest = (Kuys Xugy oy Xuy )- (6.6)

The transductive learner uses Xtrqin, Yirain, and Xiest (but not the labels Yieqr of

1. While several other, more general, definitions of transductive learning exist (Vapnik,
1998; Joachims, 2002; Derbeko et al., 2003), this one was chosen for the sake of simplicity.
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the test examples) to produce predictions,

thest (YulvyuQa . 'ayzu)a (67)

for the labels of the test examples. The learner’s goal is to minimize the fraction of
erroneous predictions,

E""Ttest test Z 50/1 y1aYZ (68)

lestest

on the test set. dg/1(a,b) is zero if a = b, otherwise it is one.

At first glance, the problem of transductive learning may not seem profoundly
different from the usual inductive setting. One could learn a classification rule based
on the training data and then apply it to the test data afterward. However, a crucial
difference is that the inductive strategy would ignore any information potentially
conveyed in X;eq.

What information do we get from studying the test sample X5 and how could
we use it? The fact that we deal with only a finite set of points means that the
hypothesis space H of a transductive learner is necessarily finite — namely, all
vectors {—1, +1}™. Following the principle of structural risk minimization (Vapnik,
1998), we can structure H into a nested structure

HiCcHoC--- CH={-1,+1}". (6.9)

The structure should reflect prior knowledge about the learning task. In particular,
the structure should be constructed so that, with high probability, the correct
labeling of S (or labelings that make few errors) is contained in an element J(;
of small cardinality. This structuring of the hypothesis space H can be motivated
using generalization error bounds from statistical learning theory. In particular, for
a learner L that searches for a hypothesis (Y,

train’

Yi.) € H; with small training
error,

E""Ttest( trazn = Z 50/1 Yzayl) (610)

1EStTa'Ln

it is possible to upper-bound the fraction of test errors Erries: (Y,,) (Vapnik, 1998;
Derbeko et al., 2003). With probability 1 —»

Erriest (Yiest) < Errtrain(Yirai) + Q1 u, [3G],1) (6.11)

where the confidence interval Q(I,u,|H;|,n) depends on the number of training
examples [, the number of test examples u, and the cardinality |3(;| of H; (see
(Vapnik, 1998) for details). The smaller the cardinality |H;|, the smaller is the
confidence interval (I, u, |3(;|, ) on the deviation between training and test error.

The bound indicates that a good structure ensures accurate prediction of the
test labels. And here lies a crucial difference between transductive and inductive
learners. Unlike in the inductive setting, we can study the location Xy of the test
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Figure 6.1 The two graphs illustrate the labelings that margin hyperplanes can realize
dependent on the margin size. Example points are indicated as dots: the margin of each
hyperplane is illustrated by the gray area. The left graph shows the separators 3, for a
small margin threshold p. The number of possible labelings N, decreases as the margin
threshold is increased, as in the graph on the right.

examples when defining the structure. In particular, in the transductive setting it
is possible to encode prior knowledge we might have about the relationship between
the geometry of X = (x1,...,Xp) and P(y1,...,yn). If such a relationship exists, we
can build a more appropriate structure and reduce the number of training examples
necessary for achieving a desired level of prediction accuracy. This line of reasoning
is detailed in chapter 24.

6.2 Transductive Support Vector Machines

train and test set
margin

Transductive support vector machines (TSVMs) assume a particular geometric
relationship between X = (x1,...,x,) and P(y1,...,¥n). They build a structure
on H based on the margin of hyperplanes {x : w-x + b = 0} on the complete
sample X = (x1,Xa, ..., Xy), including both the training and the test vectors. The
margin of a hyperplane on X is the minimum distance to the closest example vectors
in X.

. Yi
1611[1111111] Twl (W-x; +b) (6.12)
The structure element 3, contains all labelings of X which can be achieved with
hyperplane classifiers h(x) = sign{x - w + b} that have a margin of at least p
on X. The dependence of H, on p is illustrated in figure 6.1. Intuitively, building
the structure based on the margin gives preference to labelings that follow cluster
boundaries over labelings that cut through clusters. Vapnik shows that the size of
the margin p can be used to control the cardinality of the corresponding set of
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Figure 6.2 For the same data as in figure 6.1, some examples are now labeled. Posi-
tive/negative examples are marked as +/—. The dashed line is the solution of an inductive
SVM, which finds the hyperplane that separates the training data with largest margin, but
ignores the test vectors. The solid line shows the hard-margin transductive classification,
which is the labeling that has zero training error and the largest margin with respect to
both the training and the test vectors. The TSVM solution aligns the labeling with the
cluster structure in the training and test vectors.

labelings J(,. More formally, the following theorem provides an upper bound on
the number of labelings |H(,| that can be achieved with hyperplanes that have a
margin of at least p.

Theorem 6.1 ((VAPNIK, 1998))

For any n vectors X1, ...,X, € R? that are contained in a ball of diameter R, the
number |H,| of possible binary labelings y1,...,yn € {—1,+1} that can be realized
with hyperplane classifiers h(x) = sign{x - w + b} of margin at least p,

n Yi
m Twl [w-x; +b] >p (6.13)
is bounded by
n otk R2
190, ] < el =) g = Tt (6.14)

Note that the number of labelings |H,| does not necessarily depend on the
number of features d. As suggested by the theorem, TSVMs sort all labelings by
their margin p on X to build the structure on H. Structural risk minimization
argues that a learning algorithm should select the labeling Y* € X, for which
training error Errirqin (Y}
error bound (6.11). For the special case of requiring zero training error (i. e.
Errivain(Yiiain) = 0), optimizing the bound means finding the labeling with
the largest margin on the complete set of vectors. This leads to the following
optimization problem (OP) (Vapnik, 1998).

*ain) and cardinality of H, minimize the generalization



110

hard-margin
TSVM

inductive SVM

soft-margin

TSVM

kernels

Transductive Support Vector Machines

OP1 (TRANSDUCTIVE SVM (HARD-MARGIN))

1
minimize: V(Yoo Yu, W, b) = gWw (6.15)
subject to: Vi iy @ exg, + b > 1 (6.16)
Vioy sy, xq, +0] >1 (6.17)
Vil tyy, € {-1,+1} (6.18)

Solving this problem means finding the labeling y7, ,...,y;, of the test data for
which the hyperplane that separates both training and test data has maximum
margin. Figure 6.2 illustrates this. The figure also shows the solution that an
inductive SVM (Cortes and Vapnik, 1995; Vapnik, 1998) computes. An inductive
SVM also finds a large-margin hyperplane, but it considers only the training
vectors while ignoring all test vectors. In particular, a hard-margin inductive SVM
computes the separating hyperplane that has zero training error and the largest
margin with respect to the training examples.

To be able to handle nonseparable data, one can introduce slack variables &;
(Joachims, 1999) similar to inductive SVMs (Cortes and Vapnik, 1995).

OP2 (TRANSDUCTIVE SVM (SOFT-MARGIN)) .
min: Wy, Yo, W, 0,61, s &6, 0 E3) = swew + O &+ C*Y ¢ (6.19)

2 i=1 j=1
steVi_ iy wex, +b>1-& (6.20)
fo1 YW X, 0 21— &5 (6.21)
io1iyn, €{-1,+1} (6.22)
Vil :&>0 (6.23)
o1& =0 (6.24)

C and C* are parameters set by the user. They allow trading off margin size
against misclassifying training examples or excluding test examples. C* can be
used reduce sensitivity toward outliers (i.e., single examples falsely reducing the
margin on the test data).

Both inductive and transductive SVMs can be extended to include kernels (Boser
et al., 1992; Vapnik, 1998). Making use of duality techniques from optimization
theory, kernels allow learning nonlinear rules as well as classification rules over
nonvectorial data (see e.g. (Schélkopf and Smola, 2002)) without substantially
changing the optimization problems.

Note that in both the hard-margin formulation (OP1) and the soft-margin formu-
lation (OP2) of the TSVM, the labels of the test examples enter as integer variables.
Due to the constraints in Egs. 6.18 and 6.22 respectively, both OP1 and OP2 are
no longer convex quadratic programs like the analogous optimization problems for
inductive SVMs. Before discussing methods for (approximately) solving the TSVM
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nuclear| physics| atom | parsley| basil salt and
D1 1 1
D2 1 1 1 1
D3 1 ]
D4 1 1 1
D5 1 1 1
D6 1 1 1

Figure 6.3 Example of a text-classification problem with co-occurrence pattern. Rows
correspond to documents, columns to words. A table entry of 1 denotes the occurrence of
a word in a document.

optimization problems, let’s first discuss some intuition about why structuring the
hypothesis space based on the margin on the test examples might be reasonable.

6.3 Why Use Margin on the Test Set?

Why should it be reasonable to prefer a labeling with a large margin over a labeling
with a smaller margin, even if both have the same training error? Clearly, this
question can only be addressed in the context of a particular learning problem. In
the following, we will consider text classification as an example. In particular, for
topic-based text classification it is known that good classification rules typically
have a large margin (Joachims, 2002). The following example gives some intuition
for why this is the case.

In the field of information retrieval it is well known that words in natural language
occur in co-occurrence patterns (see e.g. (van Rijsbergen, 1977)). Some words are
likely to occur together in one document; others are not. For examples, when
asking Google about all documents containing the words pepper and salt, it
returns 3,500,000 webpages. When asking for the documents with the words pepper
and physics, we get only 248,000 hits, although physics (162,000,000 hits) is a
more popular word on the web than salt (63,200,000 hits). Many approaches in
information retrieval try to exploit this cluster structure of text (see e.g. (Baeza-
Yates and Ribeiro-Neto, 1999, chapter 5)). It is this co-occurrence information that
TSVMs exploit as prior knowledge about the learning task.

Consider the example in figure 6.3. Imagine document D1 was given as a training
example for class A and document D6 was given as a training example for class
B. How should we classify documents D2 to D5 (the test set)? Even if we did
not understand the meaning of the words, we would classify D2 and D3 into class
A, and D4 and D5 into class B. We would do so even though D1 and D3 do
not share any informative words. The reason we choose this classification of the
test data over the others stems from our prior knowledge about the properties of
text and common text-classification tasks. Often we want to classify documents by
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Figure 6.4 Macro-averaged PRBEP on the Reuters data set for different training set
sizes and a test set size of 3299.

topic, source, or style. For these types of classification tasks we find stronger co-
occurrence patterns within classes than between different classes. In our example
we analyzed the co-occurrence information in the test data and found two clusters.
These clusters indicate different topics of {D1, D2, D3} versus {D4, D5, D6}, and
we choose the cluster separator as our classification. Note again that we got to this
classification by studying the location of the test examples, which is not possible
for an inductive learner.

The TSVM outputs the same classification as we suggested above, although all
16 labelings of D2 to D5 can be achieved with linear separators. Assigning D2
and D3 to class A and D4 and D5 to class B is the maximum-margin solution
(i.e., the solution of OP1). The maximum-margin bias appears to reflect our prior
knowledge about text classification well. By measuring margin on the test set, the
TSVM exploits co-occurrence patterns that indicate boundaries between topics.

6.4 Experiments and Applications of TSVMs

TSVMs in text
classification

Structuring the hypothesis space using margin was obviously beneficial in the toy
example above. Experiments have confirmed that this also holds in practice.
Figures 6.4 and 6.5 (from Joachims (1999)) give empirical evidence that
TSVMs improve prediction performance on real text-classification tasks, namely
the Reuters-21578 text-classification benchmark. The standard “ModApte” train-
ing/test split is used, leading to a corpus of 9603 training documents and 3299
test documents. The results are averaged over the ten most frequent topics, while
keeping all documents. Each topic leads to a binary classification problem, where
documents about the topic are positive examples, and all other documents are neg-
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Figure 6.5 Macro-averaged PRBEP on the Reuters data set for 17 training documents
and varying test set size for the TSVM.

ative examples. The performance of each binary classifier is measured in terms of
the precision/recall breakeven point (PRBEP). The PRBEP is the percentage of
positive test examples that are classified correctly, if the classifier is allowed to pre-
dict as many test examples as positive as there are true positives in the test set
(see e.g. (Joachims, 2002)). The precise setup is described in (Joachims, 1999).

Figures 6.4 and 6.5 show the effect of using TSVM instead of inductive methods.
To provide a baseline for comparison, the results of the inductive SVM and a
multinomial naive Bayesnaive Bayes classifier are added. The SVM and the TSVM
are trained using SVM'9" available at svmlight . joachims.org. Figure 6.4 shows
the effect of varying the size of the training set. The advantage of using the
transductive approach is largest for small training sets. For increasing training
set size, the performance of the SVM approaches that of the TSVM. This is to be
expected, since labeled examples eventually convey the same information about the
distribution of the example vectors as the unlabeled data.

The influence of the test set size on the performance of the TSVM is displayed
in figure 6.5. The bigger the test set, the larger the performance gap between
SVM and TSVM. Adding more test examples beyond 3299 is not likely to increase
performance by much, since the graph appears to flatten out. The curves are fairly
typical and similar behavior was also observed on other problems. The results for
other text classification data sets can be found in (Joachims, 2002).

Similar gains in performance of the TSVM over an inductive SVM were reported
by Chapelle et al. (2003). For classifying net news articles they report that the
TSVM almost halves the prediction error for small training sets of 16 examples.
For an email classification problem, the results of Kockelkorn et al. (2003) also
indicate that TSVMs substantially outperform inductive SVMs for small training
sets. Small improvements on text classification problems are also reported by
Tong and Koller (2001). However, they conclude that the effect of active learning,
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where the algorithm can ask for the labels of particular examples, dominates the
improvement seen from the TSVM. This is in contrast to the findings of Wang et al.
(2003). They find that incorporating TSVMs into their active learning procedure
for image retrieval based on relevance feedback substantially improves performance.
For more text-classification experiments see chapter 3.

Beyond text classification, Bennett and Demiriz (1999) have applied their L;-
norm variant of transductive SVMs to several UCI benchmark problems. They find
small but fairly consistent improvements over these tasks. A key difference from
most other experiments with transductive learning are the small test sets that
were used. Due to efficiency limitations of the mixed-integer programming code
they used for training, all test sets contained no more than 70 examples. Their
evaluation of regular TSVMs on a subset of these UCI benchmarks shows mixed
results (Demiriz and Bennett, 2000). Similar findings on UCI benchmarks are also
reported by Joachims (2003), where the differences between inductive SVMs and
TSVMs were found to be small.

Several applications of TSVMs in bioinformatics have been explored. For exam-
ple, they have been used to recognize promoter sequences in genes. Kasabov and
Pang (2004) report that TSVMs substantially outperform inductive SVMs in their
experiments. However, for the problem of predicting the functional properties of
proteins, Krogel and Scheffer (2004) find that TSVMs significantly decrease perfor-
mance compared to inductive SVMs.

Goutte et al. (2002) apply TSVMs to a problem of recognizing entities (e.g., gene
names, protein names) in medical text. They find that TSVMs substantially im-
prove performance for medium-sized training sets, and perform at least comparably
to an alternative transductive learning method based on Fisher kernels.

Summarizing the results, it appears that TSVMs are particularly well suited for
text classification and several other (typically high-dimensional) learning problems.
However, on some problems the TSVM performs roughly equivalently to an induc-
tive SVM, or sometimes even worse. This is to be expected, since it is likely that
structuring the hypothesis space according to margin size is inappropriate for some
applications. Furthermore, it is likely that the difficulty of finding the optimum of
the TSVM optimization problem has led to suboptimal results in some cases. We
discuss algorithms for solving the TSVM optimization problem next.

6.5 Solving the TSVM Optimization Problem

mixed-integer
programming

Both the hard soft-margin TSVM optimization problems can be written as mixed-
integer problems with a quadratic objective and linear constraints. Unfortunately,
currently no algorithm is known to efficiently find a globally optimal solution.
Vapnik and colleagues (Vapnik and Sterin, 1977; Wapnik and Tscherwonenkis,
1979) proposed the use of branch-and-bound search to find the global optimium of
the TSVM optimization problem. Similarly, Bennett and Demiriz (1999) consider
standard mixed-integer programming software like CPLEX to solve a variant of
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the TSVM optimization problem. To be able to use such software, they replace
the term w - w = ||WH§ in the objective with ||w||; so that the objective becomes
linear. However, while both approaches produce globally optimal solutions, they
can solve only small problems with less than 100 test examples in reasonable time.
Unfortunately, figure 6.5 suggests that the biggest benefits of transductive learning
occur only for larger test sets.

The algorithm implemented in SVM!9"* does not necessarily produce a globally
optimal solution, but can handle test sets with up to 100,000 examples in reasonable
time (Joachims, 1999, 2002). Most of the empirical results in the previous section
were produced using this algorithm. The algorithm performs a kind of coordinate-
descent local search starting from an initial labeling of the test examples derived
from an inductive SVM. The ratio of test examples that are classified as positive
(by adjusting the hyperplane threshold b) in this initial labeling is specified by the
user or estimated from the ratio of positive to negative examples in the training set.
This ratio is maintained throughout the optimization process to avoid degenerate
solutions that assign all test examples to the same class.? In every step of the
local search, the algorithm selects two examples (one positive and one negative)
and swaps their labels. The way the examples are selected guarantees a strict
improvement of the objective function (i.e., the soft margin) in every such step.
In addition, the algorithm starts with a small value of C* and raises it throughout
the optimization process. This means that most £* are non-zero in the initial phase
of the search, resulting in a smoother objective function. Toward the end of the
search, incrementally increasing the value of C* toward the desired target value
makes the problem closer to the desired objective. A more detailed explanation of
the algorithm is given in (Joachims, 2002).

A related block coordinate descent method was proposed by Demiriz and Bennett
(2000). The algorithm also alternates between changing the labels of the test exam-
ples and recomputing the margin. Differences compared to the SVM"9"?algorithm
lie in the selection of the labels to change, the number of labels that are changed
in each iteration, and in the heuristics that are aimed to avoid local optima. A
similar algorithm for the L;-norm variant of the TSVM is described by Fung and
Mangasarian (2001).

De Bie and Cristianini (2004a) explore a convex approximation of the TSVM
optimization problem (also see chapter 7). They present a relaxation that takes the
form of a semi-definite program. While this program can be solved in polynomial
time, it becomes too inefficient for test sets with more than 100 examples. However,
assuming a low-rank structure of the test labels derived from a spectral decomposi-
tion technique, De Bie and Cristianini push the efficieny limit to several thousands
of test examples.

2. In text classification, assigning all test examples to the same class typically gives larger
margins than any other labeling. Clearly, this is an undesirable solution and indicates
a problem with the TSVM approach. A method that does not exhibit this problem is
presented in Joachims (2003).
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The difficulty in solving the TSVM optimization problem has led to much interest
in other formulations of transductive learning algorithms. The goal is to exploit the
same type of relationship between the geometry of the test examples — or unlabeled
examples more generally — and their labels, but that have computationally more
convenient properties. Graph partitioning approaches based on st-min-cuts (Blum
and Chawla, 2001) and spectral graph partitioning explicitly or implicitly pursued
this goal (Belkin and Niyogi, 2002; Chapelle et al., 2003; Joachims, 2003; Zhu
et al., 2003b) (see also chapters 11, 12, 13, 14, and 15). For example, the method
in (Joachims, 2003) is explicitly derived analogous to a TSVM as a transductive
version of the k-nearest neighbor classifier.

Ridge regression is a method closely related to regression SVMs. Chapelle et al.
(1999) derive a tranductive variant of ridge regression. Since the class labels do
not need to be discrete for regression problems, they show that the solution of the
associated optimization problem can be computed efficiently.

Co-training (Blum and Mitchell, 1998) exploits two redundant representations of
a learning problem for semi-supervised learning. A connection to general trans-
ductive learning comes from the insight that co-training produces transductive
learning problems that have large margin (Joachims, 2003, 2002). In fact, TSVMs
and spectral partitioning methods appear to perform well on co-training problems
(Joachims, 2003).

Connecting to concepts of algorithmic randomness, Gammerman et al. (1998),
Vovk et al. (1999), and Saunders et al. (1999) presented approaches to estimating
the confidence of a prediction based on a transductive setting. A similar goal using
a Bayesian approach is pursued by Graepel et al. (2000). Since their primary aim
is not a reduced error rate in general, but a measure of confidence for a particular
prediction, they consider only test sets with exactly one example.

6.7 Summary and Conclusions

Transductive support vector machines exploit the geometric (cluster) structure in
the feature vectors of the test examples, which makes them a particular kind of
semi-supervised learning method. In particular, TSVMs find the labeling of the
test examples that maximizes margin jointly on the training and the test data.
Intuitively, this produces labeling of the test examples so that class boundaries
follow cluster boundaries. Empirical findings suggest that TSVMs are particularly
well suited for text classification and several other (typically high-dimensional)
learning problems, often showing large accuracy gains for small training sets and
large test sets. However, on some problems the TSVM performs roughly equivalently
to an inductive SVM, or sometimes even worse. Partially, failure on some tasks may
be due to the difficulty of finding the optimum of the TSVM optimization problem.
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Finding the globally optimal solution is intractable for interestingly sized test sets.
Existing algorithms resort to local search or to relaxing the optimization problem.
More work is needed on tractable formulations and algorithms for transductive
learning, as well as a deeper theoretical and empirical understanding of its potential.
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We discuss the problem of support vector machine (SVM) transduction, which is a
combinatorial problem with exponential computational complexity in the number
of unlabeled samples. Different approaches to such combinatorial problems exist,
among which are exact integer programming approaches (only feasible for very small
sample sizes, e.g. (Bennett and Demiriz, 1999)) and local search heuristics starting
from a suitably chosen start value such as the approach explained in chapter 6,
transductive support vector machines, and introduced in (Joachims, 1999) (scalable
to large problem sizes, but sensitive to local optima).

In this chapter, we discuss an alternative approach introduced in (De Bie and
Cristianini, 2004a), which is based on a convex relaxation of the optimization
problem associated with support vector machine transduction. The result is a semi-
definite programming (SDP) problem which can be optimized in polynomial time,
the solution of which is an approximation of the optimal labeling as well as a bound
on the true optimum of the original transduction objective function. To further
decrease the computational complexity, we propose an approximation that allows
solving transduction problems of up to 1000 unlabeled samples.

Lastly, we extend the formulation to more general settings of semi-supervised
learning, where equivalence and inequivalence constraints are given on labels of
some of the samples.

7.1 Relaxing SVM Transduction

In transduction problems, we are provided with a set of labeled data points (training
set), as well as a set of unlabeled data points (test set). Our interest is to find
suitable labels for the second set, with no immediate ambition to make predictions
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for yet unseen data points that may become available later on. The way the SVM
transduction problems handle this is by finding those test set labels for which, after
training an SVM on the combined training and test set, the margin on the full data
set is maximal. This involves optimizing over all labelings of the test set an integer
programming problem with exponential cost.

Primal Let us recall the primal soft-margin SVM problem (see e.g. (Cristianini
and Shawe-Taylor, 2000) and (Shawe-Taylor and Cristianini, 2004) for an introduc-
tion to SVMs and kernel methods):

l
1
mingiyw §WTW +C Z &
i=1
s.t. inTXi > 1-— fi

& > 0.
We omitted the bias term here, as we will do throughout the entire chapter. This is
not a problem, as argued in (Poggio et al., 2001). Only the labeled data points are

involved in this optimization problem. Then, the transductive SVM can be written
as

. 1 -
ming; w,y, —wlw +C Z &
1=1

2
s.t. inTXi > 1-— 51
§& >0
Y., e {-1,1}", (7.1)
where we used the notation Y,, = (Y141, . .. yn) for the set of test set labels, a column

vector containing the labels for the test points, and n = [ 4+ u for the total number
of training and test points. It is the combinatorial constraint 7.1 that makes this
optimization problem very hard to solve exactly.

Dual Very often it is more interesting to focus on the dual problem, as it
allows us to use the kernel trick for nonlinear classification and for classification
of nonvectorial data. The standard soft-margin SVM problem is given by

maxe, 20af1-af (K6, )

s.t. C>a; >0,

where a; = (a1, ... qq) is a column vector of dual variables «;, and K is the kernel
matrix for the training set. With ®, the element-wise matrix product is meant.
The optimum of this optimization problem is equal to the inverse square of the
margin (plus an additional cost term in the soft margin formulation). Hence, since
we want to maximize the margin, the dual formulation of the transductive SVM
can be written as
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label matrix I'

miny maxe 2a’1—-al(KoYYD)a

s.t. C>a; >0
Y,
Y =
Y.
Y, e {-1,1}"
Here, @ = (a1,...,q;,Q141,...Qp) 18 a vector containing the dual variables for

both the training and the test set, K is the complete kernel matrix, and Y is the
complete label vector. Without loss of generality, we assume that the first [ rows
and columns of K correspond to training points, the last v to test points. Again, it
is the same combinatorial constraint that makes finding an exact solution infeasible
for reasonably sized problems.

Without affecting the solution, we slightly reformulate the optimization problem
by introducing the matrix variable I' = Y'Y which we will refer to as the label
matrix. The dual formulation then becomes

minr max, 20’1 - o’ (KoDa

s.t. C>a; >0
vy vyr
r=vyvy? = ! u 7.2
< AR A (7.2)
Y, € {—1,1}“ (7.3)

All constraints are now linear (matrix) inequalities, and the objective is linear in T
and concave in . However, the problem is still an integer program due to constraint
7.3 and hence the overall problem is not convex.

7.1.1 Relaxation to an SDP Problem

We will write the label matrix I' as a block matrix using the notation

r— 'y Tw | vyt vyl
Tu T vyl )
Symmetry constraints such as 'y, = quu and I';, = Fgl are understood and we will
never mention them explicitly. Now, observe that any matrix of rank 1 with ones
on the diagonal can be written as an outer product of a vector with itself where

this vector only contains 1 and —1 as its elements. Thus, the following proposition
holds:

Proposition 7.1 We can reformulate the constraints (7.2) and (7.3) by the equiv-
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alent set of constraints:

diag(T) = 1
rank(T) = 1
Lo (ot
Tw Ly

These constraints are linear in the parameters, except for the rank constraint, which
is clearly nonconvex (indeed, a convex combination of two matrices of rank 1 will
generally be of rank 2). To deal with this problem, in this chapter we propose to
relax the constraint set by extending the feasible region to a convex set over which
optimization can be accomplished in a reasonable computation time. To retain a
good performance, it should not be much larger than the nonconvex set specified
by the constraints above.

Note that the constraints imply that the matrix I" is positive semi-definite (PSD).
So, we can add I' > 0 as an additional constraint without modifying the problem.
The relaxation then consists in simply dropping the rank constraint.! The resulting
relaxed optimization problem is

minr maxe, 20’1 -’ (K 0T«

s.t. C>a; >0
diag(I') =1
=0

(7 1)
Ful Fuu
Of course, the rank of the resulting optimal matrix I' will not necessarily be equal
to 1 anymore, and its entries not equal to 1 and —1. However, we can see that each
entry of I will still lie in the interval [—1,1]. Indeed, since all principal submatrices
of a PSD matrix have to be PSD as well, every 2 x 2 principal submatrix has to be

PSD, which for a matrix containing ones on its diagonal can only be achieved for
off-diagonal elements in [—1, 1]. Furthermore:

1. Ideally, we should relax the constraints so as to extend the feasible region to just the
convex hull of the constraints, which is the smallest convex set containing the feasible
region of the original problem. For a label matrix YY7 with Y € {—1,1}", this convex
hull is referred to as the cut polytope. However, no efficient description of the cut polytope is
known. Hence, one has to resort to convex relaxations of the cut polytope itself, such as the
elliptope, which is essentially the relaxation used in this chapter. Other relaxations of the
cut polytope are known (such as the metric polytope), and they can be used alternatively
or in addition. Tighter relaxations tend to be computationally more challenging, though,
and for brevity we will not consider these here. For more information we refer the reader
to (Helmberg, 2000; Anjos, 2001).
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Theorem 7.2 The above optimization problem is convex. More specifically, it is an
SDP problem.

Proof By introducing the notation

fM) = max, 2a71-aT(KoDa
s.t. C>a; >0,

we can rewrite this optimization problem as

minp ()
st. diag(T) =1
r-o

oo < vy Ty, ) _
1—‘lul Fuu
Let us first concentrate on f(I"). For a given I' > 0, the objective is concave and
the constraints are all linear, i.e., we have a convex optimization problem. One can
easily verify Slater’s constraint qualification (the existence of a strictly feasible point
in the constraint set, see e.g. (Anjos, 2001)), showing that strong duality holds. Let
us now write the dual optimization problem by using Lagrange multipliers 2 > 0
and 2v > 0 for the inequality constraints C' > «; and «; > 0 respectively (the
factor 2 in front of p and v is used for notational convenience). By invoking strong

duality, which states that the dual optimum is equal to the primal optimum, we
can now write f(I') as

FI) = ming,, maxe 207(1—p+v)—a” (K ©D)a+20u"1
s.t. n>0
v >0.

We note in passing that the optimal value for 1 — u + v will be orthogonal
to the null space of K ® I', since otherwise the solution could grow to infinity
by increasing the component of a along this null space. Now, the maximization
with respect to a can be carried out explicitly: the optimum is reached for
a=(KoD) (1 —p+v)+ap, where ag is a term in the null space of K ®T'. Here
tis used to denote the Moore-Penrose inverse. Plugging this in gives

f(0)= min,, (1-p+v)(KoD)(1-p+rv)+20uT1
s.t. pn >0
v>0.
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Note that ag has vanished. After introducing an additional variable ¢,

f@)= min,,, ¢
s.t. ©n>0
v>0
t>A-p+)T(KoD)I(1-p+v)+20u"1.

Using the extended Schur complement lemma (see appendix), we can rewrite the
latter constraint as

KoT Q1-p+v) -
A—p+v)T t—20puT1 ) 7
which is a PSD constraint on a matrix that is a linear function of the variables. We

can thus rewrite the entire optimization problem as a linear optimization problem
subject to linear (matrix) inequalities:

minr e ¢ (7.4)
s.t. ©>0
v>0
diag(T) =1
r-o

1-p+v)T t-20uT1
vv,© Ty,
F< et ). (7.5)

( Kor (1—u+u)>>0

Ful Fuu

This is a convex optimization problem that is solvable in polynomial time (see e.g.
(Nesterov and Nemirovsky, 1994; Vandenberghe and Boyd, 1996)). ]

7.1.2 Some Simplifications
We can simplify the problem using the following two propositions:
Proposition 7.3 The optimal value for T' will be of the form
oo (Y oYl
’VqulT Fuu
Proof From the extended Schur complement lemma it follows that the column

space of I'y,, should be orthogonal to the null space of YlYlT. This can only be if
T = me for some vector 7. [ ]
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1 T
Proposition 7.4 The constraint I' = 0 is equivalent with T > 0.

/-Y’U, uu
Proof We use the fact that a principal submatrix of a PSD matrix is PSD as well
(Horn and Johnson, 1985). By taking a principal submatrix of I" containing exactly
one row and the corresponding column among the first [, and all of the last v rows

T
and columns, we can see that I' > 0 implies Tu > 0. On the other hand,

IYU Fuu
Loy
from = 0 we get
Yu Fuu
T
T T T
Y, 0 I 7 Y, 0 _ [ Y Yy —Tso. .

Thus, the final formulation of the relaxed SVM transduction problem is given by

mine,, .. pwt b
s.t. n>0
v>0
diag (T'yw) =1

1 T
Yu =0
Yu Fuu
v, YT YT
K®< lYlT Fm) (1—p+v)
Yut; uu

1-—p+v)" t—20p"1

Here we would like to point out that the equality constraint on the diagonal
can also be turned into an inequality constraint without affecting the solution:
diag (T'y,) < 1. Indeed, if the diagonal were lower than 1, we could simply increase
it without affecting the constraints or increasing the objective. We will use this fact
later in this chapter.

Computational Complexity The total number of variables is equal to O(l +
u?), the number of linear inequality constraints being O(l 4+ u), and we have an
SDP constraint of size O(l + u) and one of size O(u). This implies a worst-case
computational complexity of O ((I + u?)?(I + u)*%) (see (Vandenberghe and Boyd,
1996) for a computational study of SDP problems).

7.1.3 Estimation of the Label Vector

As noted earlier, the optimal value for I' may have a rank different from 1. So it
does not provide us with a direct estimate for the label vector Y,,. However, the
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previous section gives us a hint of what a suitable estimate for it can be: it is given
by simply one of the columns of I" corresponding to a positively labeled training
point. In other words, we propose to take the (thresholded) vector ~,, as an estimate
for the optimal test label vector.

Other approaches are possible, such as taking the dominant eigenvector of T,
or using a randomized approach. For more information on such methods, see

(Helmberg, 2000).
7.1.4 A Bound on the Performance of the Transductive SVM

The minimum of a relaxed minimization problem is always smaller than the
minimum of the unrelaxed problem. Therefore, our method immediately provides
a lower bound on the squared inverse margin (plus a cost term for the soft-margin
formulation), and hence an upper bound on the (soft) margin that can be achieved.
On the other hand, the (soft) margin of the SVM trained on the training and test
set with estimated test labels provides us with a lower bound. If both bounds are
close to each other, we can be confident that the global optimum has been found.

7.2 An Approximation for Speedup

In most practical cases, the computational complexity of this relaxation is still too
high. In this section we present an approximation technique that will allow for a
considerable speedup of the method at the cost of a reasonable performance loss.
It is notable that this technique may have wider applicability to speed up convex
relaxations of combinatorial problems, such as for the max-cut problem (see e.g.
(Helmberg, 2000)).

7.2.1 The Subspace Trick

Let us assume for a moment that we can come up with a d-dimensional subspace
of R™ that contains the optimal label vector Y. We represent this subspace by
the columns of the matrix V € R™*? which form a basis for it. Then the optimal
label matrix I' = YY7T can be represented as I' = VMV7T, with M € R%¥¢ 4
symmetric matrix of rank 1. Our relaxation of the rank constraint on I' to an
SDP constraint then translates in an analogous relaxation on M. The resulting
optimization problem can be obtained by simply replacing all occurrences of I'
with VMV in Egs. 7.4 and 7.5 and optimizing over M instead of over I':

7
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minm, ppe ¢
s.t. rn>0
v>0
diag (VMVT) =1
M*>0

Ko (VMVT) 1-p+v) -
A—p+v)T t—20pT1 |~

7.2.2 Finding a Subspace Close to the Label Vector

In practice, it seems impossible to come up with exactly such a subspace V.
However, there are several techniques to approximate it, which are based on fast
eigenvalue problems (De Bie et al., 2004; Kamvar et al., 2003; Joachims, 2003). Here
we choose to use the method proposed in (De Bie et al., 2004), which is based on a
spectral relaxation of the normalized graph cut cost function (see e.g. (De Bie et al.,
2005) for an introduction to spectral clustering and other eigenvalue problems in
pattern recognition). Let us first briefly recapitulate the basic spectral clustering
method (without label constraints). Subsequently we will show how it is possible
to constrain the result to satisfy the training label information.

The basic spectral clustering problem is solved by the following generalized
eigenvalue problem:

(diag (K1) — K)v = Mdiag (K1) v,

and the generalized eigenvectors belonging to the small eigenvalues capture the
cluster structure in the data (which means that a label vector corresponding to
a good clustering of the data is likely to be close to the space spanned by these
generalized eigenvectors).

In order to ensure that the given training label information is respected by this
solution, additional constraints should be imposed on v. This can be achieved
constructively by making use what we call the label constraint matrix L, defined

by
L, 1,4 O
L=| 1, -1,_ 0 |,
1, 0 I

where 1;4 and 1;_ are vectors containing as many ones as there are positively and,
respectively, negatively, labeled training points, and 1, contains u ones. Using L,
we can constrain v to respect the training label information by parameterizing it
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as v = Lz. Then the generalized eigenvalue problem to be solved is
L’((diag (K1) — K)Lz = \L/diag (K1) Lz, (7.6)

and the corresponding constrained solution is v = Lz. For more details about this
method we encourage the reader to consult (De Bie et al., 2004).

A good subspace to which the label vector is likely to be close is then spanned
by the vectors v; = Lz; with z; the generalized eigenvectors of (7.6) corresponding
to the d smallest eigenvalues (except for the one equal to zero). Hence, we can
construct a good matrix V by stacking these v; next to each other.

We are interested in solutions I' = VMV for which oppositely labeled training
points z; and x; have entries I'(i,j) = I'(j,i9) = —TI'(4,i) = —I'(j,4) in the
label matrix I'. This could be ensured by imposing additional constraints on
our optimization problem. However, it is easy to see that it can be ensured
constructively as well, by ignoring the contribution of the constant column in L to
v;, the ith column of V (i.e., by equating the first entry of z, to 0 before computing
v; as v; = Lz;.

The constraint on the diagonal diag (I') = 1 will in general be infeasible when
using the subspace trick. However, as noted above, we can turn it into an inequality
constraint diag (I') < 1 without fundamentally changing the problem. In fact, if the
dimensionality d (i.e., the number of columns) of V were equal to u, there would be
no difference between the optimal solutions obtained with or without the subspace
approximation, as then the entire feasible region of I' is the same. The diagonal
would then be equal to 1, even if only an inequality constraint is specified.

Computational Complexity The number of constraints remains roughly the
same as in the unapproximated optimization problem. However, we potentially gain
a lot in terms of number of free variables, which is now O(d? + n). Therefore, for
fixed d, the worst-case computational complexity is O(n*-®). The actual value for d
can be chosen as large as can be handled by the available computational resources.

7.3 General Semi-Supervised Learning Settings

Thus far we have discussed the transductive setting, which is just one of the semi-
supervised learning tasks described in chapter 1. We will briefly point out, however,
how the technology in this chapter can straightforwardly be extended to deal with
more general settings.

7.3.1 Equivalence and Inequivalence Label Constraints

As in (De Bie et al., 2004) and in chapter 5 of this book, we are able to handle
more general semi-supervised learning settings (see also (De Bie et al., 2003) and
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equivalence and
inequivalence
constraints

(Shental et al., 2004) where similar constraints are exploited for doing dimension-
ality reduction and in computing a Gaussian mixture model respectively). Imagine
the situation where we are given grouplets of points for which a label vector Y; is
specified. If we allow such grouplets to contain only one data point, we can assume
without loss of generality that each point belongs to exactly one grouplet. The label
vector Y; indicates which points within the grouplet are given to be in the same
class (an equivalence constraint), namely those with the same entry 1 or —1 in Y;,
and which ones are given to belong to opposite classes (when their entry in Y; is
different, an inequivalence constraint). In between different grouplets no informa-
tion is given. This means that the overall sign of such a grouplet label vector Y; is
arbitrary.

Then, using similar techniques as we used above, one can show that the label
matrix T’ should be a block matrix, with the diagonal blocks equal to Y;Y;T, and
the off-diagonal blocks (i, j) equal to ~; ;Y;Y;T:

v Y7 1214 o Y r
o 2.1 Y2 YoV c o pYaY T
Ve YieYE  yroYiYed - VY, E

where v; ; = 7y;,; are the variables over which we have to optimize. Clearly, the label
matrix as in the transduction scenario explained at the beginning of this chapter
is a special case thereof. Now we can also see that the sign of the label vectors Y;
is irrelevant: upon changing the sign of Y;; the optimal solution will simply change
accordingly by reversing the signs of +; ; and v;; for all j.

We want to point out that this method makes it possible to tackle the transductive
SVM problem in a hierarchical way. First one can perform a crude clustering of the
data points into many small clusters (grouplets) that respect the training data.
Then, at a second stage, the semi-supervised SVM approach outlined above can be
employed. This may greatly reduce the computational cost of the overall algorithm.

7.3.2 The Subspace Trick

Also here the subspace trick can be applied in a very analogous way. Again we can
rely on the method described in (De Bie et al., 2004), which is also able to deal
with equivalence and inequivalence constraints.

7.4 Empirical Results

For all implementations we used SeDuMi, a general purpose primal-dual interior
point solver (Sturm, 1999) for Matlab. We only used the hard-margin SVM ver-
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sions, which are obtained from the soft-margin formulations by equating p to 0.
Comparisons with SVM'9"* (Joachims, 1999) are reported, with default parameter
settings.

7.4.1 The Basic SDP Relaxation

The kernel used in all experiments in this subection is the radial basis function
(RBF) kernel, and the width is set to the average over all data points of the distance
to their closest neighbor. Figure 7.1 shows an artificially constructed example of a
transduction problem solved by the basic SDP relaxation of the transductive SVM.
Only two data points were labeled, one for each of both classes. Clearly, a standard
inductive SVM would fail in this extreme case.

Furthermore, the transductive optimum is so far from the inductive optimum
that a greedy strategy such as SVM!9"* is bound to get stuck in a local optimum.
Indeed, the norm of the SVM weight vector at the optimal labeling found by the
SDP relaxation is 5.7, and for the SVM!9"* local optimum it is 7.3. Thus, the
labeling found by the SDP relaxation achieves a larger margin.2 Furthermore, it is
notable that the optimum of the relaxed optimization problem is 35.318608 while
the (inductive) SVM optimum when using the predicted labels for the unlabeled
data points is only slightly larger: 35.318613. This indicates that most likely the
optimal labeling has been found, since the optimal labeling of the SVM optimum
has to lie between these values (see section 7.1.4).

In figure 7.2 we show another artificial example, where the data seem to consist
of five clusters. We labeled six samples, at least one in each of the clusters. Both
the SDP relaxation and SVM'9" clearly succeed in assigning the same label to
all data points that are within the same cluster, and consistent with the training
label in that cluster. Figure 7.3 shows the same data set with a different labeling
of the training points. The transductive optimum found by the SDP relaxation is
slightly imbalanced: 38 data points in one class, and 42 in the other. For this reason
SVM"9h seems to classify two data points differently, as, by default, it tries to find
a solution with the same proportion of positively versus negatively labeled test
points as in the training set. The norm of the SVM weight vector for the optimal
labeling as found by the SDP relaxation is equal to 5.92, which is slightly smaller
than 5.96, the weight vector norm for the SVM!"9"* solution. Hence also here the
SDP approach achieves a larger margin.

Again, in both cases the lower bound provided by the optimum of the SDP
relaxation supports the conclusion that the optimal labeling has been found. For
the first problem, the optimum of the SDP relaxation is 35.338, while the SVM
optimum for the predicted labels is 35.341. For the second problem, those optima

2. There is a catch in the comparison of both optima: the SDP method does not use an
offset parameter b, whereas SVM"9" does include such an offset. The numbers reported
are the weight vector norms when including an offset, hence favoring SVM!"9"t,
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Figure 7.1 The result of the basic SDP relaxation (left) and of SVM!9" (right) on an
artificially constructed transduction problem. The o’ and 'x’ signs represent the negatively
and positively labeled training points. The other data points are labeled by the algorithms.
The contour lines are drawn for the SVM as trained on the complete set of data points
with labels as determined by the transduction algorithms. The SDP relaxation yields the
desired result, while apparently SVM9"* got stuck in a local optimum.

are 32.3934 and 32.3937 respectively.
7.4.2 The Subspace Approximation

We conducted a few experiments on the constitution data set used in (De Bie and
Cristianini, 2004c). This data set contains 780 articles, an equal number in German,
French, Italian, and English, that are translations of each other. Furthermore, the
articles are organized in so-called Titles. In our experiments, we solved two different
problems: one is the classification of English 4+ French texts versus Italian + English
texts, and the other is the classification of the largest Title (roughly containing half
of all articles) versus the smaller Titles. We tested the SDP relaxation as well as
SVM"9" on both problems for different training set sizes, and plot the results in
figure 7.4. The kernel used is the normalized bag of words kernel, and d = 4.

Apparently, SVM! 9"t outperforms the approximated SDP relaxation on the
difficult problem of classifying articles according to the Title they belong to. This
is most likely due to the fact that the four-dimensional subspace is too small to
capture the fine cluster structure due to the different Titles. Only a subspace
dimensionality d larger than four would solve the problem. However, even though
the computational cost is polynomial in d, this quickly becomes computationally
demanding.

On the other hand, the approximated SDP relaxation outperforms an already
good performance of SVM! 9" for the easier problem, indicating that here the
spectral transduction method finds a subspace sufficiently close to the correct label
vector.
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Figure 7.2 The result of the basic SDP relaxation on an artificially constructed trans-
duction problem (left), and the result of SVM"9" (right). Here we organized the data
points in a few small clusters. In each of the clusters, one or two samples are labeled (in
total there are six training points). For both methods, the training label determines the
test labels of all data points within the cluster, as is desirable in most applications.
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Figure 7.3 SDP transduction (left) and SVM"9" (right) are applied to the same data
set as in figure 7.2, now with a different labeling of the training points. If we label the
data points according to the labeled point in the cluster they (visually) belong to, this
transduction problem is slightly unbalanced: one class of 38 points, the other of 42 points.
Since SVM'9"" fixes the fraction of positively and negatively labeled data points to their
fraction in the training set (by default), two data points are split off the cluster left above
to satisfy this constraint.
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Figure 7.4 The receiver operating characteristics (ROC) score evaluated on the test
set, as a function of the size of the training set for both classification problems. The
bold lines are for the easy classification problem classifying languages, and the faint
lines are for the harder classification problem classifying articles according to their
“Title”. The performance of the approximated SDP relaxation is shown in solid lines,
the SVM!9"! performance in dotted lines. Bars indicate the standard deviation over three
randomizations.

7.5 Summary and Outlook

In this chapter we have presented an alternative approach to the transductive SVM
as a combinatorial problem. Whereas early approaches to transduction are based on
learning a suitable metric (Cristianini et al., 2002b,a), and other methods tackled
the problem using exact integer programming approaches (Bennett and Demiriz,
1999) (with very limited scalability) or using a local search heuristic (Joachims,
1999), our approach consists of a relaxation of the combinatorial problem to a
convex optimization problem. More specifically, the resulting optimization problem
is an SDP, which can be solved in a worst-case polynomial time. The application
of SDP and other convex optimization techniques seems a very promising line of
current research in machine learning (see e.g. also (Lanckriet et al., 2004b,a)).

While the empirical results for the relaxation are generally better than with
SVMY9ht ynfortunately the scalability is still limited. To solve this problem, we
introduced an approximation technique of general applicability in relaxations of
combinatorial problems. The performance of this approximation strongly depends
on the quality of the approximation, and mixed empirical results in comparison
with SVM! 9"t are reported.

Future work includes investigating whether the problem structure can be ex-
ploited to speed up the optimization problem. An important theoretical question
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that remains unanswered is whether the relaxation allows finding a solution with a
margin that is provably within a fixed constant factor of the unrelaxed optimum.
As we pointed out, the relaxation does provide us with an interval within which
the true optimal solution must lie. However, the size of this interval is not known
a priori as is the case for, e.g., the relaxation of the max-cut problem (see e.g.
(Helmberg, 2000)). Lastly, it would be interesting to investigate theoretically what
the influence is of the subspace approximation on the optimum.

Appendix: The Extended Schur Complement Lemma

Extended Schur
complement
lemma

We state the Schur complement lemma without proof (see e.g. (Helmberg, 2000)):

Lemma 7.5 (Schur complement lemma) For symmetric matrices A > 0 and
C*0:

T A —1 A B
C-B'A™"B & > 0.
BT C

When the matrix A may be rank deficient, the following extended Schur comple-
ment lemma should be used. It is a generalization of the standard Schur complement
lemma. We provide it here with a proof:

Lemma 7.6 (Extended Schur complement lemma) For symmetric matrices
A>0and C>=0:

The column space of B L the null space of A o A B -0
C>BTA'B BT Cc |~

Proof We write the singular value decomposition (SVD) of A as

A:(V V0)</3 8>(V VO)T:VAVT,

where V( denotes the singular vectors for the null space of A, V the other singular
vectors, and A is a diagonal matrix containing the non-zero singular values of A,
i.e. A > 0. The blocks are assumed to be compatible. Similarly, we write the SVD
of C as

cz(w W0)<§ g)(w WO)T:WAWT.

(=) If the column space of B L Vj, we can write B as B = VBy for some
matrix By. Then also BTATB = BLA!By. So, from C = BTA'B = BUA !By
and from A > 0 and C > 0, it follows from the Schur complement lemma that
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A B
< BT (;/ ) > 0. Left multiplication of both sides of this inequality with
A%

vV 0 ) o . A B
and on the right with its transpose, yields > 0.
0 I BT C

(<) We will prove the orthogonality of the column space of B with the null space
of A by contradiction. So, assume that the column space of B is not orthogonal to
the null space Vi of A. Then, there exists a vector vg in the span of Vg for which

B) VAV B

BTvy = b # 0. Now, we have that = > 0. Thus, for
BT C C

BT

v
any vector w, multiplying this matrix with % ] on the right and on the left with
w

its transpose must result in a non-negative number: 267w + w? Cw > 0. However,
plugging in w = —CTb— WoW{'b yields 27 w+w? Cw = —26TW W b—bTCTh <
0, and thus we reached a contradiction. So we have established that the column
space of B is orthogonal to the span of V.

This means that we can write B as B = VBvy for some particular By, and

T
A B\ [(VAVT VBy\ [V 0 A By VvV 0
BT ¢/ \BLvl ¢ ) \o 1 B, C 0o 1) "

so that:
A B A By
0= > 0.
BT C B{, C

Since A > 0 and C > 0 we can invoke the Schur complement lemma, which
gives C = BLAT'By = 0. However from the orthonormality of singular vectors
VTV =1, and thus BLA !By = BLVTVA~1VTVBy = BTATB, meaning that
BTATB > 0. n
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Gaussian process classifiers (GPCs) aim to predict the posterior probability of
the class label y; given a covariate vector x;. Under the standard assumptions
generally invoked by GPC practitioners, this posterior probability is unaffected
by unlabeled data points, providing no role for unlabeled data. This is in marked
contrast to margin-based methods such as the support vector machine (SVM);
for these methods the unlabeled data can influence the location of the decision
boundary, causing it to pass through regions of low data density (see chapter 6). In
this chapter we present an augmentation of the standard probabilistic classification
model which incorporates a null-category. Given a suitable probabilistic model
for the model category, we obtain a probabilistic counterpart of the margin. By
combining this noise model with a GPC we obtain a classification methodology
that is simultaneously discriminative, semi-supervised, and Bayesian. Our approach
incorporates the cluster assumption without explicitly modeling the data density
and without requiring specialized kernels.

8.1 Introduction

In this chapter we consider a Bayesian formulation of the classification problem and
propose a solution to the semi-supervised learning problem within the Bayesian
framework.

Bayesian methods are naturally used in the formulation of generative ap-
proaches to classification problems. Generative approaches explicitly model the
class-conditional densities p (x;]y; = 1) and p (z;|y; = —1), combining these densi-
ties with the class prior probabilities p (y; = 1) and p (y; = —1) and using the Bayes
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theorem to form posterior probabilities:

s _p@ilyi=D)pi=1)
p(yi = 1]a) SWICTAIITR

In the semi-supervised setting in which a label y; is not observed, the corresponding
contribution to the likelihood is obtained by marginalizing over y;. This yields a
mixture density for z;, a contribution to the likelihood that is handled readily within
the Bayesian formulation as a standard missing-data problem. Thus semi-supervised
learning is easily accommodated within a generative Bayesian framework.

Generative methods have well-known limitations in terms of prediction perfor-
mance, however, and most of the recent literature on classification has been devoted
to the development of discriminative approaches. Many of the well-known exam-
ples of discriminative classifiers are non-Bayesian, including the support vector ma-
chine (SVM), kernelized logistic regression (KLR), and AdaBoost (Shawe-Taylor
and Cristianini, 2004). It is, however, also possible to develop discriminative clas-
sifiers within a Bayesian framework; in particular, Gaussian process classifiers are
discriminative classifiers that share with SVM and KLR the use of a kernel function
to form nonlinear discriminant boundaries in the input space (O’Hagan, 1992).

Bayesian approaches to discriminative classification focus on modeling the pos-
terior probability p (y;|x;). Naively, it would seem that semi-supervised learning is
simply not accommodated within any such approach—marginalizing over y; yields
a constant contribution to the likelihood, thus providing no information regarding
the parameters. Non-Bayesian approaches can skirt this difficulty. In particular,
statistical inference for a non-Bayesian classifier involves the specification of a “loss
function” (e.g., a margin-based loss function) in addition to the specification of the
model, and, as shown by several of the other chapters in this book, loss functions
can be concocted to capture information coming from unlabeled data points. A
related point is that non-Bayesian approaches need not model the posterior prob-
ability, and this provides additional flexibility in the design of the loss function.
Bayesian approaches, on the other hand, start with the posterior probability and
this appears to tie the hands of the designer, making it difficult, if not impossible,
to develop discriminative, semi-supervised Bayesian learners.

In this chapter we show that it is in fact possible to solve the semi-supervised
learning problem within a discriminative, Bayesian framework. To motivate the
basic idea, let us first be more precise regarding the naive intuition referred to above
by making use of graphical model representations of Bayesian classifiers. Consider
first the graphical model representation of a generative classifier, shown in the left
panel of figure 8.1. In this diagram 6 parameterizes the class-conditional densities.
(We have omitted a node representing the class prior probabilities.) The rectangle,
or “plate,” captures replication. In particular, the diagram captures an assumption
that the data {y;} are independent and identically distributed, conditional on
{z;} and 6. Finally, shading represents conditioning; thus the graphical model in
figure 8.1 captures the standard supervised learning setting in which the labels {y;}
are fully observed.
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Figure 8.1 (Left) The graphical representation of a generative model. (Right) The
graphical representation of a discriminative model.

The right panel of figure 8.1 presents a graphical representation of a discrimina-
tive classifier. In this case 6 parameterizes the posterior probability (the meaning
of 6 is different in the two diagrams). Again the figure captures the standard su-
pervised learning setting.

Let us now consider the semi-supervised learning problem. In semi-supervised
learning the data X are split into a subset that is labeled, X;, and a subset
that is unlabeled, X,. This is captured in the graphical model representations
shown in figure 8.2. Consider the model shown in the left panel for the generative
case. Using the d-separation criterion for assessing conditional independence in
graphical models (Pearl, 1988), we see that the parameter § and the class label y;
are dependent, by virtue of the fact that their common descendant z; is observed
(shaded in the graph). This graphical motif is often referred to as a “v-structure.”
When two nodes point to a common descendant they are (necessarily) independent
only when the descendant is unobserved. This holds true both when y; is observed
and when it is not. Thus both labeled and unlabeled data points will affect the
Bayesian posterior distribution for 6.

4 N N\ 4 N 7 ™
o | @ N
~ ~
() © ) )
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Figure 8.2 Graphical models for semi-supervised data in the generative framework (left)
and the discriminative framework (right).

Contrast this with the situation in the discriminative model (right panel of
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figure 8.2). In this case the d-separation criterion shows that 6 is independent of
x; for the unlabeled data. The observed value of x; will not have an effect on the
posterior distribution of § when y; is unobserved.

In the remaining sections of this chapter we will show how the discriminative
model can be augmented to allow it to handle unlabeled data.

8.1.1 Augmenting the Model

In figure 8.2 (right panel) we saw how, in the discriminative approach, an unlabeled
data point fails to influence the posterior for 8 and thus the position of the decision
boundary. This is because the unlabeled points and the parameters become d-
separated (independent from one another) when the label y; is unobserved. To
restore the dependence we need to augment the model. This can be done by
introducing an additional variable z; that is a child of y; and is always observed. As
shown in figure 8.3 this breaks the d-separation of z; and 6 and allows probabilistic
dependence to flow between these variables—even when y; is unobserved.

O )

x.€X x, € X,

\ 7 u) \ i )

Figure 8.3 The augmented discriminative model. Even when y; is unobserved x; is no
longer d-separated from 6 because they have a common descendant which is observed.
Note that for labeled examples the parameters are d-separated from the indicator variable
z; by the observation of y;.

As a simple (and naive) example of such an augmented model, let z; be an
indicator variable that identifies whether or not the data point is labeled; i.e., 2; is
taken to be 0 if the 7th point is labeled and 1 if the point is unlabeled. Certainly z;
is itself always observed. Now by allowing the probability of a point being labeled to
depend on its label y; — i.e., by a particular specification of the model probability
p (zi|ly;) — we can reintroduce the dependence of the parameters on the unlabeled
data.

Of course this simple device does not solve the semi-supervised learning problem.
Indeed, if we have no reason to believe that the probability of a data point being un-
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labeled is different in the two classes; i.e., if p(z; = 1|y; = 1) =p(z; = 1|y; = —1),
then we have p(z;) = p(z;]y;) and z; is effectively decoupled from y;, once again
d-separating 6 from x;.

On the other hand, there is no need to restrict ourselves to binary indicator
variables; we can be more clever about the augmentation. The remainder of the
chapter develops the specific augmentation that we propose. As will be seen, our
proposal is similar in spirit to the transductive SVM (see chapter 6); we want to
place the decision boundary in a region of low data density. The assumption that
the interclass regions have lower data density is known as the cluster assumption
(see chapter 1). We will show how an augmented model can capture the spirit of
the cluster assumption—but without implementing an explicit density model.

8.2 The Noise Model

Our approach is based on the notion of a null-category, a class for which we never
observe any data. The null-category can be viewed as a probabilistic interpretation
of the “margin” in the svm.!

To simplify our discussion of the null-category noise model, we first introduce
a latent process variable f;. This variable will allow us to discuss the noise model
independently of the “process model.” The latent variable allows the probability of
class membership to decompose as

pule) = [ pilf)p (los) dr
where we refer to p (y;|fi) as the noise model and p (f;|x;) as the process model.

8.2.1 Ordered Categorical Models

The null-category noise model derives from the general class of ordered categorical
models (Agresti, 2002). In the specific context of binary classification we will
consider an ordered categorical model containing three categories:

o(—(fi +2)) for y; =—1
pilfi) =4 o(fi+%)—o(fi—%) for y; =0
o(fi—%) for y; =1

where ¢ (z) = [* _N(z|0,1)dz is the cumulative Gaussian distribution function
and a is a parameter giving the width of category y; = 0 (see figure 8.4).

1. We are not the first to consider a probabilistic interpretation of the SVM loss function.
Sollich (1999, 2000) treats the margin in terms of a “not sure” class, but this interpretation
suffers from problems of normalization.
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1)

Figure 8.4 The ordered categorical noise model. The plot shows p (y;|f;) for different
values of y;. Here we have assumed three categories.

We can also express this model in an equivalent and simpler form by replacing
the cumulative Gaussian distribution by a Heaviside step function,

H(z) 0 if <0
xTr) =
1 if >0

and adding independent Gaussian noise to the process model:

H(+d) o g1
pyilfi)=q H(fi+3)—H(fi—3) for y;=0
H(fl—%) for y;, =1

where we have standardized the width parameter to 1, by assuming that the overall
scale is also handled by the process model.

8.2.2 The Null-Category Noise Model

As stated previously, to induce a statistical dependence between the unlabeled data
point, z;, and the parameters, 6, we can augment the model with an additional
variable z; which indicates whether the label is missing. For the null-category noise
model we also impose the constraint that

p(zi = 1ly; = 0) = 0; (8.1)

in other words, a data point cannot be from the category y; = 0 and be unlabeled.
We then parameterize the probabilities of missing labels for the other classes as
p(zi=1ly; =1) =74 and p(z; = 1ly; = —1) = 7-.

For points where the label is present the latent process is updated as usual
(because z; is d-separated from 6 by y;). When the data point’s label is missing,
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the posterior process is updated using the likelihood

=1lfi) = Zp (vl ) p (20 = 1yi) .

By marginalizing across y; when the label is missing and otherwise using the
standard likelihood, we recover the “effective likelihood function” for a single data
point, L (f;). It takes one of three forms:

H(-(fi+3)) for yi=-1,2=0
LU= (- (h+5) + el (fi—d) for =1
(fi - 5) for yi=1,2=0

The constraint imposed by (8.1) implies that an unlabeled data point never
comes from the class y; = 0. Since y; = 0 lies between the labeled classes this
is equivalent to a hard assumption that no data come from the region around
the decision boundary. We can also soften this hard assumption, if so desired, by
injection of noise into the process model. If we also assume that our labeled data
only come from the classes y; = 1 and y; = —1 we will never obtain any evidence
for data with y; = 0; for this reason we refer to this category as the null-category
and the overall model as a null-category noise model (NCNM).

8.3 Process Model and Effect of the Null-Category

SVM as MAP

solution

The noise model we have described can be used within a range of optimization
frameworks. Indeed, viewing the noise model as a probabilistic interpretation of
the SVM’s margin, if we specify

fi = wai7
prescribe a Gaussian prior distribution for w,
p(w) =N (w[0,I),

and let 2z have a multivariate Gaussian distribution with mean m and covariance
x

)

1
N (efm,2) = —

— . _exp (-
DI

fmT Lz=m
= (s —m)T 2L >),

then the maximum a posteriori (MAP) solution for w is given by the linear SVM
algorithm. Naturally f; can then be “kernelized” and the MAP solution for the
model becomes equivalent to the nonlinear SVM. However, in this domain the
meaning of a prior distribution over w is not entirely clear, and it is generally more
convenient to consider a process prior over f;. As is well known, the process prior
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which leads to the SVM as a MAP solution is the Gaussian process prior (for two
useful reviews of Gaussian processes see O’Hagan (1992); Williams (1998)). Under
the Gaussian process prior the values {f;} are jointly distributed as a zero-mean
Gaussian distribution with covariance given by the kernel matrix K.

8.3.1 Gaussian Processes

In the remainder of this chapter we will consider the use of a Gaussian process prior
over f;. The algorithms we consider update the process posterior in a sequential
manner, incorporating a single data point at a time. It is therefore sufficient to
consider a univariate distribution over f; given z;, of the form

p(filzi) = N(filp (z:) 5 (24))

where the mean p (z;) and the variance ¢ (z;) are functions of the covariate x;.
A natural consideration in this setting is the effect of our likelihood function on
the distribution over f; when incorporating a new data point. As we have already
mentioned, if we observe y;, then the parameters are d-separated from z;. In this
case the effect of the likelihood on the posterior process will be similar to that
incurred in binary classification, in that the posterior will be a convolution of the
step function and a Gaussian distribution. However, when the data point’s label is
missing the effect will depend on the mean and variance of p (f;|x;). If this Gaussian
has little mass in the null-category region (i.e., the region between the classes), the
posterior will be similar to the prior. However, if the Gaussian has significant mass
in the null-category region, the outcome may be loosely described in two ways:

1. If p(fi|x;) “spans the likelihood,” figure 8.5 (left), then the mass of the posterior
can be apportioned to either side of the null-category region, leading to a bimodal
posterior. The variance of the posterior will be greater than the variance of the prior,
a consequence of the fact that the effective likelihood function is not log-concave
(as can be easily verified).

2. If p (filz;) is “rectified by the likelihood,” figure 8.5 (right), then the mass of the
posterior will be pushed into one side of the null-category and the variance of the
posterior will be smaller than the variance of the prior.

Note that for all situations in which a portion of the mass of the prior distribution
falls within the null-category region it is pushed out to one side or both sides. The
intuition behind the two situations is that in case 1, it is not clear what label the
data point has, but it is clear that it shouldn’t be where it currently is (in the
null-category). The result is that the process variance increases. In case 2 the data
point is being assigned a label and the decision boundary is pushed to one side of
the point so that it is classified according to the assigned label.

In figure 8.6, we demonstrate the effect of the null-category. We sampled a vector
( fi)?gi from a Gaussian process with an radial basis function (RBF) kernel. The
covariates (xz)fﬁq were sampled uniformly from the two-dimensional unit square.
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Figure 8.5 Two situations of interest. Diagrams show the prior distribution over f;
(long dashes), the effective likelihood function from the noise model when z; = 1 (short
dashes), and a schematic of the resulting posterior over f; (solid line). (Left) The posterior
is bimodal and has a larger variance than the prior. (Right) The posterior has one dominant
mode and a lower variance than the prior. In both cases the process is pushed away from
the null-category.
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Figure 8.6 Samples from a standard Gaussian process classifier with a probit noise
model (left) and a Gaussian process with the null-category noise model (right). The
covariate vectors were originally sampled uniformly from the unit square. The null-
category noise model has the effect of reducing the data density in the region of the
decision boundary.

In the left panel, points were assigned to the class of y; = 1 with probability
¢ (f;) and were otherwise assigned a class of y; = —1. In the right panel they were
assigned the class y; = 1 with probability ¢ ( fi— %) and the class y; = —1 with
probability ¢ (f fi— %), all other points were assumed to have come from the null
category and were removed. Note that this rejection of points has the effect of
reducing the data density near the decision boundary.

8.4 Posterior Inference and Prediction

Broadly speaking, the effects discussed above are independent of the process model:
the effective likelihood will always force the latent function away from the null-
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category. To implement our model, however, we must choose a specific process model
and inference method. The nature of the noise model means that it is unlikely that
we will find a nontrivial process model for which inference (in terms of marginalizing
fi) will be tractable. We therefore turn to approximations which are inspired by
“assumed density filtering” (ADF) methods; see, e.g., Csaté (2002). The idea in
ADF is to approximate the (generally non-Gaussian) posterior with a Gaussian by
matching the moments between the approximation and the true posterior. ADF
has also been extended to allow each approximation to be revisited and improved
as the posterior distribution evolves (Minka, 2001).

One further complication is that the “effective likelihood” associated with the
null-category noise model is not log-concave. The implication of this is that the
variance of the posterior process can increase when a point is included. This
situation is depicted in figure 8.5 (left); the posterior depicted in this plot has
a larger variance than the prior distribution. This increase in variance is difficult to
accommodate within the ADF approximation framework and in our implementation
it was ignored.

One important advantage of the Gaussian process framework is that it is
amenable to an empirical Bayesian treatment—the hyperparameters in the covari-
ance function can be learned by optimizing the marginal likelihood. In practice,
however, if the process variance is maximized in an unconstrained manner the ef-
fective width of the null-category can be driven to zero, yielding a model that is
equivalent to a standard binary classification noise model. The process variance
controls the scale of the function. If the process variance is allowed to grow in an
unconstrained manner the effective width of the null-category region becomes zero,
removing any effect from unlabeled data points. To prevent this from happening
we regularize by imposing an L1 penalty on the process variances (this is equiva-
lent to placing an exponential prior on those parameters). The L1 penalty prefers
smaller process variances thereby increasing the effective width of the null-category
region. The model therefore prefers a large null-category region. This is analogous
to maximizing the margin in a support vector machine.

8.4.1 Prediction with the NCNM

Once the parameters of the process model have been learned, we wish to make
predictions about a new test-point z, via the marginal distribution p (y«|x.). For
the NCNM an issue arises here: this distribution will have a non-zero probability of
y« = 0, a label that does not exist in either our labeled or unlabeled data. This is
where the role of z, becomes essential. The new point also has z, = 1 so in reality
the probability that a data point is from the positive class is given by

P (Y| 2 = 1) 0 p (20 = ya) P (Y |4) - (8.2)

The constraint that p (z. = 1|y, =0) = 0 causes the predictions to be correctly
normalized. So for the distribution to be correctly normalized for a test data point
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we must assume that we have observed z, = 1.

An interesting consequence is that observing x, will have an effect on the process
model. This is contrary to the standard Gaussian process setup (see, e.g., Williams
(1998)) in which the predictive distribution depends only on the labeled training
data and the location of the test point z,. In the NCNM the entire process model
p (f«|z«) should be updated after the observation of x,.. This is not a particular
disadvantage of the NCNM; it is an inevitable consequence of any method that
allows unlabeled data to affect the location of the decision boundary—a consequence
the probabilistic framework makes explicit. In practice, however, we may disregard
such considerations and make (possibly suboptimal) predictions of the class labels
according to (8.2) without updating the location of the decision boundary.

8.5 Results

Sparse representations of the training data are essential for speeding up the process
of learning. We made use of the informative vector machine (IVM) approach in
which the data are sparsified via a sequential greedy method in which points are
placed in an active set according to information-theoretic criteria. This approach
provides an approximation to a full Gaussian process classifier which is competitive
with the SVM in terms of speed and accuracy. The IVM also enables efficient
learning of kernel hyperparameters, and we made use of this feature in all of our
experiments.

]% 5 0 5 10 ]%

Figure 8.7 Results from the toy problem. There are 400 points, which have probability
0.1 of receiving a label. Labeled data points are shown as circles and crosses. Data points
in the active set are shown as large dots. All other data points are shown as small dots.
(Left) Learning on the labeled data with the IVM algorithm. All labeled points are used
in the active set. (Right) Learning on the labeled and unlabeled data with the NCNM.
There are 100 points in the active set. In both plots decision boundaries are shown as
a solid line; dotted lines represent contours within 0.5 of the decision boundary (for the
NCNM this is the edge of the null-category).
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In all our experiments we used a kernel of the form
knm = 02 €xp (_91 (Xn - Xm)T (Xn - Xm)) + 936nm;

where ,,, is the Kronecker delta function. The parameters of the kernel were
learned by performing type II maximum likelihood over the active set. Since active
set selection causes the marginalized likelihood to fluctuate it cannot be used to
monitor convergence; we therefore simply iterated fifteen times between active set
selection and kernel parameter optimization. The parameters of the noise model,
{¥+, 7-}, can also be optimized, but note that if we constrain v = y_ =+, then
the likelihood is maximized by setting « to the proportion of the training set that
is unlabeled.

We first considered an illustrative toy problem to demonstrate the capabilities
of our model. We generated two-dimensional data in which two class-conditional
densities interlock. There were 400 points in the original data set. Each point was
assigned a label with probability 0.1, leading to 37 labeled points. First a standard
IVM classifier was trained on the labeled data only (figure 8.7, left). We then used
the null-category approach to train a classifier that incorporates the unlabeled data.
As shown in figure 8.7 (right), the resulting decision boundary finds a region of low
data density and more accurately reflects the underlying data distribution.

8.5.1 USPS Digits

We next considered the null-category noise model for learning of the USPS hand-
written digit data set. This data set is fully labeled, but we can ignore a proportion
of the labels and treat the data set as a semi-supervised task. In the experiments
that followed we used an RBF kernel with a linear component. We ran each experi-
ment ten times, randomly selecting the data points that were labeled. The fraction
of labeled points, r, was varied between 0.01 and 0.25. Each digit was treated as a
separate “one against the others” binary classification class. We also summarized
these binary classification tasks with an overall error rate by allocating each test
data point to the class with the highest probability. In the first of our experiments,
we attempted to learn the parameters of the kernel by maximizing the IVM’s ap-
proximation to the marginal likelihood. The results are summarized in table 8.1.
As can be seen in the table, good classification results are obtained for values of
r above 0.1, but poor results are obtained for values of r below 0.1. This appears
troublesome at first sight, given that many semi-supervised learning algorithms give
reasonable performance even when the proportion of unlabeled data is as low as
0.1. It must be borne in mind, however, that the algorithm presented here faces the
additional burden of learning the kernel hyperparameters. Most other approaches
do not have this capability and therefore results are typically reported for a given,
tuned set of kernel parameters. To make a more direct comparison we also undertook
experiments in which the kernel hyperparameters were fixed to the values found by
an IVM trained on the fully labeled data set. These results are summarized in
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Table 8.1 Table of results for semi-supervised learning on the USPS digit data.

r 0 1 2 3 4
0.010 || 18+0.0 | 80£6.5 | 994+0.0 | 8.3£0.0 | 10£0.0
0.025 11+£88 [ 0984+0.1 |99+0.0 | 65+£24| 10+0.0
0.050 || 1.74+0.2 | 1.0+0.1 | 3.7+04 | 54+£2.7 | 744+3.5
0.10 || 1.7+0.1 | 0.95+0.1 | 3.24+0.2 | 3.2+0.3 | 3.3+£0.3
025 || 1.6+0.2 | 097+0.1 | 25+0.2 | 29+0.2 | 2.8+0.1

r 5 6 7 8 9 Overall
0.010 || 8.0£0.0 | 85+0.0 | 7.3+0.0 | 8.3+0.0 | 88£0.0 || 83£7.3
0.025 || 8.0+0.0 | 854+0.0 | 7.3+0.0 | 8.34+0.0 | 88+0.0 || 64+5.0

0.05 || 71+19 | 1.7+0.2 | 7.34+0.0 | 74£19 | 76+£27 | 33£7.2
0.1 30+£03 | 1.5+0.1 | 1.3+0.1 |34+£0.2| 20403 || 7.7£0.2
025 || 244+02 | 1.3+£02 | 12401 |26+03|1.6+0.2 ]| 6.4+0.2

For these results the model learned the kernel parameters. We give the results for the individual
binary classification tasks and the overall error computed from the combined classifiers. Each
result is summarized by the mean and standard deviation of the percent classification error across
ten runs with different random seeds.

table 8.2. As expected these results are much better in the range where r < 0.1.
With the exception of the digit 2 at r = 0.01 a sensible decision boundary was
learned for at least one of the runs even when r = 0.01.

8.6 Discussion

We have presented a Bayesian approach to the semi-supervised learning problem.
While Bayesian approaches to semi-supervised learning are well known and easy to
formulate in the generative setting, they appear to be more difficult to formulate
in the discriminative setting—an unfortunate state of affairs given the superior
performance attainable with discriminative methods. Indeed, we are aware of no
previous work on classification algorithms that is simultaneously discriminative,
semi-supervised, and Bayesian. The approach presented in the previous paper shows
that this gap in the literature is not due to a fundamental limitation. Indeed,
discriminative, semi-supervised, Bayesian algorithms exist, and can be developed
via a relatively straightforward augmentation involving a “null-category.” Drawing
its inspiration from the role of the margin in the support vector machine, our null-
category noise model provides a probabilistic implementation of the assumption
that discriminant boundaries should pass through regions of low data density. We
achieve this within a fully discriminative framework that does not require modeling
of class-conditional densities.

Our approach provides a practical approach to performing kernel-based, semi-
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Table 8.2 Table of results for semi-supervised learning on the USPS digit data.

T 0 1 2 3 4
0.010 || 3.2+5.2 | 13+14 | 994+0.0 | 3.14+0.2 | 83+2.6
0.025 || 1.54+0.2 | 1.54+09 | 52+2.0 | 294+0.2 | 4.4+2.1
0.050 || 1.54+0.2 | 1.24+0.2 | 34+04 | 294+0.1 | 3.3+0.2
0.10 || 1.5+0.1 | 1.24+0.1 | 2.8+0.2 | 28 +0.2 | 3.0+ 0.2
025 || 14+02|134+02|24+02|26+0.2|28+0.2

r 5 6 7 8 9 Overall
0.010 || 7.56+1.0 | 7.7+£85 | 124+17 | 7.54+1.2 | 35+23 42+ 10
0.025 || 5.0+1.3 | 1.6+02 | 1.9+£1.9 | 4.34+0.5|9.9+85 144+6.1
0.050 || 3.6+06 | 1.5+0.1|1.3+0.1 |414+04 | 26+13 || 84+£0.7
0.10 28402 |13+£0.1|13+£0.1|35+03|20+£0.2 ]| 7.24+0.5
025 | 23+02|124+01|12+01|27+02|1.6+02 | 6.1+04

For these results the model was given the kernel parameters learned by the IVM on the standard
fully labeled data. We give the results for the individual binary classification tasks and the overall
error computed from the combined classifiers.

supervised learning without requiring the design of specialized kernels.
Code for recreating our experiments is available from http://www.dcs.shef.
ac.uk/"“neil/ncnm.
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The problem of semi-supervised induction consists in learning a decision rule
from labeled and unlabeled data. This task can be undertaken by discriminative
methods, provided that learning criteria are adapted consequently. In this chapter,
we motivate the use of entropy regularization as a means to benefit from unlabeled
data in the framework of maximum a posteriori estimation. The learning criterion
is derived from clearly stated assumptions and can be applied to any smoothly
parameterized model of posterior probabilities. The regularization scheme favors
low-density separation, without any modeling of the density of input features. The
contribution of unlabeled data to the learning criterion induces local optima, but
this problem can be alleviated by deterministic annealing. For well-behaved models
of posterior probabilities, deterministic annealing expectation-maximization (EM)
provides a decomposition of the learning problem in a series of concave subproblems.
Other approaches to the semi-supervised problem are shown to be close relatives or
limiting cases of entropy regularization. A series of experiments illustrates the good
behavior of the algorithm in terms of performance and robustness with respect to
the violation of the postulated low-density separation assumption. The minimum
entropy solution benefits from unlabeled data and is able to challenge mixture
models and manifold learning in a number of situations.

9.1 Introduction

semi-supervised
induction

This chapter addresses semi-supervised induction, which refers to the learning of
a decision rule, on the entire input domain X, from labeled and unlabeled data.
The objective is identical to the one of supervised classification: generalize from
examples. The problem differs in the respect that the supervisor’s responses are
missing for some training examples. This characteristic is shared with transduction,
which has, however, a different goal, that is, of predicting labels on a set of
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predefined patterns.

In the probabilistic framework, semi-supervised induction is a missing data
problem, which can be addressed by generative methods such as mixture models
thanks to the EM algorithm and extensions thereof (McLachlan, 1992). Generative
models apply to the joint density of patterns x and class y. They have appealing
features, but they also have major drawbacks. First, the modeling effort is much
more demanding than for discriminative methods, since the model of p(z,y) is
necessarily more complex than the model of P(y|z). Being more precise, the
generative model is also more likely to be misspecified. Second, the fitness measure
is not discriminative, so that better models are not necessarily better predictors of
class labels. These issues are addressed in chapters 2 and 4.

These difficulties have led to proposals where unlabeled data are processed
by supervised classification algorithms. Here, we describe an estimation principle
applicable to any probabilistic classifier, aiming at making the most of unlabeled
data when they should be beneficial to the learning process, that is, when classes are
well apart. The method enables control of the contribution of unlabeled examples,
thus providing robustness with respect to the violation of the postulated low-density
separation assumption.

Section 9.2 motivates the estimation criterion. It is followed by the description
of the optimization algorithms in section 9.3. The connections with some other
principles or algorithms are then detailed in section 9.4. Finally, the experiments of
section 9.5 offer a test bed to evaluate the behavior of entropy regularization, with
comparisons to generative models and manifold learning.

9.2 Derivation

missing value
mechanism

of the Criterion

In this section, we first show that unlabeled data do not contribute to the maximum-
likelihood estimation of discriminative models. The belief that “unlabeled data
should be informative” should then be encoded as a prior to modify the estimation
process. We argue that assuming high entropy for P(y|x) is a sensible encoding
of this belief, and finally we describe the learning criterion derived from this
assumption.

9.2.1 Likelihood

The maximum-likelihood principle is one of the main estimation techniques in
supervised learning, which is closely related to the more recent margin maximization
techniques such as boosting and support vector machines (SVMs) (Friedman et al.,
2000). We start here by looking at the contribution of unlabeled examples to the
(conditional) likelihood.

The learning set is denoted L, = {(x1,v1), .-, (@1, Y1), X141, - - -, Tn }, Where the
l first examples are labeled, and the u = n — [ last ones are unlabeled. We
assume that labels are missing at random, that is, the missingness mechanism
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missing at
random

information
content of
unlabeled

examples

is independent from the missing class information. Let h be the random variable
encoding missingness: h = 1 if y is hidden and h = 0 if y is observed. The missing
at random assumption reads

P(h|z,y) = P(h|z) . (9.1)

This assumption excludes cases where missingness may indicate a preference for a
particular class (this can happen, for example, in opinion polls where the “refuse
to answer” option may hide an inclination toward a shameful answer). Assuming
independent examples, the conditional log likelihood is then

l n
L(0;8,) = I P(yi|zi;0) + > In P(hs|a;). (9.2)
i=1 i=1
Maximizing (9.2) with respect to 6 can be performed by dropping the second
term of the right-hand side. It corresponds to maximizing the complete likelihood
when no assumption whatsoever is made on p(z) (McLachlan, 1992). As unlabeled
data are not processed by the model of posterior probabilities, they do not convey
information regarding P(y|z). In the maximum a posteriori (MAP) framework,
unlabeled data are useless regarding discrimination when the priors on p(z) and
P(y|x) factorize and are not tied (see chapter 2): observing = does not inform
about y, unless the modeler assumes so. Benefiting from unlabeled data requires
assumptions of some sort on the relationship between z and y. In the MAP
framework, this will be encoded by a prior distribution. As there is no such thing
as a universally relevant prior, we should look for an induction bias allowing the
processing of unlabeled data when the latter are known to convey information.

9.2.2 When Are Unlabeled Examples Informative?

Theory provides little support for the numerous experimental evidence showing
that unlabeled examples can help the learning process. Learning theory is mostly
developed at the two extremes of the statistical paradigm: in parametric statistics
where examples are known to be generated from a known class of distribution,
and in the distribution-free structural risk minimization (SRM) or probably ap-
proximately correct (PAC) frameworks. Semi-supervised induction does not fit the
distribution-free frameworks: no positive statement can be made without distribu-
tional assumptions, as for some distributions p(z,y), unlabeled data are noninfor-
mative while supervised learning is an easy task. In this regard, generalizing from
labeled and unlabeled data may differ from transductive inference.

In parametric statistics, theory has shown the benefit of unlabeled examples,
either for specific distributions (O’Neill, 1978), or for mixtures of the form p(x) =
mp(xly = 1)+ (1—7m)p(z|y = 2), where the estimation problem is essentially reduced
to the one of estimating the mixture parameter 7 (Castelli and Cover, 1996). These
studies conclude that the (asymptotic) information content of unlabeled examples
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decreases as classes overlap.1 Hence, in the absence of general results, postulating
that classes are well apart, separated by a low-density area, is sensible when one
expects to take advantage of unlabeled examples.

9.2.3 A Measure of Class Overlap

There are many possible measures of class overlap. We chose Shannon’s conditional
entropy, which is invariant to the parameterization of the model, but the framework
developed below could be applied to other measures of class overlap, such as Renyi
entropies. Note, however, that the algorithms detailed in section 9.3.1 are specific to
this choice. Obviously, the conditional entropy may only be related to the usefulness
of unlabeled data where labeling is indeed ambiguous. Hence, the measure of class
overlap should be conditioned on missingness:

H(ylz,h=1) —E,y [In P(y|z, h = 1)] (9.3)

M
= f/ Z In Py =m|z,h=1)p(z,y=mlh=1) dz .
m=1

In the MAP framework, assumptions are encoded by means of a prior on the
model parameters. Stating that we expect a high conditional entropy does not
uniquely define the form of the prior distribution, but the latter can be derived by
resorting to the maximum entropy principle.2

The maximum entropy prior verifying Eg [H (y|xz, h = 1)] = ¢, where the constant
¢ quantifies how small the entropy should be on average, takes the form

p(0) o exp (=AH (y|lz,h = 1))) (9.4)

where A is the positive Lagrange multiplier corresponding to the constant c.
Computing H(y|x, h = 1) requires a model of p(z,y|h = 1), whereas the choice
of supervised classification is motivated by the possibility of limiting modeling
to conditional probabilities. We circumvent the need of additional modeling by
applying the plug-in principle, which consists in replacing the expectation with
respect to (x|h = 1) by the sample average. This substitution, which can be
interpreted as “modeling” p(xz|h = 1) by its empirical distribution, yields

n M
1
Homp(ylz, h =15£n) = —— > > Pmlzi,t; = 1)In P(mlai, t; = 1) . (9.5)

i=l+1m=1

1. This statement, given explicitly by O’Neill (1978), is also formalized, though not
stressed, by Castelli and Cover (1996), where the Fisher information for unlabeled ex-
amples at the estimate 7 is clearly a measure of the overlap between class-conditional
densities: I,,(7) = [ ﬁp&’;(lj':yl:)l_z(_lp_(gz(:j)y):a dz.

2. Here, maximum entropy refers to the construction principle which enables derivation
of distributions from constraints, not to the content of priors regarding entropy.
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The missing at random assumption (9.1) yields P(y|z,h = 1) = P(y|z), hence

n M

1
Hemp(ylz,h = 1:£,) = —— >N Pmlzi)In P(mla;) . (9.6)
i=l+1m=1

This empirical functional is plugged in (9.4) to define an empirical prior on param-
eters 6, that is, a prior whose form is partly defined from data (Berger, 1985).

9.2.4 Entropy Regularization

The MAP estimate is defined as the maximizer of the posterior distribution, that
is, the maximizer of

0(97 )‘; Ln) = L(07 Ln) - )\Hemp(y|xa h = 1; Ln)

l n M
= ZlnP(yibci;G)—i—)\ Z Z P(m|x;;0)In P(m|a;6) , (9.7)
i=1

i=l+1 m=1

where the constant terms in the log likelihood (9.2) and log prior (9.4) have been
dropped.

While L(0;L,,) is only sensitive to labeled data, Hemp(ylz,h = 1;L,) is only
affected by the value of P(m|x;#) on unlabeled data. Since these two components of
the learning criterion are concave in P(m|x;0), their weighted difference is usually
not concave, except for A = 0. Hence, the optimization surface is expected to
possess local maxima, which are likely to be more numerous as u and A grow. Semi-
supervised induction is halfway between classification and clustering; hence, the
progressive loss of concavity in the shift from supervised to unsupervised learning
is not surprising, as most clustering optimization problems are nonconvex (Rose
et al., 1990).

The empirical approximation Hemp (9.5) of H (9.3) breaks down for wiggly
functions P(m|-) with abrupt changes between data points (where p(z) is bounded
from below). As a result, it is important to constrain P(m|-) in order to enforce the
closeness of the two functionals. In the following experimental section, we imposed
such a constraint on P(m|-) by adding a smoothness penalty to the criterion C
(9.7). Note that this penalty also provides a means to control the capacity of the
classifier.

9.3 Optimization Algorithms
9.3.1 Deterministic Annealing EM and IRLS
In its application to semi-supervised learning, the EM algorithm is generally used

to maximize the joint likelihood from labeled and unlabeled data. This iterative
algorithm increases the likelihood at each step and converges toward a stationary
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point of the likelihood surface.

The criterion C(0,\;L,) (9.7) departs from the conditional likelihood by its
entropy term. It is in fact formulated as each intermediate optimization subproblem
solved in the deterministic annealing EM algorithm. This scheme was originally
proposed to alleviate the difficulties raised by local maxima in joint likelihood
for some clustering problems (Rose et al., 1990; Yuille et al., 1994). It consists
in optimizing the likelihood subject to a constraint on the level of randomness,
measured by the entropy of the model of P(y|x). The Lagrangian formulation of
this optimization problem is precisely (9.7), where T'= 1 — X is the analogue of a
temperature. Deterministic annealing is the cooling process defining the continuous
path of solutions indexed by the temperature. Following this path is expected to
lead to a final solution with lower free energy, that is, higher likelihood.

If the optimization criteria are identical, the goals, and the hyperparameters used
are different. On the one hand, in deterministic annealing EM, one aims at reaching
the global maximum (or at least a good local optimum) of the joint likelihood. For
this purpose, one starts from a concave function (T — oo) and the temperature is
gradually lowered down to T' = 1, in order to reach a state with high likelihood.
On the other hand, the goal of entropy regularization is to alter the maximum-
likelihood solution, by biasing it toward low entropy. One starts from a possibly
concave conditional likelihood (A = 0, i.e., T' = 1) and the temperature is gradually
lowered until it reaches some predetermined value 1 — A\g = Ty > 0, to return a
good local maximum of C(0, Ao; L.,).

Despite these differences, the analogy with deterministic annealing EM is useful
because it provides an optimization algorithm for maximizing C'(6, A\; L,) (9.7).
Deterministic annealing EM (Yuille et al., 1994) is a simple generalization of
the standard EM algorithm. Starting from the solution obtained at the highest
temperature, the path of solution is computed by gradually increasing A. For each
trial value of A, the corresponding solution is computed by a two-step iterative
procedure, where the expected log likelihood is maximized at the M step, and
where soft (expected) assignments are imputed at the E step for unlabeled data.
The only difference with standard EM takes place at the E step, where the expected
value of labels is computed using the Gibbs distribution

P(m|1:z-;9)ﬁ
_1
21 P({lai; 0) =

gm (i3 0) = )
which distributes the probability mass according to the current estimated posterior
P(m|-) (for labeled examples, the assignment is clamped at the original label
gm(xi;0) = dpmy,). For 0 < XA < 1, the Gibbs distribution is more peaked than
the estimated posterior. One recovers EM for A = 0, and the hard assignments of
classification EM (CEM) (Celeux and Govaert, 1992) correspond to A = 1.

The M step then consists in maximizing the expected log likelihood with respect
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to 6

)

n M
s+1 _ . 0s .
0T = argmﬁz’ix;;gm(a:iﬁ )In P(m]z;;0) (9.8)
where the expectation is taken with respect to the distribution (g1 (+; 0%), ..., gam(+; 6%)),
and 6° is the current estimate of 6.

The optimization problem (9.8) is concave in P(m/|z;6) and also in 6 for logistic
regression models. Hence it can be solved by a second-order optimization algorithm,
such as the Newton-Raphson algorithm, which is often referred to as iteratively

IRLS reweighted least squares, or IRLS in statistical textbooks (Friedman et al., 2000).

We omit the detailed derivation of IRLS, and provide only the update equation

for 6 in the standard logistic regression model for binary classification problems. 3
The model of posterior distribution is defined as

1

P(1|z;0) = m )

(9.9)

where 6 = (w,b). In the binary classification problem, the M-step (9.8) reduces to

95+ = argm@aXZgl(aﬁi;GS)lnP(l\aﬁi;G) + (1= g1(2:;6°)) In(1 — P(1]z4; 0)) ,

i=1
where
P(1|z;;0) T
P(1|z;0)T + (1 — P(1|z;;0)) ™=

g1(ws;0) =

for unlabeled data and g1 (x;;60) = d1,, for labeled examples. Let pg and g denote
the vector of P(1]x;;0) and g1 (x;; 6°) values respectively, X the (n x (d+1)) matrix
of x; values concatenated with the vector 1, and Wy the (n x n) diagonal matrix
with ith diagonal entry P(1|x;;6)(1 — P(1|z;;0)). The Newton-Raphson update is

0 — 0+ (XTW,X) " X" (g - ps) - (9.10)

Each Newton-Raphson update can be interpreted as solving a weighted least squares
problem, and the scheme is iteratively reweighted by updating ps (and hence Wy)
and applying (9.10) until convergence.

9.3.2 Conjugate Gradient

Depending on how P(y|z) is modeled, the M step (9.8) may not be concave, and
other gradient-based optimization algorithms should be used. Even in the case

3. The generalization to kernelized logistic regression is straightforward, and the gener-
alization to more than two classes results in similar expressions, but they would require
numerous extra notations.



158 Entropy Regularization

where a logistic regression model is used, conjugate gradient may turn out being
computationally more efficient than the IRLS procedure. Indeed, even if each M step
of the deterministic annealing EM algorithm consists in solving a convex problem,
this problem is nonquadratic. IRLS solves exactly each quadratic subproblem, a
strategy which becomes computationally expensive for high-dimensional data or
kernelized logistic regression. The approximate solution provided by a few steps of
conjugate gradient may turn out to be more efficient, especially since the solution
65t returned at the sth M step is not required to be accurate.

Depending on whether memory is an issue or not, conjugate gradient updates
may use the optimal steps computed from the Hessian, or approximations returned
by a line search. These alternatives have experimentally been shown to be much
more efficient than TRLS on large problems (Komarek and Moore, 2003).

Finally, when EM does not provide a useful decomposition of the learning task,
one can directly address the minimization of the learning criterion (9.7) with
conjugate gradient, or other gradient-based algorithms. Here also, it is useful to
define an annealing scheme, where X is gradually increased from 0 to 1, in order to
avoid poor local maxima of the optimization surface.

9.4 Related Methods
9.4.1 Minimum Entropy in Pattern Recognition

Minimum entropy regularizers have been used in other contexts to encode learn-
ability priors (Brand, 1999). In a sense, Hemp can be seen as a poor man’s way to
generalize this approach to continuous input spaces. This empirical functional was
also used as a criterion to learn scale parameters in the context of transductive man-
ifold learning (Zhu et al., 2003b). During learning, discrepancies between H (9.3)
and Hemp (9.5) are prevented to avoid hard unstable solutions by smoothing the
estimate of posterior probabilities.

9.4.2 Input-Dependent and Information Regularization

Input-dependent regularization, introduced by Seeger (2000b) and detailed in chap-
ter 2, aims at incorporating some knowledge about the density p(z) in the modeling
of P(y|z). In the framework of Bayesian inference, this knowledge is encoded by
structural dependencies in the prior distributions.

Information regularization, introduced by Szummer and Jaakkola (2002a) and
extended as detailed in chapter 10, is another approach where the density p(x) is
assumed to be known, and where the mutual information between variables x and
y is penalized within predefined small neighborhoods. As the mutual information
I(x;y) is related to the conditional entropy by I(x;y) = H(y)— H (y|z), low entropy
and low mutual information are nearly opposite quantities. However, penalizing
mutual information locally, subject to the class constraints provided by labeled
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examples, highly penalizes the variations of P(y|z) in the high-density regions.
Hence, like entropy regularization, information regularization favors solution where
label switching is restricted to low density areas between disagreeing labels.

Entropy regularization differs from these schemes in that it is expressed only in
terms of P(y|z) and does not involve a model of p(x). However, we stress that
for unlabeled data, the MAP minimum entropy estimation is consistent with the
maximum (complete)-likelihood approach when p(z) is small near the decision
surface. Indeed, whereas the complete likelihood maximizes Inp(z) on unlabeled
data, the regularizer minimizes the conditional entropy on the same points. Hence,
the two criteria agree provided the class assignments are confident in high-density
regions, or conversely, when label switching occurs in a low-density area.

9.4.3 Self-Training

Self-training is an iterative process, where a learner imputes the labels of examples
which have been classified with confidence in the previous step. This idea, which
predates EM, was independently proposed by several authors (see chapter 1). Amini
and Gallinari (2002) analyzed this technique and have shown that it is equivalent
to a version of the classification EM algorithm (Celeux and Govaert, 1992), which
minimizes the likelihood deprived of the entropy of the partition.

In the context of conditional likelihood estimation from labeled and unlabeled
examples, self-training minimizes C' (9.7) with A = 1. The optimization process itself
is identical to the generalized EM described in section 9.3.1 with hard assignments
(Grandvalet, 2002; Jin and Ghahramani, 2003).

Minimum entropy regularization is expected to have two benefits. First, the
influence of unlabeled examples can be controlled, in the spirit of EM-A (Nigam
et al., 2000) Second, the deterministic annealing process, by which X is slowly
increased, is expected to help the optimization process to avoid poor local minima of
the criterion. This scheme bears some similarity to the increase of the C'* parameter
in the transductive SVM algorithm of Joachims (1999).

9.4.4 Maximal Margin Separators

Maximal margin separators are theoretically well-founded models which have shown
great success in supervised classification. For linearly separable data, they have been
shown to be a limiting case of probabilistic hyperplane separators (Tong and Koller,
2000).

In the framework of transductive learning, Vapnik (1998) proposed broaden-
ing the margin definition to unlabeled examples, by taking the smallest Euclidean
distance between any (labeled and unlabeled) training point to the classification
boundary. The following theorem, whose proof is given in the appendix, general-
izes theorem 5, corollary 6 of Tong and Koller (2000) to the margin defined in
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transductive learning4 when using the proposed minimum entropy criterion.

Theorem 9.1 Consider the two-class linear classification problem with linearly
separable labeled examples, where the classifier is obtained by optimizing
P(1)z; (w,b)) =1/(1+ e’(WTIH’)) with the semi-supervised minimum entropy cri-
terion (9.7), under the constraint that ||w|| < B. The margin of that linear classifier
converges toward the mazximum possible margin among all such linear classifiers,
as the bound B goes to infinity.

Hence, the minimum entropy solution can approach semi-supervised SVM (Vap-
nik, 1998; Bennett and Demiriz, 1999). We, however, recall that the MAP criterion
is not concave in P(m|x;0), so that the convergence toward the global maximum
cannot be guaranteed with the algorithms presented in section 9.3. This problem is
shared by all inductive semi-supervised algorithms dealing with a large number of
unlabeled data in reasonable time, such as mixture models or the transductive SVM
of Joachims (1999). Explicitly or implicitly, inductive semi-supervised algorithms
impute labels which are somehow consistent with the decision rule returned by the
learning algorithm. The enumeration of all possible configurations is only avoided
thanks to a heuristic process, such as deterministic annealing, which may fail.

Most graph-based transduction algorithms avoid this enumeration problem be-
cause their labeling process is not required to comply with a parameterized deci-
sion rule. This clear computational advantage has, however, its counterpart: label
propagation is performed via a user-defined similarity measure. The selection of
a discriminant similarity measure is thus left to the user, or to an outer loop, in
which case the overall optimization process is not convex anymore. The experimen-
tal section below illustrates that the choice of discriminant similarity measures is
difficult in high-dimensional spaces, and when a priori similar patterns should be
discriminated.

9.5 Experiments
9.5.1 Artificial Data

In this section, we chose a simple experimental setup in order to avoid artifacts
stemming from optimization problems. This setting enables checking to what
extent supervised learning can be improved by unlabeled examples, and when
minimum entropy can compete with generative methods which are traditionally
advocated in this framework. The minimum entropy criterion is applied to the
logistic regression model. It is compared to logistic regression fitted by maximum
likelihood (ignoring unlabeled data) and logistic regression with all labels known.

4. That is, the margin on an unlabeled example is defined as the absolute value of the
margin on a labeled example at the same location.
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The former shows what has been gained by handling unlabeled data, and the latter
provides the “crystal ball” ultimate performance obtained by guessing correctly all
labels. All hyperparameters (weight-decay for all logistic regression models plus the
A parameter (9.7) for minimum entropy) are tuned by tenfold cross-validation.

These discriminative methods are compared to generative models. Throughout
all experiments, a two-components Gaussian mixture model was fitted by the EM
algorithm (two means and one common covariance matrix estimated by maximum
likelihood on labeled and unlabeled examples (McLachlan, 1992)). The problem
of local maxima in the likelihood surface is artificially avoided by initializing
EM with the parameters of the true distribution when the latter is truly a two-
component Gaussian mixture, or with maximum likelihood parameters on the
(fully labeled) test sample when the distribution departs from the model. This
initialization advantages EM, which is guaranteed to pick, among all local maxima
of the likelihood, the one which is in the basin of attraction of the optimal
value. In particular, this initialization prevents interferences that may result from
the “pseudolabels” given to unlabeled examples at the first E step. The “label
switching” problem (badly labeled clusters) is prevented at this stage.

Correct Joint Density Model In the first series of experiments, we consider
two-class problems in a 50-dimensional input space. Each class is generated with
equal probability from a normal distribution. Class 1 is normal with mean (a a ... a)
and unit covariance matrix. Class 2 is normal with mean —(a a...a) and unit
covariance matrix. Parameter a tunes the Bayes error which varies from 1 % to 20
% (1 %, 2.5 %, 5 %, 10 %, 20 %). The learning sets comprise ! labeled examples,
(I =50,100,200) and u unlabeled examples, (v =1 x (1, 3,10, 30, 100)). Overall, 75
different setups are evaluated, and for each one, ten different training samples are
generated. Generalization performances are estimated on a test set of size 10, 000.

This first benchmark provides a comparison for the algorithms in a situation
where unlabeled data are known to convey information. Besides the favorable
initialization of the EM algorithm to the optimal parameters, the generative models
benefit from the correctness of the model: data were generated according to the
model, that is, two Gaussian subpopulations with identical covariances. The logistic
regression model is only compatible with the joint distribution, which is a weaker
fulfillment than correctness.

As there is no modeling bias, differences in error rates are only due to differences
in estimation efficiency. The overall error rates (averaged over all settings) are in
favor of minimum entropy logistic regression (14.1 + 0.3 %). EM (15.7 + 0.3 %)
does worse on average than logistic regression (14.9 + 0.3 %). For reference, the
average Bayes error rate is 7.7 % and logistic regression reaches 10.4 + 0.1 % when
all examples are labeled.

Figure 9.1 provides more informative summaries than these raw numbers. The
first plot represents the error rates (averaged over l) versus the Bayes error rate
and the u/! ratio. The second plot represents the same performances on a common
scale along the abscissa, by showing the relative improvement of using unlabeled
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Figure 9.1 (Left): Test error of minimum entropy logistic regression (o) and mixture
models (+) versus Bayes error rate for u/l = 10. The errors of logistic regression (dashed),
and logistic regression with all labels known (dash-dotted) are shown for reference. (Right):
Relative improvement to logistic regression versus Bayes error rate.

examples when compared to logistic regression ignoring unlabeled examples. The
relative improvement is defined here as the ratio of the gap between test error and
Bayes error for the considered method to the same gap for logistic regression. This
plot shows that, as asymptotic theory suggests (O’Neill, 1978; Castelli and Cover,
1996), unlabeled examples are more beneficial when the Bayes error is low. This
observation supports the relevance of the minimum entropy assumption.

Figure 9.2 illustrates the consequence of the demanding parametrization of gen-
erative models. Mixture models are outperformed by the simple logistic regression
model when the sample size is low, since their number of parameters grows quadrat-
ically (versus linearly) with the number of input features. This graph also shows
that the minimum entropy model takes quick advantage of unlabeled data when
classes are well separated. With u = 3[, the model considerably improves upon the
one discarding unlabeled data. At this stage, the generative models do not per-
form well, as the number of available examples is low compared to the number
of parameters in the model. However, for very large sample sizes, with 100 times
more unlabeled examples than labeled examples, the generative method eventually
becomes more accurate than the discriminative one.

These results are reminiscent of those of Efron (1975), in the respect that the
generative method is asymptotically slighly more efficient than the discriminative
one, mainly because logistic regression makes little use of examples far from the
decision surface. In the same respect, our observations differ from the comparison
of Ng and Jordan (2001), which shows that naive Bayes can be competitive in terms
of test error for small training sample sizes. This may be explained by the more
general generative model used here, which does not assume feature independance.

Misspecified Joint Density Model In a second series of experiments, the
setup is slightly modified by letting the class-conditional densities be corrupted by
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Figure 9.2 Test error versus u/l ratio for 5 % Bayes error (a = 0.23). Test errors of
minimum entropy logistic regression (o) and mixture models (4). The errors of logistic
regression (dashed), and logistic regression with all labels known (dash-dotted) are shown
for reference.

outliers. For each class, the examples are generated from a mixture of two Gaussians
centered on the same mean: a unit variance component gathers 98 % of examples,
while the remaining 2 % are generated from a large variance component, where
each variable has a standard deviation of 10. The mixture model used by EM is
now slightly misspecified since the whole distribution is still modeled by a simple
two-components Gaussian mixture. The results, displayed in the left-hand-side of
figure 9.3, should be compared with figure 9.2. The generative model dramatically
suffers from the misspecification and behaves worse than logistic regression for all
sample sizes. The unlabeled examples have first a beneficial effect on test error, then
have a detrimental effect when they overwhelm the number of labeled examples.
On the other hand, the discriminative models behave smoothly as in the previous
case, and the minimum entropy criterion performance steadily improves with the
addition of unlabeled examples.

The last series of experiments illustrate the robustness with respect to the
cluster assumption, by which the decision boundary should be placed in low-
density regions. The samples are drawn from a distribution such that unlabeled
data do not convey information, and where a low-density p(x) does not indicate
class separation. This distribution is modeled by two Gaussian clusters, as in the
first series of experiments, but labeling is now independent from clustering: example
x; belongs to class 1 if x;5 > x;; and belongs to class 2 otherwise; the Bayes
decision boundary now separates each cluster in its middle. The mixture model is
unchanged. It is now far from the model used to generate data. The right-hand side
plot of figure 9.3 shows that the favorable initialization of EM does not prevent
the model from being fooled by unlabeled data: its test error steadily increases
with the amount of unlabeled data. Conversely, the discriminative models behave
well, and the minimum entropy algorithm is not distracted by the two clusters; its
performance is nearly identical to the one of training with labeled data only (cross-



164

Entropy Regularization

20

(O8]
o

[\e}
W

._.
(9}

[\S}

S

Test Error (%)

—
o

Test Error (%)
S o
/ f

Ratio u/l Ratio w/l

Figure 9.3 Test error versus u/! ratio for a = 0.23. Average test errors for minimum
entropy logistic regression (o) and mixture models (+). The test error rates of logistic
regression (dotted), and logistic regression with all labels known (dash-dotted) are shown

for reference. (Left): Experiment with outliers. (Right): Experiment with uninformative
unlabeled data.

Table 9.1 Error rates (%) of minimum entropy (ME) versus consistency method (CM),
for a = 0.23, I = 50, and (a) pure Gaussian clusters, (b) Gaussian clusters corrupted by
outliers, and (c) class boundary separating one Gaussian cluster

Ty 50 150 500 1500
a) ME 108+15 98+19 88+20 83+26
a) CM 214472 255+£81 29.6+9.0 26.8+7.2
b)ME 85+0.9 83+15 75+15 66+15
b)CM 220+6.7 25.6+7.4 298497 27.7+6.8
¢c) ME 87+08 83+1.1 72+1.0 72+£1.7
)CM  51.6+7.9 505+4.0 493+26 502422

validation provides A values close to zero), which can be regarded as the ultimate
achievable performance in this situation.

Comparison with Manifold Transduction Although this chapter focuses on
inductive classification, we also provide comparisons with a transduction algorithm
relying on the manifold assumption. The consistency method (Zhou et al., 2004)
is a very simple label propagation algorithm with only two tuning parameters. As
suggested by Zhou et al. (2004), we set a = 0.99 and the scale parameter o2 was
optimized on test results. The results are reported in table 9.1. The experiments
are limited due to the memory requirements of the consistency method in our naive
implementation.

The results are extremely poor for the consistency method, whose error is way
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Anger Fear Disgust Sadness  Surprise = Neutral

Figure 9.4 Examples from the facial expression recognition database.

above minimum entropy, and which does not show any sign of improvement as the
sample of unlabeled data grows. In particular, when classes do not correspond to
clusters, the consistency method performs random class assignments.

In fact, the experimental setup, which was designed for the comparison of global
classifiers, is not favorable to manifold methods, since the input data are truly
50-dimensional. In this situation, finding a discriminant similarity measure may
require numerous degrees of freedom, and the consistency method provides only
one tuning parameter: the scale parameter 2. Hence, these results illustrate that
manifold learning requires more tuning efforts for truly high-dimensional data, and
some recent techniques may respond to this need (Sindhwani et al., 2005).

9.5.2 Facial Expression Recognition

We now consider an image recognition problem, consisting in recognizing seven
(balanced) classes corresponding to the universal emotions (anger, fear, disgust,
joy, sadness, surprise, and neutral). The patterns are gray level images of frontal
faces, with standardized positions, as displayed in figure 9.4. The data set comprises
375 such pictures made of 140 x 100 pixels (Abboud et al., 2003; Kanade et al.,
2000)

We tested kernelized logistic regression (Gaussian kernel), its minimum entropy
version, nearest neighbor, and the consistency method. We repeatedly (10 times)
sampled 1/10 of the data set for providing the labeled part, and the remainder for
testing. Although (v, 02) were chosen to minimize the test error, the consistency
method performed poorly with 63.8 + 1.3 % test error (compared to 86 % error for
random assignments). Nearest neighbor gets similar results with 63.1 + 1.3 % test
error, and kernelized logistic regression (ignoring unlabeled examples) improved
to reach 53.6 + 1.3 %. Minimum entropy kernelized logistic regression regression
achieves 52.0 + 1.9 % error (compared to about 20 % errors for human on this
database). The scale parameter chosen for kernelized logistic regression (by tenfold
cross-validation) amount to using a global classifier.

The failure of local methods may be explained by the fact that the database
contains several pictures of each person, with different facial expressions. Hence,
local methods are likely to pick the same identity instead of the same expression,
while global methods are able to learn the discriminating directions.
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9.6 Conclusion

Although discriminative methods do not benefit from unlabeled data in the
maximum-likelihoood framework, mazimum a posteriori estimation enables ad-
dressing the semi-supervised induction problem. The information content of unla-
beled data decreases with class overlap, which can be measured by the conditional
entropy of labels given patterns. Hence, the minimum entropy prior encodes a
premise of semi-supervised induction, that is, the belief that unlabeled data may
be useful. The postulate is optimistic in some problems where unlabeled data do not
convey information regarding labels, but the strength of the prior is controlled by
a tuning parameter, so that the contribution of unlabeled examples to the estimate
may vanish.

Minimum entropy regularization is related to self-training in general and to
transductive SVMs in particular. It promotes classifiers with high confidence on
the unlabeled examples. A deterministic annealing process smoothly drives the
decision boundary away from unlabeled examples, favoring low-density separation.

The regularizer can be applied to local and global models of posterior probabili-
ties. As a result, it can improve over local models when they suffer from the curse of
dimensionality. Minimum entropy regularization may also be a serious contender for
generative methods. It compares favorably to these mixture models in three situa-
tions: for small sample sizes, where the generative model cannot completely benefit
from the knowledge of the correct joint model; when the joint distribution is (even
slightly) misspecified; when the unlabeled examples turn out to be noninformative
regarding class probabilities.

Finally, the algorithms presented in this chapter can be applied to a generalized
version of the semi-supervised induction problem, where the examples may be
labeled by any subset of labels, representing the set of plausible classes. This kind of
information is sometimes a more faithful description of the true state of knowledge
when labeling is performed by an expert.

Appendix: Proof of Theorem 9.1

Theorem 9.1 Consider the two-class linear classification problem with linearly sep-
arable labeled examples, where the classifier is obtained by optimizing

P(1)z; (w,b)) =1/(1+ e’(WTIH’)) with the semi-supervised minimum entropy cri-
terion (9.7), under the constraint that ||w|| < B. The margin of that linear classifier
converges toward the mazximum possible margin among all such linear classifiers,
as the bound B goes to infinity.

Proof Consider the logistic regression model P(1|x;6) parameterized by 6 =
(w,b). Let z; € {—1,+1} be a binary variable defined as follows: if z; is a positive
labeled example, z; = +1; if z; is a negative labeled example, z; = —1; if x; is an
unlabeled example, z; = sign(P(1|x;0) — 1/2). The margin for the ith labeled or
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unlabeled example is defined as m;(6) = z;(w ' x; + b).
The criterion C (9.7) can be written as a function of m; = m;(6) as follows:

—m;

l n
ClB)=-Y In(l+e ™) -\ > <1n(1+e"“)+ e ) . (9.11)

1+ e
i=l+1 +

where the indices [1,1] and [l + 1,n] correspond to labeled and unlabeled data,
respectively.

On the one hand, for all § such that there exists an example with non-negative
margin, the cost (9.11) is trivially upper-bounded by —In(2) if the example is
labeled and —Aln(2) otherwise. On the other hand, by the linear separability
assumption, there exists § = (w, b) with, say, ||w|| = 1 such that m; > 0. Consider
now the cost obtained with the admissible solution B8 as B — +oco. In this limit,
since m;(B0) = Bm;(0), all the terms of the finite sum (9.11) converge to zero, so
that the value of the cost converges to its maximum value (limp_,4., C(B6) = 0).
Hence, in the limit of B — +o0 all margins of the maximizer of C are positive.

We now show that the maximizer of C' achieves the largest minimal margin. The
cost (9.11) is simplified by using the following equivalence relations when B — +o0:

In(14 e Bmi)y ~ =Bmi
Bme=Bmi

1+eBmi Bmge~ "™
e~ K

7

which yields

l n
C(BO) = - Ze_Bm'i +o(e”Bmiy — ) Z Bmge™B™i 4 o(Bmje B™) |
i=1 i=l+1

Let us write m* > 0 the minimum margin among the labeled examples and
my > 0 the minimum margin among the unlabeled examples, N* the number
of minimum margin labeled examples (with m; = m*), and N, the number of
minimum margin unlabeled examples (with m; = m,). As e B = o(e=B™")
when m; > m*, we obtain

C(BY) = —N*e Bm" 4 O(e_Bm*) — AN.Bm,e B™ + o(Bm,e P |

Now we note that if m* < m,, then Bm,e Bms = O(e*Bm*), and that if m* > m,

—Bm”™ —Bm”™ )

then e = o(Bmye . Hence, depending on whether m* < m, or m* > m,

we either obtain

C(BO) = —N*e 5™ 4 o(e™B™) (9.12)
or

C(BY) = —AN.Bm,e B™ 4 o(Bm,e B™") . (9.13)

Now, consider two different values of 8, 8, and 65, giving rise to minimum margins
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M7 and Ms respectively, with M7 > Ms. The solution Bf; will be prefered to Bfs
it C(B01)/C(Bb2) < 1. From (9.12) and (9.13), we see that it does not matter
whether M; is among the labels or the unlabeled, but only whether M; > M,
or My > M. In all cases C(B#,)/C(Bb2) — 0 when M; > Ms. This allows
the conclusion that as B — oo, the global maximum of C(B#) over 6 tends to a
maximum margin solution, where the minimum margin M (over both labeled and
unlabeled examples) is maximized. ]
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Information regularization is a principle for assigning labels to unlabeled data points
in a semi-supervised setting. The broader principle is based on finding labels that
minimize the information induced between examples and labels relative to a topol-
ogy over the examples; any label variation within a small local region of examples
ties together the identities of examples and their labels. Such variation should be
minimized unless supported directly or indirectly by the available labeled examples.
The principle can be cast in terms of Tikhonov style regularization for maximizing
likelihood of labeled examples with an information-theoretic regularization penalty.
We consider two ways of representing the topology over examples, either based on
complete knowledge of the marginal density, or by grouping together examples
whose labels should be related. We discuss the learning algorithms and sample
complexity issues that result from each representation.

10.1 Introduction

A substantial number of algorithms and methods exist for solving supervised learn-
ing problems with little or no assumptions about the distribution generating the
samples. Semi-supervised learning methods, in contrast, have to rely on assump-
tions about the problem so as to relate the available unlabeled data to possible
class decisions. The most common such assumption is the cluster assumption (see
chapter 1, or (Seeger, 2000b)) that, loosely speaking, prefers class decisions that
cut between rather than through clusters of unlabeled points. The effect of the
assumption is that it can significantly reduce the set of possible (reasonable) deci-
sions that need to be considered in response to a few labeled examples. The same
effect can also be achieved through representational constraints (e.g., (Blum and
Mitchell, 1998)).

The definition of what constitutes a cluster and how the cluster assumption is
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formalized varies from one method to another. For example, clusters may be defined
in terms of a weighted graph so that class decisions correspond to a graph partition
(Szummer and Jaakkola, 2001; Blum and Chawla, 2001; Blum et al., 2004). In a
regularization setting, the graph may be used to introduce a smoothness penalty on
the discriminant function so as to limit how the discriminant function can change
within graph neighborhoods (e.g., see chapter 12). Alternatively, we may define
a model for each cluster via generative mixture models, and associate a single
class decision (distribution over classes) with each mixture component (e.g., see
chapter 3).

The strength of the bias from unlabeled data can be directly controlled via the
regularization parameter or by weighting likelihoods corresponding to labeled and
unlabeled data. The choice of the weight may have a substantial effect on the
resulting classifier, however (e.g., (Corduneanu and Jaakkola, 2002)).

We approach here the semi-supervised learning problem as a regularization prob-
lem , consistent with the broader cluster assumption, but define the regularization
penalty by appealing to information theory. The key idea is to express the penalty as
a bit cost of deviating decisions from those consistent with some assumed structure
over the unlabeled examples. In our case the structure corresponds to a collection of
overlapping sets or regions that play a role similar to clusters; decisions are biased
to be the same within each set and their specification is tied to the marginal distri-
bution over the examples. In practice, the sets can be derived from weighted graph
neighborhoods for discrete objects or from e-balls covering the unlabeled points.

We begin by introducing the overall information regularization principle. The
structure of the remaining sections is modeled after figure 10.1, successively elabo-
rating the principle under variations in the example space, type of unlabeled data
that is available, and which modeling assumptions we are willing to make.

Consider a typical semi-supervised learning problem with a few labeled examples
((x1,91),. -, (x1,y)) and a large number of unlabeled examples (x;41,...,2,) or
the marginal distribution p(x). We assume that the labels are discrete taking values
inY ={1,..., M} for some finite M. The goal is to estimate the conditional dis-
tributions Q(y|x) associated with each available example x (labeled or unlabeled).

We will introduce the information regularization approach here from two alter-
native perspectives: smoothness and communication. By smoothness we mean con-
straining how Q(y|x) is allowed to vary from one point to another. The smoothness
preference is expressed as a regularization penalty over different choices of Q(:|x),
x € X. The communication perspective, on the other hand, characterizes the reg-
ularization penalty in terms of the cost of encoding labels for all the points using
Q(y|x) relative to a basic coding scheme.

In either case the key role is played by a collection of regions, denoted by R. Each
region R € R represents a set of a priori equivalent examples. In other words, in the
absence of any other information, we would prefer to associate the same distribution
of labels with all z € R. Figure 10.2 illustrates two possible overlapping regions.
We will use these regions to exemplify the basic ideas.
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Figure 10.1 Outline of information regularization methods under different assumptions
about the space, data, and model. Dotted arrows indicate that one setting can be cast as
another through a simple transformation (estimation, or relations derived from metric)

. (Corduneanu, Jaakkola —
transductive submitted )

10.1.1 Regions and Smoothness

Consider the six unlabeled examples in region R in figure 10.2. We assume that
each point has the same probability of being a member of the region so that
P(z|R) = 1/6. The membership probabilities provide an additional degree of free-
dom for specifying smoothness constraints. Given the region R and the membership
probabilities P(x|R), z € R, we would like to introduce a penalty for any varia-
tion in the conditionals Q(y|z) across the examples in the region. A natural choice
for this penalty is the Kullback-Leibler (KL) divergence between each conditional
Q(y|z) and the best common choice Q(y|R):
Qylz)

Ir(zyy) = QII(}}%) IERP(MR)?JGZEQ(ym)lOgma (10.1)

Q(ylr)
;P(QTIR) %Q(y\m) log 5Ty (10.2)
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Figure 10.2 Example regions.

where Q(y|R) = ZweRP(ﬂR)Q(y\x).l Note that we can interpret the result as
the mutual information between z and y within the region so long as the joint
distribution Q(z,y) is defined as Q(y|z)P(z|R). The mutual information involves
no prior penalty on what the common distribution should be; Ir(z,y) is zero if all
the points in the region are labeled y = 1 or all of them have entirely uncertain
conditionals Q(y|z) = 1/M.

Suppose now that some of the six examples in region R have been labeled. We
will formulate the resulting estimation task as a regularization problem with the
mutual information serving as a regularization penalty. To this end, let @) refer
collectively to the parameters Q(-|z),z € R. Define J(Q) = Ig(x;y) (which we
will extend shortly to multiple regions) so that the penalized maximum-likelihood
criterion is given by

l

> log Q(yilz:) — AJ(Q),

i=1
where A is a regularization parameter that balances the fit to the available labeled
points and the smoothness bias expressed by J(Q). If only one of the six points is
labeled, all the points in the region will be labeled with the observed label. This
is because the value of the regularizer is independent of the common choice within
the region but biases any differences within the region. In case of two distinctly
labeled points, the remaining points would be labeled such that the conditionals
Q(y|z) assign all their weight equally to the two observed labels while excluding all
others. The conditionals associated with the labeled points would be drawn toward
their respective labels, also excluding other than observed label values.

Multiple Regions In the single-region case the labels for unlabeled points
are pulled equally toward the optimized common distribution without further
distinguishing between the points. The notion of locality arises from multiple
regions, such as R = {R, R’} in the figure. In this setting, the overall regularization

1. Ir(z;y) is exactly the general Jensen-Shannon divergence between Q(+|z) for all z € R,
weighted by P(z|R)



10.1 Introduction

atomic regions

weighted graph
representation

178

penalty must be a (weighted) average of the individual region penalties:

J@Q) = " (R) In(wsy),

ReR

where (R) represents the weight of region R, where the choice of y(R) is a modeling
decision. v(R) expresses a priori belief in the relative importance of the regions, thus
it is not necessarily related to P(R) = [ p(x)dz, the probability of region R derived
from the generative distribution of the data.

In figure 10.2 there are three sets of equivalent points that are not further
distinguished in this regularizer. They are R\ R, RN R/, and R’ \ R. We call
these sets that are not further partitioned by other regions atomic regions. By
introducing more regions, we partition the space into smaller atomic regions and
thus can make finer distinctions between the conditional distributions associated
with the points; within each atomic region, the conditional distributions can differ
only if some of the points are explicitly labeled.

A sequence of overlapping regions can mediate influence between the conditionals
associated with more “remote” points, those that do not appear in a common region.
For example, labeling any point in R\ R’ will also set all the labels in R’ \ R via
the intersection. Note, however, that labeling the points in the intersection would
not completely remove this influence; the Markov properties associated with the
regions pertain to the conditional distributions, not labels directly.

The choice of the regions, region weights v(R), and the membership probabilities
P(z|R) will change the regularizer. While these provide additional degrees of
freedom that have to be set (or learned), there are nevertheless simple ways of
specifying them directly based on the problem. For example, suppose we are given
a weighted undirected graph with vertex set V', edge set F, and edge weights w(u, v)
associated with any (u,v) € E. Then we can simply associate the regions with edges,
specify equal membership probabilities for vertices in each edge, and set v(R) equal
to the weight of the corresponding edge in the graph. The resulting regularizer is
analogous to the graph-based regularizers for discriminant functions except that it
is cast in terms of conditional probabilities.

10.1.2 Communication Principle

The information regularization objective can be also derived from a communication
principle. Suppose we have the same collection of regions R, region weights v(R),
membership probabilities P(z|R), and the conditionals {Q(y|x)} associated with
the points. The regularizer is defined as the bit rate of communicating labels for
points according to the following communication game. In this scheme, the regions,
points, and labels are sampled as follows. First, we select a region R € R with
probability (proportional to) v(R), then a point within the region according to the
membership probabilities P(z|R), and finally the label y from Q(y|x). The label is
then communicated to the receiver using a coding scheme tailored to the region,
i.e., on the basis of Q(y|R). The receiver is assumed to have prior access to z, R,
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and the region-specific coding scheme. Under these assumptions, the amount of
information that must be sent to the receiver to accurately reconstruct the samples
on average is

J(Q) = > V(R)r(x;y),
ReR

which is the regularizer previously defined. Equivalently, we can rewrite the regu-
larizer as

J(Q)=1I(z;y)—I(R; y).

Therefore the communication principle aims to minimize any information = has to
communicate about y beyond what has already been communicated by the region
from which x was drawn. This information is minimal when the label within each
region does not depend on which z we sampled.

10.2 Information Regularization on Metric Spaces

overlap

We adapt here the information regularization principle to the setting where X is a
metric space and assume that its metric is correlated with the labeling of points. In
other words, points that are close according to the metric are likely to have the same
label. For example, if X is a real vector space the metric could be the Euclidean
distance between the points, possibly weighted by feature relevance. Using a metric
to introduce a bias in semi-supervised learning is quite common, and many existing
algorithms require an explicit or implicit metric.

10.2.1 Full Knowledge of the Marginal

We begin by considering the ideal situation in which we have access to unlimited
unlabeled data, which, together with the metric, amounts to knowing the marginal
density p(x). In this case the information regularizer will relate the structure of
p(x) to the possible labelings of points. While we develop the ideas in the context
of knowing the marginal, the resulting algorithms apply also to finite sample cases,
by replacing p(z) with an empirical estimate.

10.2.1.1 The Information Regularizer

In order to construct the regularizer we need to specify how the regions cover the
metric space along with the weights v(R) associated with the regions. The cover
R should provide connected and significantly overlapping regions. This is necessary
since labeling one point can only affect another if they can be connected through a
path of overlapping regions.

In covering the space we have to balance the size of the regions with their
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avoid systematic
bias

overlap. We derive here the form of the regularizer in the limit of vanishing but
highly overlapping regions. Under mild constraints about how the limit is taken,
the resulting regularizer is the same. The limiting form has the additional benefit
that it no longer requires us to engineer a particular covering of the space.

We choose the regions such that as their size approaches 0, the overlap between
neighbors approaches 100% (this is required for smoothness). In the limit, therefore,
each point belongs to infinitely many regions, resulting in an infinite sum of local
regularizers. An appropriate choice of A, the regularization parameter, is needed to
rescale the regularizer to take into account this increase.

In choosing the cover R care must be taken not to introduce systematic biases
into the regularizer. Assuming that X has vector space structure, we can cover it
with a homogeneous set of overlapping regions of identical shape: regions centered
at the axis-parallel lattice points spaced at distance I’. In what follows the regions
are going to be axis-parallel cubes of length I, where [ is much larger than I’. Because
R covers X uniformly, we can weight the regions based on the marginal density, i.e.,
~v(R) = P(R) up to a multiplicative constant.

Assuming that [ and I’ are such that /I’ is an integer, each (nonlattice) point
belongs to (I/1')% cubic regions, where d is the dimension of the vector space. Let
R’ be the partitioning of R into atomic lattice cubes of length I’. Each region in
R is partitioned into (I/1')¢ disjoint atomic cubes from R’, and each atomic cube
is contained in (1/1")¢ overlapping regions from R. We may now rewrite the global
regularizer as a sum over the partition R':

J(p) =lim > P(R)Ip(w;y) =lim »  P(R) Y In(w;y) =

ReR R/'eR’ RDOR/
. . dIr(z;y)
N lim S P(R)Ir(asy) =1 ). / TEDY o
(l/l ) l’lir%) R'eR’ (R ) R(Qf, y) lg% (l/l ) xp(x> dx dx

Note that the factor in front of the integral can be factored into the regularization
parameter \ as a multiplicative constant.

Infinitesimal Mutual Information We derive the local mutual information
as the diameter of R approaches 0. If zg is the expectation of x over R, mutual
information takes the following asymptotic form:

Ir(z;y) = %tr (Varg [z] F(z0)) + O (diam(R)?) ,

where F(z) = Eqyjz) [Valog Q(y|z) - Valog Q(ylx) | is the Fisher information
and Varg [z] is the covariance of pr(z) (for a proof of this result see (Corduneanu
and Jaakkola, 2003)). Note that since the covariance is O (diam(R)?), Ir(z;y) — 0
as diam(R) — 0. Therefore limgiam(r)—o [r(#;y)/diam(R)? is well defined, and this
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is the infinitesimal quantity that we will integrate to obtain J (p)2:

- . Vargp [z]
)= [ (Pl | S ) o

Given this form of the regularizer we can argue that regions in the shape of a
cube are indeed appropriate. We start from the principle that the regularizer should
not introduce any systematic directional bias in penalizing changes in the label. If
the diameter of a region R is small enough, pr(x) is almost uniform, and p(y = 1|x)
can be approximated well by v - x 4 ¢, where v is the direction of highest variation.
In this setting we have the following result (Corduneanu and Jaakkola, 2003):

Theorem 10.1 Let R be such that diam(R) = 1. The local information regularizer
is independent of v/ ||v|| if and only if Varg [-] is a multiple of the identity.

Proof We have F(xg) = vv'. The relevant quantity that should be independent
of v/||v| is therefore v Varg [-]v. Let v = ®;/||®;||, where ®; is an eigenvector
of Varg[-] of eigenvalue ¢;. Then v' Varg[]v = ¢; should not depend on the
eigenvector. If follows that Varg [-] has equal eigenvalues, thus Varpg [] = ¢I. The
converse is trivial. [

It follows that in order to remove any directional bias, Var g [z] ~ diam(R)?-I, as
is the case if R is a cube or a sphere. We thus reach our final form of the information
regularizer for metric space when the marginal is fully known:

1) = [ st (F@) dr (10.3)
Note that the dependence of R is only implicit.
10.2.1.2 Classification Algorithm

We would like to estimate a label confidence Q(-|z) (that is, a soft label in [0, 1]M)
for every x € X given the knowledge of p(x), and a labeled sample {(x;,y;)}i=1..1-
The information regularization principle requires us to maximize the regularized
log likelihood:

!
max Zlog Qyilzi) — )\/xp(x)tr (F(z)) dx, (10.4)

{QUyla) z€X.yey}

where F(z) = Eqyls) [Valog Q(ylz) - Valog Q(yla) ], and the maximization is
subject to 0 < Q(y[x) <1and ) .y Q(ylz) = 1.

2. To be consistent with the derivation of J(p), we should normalize Ir(z;y) by diam(R)?,
but unless d = 2 the regularizer would be either 0 or co. We can afford to choose the
convenient normalization without compromising the principle because we are free to choose
A
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It is interesting that the above optimization defines a labeling even in a com-
pletely unrestricted nonparametric setting (save for differentiability constraints on
Q(:|z). In this situation labels of distinct data points are related only through
the information regularizer. We show that if we fix the values of the labels at the
observed labeled samples, Q(y;|x;) = Po(y:|x;), for all i = 1...1, the regularizer
extends Q(y|z) to unobserved x’s uniquely. In what follows, we restrict the analysis
to binary classification (Y = {-1,1}).

We cast the optimization as solving a differential equation that characterizes the
optimal conditional. The conditional that minimizes the regularizer [ p(z)tr (F(z))
is a differentiable function (except maybe at the labeled samples, where it is only
continuous) that satisfies the Euler-Lagrange condition (Corduneanu and Jaakkola,
2003):

1Q(1r) - Q(~1la)
2 Q(z)Q(-1x)
This differential equation defines a unique solution given the natural boundary

conditions p(z) = 0 and V,Q(y|z) = 0 at infinity, as well as the labels Py(y;|z;) at
labeled samples.

Valogp(2)VeQ (1)) T +tr (V3,Q(1]2)) + IV.Q(1lz)* = 0.

In order to optimize (10.4) one could solve the differential equation for various
values {Py(y;|x;)}i=1..1, then optimize with respect to Py(y;|x;). Unfortunately,
solving the differential equation numerically involves discretizing X, which is im-
practical for all but low-dimensional spaces. That is why the nonparametric but
inductive (find a label for each point in X) information regularization is of more
theoretical than practical interest.

Nevertheless, if X is the one-dimensional real line the differential equation can
be solved analytically (Corduneanu and Jaakkola, 2003). We present the solution
here to illustrate the type of biases imposed by the information regularizer. When
X is one-dimensional, the labeled samples x1,xs,...,x; split the real line into
disjoint intervals; thus if Py(y|z;) are given, the differential equation can be solved
independently on each interval determined by the samples. The solution only
depends on the labels of the endpoints, and is given by the following:

1
1 + tan? (—cf ﬁy

where ¢ and the additive constant in [ 1/p can be determined from the values of

Q1fz) =

the conditional at the endpoints. These two parameters need not be the same on
different intervals.

Figure 10.3 shows the influence of various p(z) on Q(1|x) through information
regularization under the boundary conditions P(y = 1|z = 0) = 0.9 and P(y =
1Jz = 1) = 0.1. The property of preferring changes in the label in regions of low data
density is evident. Note that the optimal P(y|x) will always be between its values
at the boundary; otherwise for some 1 # x2 we would have P(y|z1) = P(y|z2),
and because the cumulative variation is minimized, necessarily P(y|z) = P(y|z1)
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Figure 10.3 Nonparametric conditionals that minimize the information regularizer for
various one-dimensional data densities while the label at boundary labeled points is fixed

for every z € [x1,z2).
10.2.1.3 Learning Theoretical Properties

We extend the analysis of information regularization on metric spaces given the
full knowledge of the marginal with a learning theoretical framework. The aim is to
show that the information regularizer captures the learning complexity, in the sense
that bounding it makes the labels learnable without any additional assumptions
about {Q(y|z)}zex, yey. Because the setting is nonparametric, and the only link
that relates labels of distinct points is the information regularizer, {Q(y|z) }zex,yey
would not be learnable without placing a constraint on the information regularizer.

3 we derive an

While the learning framework is general, due to technical constraints
explicit sample-size bound only for binary classification when X is one-dimensional.

We need to formalize the concepts, the concept class (from which to learn them),
and a measure of achievement consistent with (10.4). The key is then to show that
the task is learnable in terms of the complexity of the concept class.

Standard probably approximately correct (PAC)-learning of indicator functions

3. Only in one dimension do the labeled points give rise to segments that can be optimized
independently.
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p-concept
learning

of class membership will not suffice for our purpose. Indeed, conditionals with very
small information regularizer can still have very complex decision boundaries, of
infinite Vapnik-Chervonenkis dimension. Instead, we rely on the p-concept Kearns
and Schapire (1994) model of learning full conditional densities: concepts are
functions Q(ylz) : X — [0, 1]. Then the concept class is that of conditionals with
bounded information regularizer:

9,0 =4Q: /x p(2) S Q) IV log Qula) |1 d <

yeY

We measure the quality of learning by a loss function Lg : X x Y — [0, 00).
This can be the log loss — log Q(y|x) associated with maximizing likelihood, or the
square loss (Q(y|z) — 1)%. The goal is to estimate from a labeled sample a concept
Qopt from J.,(p) that minimizes the expected loss Ep ) p(y|e) [Lg], where P(y|z) is
the true conditional.

One cannot devise an algorithm that optimizes the expected loss directly, because
this quantity depends on the unknown P(y|z). We make the standard approximation
of estimating Q)op¢ by minimizing instead the empirical estimate of the expected loss
from the labeled sample:

l
. 1
=arg min E[Lg|=argmin - Lo(xi,y;).
Q g min [Lo] = argmi lizzl Q(@i,yi)

If the loss function is the log loss, finding Q is equivalent to maximizing the
information regularization objective (10.4) for a specific value of A\. However, we
will present the learning bound for the square loss, as it is bounded and easier to
work with. A similar result holds for the log-loss by using the equivalence results
between the log loss and square loss presented in (Abe et al., 2001).

The question is how different Q (estimated from the sample) and Q,p; (estimated
from the true conditional) can be due to this approximation. Learning theoretical
results provide guarantees that given enough labeled samples the minimization of
E[Lg] and E,(2)P(y|2) [Lq] are equivalent. We say the task is learnable if with high
probability in the sample the empirical loss converges to the true loss uniformly for
all concepts as | — oo. This guarantees that E [LQ} approximates E [LQDM] well.

Formally,
P{3Q € ,(p) : [E[Lo] —~ E[Lg]| > ¢} <6, (10.5)

where the probability is with respect to all samples of size [. The inequality should
hold for I polynomially large in 1/e,1/5,1/~.

We have the following sample complexity bound on the square loss, derived in
(Corduneanu and Jaakkola, 2003):
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Theorem 10.2 Let €,0 > 0. Then
P{3Q € 9,(p) : |E[Lo] — E [Lo] | > €} <6,

where the probability is over samples of size | greater than

(b ) i+ )

Here my(a) = P{z : p(x) < a}, and cp(a) is the number of disconnected sets in
{z : p(x) > a}.

The quantities my () and ¢,(-) characterize how difficult the classification is due
to the structure of p(z). Learning is more difficult when significant probability mass
lies in regions of small p(z) because in such regions the variation of Q(y|z) is less
constrained. Also, the larger ¢, () is, the labels of more “clusters” need to be learned
from labeled data. The two measures of complexity are well behaved for the useful
densities. Densities of bounded support, Laplace and Gaussian, as well as mixtures
of these, have my(a) < ua, where u is some constant. Mixtures of single-mode
densities have ¢,(a) bounded by the number of mixtures.

10.2.2 Finite Unlabeled Sample

We discuss here classification by information regularization when X is endowed with
a metric but the true marginal p(x) is unknown save for a large unlabeled sample
(141, .., Zy). In practice we might already have a domain-specific model (class) of
how the labels are generated and we show how to apply information regularization
if the labels must come from a parametric family Q(y|z,6).

Although it is possible to approach this scenario directly by partitioning the space
into regions as in (Szummer and Jaakkola, 2002a), here we reduce the task to the
situation in which the full marginal is known by replacing the full marginal with
an empirical estimate obtained from the unlabeled sample.

We illustrate this method on logistic regression, in which we restrict the condi-
tional to linear decision boundaries with the following parametric form: Q(y|z;0) =
o(yd "), where y € {—1,1} and o(z) = 1/(1+exp(—x)). The Fisher information is
therefore F(z;0) = o(0"z)o(—0"2)00" and according to Eq. 10.3 the information
regularizer takes the form

161 [ pa)o 6" a)o(-07 )i

Here p(x) is the empirical estimate of the true marginal. We compare two ways

of estimating p(x), the empirical approximation %Z;;l 6(z — %), as well as a

Gaussian kernel density estimator. The empirical approximation leads to optimizing
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the following criterion:

l T 2 A T T
mgxglogo(yﬂ z:) — ||| E;J(G z)o(—0" x;).

It is instructive to contrast this information regularization objective with the
criterion optimized by transductive support vector machines (SVMs), as in chap-
ter 6. Changing the SVM loss function to logistic loss, transductive SVM /logistic
regression optimizes

- T A
), max ;loga(yﬂ z:) = 5 110l
over all labelings of unlabeled data. In contrast, our algorithm contains the unla-
beled information in the regularizer.

The presented information regularization criterion can be easily optimized by
gradient-ascent or Newton-type algorithms. Note that the term o (0" z)o(—0"2) =
Q(1|z)Q(—1]z) focuses on the decision boundary. Therefore, compared to the stan-
dard logistic regression regularizer ||]|®, we penalize more decision boundaries cross-
ing regions of high data density. Also, the term makes the regularizer nonconvex,
making optimization potentially more difficult. This level of complexity is, however,
unavoidable by any semi-supervised algorithm for logistic regression, because the
structure of the problem introduces locally optimal decision boundaries.

If unlabeled data are limited, we may prefer a kernel estimate p(z) = 1 > K(a,h)
to the empirical approximation, provided the regularization integral remains
tractable. In logistic regression, if the kernels are Gaussian we can make the in-
tegral tractable by approximating o (6" z)o(—6"x) with a degenerate Gaussian.
Either from the Laplace approximation, or the Taylor expansion log(l + %) =
log2 + x/2 + 22 /8, we derive the following approximation, as in (Corduneanu and
Jaakkola, 2003):

(0T 2)o(—0T z) ~ iexp (-i(e%)?) .

With this approximation computing the integral of the regularizer over the kernel
centered p of variance 7I becomes integration of a Gaussian:

— exp (—i(&%)ﬁ N(z; p, 1) =

1 /det Xy p' (71— o) p Yo
— 7' N 7 E
1V det 1 7P < 272 )

where X = (114 1007) " =7 [1— 1007/ (; +1 ||9||2)].
After integration only the multiplicative factor remains:

1 T 9\ "2 1 (07 p)?
- (1+=]0 exp| —————— | .
2 (1+ 3 10) p< FrweaTT
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Therefore, if we place a Gaussian kernel of variance 7I at each sample z; we
obtain the following approximation to the information regularization penalty:

oI’ 1§ L (07))
a— " exp| —w———5 | .
s 41+ 5007

1+ 261> *" 5=

This regularizer can be also optimized by gradient ascent or Newton’s method.
10.2.2.1 Logistic Regression Experiments

We demonstrate the logistic information regularization algorithm as derived in the
previous section on synthetic classification tasks. The data are generated from two
bivariate Gaussian densities of equal covariance, a model in which the linear decision
boundary can be Bayes optimal. However, the small number of labeled samples
is not enough to accurately estimate the model, and we show that information
regularization with unlabeled data can significantly improve error rates.

We compare a few criteria: logistic regression trained only on labeled data
and regularized with the standard ||0]|*; logistic regression regularized with the
information regularizer derived from the empirical estimate to p(z) ; and logistic
regression with the information regularizer derived from a Gaussian kernel estimate
of p(z).

We have optimized the regularized likelihood L(6) both with gradient ascent
0 — 0+ aVyL(0), and with Newton’s method (iterative reweighted least squares)
0 — 0 — aVi,L(0)"'VeL(#) with similar results. Newton’s method converges
with fewer iterations, but computing the Hessian becomes prohibitive if data are
high-dimensional, and convergence depends on stronger assumptions that those for
gradient ascent. Gradient ascent is safer but slower.

We ran 100 experiments with data drawn from the same model and averaged the
error rates to obtain statistically significant results. In figure 10.4 (Corduneanu and
Jaakkola, 2003) we have obtained the error rates on 5 labeled and 100 unlabeled
samples. On each data set we initialized the iteration randomly multiple times.
We set the kernel width 7 of the Gaussian kernel approximation to the regularizer
by standard cross-validation for density estimation. Nevertheless, on such a large
number of unlabeled samples the information regularizers derived from kernel and
empirical estimates perform indistinguishably. They both outperform the standard
supervised regularization significantly.

10.3 Information Regularization and Relational Data

In a large number of classification domains we do not have a natural metric relevant
to the classification task (correlating Q(y|x) and Q(y|x’) for  # z’). In the absence
of a metric, biases about labelings are often naturally expressed in relational form.
For example, consider the task of categorization of webpages in the presence of



10.8 Information Regularization and Relational Data 188

relational
classification

0.06 T T r
information regularization (empirical)
| — - information regularization (kernel)
0.055 \ —— standard regularization
005" |
e
© 0.045 J
S
5 0.04 5 1
: o
L . L~ e i
0.035 - __./~/-.J\\/
‘s Ty
0.03 \§ / 1
PN /
N = = =
0.025 : - : -
0 0.5 1 1.5 2 2.5

regularization strength (L)

Figure 10.4 Average error rates of logistic regression with and without information
regularization on 100 random selections of 5 labeled and 100 unlabeled samples from
bivariate Gaussian classes.

information about their link structure. It is natural to believe that pages that are
linked in the same manner (common parents and common children) are biased
to have similar topics even before we see any information about their content.
Similarly, all other things being equal, pages that share common words are likely
to have similar topics. In classifying gene function, genes whose protein products
interact are more likely to participate in the same process with similar function;
or in retrieving science publications, co-cited articles, or articles published in the
same journal, are likely to have similar relevance assessments.

Relational classification is not new — it has been studied extensively from a
Bayesian network perspective, as in (Taskar et al., 2002). Nevertheless, information
regularization can exploit the relational structure with minimal assumptions about
the distribution of data, even in a nonparametric, purely transductive context.

Let us begin by representing the relational constraints as a collection of regions
(sets) R, derived from observed examples (x1,xa,...,2,), where we expect the
labels to be similar within each region. The regions here differ from the continuous
case in that they are discrete subsets of indices {1,2,...,n} in the training set. It
is useful to depict the region cover as a bipartite graph with points on one side and
regions on the other, as in figure 10.5. Note that regions can also be derived from a
metric if such a metric exists. For example, we could define regions centered at each
observed data point of a certain radius. For this reason every algorithm discussed
in this section is also applicable to finite sample metric settings.

We consider a generative process over the finite sample (x1,22,...,2,) by
selecting a region R from R with probability v(R), and then an observed point z;
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L1

Figure 10.5 Covering of the observed samples with a set of relational regions represented
as a bipartite graph. The lower nodes are the observed data points, and the upper nodes
are the regions.

from R according to the membership 4 probability P(i|R). The probabilities ~(R)
and P(z|R) are task specific and must be selected such that ) . 5 v(R)P(i|R) =
P(z;), the probability of sampling z; from (z1,...,z,). If the true marginal is
known, then we can replace P(x;) with its true value; otherwise, a reasonable
empirical estimate is P(z;) = 1/n for all ¢ = 1...n. If there is no reason to prefer
one region over another, v(R) could be uniform on R; the constraint P(z;) = 1/n
cannot be typically simultaneously enforced, however.

In this context the goal of classification is purely transductive: given the labels
of the labeled training set, the classifier assigns labels to the unlabeled training
set in a manner consistent with the relational biases R. Nothing is inferred about
unobserved z € X.

10.3.1 Nonparametric Classification

Without constraining the family of label distributions Q(y|z), the objective that
must be optimized according to the information regularization principle is

l
1
max - 0 ilxi) — AJ(Q; R),
P ; g Q(yil (@ R)

4. In the finite sample case we use the index of the example interchangeably with the
example itself.
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local propagation
algorithm

where the information regularizer is given by

JQ:W) = 3 2(ntri0) = 39 S PRIl s G,

ReR ReR JjERyYEY

where Q(y|R) = > ,cg P(jIR)Q(yl|z;) is the overall probability of y within the
region.

As opposed to the continuous version of information regularization, the above
objective depends on a finite set of parameters {Q(y|x;)}i=1..n; thus optimization
is efficient. Moreover, in the nonparametric setting the objective is convex due to the
convexity of mutual information (Cover and Thomas, 1991). The following lemma
from (Corduneanu and Jaakkola, 2004) formalizes the result:

Lemma 10.3 The relational regularization objective for A > 0 is a strictly convex
function of the conditionals {Q(y|x;)} provided that (1) each point i € {1,...,n}
belongs to at least one region containing at least two points, and (2) the membership
probabilities P(i|R) and v(R) are all non-zero.

10.3.1.1 Distributed Propagation Algorithm

As in (Corduneanu and Jaakkola, 2004) we derive a local propagation algorithm for
minimizing the relational regularization objective that is both easy to implement
and provably convergent. The algorithm can be seen as a variant of the Blahut-
Arimoto algorithm in rate-distortion theory (Blahut, 1972). We begin by rewriting
each mutual information term Ig(x;y) in the criterion

In(ei) = 30 S PUIRIQk) g G U

JERYEY
YT
= mlIl ZZP I|R)Q y|33])10gQ(7|(]))7
yeRye’é B\

where the variational distribution @ r(y) can be chosen independently from Q(y|x;)
but the unique minimum is attained when Qr(y) = Q(y|R) = ;. r P(J|R)Q(y|z;).
We can extend the regularizer over both {Q(y|z;)} and {Qr(y)} by defining

J@Q.QrR) = > (R DD P(IRQ y|x]>logéi—'g))

ReR jERyEY

so that J(Q;R) = mingg,.),rex}y J(Q, Qr; R) recovers the original regularizer.
The local propagation algorithm follows from optimizing each Q(y|z;) based on
fixed {Qr(y)} and subsequently finding each Qgr(y) given fixed {Q(y|z;)}. We
omit the straightforward derivation and provide only the resulting algorithm: for
all points z;, i = (I +1)...n (not labeled), and for all regions R € R we perform
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the following complementary averaging updates

Qulr) « e 32 P(RIj)0sQn(y)) (10.6)
Ti R:jeR

Qrly) < D Pi[RQlw), (10.7)
JER

where Z,,; is a normalization constant, and P(R|j) o< P(j|R)v(R). In other words,
Q(y|z;) is obtained by taking a weighted geometric average of the distributions
associated with the regions, whereas Qr(y) is (as before) a weighted arithmetic
average of the conditionals within each region.

Updating Q(y|x;) for each labeled point z;, i = 1...l involves minimizing

o8 Qi) ~ SH(QC) <A Y @l (X 2(RIPGIR) oz @e(r))
yeY R:jER

where H(Q(-|x;)) is the Shannon entropy of the conditional. While the objective
is strictly convex, the solution cannot be written in closed form and has to be
found iteratively (e.g., via Newton-Raphson or simple bracketing when the labels
are binary). A much simpler update Q(y|x;) = d(y,y;), where y; is the observed
label for z;, may suffice in practice. This update results from taking the limit of
small A\ and approximates the iterative solution.

Thus the transduction information regularization algorithm in the nonparametric
setting consists of the following steps:

1. Associate with each region R € R a label probability distribution @ g(y).

2. Imitialize {Q(y|z:)}i=1..n and {Qr(y)}rex. The initialization values are
irrelevant because the objective is convex and admits a unique minimum.

3. Iterate (10.6) and (10.7) alternatively until convergence. For labeled points
a slightly different update than (10.6) must be used to account for the obser-
vation.

10.3.1.2 Learning Theoretical Properties

As in the metric case, we seek to show that the information regularizer is an
adequate measure of complexity, in the sense that learning a labeling consistent
with a cap on the regularizer requires fewer labeled samples. We consider only
the simpler setting where the labels are hard and binary, Q(y|z;) € {0,1}, and
show that bounding the information regularizer significantly reduces the number
of possible labelings. Assuming that the points in a region have uniform weights
P(j|R), let N(v) be the number of labelings of {1, z2,...,z,} consistent with

J(Q,R) <.

According to (Corduneanu and Jaakkola, 2004) we have the following result:
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Figure 10.6 Clusters correctly separated by information regularization given one label
from each class.

Theorem 10.4 log, N(v) < C(y) + v -n - t(R)/ ming y(R), where C(vy) — 1 as
v — 0, and t(R) is a property of R that does not depend on the cardinality of R.

Therefore when  is small, N(v) is exponentially smaller than 2", and

lim N(v) = 2.

v—0

10.3.1.3 Ezxperiments

To begin with we illustrate the performance of transductive information regular-
ization on two two-dimensional generated binary classification tasks (Corduneanu
and Jaakkola, 2004). In this setting we convert the tasks to relational classification
by deriving regions of observed points contained in spheres centered at each data
point and of a certain radius.

On the classic semi-supervised data set in figure 10.6 the method correctly
propagates the labels to the clusters starting from a single labeled point in each
class. In the example in figure 10.7 we demonstrate that information regularization
can be used as a post-processing to supervised classification and improve error rates
by taking advantage of the topology of the space. All points are a priori labeled
by a linear classifier that is nonoptimal and places a decision boundary through
the negative and positive clusters. Information regularization is able to correct the
mislabeling of the clusters. Both results are quite robust in the choice of the radius
of the regions as long as all regions remain connected with each other.

Next we test the algorithm on a web document classification task, the WebKB
data set of (Blum and Mitchell, 1998). The data consist of 1051 pages collected
from the websites of four universities. This particular subset of WebKB is a binary
classification task into “course” and “non-course” pages. 22% of the documents are
positive (“course”). The data set is interesting because apart from the documents’
contents we have information about the link structure of the documents. The two
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Figure 10.7 Ability of information regularization to correct the output of a prior
classifier (left: before; right: after)

sources of information can illustrate the capability of information regularization of
combining heterogeneous unlabeled representations.

Both “text” and “link” features used here are a bag-of-words representation of
documents. To obtain “link” features we collect text that appears under all links
that link to that page from other pages, and produce its bag-of-words representa-
tion. We employ no stemming, or stopword processing, but restrict the vocabulary
to 2000 text words and 500 link words. The experimental setup consists of 100
random selections of three positive-labeled, nine negative-labeled, and the rest un-
labeled. The test set includes all unlabeled documents. We report a naive Bayes
baseline based on the model that features of different words are independent given
the document class. The naive Bayes algorithm can be run on text features, link
features, or combine the two feature sets by assuming independence. We also quote
the performance of the semi-supervised method obtained by combining naive Bayes
with the expectation-maximization (EM) algorithm as in chapter 3.

We measure the performance of the algorithms by the F-score equal to 2pr/(p+r),
where p and r are the precision and recall. A high F-score indicates that the pre-
cision and recall are high and also close to each other. To compare algorithms
independently of the probability threshold that decides between positive and neg-
ative samples, the results reported are the best F-scores for all possible settings of
the threshold.

The key issue in applying information regularization is the selection of sound
relational biases (i.e., R). For document classification we obtained the best results
by grouping all documents that share a certain word into the same region; thus each
region is in fact a word, and there are as many regions as the size of the vocabulary.
Regions are weighted equally, as well as the words belonging to the same region.
The choice of A is also task dependent. Here cross-validation selected an optimal
value A\ = 90. When running information regularization with both text and link
features we combined the coverings with a weight of 0.5.

All results are reported in table 10.1. We observe that information regularization
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Table 10.1 Webpage classification comparison between naive Bayes and information
regularization and semi-supervised naive Bayes + EM on text, link, and joint features

naive Bayes inforeg naive Bayes + EM

text 82.85 85.10 93.69
link 65.64 82.85 67.18
both 83.33 86.15 91.01

performs better than naive Bayes on all types of features, that combining text and
link features improves performance of the regularization method, and that on link
features the method performs better than the semi-supervised naive Bayes + EM.

10.3.2 Parametric Classification

We briefly discuss extensions to the transductive information regularization algo-
rithm with relational biases when the conditional takes a parametric form (unpub-
lished work). The extended framework subsumes standard estimation principles
such as supervised maximum likelihood, EM from incomplete data, as well as infor-
mation regularization presented above. One of the key modifications is to associate
with each region R a parametric model Q g(z, y|0r) instead of the standard average
label Qr(y) as introduced in the above transductive algorithm. With this change
the meaning of the regions shifts to represent groups of data points that are mod-
eled in a similar way (same parametric family), where the parametric family may
change from region to region. This revision increases the expressive power of infor-
mation regularization significantly while remaining tractable. Preliminary results
are encouraging.

10.4 Discussion

We have presented the broader information regularization framework, a principle
for assigning labels to unlabeled data in a semi-supervised setting. The principle
seeks to minimize the information induced between examples and labels relative to
a topology over the examples. In other words, we minimize spurious information
content not forced by the observed labels.

The information regularization principle manifests itself in different forms de-
pending on assumptions about the space of examples — metric or relational. We
demonstrated the resulting algorithms both under the idealized setting where the
marginal is known, as well as when only a finite unlabeled sample is available.
Transductive nonparametric classification results in an efficient algorithm that is
provably convergent to a unique optimum.

We can also constrain the conditional probabilities to take a particular para-
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metric form. This extension can be generalized considerably, leading to a unifying
framework.
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Various graph-based algorithms for semi-supervised learning have been proposed
in the recent literature. They rely on the idea of building a graph whose nodes
are data points (labeled and unlabeled) and edges represent similarities between
points. Known labels are used to propagate information through the graph in order
to label all nodes. In this chapter, we show how these different algorithms can be
cast into a common framework where one minimizes a quadratic cost criterion whose
closed-form solution is found by solving a linear system of size n (total number of
data points). The cost criterion naturally leads to an extension of such algorithms
to the inductive setting, where one obtains test samples one at a time: the derived
induction formula can be evaluated in O(n) time, which is much more efficient than
solving again exactly the linear system (which in general costs O(kn?) time for a
sparse graph where each data point has k neighbors). We also use this inductive
formula to show that when the similarity between points satisfies a locality property,
then the algorithms are plagued by the curse of dimensionality, with respect to the
dimensionality of an underlying manifold.

11.1 Introduction

weight matrix

Many semi-supervised learning algorithms rely on the geometry of the data induced
by both labeled and unlabeled examples to improve on supervised methods that use
only the labeled data. This geometry can be naturally represented by an empirical
graph g = (V, E) where nodes V' = {1,...,n} represent the training data and edges
E represent similarities between them (cf. section 1.3.3). These similarities are given
by a weight matrix W: W,; is non-zero iff x; and z; are “neighbors”, i.e., the edge
(i,7) is in E (weighted by W,;). The weight matrix W can be, for instance, the
k-nearest neighbor matrix: W;; = 1 iff z; is among the k-nearest neighbors of z;
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or vice versa (and is 0 otherwise). Another typical weight matrix is given by the
Gaussian kernel of width o:

w12

Wij =€ 202 . (111)

In general, we assume W, is given by a symmetric positive function Wx (possibly
dependent on the data set X = (x1,...,2,)) by Wy = Wx(z;,z;) > 0. This
functional view will be useful in the inductive setting (section 11.4).

This chapter is organized as follows. In section 11.2 we present algorithms based
on the idea of using the graph structure to spread labels from labeled examples to
the whole data set (Szummer and Jaakkola, 2002b; Zhu and Ghahramani, 2002;
Zhou et al., 2004; Zhu et al., 2003b). An alternative approach originating from
smoothness considerations yields algorithms based on graph regularization, which
naturally leads to a regularization term based on the graph Laplacian (Belkin and
Niyogi, 2003b; Joachims, 2003; Zhou et al., 2004; Zhu et al., 2003b; Belkin et al.,
2004b; Delalleau et al., 2005). This approach, detailed in section 11.3, is then shown
to be tightly linked to the previous label propagation algorithms. In sections 11.4
and 11.5 we present two extensions of these algorithms: first, a simple way to turn
a number of them, originally designed for the transductive setting, into induction
algorithms, then a method to better balance classes using prior information about
the classes’ distribution. Section 11.6 finally explores theoretical limitations of
these methods which, being based mostly on the local geometry of the data in
small neighborhoods, are subject to the curse of dimensionality when the intrinsic
dimension of the underlying distribution (the dimensionality of the manifold near
which it concentrates) increases, when this manifold is far from being flat.

11.2 Label Propagation on a Similarity Graph

label propagation

11.2.1 Iterative Algorithms

Given the graph g, a simple idea for semi-supervised learning is to propagate labels
on the graph. Starting with nodes 1,2,...,1 labeled! with their known label (1 or
—1) and nodes [ + 1,...,n labeled with 0, each node starts to propagate its label
to its neighbors, and the process is repeated until convergence.

An algorithm of this kind has been proposed by Zhu and Ghahramani (2002),
and is described in algorithm 11.1. Estimated labels on both labeled and unlabeled
data are denoted by Y = (Yl, Y/u), where ¥; may be allowed to differ from the given

1. If there are M > 2 classes, one can label each node i with an M-dimensional vector
(one-hot for labeled samples, i.e., with 0 everywhere except a 1 at index y; = class
of x;), and use the same algorithms in a one-versus-rest fashion. We consider here the
classification case, but extension to regression is straightforward since labels are treated
as real values.
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Algorithm 11.1 Label propagation (Zhu and Ghahramani, 2002)

Compute affinity matrix W from (11.1)
Compute the diagonal degree matrix D by D;; < > j Wi
Initialize Y (© «— (y,...,1,0,0,...,0)
Iterate

LY+ DWWy ®)

- (t+1)

2.V <Y

until convergence to Y (°°)

Label point z; by the sign of gjioo)

labels Y; = (y1,...,¥). In this particular algorithm, Y} is constrained to be equal
to Y;. We propose in algorithm 11.2 below a slightly different label propagation
scheme (originally inspired from the Jacobi iterative method for linear systems),
similar to the previous algorithm except that

® we advocate forcing W;; = 0, which often works better;

" we allow Y, Y] (which may be useful, e.g., when classes overlap); and

= we use an additional regularization term e for better numerical stability.

Algorithm 11.2 Label propagation (inspired from Jacobi iteration algorithm)

Compute an affinity matrix W such that W;; = 0

Compute the diagonal degree matrix D by Dy; « >, Wi;
Choose a parameter o € (0,1) and a small e > 0

= 722 € (0,400)

Compute the diagonal matrix A by Ay « Ipj(i) + pDy; 4 pe
Initialize Y (© «— (yy,...,1,0,0,...,0)

Tterate Y1) — A=1(u WY ®) 4 Y () until convergence to ¥ (>°)
Label point z; by the sign of ngo)

The iteration step of algorithm 11.2 can be rewritten for a labeled example (i < )

g\ L,
g(t+1) - > Wiy, + uYi

{ (11.2)
Zj Wi; + % +e€
and for an unlabeled example (I +1 < i < n)
W,
g 25 Wi, - (11.3)

' 2 Wij+e

These two equations can be seen as a weighted average of the neighbors’ current
labels, where for labeled examples we also add the initial label (whose weight is
inversely proportional to the parameter p). The e parameter is a regularization
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term to prevent numerical problems when the denominator becomes too small. The
convergence of this algorithm follows from the convergence of the Jacobi iteration
method for a specific linear system, and will be discussed in section 11.3.3.

Another similar label propagation algorithm was given by Zhou et al. (2004):
at each step a node i receives a contribution from its neighbors j (weighted by
the normalized weight of the edge (4,7)), and an additional small contribution
given by its initial value. This process is detailed in algorithm 11.3 below (the
name “label spreading” was inspired from the terminology used by Zhou et al.
(2004)). Compared to algorithm 11.2, it corresponds to the minimization of a
slightly different cost criterion, maybe not as intuitive: this will be studied later
in sections 11.3.2 and 11.3.3.

Algorithm 11.3 Label spreading (Zhou et al., 2004)

Compute the affinity matrix W from (11.1) for i # j (and W;; < 0)
Compute the diagonal degree matrix D by Dy; « > y Wij

Compute the normalized graph Laplacian £ «— D~/?WD~1/2

Initialize Y (© «— (y1,...,1,0,0,...,0)
Choose a parameter o € [0, 1)
Tterate YD — aLY® 4 (1 — )YV (© until convergence to Y (%)

5 (00)

Label point x; by the sign of §;

The proof of convergence of algorithm 11.3 is simple (Zhou et al., 2004). The
iteration equation being Y *t1) « aLY® + (1 — a)Y(®, we have

t
VD = (al) VO + (1 —a)) (aL) VO,
i=0
The matrix £ being similar to P = D~'W = D~Y/2LD'2 it has the same
eigenvalues. Since P is a stochastic matrix by construction, its eigenvalues are in
[—1,1], and consequently the eigenvalues of al are in (—1,1) (remember o < 1).
It follows that when t — oo, (aL)? — 0 and

t

> (@) - (I-akL)™!

=0

so that
YO Sy =1 —a)I—al) YO, (11.4)

The convergence rate of these three algorithms depends on specific properties of
the graph such as the eigenvalues of its Laplacian. In general, we can expect it to
be at worst on the order of O(kn?), where k is the number of neighbors of a point
in the graph. In the case of a dense weight matrix, the computational time is thus
cubic in n.
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transition
probabilities

11.2.2 Markov Random Walks

A different algorithm based on label propagation on the similarity graph was
proposed earlier by Szummer and Jaakkola (2002b). They consider Markov random
walks on the graph with transition probabilities from i to j,

i = —, 11.5
p] Zk Wik: ( )

in order to estimate probabilities of class labels. Here, W;; is given by a Gaussian
kernel for neighbors and 0 for non-neighbors, and W,; = 1 (but one could also use
W,; = 0). Each data point z; is associated with a probability P(y = 1|¢) of being
of class 1. Given a point z, we can compute the probability P (y,ar = 1|k) that
we started from a point of class ysqrt = 1 given that we arrived to xj, after ¢ steps
of random walk by

PO (ystare = 11k) = > P(y = 1]i) Py (il k),

i=1

where Py (ilk) is the probability that we started from z; given that we arrived at
k after ¢ steps of random walk (this probability can be computed from the p;;). i
is then classified to 1 if P (ygtart = 1/k) > 0.5, and to —1 otherwise. The authors
propose two methods to estimate the class probabilities P(y = 1]¢). One is based on
an iterative expectation-maximization (EM) algorithm, the other on maximizing
a margin-based criterion, which leads to a closed-form solution (Szummer and
Jaakkola, 2002b).

It turns out that this algorithm’s performance depends crucially on the hyper-
parameter ¢ (the length of the random walk). This parameter has to be chosen
by cross-validation (if enough data are available) or heuristically (it corresponds
intuitively to the amount of propagation we allow in the graph, i.e., to the scale of
the clusters we are interested in). An alternative way of using random walks on the
graph is to assign to point z; a label depending on the probability of arriving at
a positively labeled example when performing a random walk starting from x; and
until a labeled example is found (Zhu and Ghahramani, 2002; Zhu et al., 2003b).
The length of the random walk is not constrained anymore to a fixed value ¢. In
the following, we will show that this probability, denoted by P(yena = 1[i), is equal
(up to a shift and scaling) to the label obtained with algorithm 11.1 (this is similar
to the proof by Zhu and Ghahramani (2002)).

When z; is a labeled example, P(yeng = 1|i) = dy,1, and when it is unlabeled we
have the relation

P(yend = 1|Z) = Zp(yend = 1|j>pij7 (11'6)
J=1

with the p;; computed as in (11.5). Let us consider the matrix P = D™'W,
i.e., such that P;; = p;;. We will denote 2; = P(Yena = 1|i) and Z = (Z),Z,,)
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the corresponding vector split into its labeled and unlabeled parts. Similarly, the
matrices D and W can be split into four parts:

D
D - u 0
0 Dy
W Wi
W = 124 l )
Wul Wuu

Equation (11.6) can then be written

I
N
~

uu )

Z (DpdWu | Dyt W) <
Di1 (WulZl + WuuZu)

which leads to the linear system
LuwZu = W2, (11.7)

where L = D — W is the un-normalized graph Laplacian. Since 7, is known (2, =1
if y; = 1, and 0O otherwise), this linear system can be solved in order to find the
probabilities Z,, on unlabeled examples. Note that if (Z,, Z;) is a solution of (11.7),
then (V,,Y;) is also a solution, with

Y, = 2Z,—-(1,1,...,1)"
Y, = 22, —-(1,1,...,1) =Y.

This allows us to rewrite the linear system (11.7) in terms of the vector of original
labels Y] as follows:

LYy = WuYi (11.8)

with the sign of each element y; of Y, giving the estimated label of x; (which is
equivalent to comparing 2; to a 0.5 threshold).

The solution of this random walk algorithm is thus given in closed form by a linear
system, which turns out to be equivalent to iterative algorithm 11.1 (or equivalently,
algorithm 11.2 when u — 0 and € = 0), as we will see in section 11.3.4.

11.3 Quadratic Cost Criterion

In this section, we investigate semi-supervised learning by minimization of a cost
function derived from the graph g. Such methods will be shown to be equivalent to
label propagation algorithms presented in the previous section.
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11.3.1 Regularization on Graphs

The problem of semi-supervised learning on the graph g consists in finding a labeling
of the graph that is consistent with both the initial (incomplete) labeling and the
geometry of the data induced by the graph structure (edges and weights W). Given
a labeling ¥ = (Yl, Y/u), consistency with the initial labeling can be measured, e.g.,
by

l
> @ =) = Vi =il (11.9)
i=1
On the other hand, consistency with the geometry of the data, which follows from
the smoothness (or manifold) assumption discussed in section 1.2, motivates a
penalty term of the form

1 n . . 1 n . n n .
5 > Wi -9 = B 2) Y Wi =2 Wi
i,j=1 i=1 =1 i,j=1
= YT (D-W)Y
= Y'LY (11.10)

with L = D —W the un-normalized graph Laplacian. This means we penalize rapid
changes in Y between points that are close (as given by the similarity matrix W).

Various algorithms have been proposed based on such considerations. Zhu et al.
(2003b) force the labels on the labeled data (¥; = Y;), then minimize (11.10) over
Y,. However, if there is noise in the available labels, it may be beneficial to allow
the algorithm to relabel the labeled data (this could also help generalization in a
noise-free setting where, for instance, a positive sample had been drawn from a
region of space mainly filled with negative samples). This observation leads to a
more general cost criterion involving a tradeoff between (11.9) and (11.10) (Belkin
et al., 2004b; Delalleau et al., 2005). A small regularization term can also be added
in order to prevent degenerate situations, for instance, when the graph g has a
connected component with no labeled sample. We thus obtain the following general

labeling cost?:
CY) = |IYs = Yill* + nY TLY + pe|| V||, (11.11)

Joachims (2003) obtained the same kind of cost criterion from the perspective of
spectral clustering. The unsupervised minimization of YTLY (under the constraints
Y71 =0and ||Y]]2 = n) is a relaxation of the NP-hard problem of minimizing the
normalized cut of the graph g, i.e. splitting g into two subsets g™ = (V*, ET) and

2. Belkin et al. (2004b) first center the vector Y; and also constrain Y to be centered:
these restrictions are needed to obtain theoretical bounds on the generalization error, and
will not be discussed in this chapter.
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g~ = (V—,E7) such as to minimize

ZithjeV* Wij
111 B

where the normalization by |V T||[V ™| favors balanced splits. Based on this ap-
proach, Joachims (2003) introduced an additional cost which corresponds to our
part ||¥; — ;|2 of the cost (11.11), in order to turn this unsupervised minimization
into a semi-supervised transductive algorithm (called spectral graph transducer).
Note, however, that although very similar, the solution obtained differs from the
straighforward minimization of (11.11) since

® the labels are not necessarily +1 and —1, but depend on the ratio of the number
of positive examples over the number of negative examples (this follows from the
normalized cut optimization);

® the constraint ||Y||2 = n used in the unsupervised setting remains, thus leading
to an eigenvalue problem instead of the direct quadratic minimization that will be
studied in the next section;

® the eigenspectrum of the graph Laplacian is normalized by replacing the ordered
Laplacian eigenvalues by a monotonically increasing function, in order to focus
on the ranking among the smallest cuts and abstract, for example, from different
magnitudes of edge weights.

Belkin and Niyogi (2003b) also proposed a semi-supervised algorithm based
on the same idea of graph regularization, but using a regularization criterion
different from the quadratic penalty term (11.10). It consists in taking advantage
of properties of the graph Laplacian L, which can be seen as an operator on
functions defined on nodes of the graph g. The graph Laplacian is closely related
to the Laplacian on the manifold, whose eigenfunctions provide a basis for the
Hilbert space of L2 functions on the manifold (Rosenberg, 1997). Eigenvalues
of the eigenfunctions provide a measure of their smoothness on the manifold
(low eigenvalues correspond to smoother functions, with the eigenvalue 0 being
associated with the constant function). Projecting any function in £2 on the
first p eigenfunctions (sorted by order of increasing eigenvalue) is thus a way of
smoothing it on the manifold. The same principle can be applied to our graph
setting, thus leading to algorithm 11.4 (Belkin and Niyogi, 2003b) below. It consists
in computing the first p eigenvectors of the graph Laplacian (each eigenvector
can be seen as the corresponding eigenfunction applied on training points), then
finding the linear combination of these eigenvectors that best predicts the labels
(in the mean-squared sense). The idea is to obtain a smooth function (in the sense
that it is a linear combination of the p smoothest eigenfunctions of the Laplacian
operator on the manifold) that fits the labeled data. This algorithm does not
explicitely correspond to the minimization of a nonparametric quadratic criterion
such as (11.11) and thus is not covered by the connection shown in section 11.3.3
with label propagation algorithms, but one must keep in mind that it is based
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Algorithm 11.4 Laplacian regularization (Belkin and Niyogi, 2003b)

Compute the affinity matrix W (with W;; = 0)
Compute the diagonal degree matrix D by D;; < > j Wi

Compute the un-normalized graph Laplacian L =D — W

Compute the p eigenvectors ey, . . ., e, corresponding to the p smallest eigenvalues
of L )
Minimize over az, ..., a, the quadratic criterion 22:1 (yl - Z?Zl ajeM)

Label point z; (1 <i < n) by the sign of Z?Zl aje;i

on similar graph regularization considerations and offers competitive classification
performance.

11.3.2 Optimization Framework

In order to minimize the quadratic criterion (11.11), we can compute its derivative
with respect to Y. We will denote by S the diagonal matrix (n x n) given by
Sii = I (i), so that the first part of the cost can be rewritten |SY — SY||2. The
derivative of the criterion is then

19C(Y)

= = S(Y —Y)+ uLY + puey
5 oy ( )+ 1

= (S+puL+ped)Y — SY.

The second derivative is
19%2C(Y)
20Y09YT
which is a positive definite matrix when € > 0 (L is positive semi-definite as shown
by (11.10)). This ensures the cost is minimized when the derivative is set to 0, i.e.,

=S+ puL + pel,

Y = (S + puL + pel) ' SY. (11.12)

This shows how the new labels can be obtained by a simple matrix inversion. It
is interesting to note that this matrix does not depend on the original labels, but
only on the graph Laplacian L; the way labels are “propagated” to the rest of the
graph is entirely determined by the graph structure.

An alternative (and very similar) criterion was proposed by Zhou et al. (2004),
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and can be written

2
C'(Y) |V —sy|2+ £ W( i _ Ui ) (11.13)
22; "\Vb. D,

Vi = Yil]* + [[Val > + 0¥ T @ = L)Y
Vi = Yil[* + |[Vul|* + uY TD™2 (D - W) D2y
Vi = Vi) + [Yul® + p(D~2Y) TL(D?Y).

This criterion C’ has two main differences with C' (11.11):

" the term ||V — SY||2 = ||¥; — Vi||2 + ||V%|? not only tries to fit the given labels
but also to pull to 0 labels of unlabeled samples (this is a similar but stronger
regularization compared to the term pe||Y||? in the cost C), and

® Jabels are normalized by the square root of the degree matrix elements D;; when
computing their similarity. This normalization may not be intuitive, but is necessary
for the equivalence with the label propagation algorithm 11.3, as seen below.

11.3.3 Links with Label Propagation

The optimization algorithms presented above turn out to be equivalent to the
label propagation methods from section 11.2. Let us first study the optimization
of the cost C(Y) from (11.11). The optimum Y is given by (11.12), but another
way to obtain this solution, besides matrix inversion, is to solve the linear system
using one of the many standard methods available. We focus here on the simple
Jacobi iteration method (Saad, 1996), which consists in solving for each component
iteratively. Given the system

Mz = b (11.14)

the approximate solution at step ¢ + 1 is

(t+1) _ L N0
R v b—;MUaﬁj : (11.15)
JFe

Applying this formula with z := Y, b:= SY and M := S + puL + pel, we obtain

S(t+1) _ 1 ’ (1)
g = Iy +p Yy Wyg |,
Ty @)+ >y Wiy + e | 1 ; 3Y;

i.e. exactly the update equations (11.2) and (11.3) used in algorithm 11.2. Con-
vergence of this iterative algorithm is guaranteed by the following theorem (Saad,
1996): if the matrix M is strictly diagonally dominant, the Jacobi iteration (11.15)
converges to the solution of the linear system (11.14). A matrix M is strictly di-
agonally dominant iff [M;[ > ., [M;;[, which is clearly the case for the matrix
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S+ puL+ pel (remember L = D—W with D;; = Z#j W,;, and all W;; > 0). Note
that this condition also guarantees the convergence of the Gauss-Seidel iteration,
which is the same as the Jacobi iteration except that updated coordinates xEtH)
are used in the computation of zgtﬂ) for j > ¢. This means we can apply Egs. 11.2
and 11.3 with Y+ and Y(®) sharing the same storage.

To show the equivalence between algorithm 11.3 and the minimization of C' given

in (11.13), we compute its derivative with respect to Y:

19C'(Y)
2 9y

- Y—SY+M(?—L?)
and is zero iff
Y = ((1+pI—pL)' sy,
which is the same equation as (11.4) with u = a/(1 — «), up to a positive factor
(which has no effect on the classification since we use only the sign).

11.3.4 Limit Case and Analogies

It is interesting to study the limit case when p — 0. In this section we will set € = 0
to simplify notations, but one should keep in mind that it is usually better to use a
small positive value for regularization. When p — 0, the cost (11.11) is dominated
by ||V — Y;||2. Intuitively, this corresponds to

1. forcing }A/l =Y, then
2. minimizing YTLY.

Writing Y = (Yl,f/u) (i.e. Y, = Y;) and

Lu L
I = i l
Lul Luu

the minimization of YT LY with respect to Y, leads to
LuYi+ LYy =0=Y, =L 'L,V. (11.16)

If we consider now Eq. 11.12 where Y, is not constrained anymore, when € = 0 and
© — 0, using the continuity of the inverse matrix application at I, we obtain that

Y, — Y and
YA'u = _L;JLulYAvl;

which, as expected, gives us the same solution as (11.16).

Analogy with Markov Random Walks In section 11.2.2, we presented an
algorithm of label propagation based on Markov random walks on the graph, leading



20

Label Propagation and Quadratic Criterion

to the linear system (11.8). It is immediately seen that this system is exactly the
same as the one obtained in (11.16). The equivalence of the solutions discussed in
the previous section between the linear system and iterative algorithms thus shows
that the random walk algorithm described in section 11.2.2 is equivalent to the
iterative algorithm 11.2 when p — 0, i.e., when we keep the original labels instead
of iteratively updating them by (11.2).

Analogy with Electric Networks Zhu et al. (2003b) also link this solution to
heat kernels and give an electric network interpretation taken from Doyle and Snell
(1984), which we now present. This analogy is interesting as it gives a physical
interpretation to the optimization and label propagation framework studied in this
chapter. Let us consider an electric network built from the graph g by adding
resistors with conductance W;; between nodes i and j (the conductance is the
inverse of the resistance). The positive labeled nodes are connected to a positive
voltage source (+1V'), the negative ones to a negative source (—1V'), and we want to
compute the voltage on the unlabeled nodes (i.e., their label). Denoting the intensity
between 7 and j by I;;, and the voltage by V;; = 9; — ¥, we use Ohm’s law,

Lij = Wi;Vij, (11.17)
and Kirchoff’s law on an unlabeled node 7 > I:

> I =0 (11.18)
J

Kirchoff’s law states that the sum of currents flowing out from ¢ (such that I;; > 0)
is equal to the sum of currents flowing into ¢ (I;; < 0). Here, it is only useful to
apply it to unlabeled nodes as the labeled ones are connected to a voltage source,
and thus receive some unknown (and uninteresting) current. Using (11.17), we can
rewrite (11.18),

0 = > Wi(g— )
J

ZWijﬁj - ﬂzzwm
J J

= (WY —DY);
= —(LY);,

and since this is true for all ¢ > [, it is equivalent in matrix notations to
LY, + Luuf/u = 07

which is exactly (11.16). Thus the solution of the limit case (when labeled examples
are forced to keep their given label) is given by the voltage in an electric network
where labeled nodes are connected to voltage sources and resistors correspond to
weights in the graph g.
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11.4 From Transduction to Induction

inductive setting

Parzen windows

The previous algorithms all follow the transduction setting presented in section
1.2.4. However, it could happen that one needs an inductive algorithm, for instance,
in a situation where new test examples are presented one at a time and solving the
linear system turns out to be too expensive. In such a case, the cost criterion
(11.11) naturally leads to an induction formula that can be computed in O(n)
time. Assuming that labels g1, ..., ¢, have already been computed by one of the
algorithms above, and we want the label § of a new point x: we can minimize
C(91,- -, 9n,§) only with respect to this new label g, i.e. minimize

constant + g Z W (2, 2)(9 — 9;)* +€® |
J

where W is the (possibly data-dependent) function that generated the matrix W
on X = (z1,...,2,). Setting to zero the derivative with respect to g directly yields

> Wx(z,25)7;
> Wx(w,25) + €

= (11.19)
a simple inductive formula whose computational requirements scale linearly with
the number of samples already seen.

It is interesting to note that, if W is the k-nearest neighbor function, (11.19)
reduces to k-nearest neighbor classification. Similarly, if Wx is the Gaussian kernel
(11.1), it is equivalent to the formula for Parzen windows or Nadaraya-Watson
nonparametric regression (Nadaraya, 1964; Watson, 1964). However, we use in this
formula the learned predictions on the labeled and unlabeled examples as if they
were observed training values, instead of relying only on labeled data.

11.5 Incorporating Class Prior Knowledge

From the beginning of the chapter, we have assumed that the class label is given by
the sign of §. Such a rule works well when classes are well separated and balanced.
However, if this is not the case (which is likely to happen with real-world data
sets), the classification resulting from the label propagation algorithms studied in
this chapter may not reflect the prior class distribution.

A way to solve this problem is to perform class mass normalization (Zhu et al.,
2003b), i.e. to rescale classes so that their respective weights over unlabeled ex-
amples match the prior class distribution (estimated from labeled examples). Until
now, we had been using a scalar label §; € [—1,1], which is handy in the binary
case. In this section, for the sake of clarity, we will use an M-dimensional vector (M
being the number of classes), with each element ¢; , between 0 and 1 giving a score
(or weight) for class k (see also footnote 1 at the beginning of this chapter). For



206

Label Propagation and Quadratic Criterion

instance, in the binary case, a scalar §; € [—1, 1] would be represented by the vector
(3(1+9:), 21— Qi))—r, where the second element would be the score for class —1.

Class mass normalization works as follows. Let us denote by py the prior proba-
bility of class k obtained from the labeled examples, i.e.,

1 l
Pk = 7 Zyi,k~
i=1

The mass of class k as given by our algorithm will be the average of estimated
weights of class k over unlabeled examples, i.e.,

1 n
my = Z Vi o

i=l+1
Class mass normalization consists in scaling each class k by the factor

Pk
W = —,
mp
i.e. to classify z; in the class given by argmax;, wg; 1 (instead of the simpler decision
function argmax; ik, equivalent to sign(¢;) in the scalar binary case studied in
the previous sections). The goal is to make the scaled masses match the prior class

distribution, i.e. after normalization we have that for all k&
WEME

= =Pk
Zj:l wjim;

In general, such a scaling gives a better classification performance when there are
enough labeled data to accurately estimate the class distribution, and when the
unlabeled data come from the same distribution. Note also that if there is an m
such that each class mass is mjy = mpy, i.e., the masses already reflect the prior
class distribution, then the class mass normalization step has no effect, as wy, = m™!

for all k.

11.6 Curse of Dimensionality for Semi-Supervised Learning

A large number of the semi-supervised learning algorithms proposed in recent years
and discussed in this book are essentially nonparametric local learning algorithms,
relying on a neighborhood graph to approximate manifolds near which the data
density is assumed to concentrate. It means that the out-of-sample or transductive
prediction at x depends mostly on the unlabeled examples very near x and on
the labeled examples that are close in the sense of this graph. In this section, we
present theoretical arguments that suggest that such methods are unlikely to scale
well (in terms of generalization performance) when the intrinsic dimension of these
manifolds becomes large (curse of dimensionality), if these manifolds are sufficiently
curved (or the functions to learn vary enough).
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11.6.1 The Smoothness Prior, Manifold Assumption, and Nonparametric
Semi-Supervised Learning

smoothness and As introduced in section 1.2, the smoothness assumption (or its semi-supervised
cluster variant) about the underlying target function y(-) (such that y(x;) = y;) is at
assumptions the core of most of the algorithms studied in this book, along with the cluster

assumption (or its variant, the low-density separation assumption). The former
implies that if x; is near xo, then y; is expected to be near y-, and the latter implies
that the data density is low near the decision surface. The smoothness assumption is
intimately linked to a definition of what it means for x; to be near zs, and that can
be embodied in a similarity function on input space, Wx (-, -), which is at the core
of the graph-based algorithms reviewed in this chapter, transductive support vector
machines (SVMs) (where Wx is seen as a kernel), and semi-supervised Gaussian
processes (where W is seen as the covariance of a prior over functions), both in
part IT of this book, as well as the algorithms based on a first unsupervised step to
learn a better representation (part IV).

The central claim of this section is that in order to obtain good results with algo-
rithms that rely solely on the smoothness assumption and on the cluster assumption
(or the low-density separation assumption), an acceptable decision surface (in the
sense that its error is at an acceptable level) must be “smooth” enough. This can
happen if the data for each class lie near a low-dimensional manifold (i.e., the man-
ifold assumption), and these manifolds are smooth enough, i.e., do not have high
curvature where it matters, i.e., where a wrong characterization of the manifold
would yield to large error rate. This claim is intimately linked to the well-known
curse of dimensionality, so we start the section by reviewing results on generaliza-
tion error for classical nonparametric learning algorithms as dimension increases.
We present theoretical arguments that suggest notions of locality of the learning al-
gorithm that make it sensitive to the dimension of the manifold near which data lie.
These arguments are not trivial extensions of the arguments for classical nonpara-
metric algorithms, because the semi-supervised algorithms such as those studied
in this book involve expansion coefficients (e.g., the ¢; in equation (11.19)) that
are nonlocal, i.e., the coefficient associated with the jth example x; may depend
on inputs x; that are far from z;, in the sense of the similarity function or kernel
Wx (x;,x;). For instance, a labeled point x; far from an unlabeled point z; (i.e.
Wx (x;,x;) is small) may still influence the estimated label of z; if there exists a
path in the neighborhood graph g that connects z; to z; (going through unlabeled
examples).

In the last section (11.6.5), we will try to argue that it is possible to build

nonlocal learning  nonlocal learning algorithms, while not using very specific priors about the task
to be learned. This goes against common folklore that when there are not enough
training examples in a given region, one cannot generalize properly in that region.
This would suggest that difficult learning problems such as those encountered in
artificial intelligence (e.g., vision, language, robotics, etc.) would benefit from the
development of a larger array of such nonlocal learning algorithms.
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In order to discuss the curse of dimensionality for semi-supervised learning, we
introduce a particular notion of locality. It applies to learning algorithms that can
be labeled as kernel machines, i.e., shown to explicitly or implicitly learn a predictor
function of the form

f@)=b+Y aikx(x, i), (11.20)

i=1

where i runs over all the examples (labeled and unlabeled), and kx(-,-) is a
symmetric function (kernel) that is either chosen a priori or using the whole data
set X (and does not need to be positive semi-definite). The learning algorithm is
then allowed to choose the scalars b and «;.

Most of the decision functions learned by the algorithms discussed in this chapter
can be written as in (11.20). In particular, the label propagation algorithm 11.2
leads to the induction formula (11.19) corresponding to

b = 0
o = i
W i
kx(z,2;) = x(@,71) (11.21)

e+, Wx(z,a5)

The Laplacian regularization algorithm (algorithm 11.4) from Belkin and Niyogi
(2003b), which first learns about the shape of the manifold with an embedding based
on the principal eigenfunctions of the Laplacian of the neighborhood, also falls into
this category. As shown by Bengio et al. (2004a), the principal eigenfunctions can
be estimated by the Nystrom formula:

fr(x) = \/(—f > vnikx (@, 24), (11.22)

i=1

where (A, vg) is the kth principal (eigenvalue, eigenvector) pair of the Gram matrix
K obtained by K;; = kx (z;,z;), and where kx (-, -) is a data-dependent equivalent
kernel derived from the Laplacian of the neighborhood graph g. Since the resulting
decision function is a linear combination of these eigenfunctions, we obtain again a
kernel machine (11.20).

In the following, we say that a kernel function kx(-,-) is local if for all z € X,
there exists a neighborhood N(z) C X such that

fz) = b+ Z aikx(x,x;). (11.23)

z; EN(x)

Intuitively, this means that only the near neighbors of x have a significant contribu-
tion to f(x). For instance, if kx is the Gaussian kernel, N(z) is defined as the points
in X that are close to x with respect to o (the width of the kernel). If (11.23) is an
equality, we say that kx is strictly local. An example is when W is the k-nearest
neighbor kernel in algorithm 11.2. kx obtained by (11.21) is then also the k-nearest
neighbor kernel, and we have N(z) = Ni(z) the set of the k nearest neighbors of
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curse of
dimensionality

bias-variance
dilemma

x, so that

f@)= >

Similarly, we say that kx is local-derivative if there exists another kernel kx such
that for all z € X, there exists a neighborhood N(z) C X such that

o ~

8_9];(9:) ~ EZN( )ai(o:—xi)kx(z,zi). (11.24)

Intuitively, this means that the derivative of f at point z is a vector contained

mostly in the span of the vectors x — x; with z; a near neighbor of z. For instance,
with the Gaussian kernel, we have kx (z,z;) = e~ ll#=il*/20% ang

Okx(z,w;)  x—w exp ( |z — a?i||2>

- 202

Ox o2

so that

f@) =b+ S iz — ) (—%exp (_W» .

z; EN(x)

Because here ky is proportional to a Gaussian kernel with width o, the neighbor-
hood N(z) is also defined as the points in X which are close to x with respect
to 0. Again, we say that kx is strictly local-derivative when (11.24) is an equality
(for instance, when kx is a thresholded Gaussian kernel, i.e. kx(x,2;) = 0 when
& — zi]| > 9).

11.6.2 Curse of Dimensionality for Classical Nonparametric Learning

The term curse of dimensionality has been coined by Bellman (1961) in the
context of control problems, but it has been used rightfully to describe the poor
generalization performance of local nonparametric estimators as the dimensionality
increases. We define bias as the square of the expected difference between the
estimator and the true target function, and we refer generically to wariance as
the variance of the estimator, in both cases the expectations being taken with
respect to the training set as a random variable. It is well known that classical
nonparametric estimators must trade bias and variance of the estimator through
a smoothness hyperparameter, e.g., kernel bandwidth ¢ for the Nadarya-Watson
estimator (Gaussian kernel). As o increases, bias increases and the predictor
becomes less local, but variance decreases, hence the bias-variance dilemma (Geman
et al., 1992) is also about the locality of the estimator.

A nice property of classical nonparametric estimators is that one can prove their
convergence to the target function as n — oo, i.e., these are consistent estimators.
One obtains consistency by appropriately varying the hyperparameter that controls
the locality of the estimator as n increases. Basically, the kernel should be allowed
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to become more and more local, so that bias goes to zero, but the “effective number
of examples” involved in the estimator at x,

1
Z?:l kx (Ia zi)2 ’

(equal to k for the k-nearest neighbor estimator, with kx(z,z;) = 1/k for z; a
neighbor of x) should increase as n increases, so that variance is also driven to 0.
For example, one obtains this condition with lim, ... £ = co and lim,, . % =0
for the k-nearest neighbor. Clearly the first condition is sufficient for variance to
go to 0 and the second for the bias to go to 0 (since k/n is proportional to the
volume around z containing the k-nearest neighbors). Similarly, for the Nadarya-
Watson estimator with bandwidth o, consistency is obtained if lim, ..o 0 = 0
and lim, .o no = oo (in addition to regularity conditions on the kernel). See
the book by Hérdle et al. (2004) for a recent and easily accessible exposition
(with web version). The bias is due to smoothing the target function over the
volume covered by the effective neighbors. As the intrinsic dimensionality of the
data increases (the number of dimensions that they actually span locally), bias
increases. Since that volume increases exponentially with dimension, the effect of
the bias quickly becomes very severe. To see this, consider the classical example of
the [0,1]? hypercube in R? with uniformly distributed data in the hypercube. To
hold a fraction p of the data in a subcube of it, that subcube must have sides of
length p'/4. As d — oo, p'/% — 1, i.e., we are averaging over distances that cover
almost the whole span of the data, just to keep variance constant (by keeping the
effective number of neighbors constant).

For a wide class of kernel estimators with kernel bandwidth o, the expected
generalization error (bias plus variance, ignoring the noise) can be written as follows
(Hardle et al., 2004):

Cq
expected error = — + 02047
nod

with 7 and C: not depending on n nor d. Hence an optimal bandwidth is
chosen proportional to n~1/(4+4 and the resulting generalization error converges
in n=%#+4) which becomes very slow for large d. Consider for example the increase
in number of examples required to get the same level of error, in one dimension
versus d dimensions. If ny is the number of examples required to get a level of error
e, to get the same level of error in d dimensions requires on the order of n§4+d)/ 5
examples, i.e. the required number of examples is exponential in d. However, if the
data distribution is concentrated on a lower-dimensional manifold, it is the manifold
dimension that matters. Indeed, for data on a smooth lower-dimensional manifold,
the only dimension that, for instance, a k-nearest neighbor classifier sees is the
dimension of the manifold, since it only uses the Euclidean distances between the
near neighbors, and if they lie on such a manifold then the local Euclidean distances
approach the local geodesic distances on the manifold (Tenenbaum et al., 2000).

The curse of dimensionality on a manifold (acting with respect to the dimensionality
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Figure 11.1 Geometric illustration of the effect of the curse of dimensionality on
manifolds: the effect depends on the dimension on the manifold, as long as the data are
lying strictly on the manifold. In addition to dimensionality, the lack of smoothness (e.g.
curvature) of the manifold also has an important influence on the difficulty of generalizing
outside of the immediate neighborhood of a training example.

of the manifold) is illustrated in figure 11.1.

11.6.3 Manifold Geometry: The Curse of Dimensionality for Local
Nonparametric Manifold Learning

Let us first consider how semi-supervised learning algorithms could learn about
the shape of the manifolds near which the data concentrate, and how either a
high-dimensional manifold or a highly curved manifold could prevent this when the
algorithms are local, in the local-derivative sense discussed above. As a prototypical
example, let us consider the algorithm proposed by Belkin and Niyogi (2003b)
(algorithm 11.4). The embedding coordinates are given by the eigenfunctions fi
from (11.22).

The first derivative of f; with respect to x represents the tangent vector of the
kth embedding coordinate. Indeed, it is the direction of variation of x that gives
rise locally to the maximal increase in the kth coordinate. Hence the set of manifold
tangent vectors {aféy), afgy), A afgf”)}
manifold.

spans the estimated tangent plane of the

By the local-derivative property (strict or not), each of the tangent vectors at x
is constrained to be exactly or approximately in the span of the difference vectors
x — x;, where x; is a neighbor of z. Hence the tangent plane is constrained to be a
subspace of the span of the vectors x — x;, with x; neighbors of x. This is illustrated
in figure 11.2. In addition to the algorithm of Belkin and Niyogi (2003b), a number
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Figure 11.2 Geometric illustration of the effect of the local derivative property shared
by semi-supervised graph-based algorithms and spectral manifold learning algorithms.
The tangent plane at x is implicitly estimated, and is constrained to be in the span of the
vectors (z; — x), with z; near neighbors of . When the number of neighbors is small the
estimation of the manifold shape has high variance, but when it is large, the estimation
would have high bias unless the true manifold is very flat.

of nonparametric manifold learning algorithms can be shown (e.g. see (Bengio
et al., 2005)) to have the local derivative property (or the strictly local derivative
property): locally linear embedding (LLE), Isomap, and spectral clustering with
Gaussian or nearest neighbor kernels.

Hence the local-derivative property gives a strong locality constraint to the
tangent plane, in particular when the set of neighbors is small. If the number of
neighbors is not large in comparison with the manifold dimension, then the locally
estimated shape of the manifold will have high variance, i.e., we will have a poor
estimator of the manifold structure. If the manifold is approximately flat in a large
region, then we could simply increase the number of neighbors. However, if the
manifold has high curvature, then we cannot increase the number of neighbors
without significantly increasing bias in the estimation of the manifold shape. Bias
will restrict us to small regions, and the number of such regions could grow
exponentially with the dimension of the manifold (figure 11.1).

A good estimation of the manifold structure — in particular in the region near
the decision surface — is crucial for all the graph-based semi-supervised learning
algorithms studied in this chapter. It is thanks to a good estimation of the regions
in data space where there is high density that we can “propagate labels” in the right
places and obtain an improvement with respect to ordinary supervised learning on
the labeled examples. The problems due to high curvature and high dimensionality
of the manifold are therefore important to consider when applying these graph-
based semi-supervised learning algorithms.
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11.6.4 Curse of Dimensionality for Local Nonparametric Semi-Supervised
Learning

In this section we focus on algorithms of the type described in part III of the book
(graph-based algorithms), using the notation and the induction formula presented
in this chapter (on label propagation and a quadratic criterion unifying many of
these algorithms).

We consider here that the ultimate objective is to learn a decision surface, i.e.,
we have a classification problem, and therefore the region of interest in terms of
theoretical analysis is mostly the region near the decision surface. For example, if
we do not characterize the manifold structure of the underlying distribution in a
region far from the decision surface, it is not important, as long as we get it right
near the decision surface. Whereas in the previous section we built an argument
based on capturing the shape of the manifold associated with each class, here we
focus directly on the discriminant function and on learning the shape of the decision
surface.

An intuitive view of label propagation suggests that a region of the manifold
around a labeled (e.g. positive) example will be entirely labeled positively, as
the example spreads its influence by propagation on the graph representing the
underlying manifold. Thus, the number of regions with constant label should be on
the same order as (or less than) the number of labeled examples. This is easy to see
in the case of a sparse weight matrix W, i.e. when the affinity function is strictly
local. We define a region with constant label as a connected subset of the graph
g where all nodes z; have the same estimated label (sign of g;), and such that no
other node can be added while keeping these properties. The following proposition
then holds (note that it is also true, but trivial, when W defines a fully connected
graph, i.e. N(z) = X for all ).

Proposition 11.1 After running a label propagation algorithm minimizing a cost
of the form (11.11), the number of regions with constant estimated label is less than
(or equal to) the number of labeled examples.

Proof By contradiction, if this proposition is false, then there exists a region with
constant estimated label that does not contain any labeled example. Without loss
of generality, consider the case of a positive constant label, with x;41,...,zi14 the
g samples in this region. The part of the cost (11.11) depending on their labels is

I+q
~ N 1 N N
ClGit1, - ivq) = 5 Z Wi;(§i — §5)°
i =1
l+q
+ oy > Wi —9)°
=141 \G¢{I+1,...l4q}
l+q

+ e Z g2

i=l+1
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The second term is stricly positive, and because the region we consider is maximal
(by definition) all samples xz; outside of the region such that W;; > 0 verify
9; < 0 (for z; a sample in the region). Since all g; are strictly positive for
i€ {l+1,...,1+ q}, this means this second term can be strictly decreased by
setting all g; to 0 for i € {{+1,...,14¢}. This also sets the first and third terms to
zero (i.e. their minimum), showing that the set of labels §; are not optimal, which
is in contradiction with their definition as the labels that minimize C. ]

This means that if the class distributions are such that there are many distinct
regions with constant labels (either separated by low-density regions or regions with
samples from the other class), we will need at least the same number of labeled
samples as there are such regions (assuming we are using a strictly local kernel
such as the k-nearest neighbor kernel, or a thresholded Gaussian kernel). But this
number could grow exponentially with the dimension of the manifold(s) on which
the data lie, for instance in the case of a labeling function varying highly along each
dimension, even if the label variations are “simple” in a nonlocal sense, e.g. if they
alternate in a regular fashion.

When the affinity matrix W is not sparse (e.g., Gaussian kernel), obtaining
such a result is less obvious. However, for local kernels, there often exists a sparse
approximation of W (for instance, in the case of a Gaussian kernel, one can set to
0 entries below a given threshold or that do not correspond to a k-nearest neighbor
relationship). Thus we conjecture that the same kind of result holds for such dense
weight matrices obtained from a local kernel.

Another indication that highly varying functions are fundamentally hard to learn
with graph-based semi-supervised learning algorithms is given by the following
theorem (Bengio et al., 2006a):

Theorem 11.2 Suppose that the learning problem is such that in order to achieve a
given error level for samples from a distribution P with a Gaussian kernel machine
(11.20), then f must change sign at least 2k times along some straight line (i.e.,
in the case of a classifier, the decision surface must be crossed at least 2k times by
that straight line). Then the kernel machine must have at least k examples (labeled
or unlabeled).

The theorem is proven for the case where kx is the Gaussian kernel, but we
conjecture that the same result applies to other local kernels, such as the normalized
Gaussian or the k-nearest neighbor kernels implicitly used in graph-based semi-
supervised learning algorithms. It is coherent with proposition 11.1 since both tell
us that we need at least k£ examples to represent k “variations” in the underlying
target classifier, whether along a straight line or as the number of regions of differing
class on a manifold.
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11.6.5 Outlook: Nonlocal Semi-Supervised Learning

What conclusions should we draw from the previous results? They should help
to better circumscribe where the current local semi-supervised learning algorithms
are likely to be most effective, and they should also help to suggest directions of
research into nonlocal learning algorithms, either using nonlocal kernels or similarity
functions, or using altogether other principles of generalization.

When applying a local semi-supervised learning algorithm to a new task, one
should consider the plausibility of the hypothesis of a low-dimensional manifold
near which the distribution concentrates. For some problems this could be very
reasonable a priori (e.g., printed digit images varying mostly due to a few geometric
and optical effects). For others, however, one would expect tens or hundreds of
degrees of freedom (e.g., many artificial intelligence problems, such as natural
language processing or recognition of complex composite objects).

Concerning new directions of research suggested by these results, several possible
approaches can already be mentioned:

® Semi-supervised algorithms that are not based on the neighborhood graph, such
as the one presented in chapter 9, in which a discriminant training criterion for
supervised learning is adapted to semi-supervised learning by taking advantage of
the cluster hypothesis, more precisely, the low-density separation hypothesis (see
section 1.2).

® Algorithms based on the neighborhood graph but in which the kernel or similarity
function (a) is nonisotropic or (b) is adapted based on the data (with the spread in
different directions being adapted). In that case the predictor will be neither local
nor local-derivative. More generally, the structure of the similarity function at z
should be inferred based not just on the training data in the close neighborhood of
x. For an example of such nonlocal learning in the unsupervised setting, see (Bengio
and Monperrus, 2005; Bengio et al., 2006b).

® Other data-dependent kernels could be investigated, but one should check whether
the adaptation allows nonlocal learning, i.e., that information at x could be used
to usefully alter the prediction at a point 2’ far from .

= More generally, algorithms that learn a similarity function Sim(z,y) in a nonlocal
way (i.e., taking advantage of examples far from 2 and y) should be good candidates
to consider to defeat the curse of dimensionality.

11.7 Discussion

This chapter shows how different graph-based semi-supervised learning algorithms
can be cast into a common framework of label propagation and quadratic criterion
optimization. They benefit from both points of view: the iterative label propagation
methods can provide simple efficient approximate solutions, while the analysis of
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the quadratic criterion helps to understand what these algorithms really do. The
solution can also be linked to physical phenomena such as voltage in an electric
network built from the graph, which provides other ways to reason about this
problem. In addition, the optimization framework leads to a natural extension of
the inductive setting that is closely related to other classical nonparametric learning
algorithms such as k-nearest neighbor or Parzen windows. Induction will be studied
in more depth in the next chapter, and the induction formula (11.19) will turn out to
be the basis for a subset approximation algorithm presented in chapter 18. Finally,
we have shown that the local semi-supervised learning algorithms are likely to be
limited to learning smooth functions for data living near low-dimensional manifolds.
Our approach of locality properties suggests a way to check whether new semi-
supervised learning algorithms have a chance to scale to higher-dimensional tasks
or learning less smooth functions, and motivates further investigation in nonlocal
learning algorithms.
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In this chapter, we present an algorithmic framework for semi-supervised inference
based on geometric properties of probability distributions. Our approach brings
together Laplacian-based spectral techniques, regularization with kernel methods,
and algorithms for manifold learning. This framework provides a natural semi-
supervised extension for kernel methods and resolves the problem of out-of-sample
inference in graph-based transduction. We discuss an interpretation in terms of a
family of globally defined data-dependent kernels and also address unsupervised
learning (clustering and data representation) within the same framework. Our al-
gorithms effectively exploit both manifold and cluster assumptions to demonstrate
state-of-the-art performance on various classification tasks. This chapter also re-
views other recent work on out-of-sample extension for transductive graph-based
methods.

12.1 Introduction

We start by providing some intuitions for the geometric basis of semi-supervised
learning. These intuitions are demonstrated in pictures (figures 12.1, 12.2 and 12.3).

Consider first the two labeled points (marked “+” and “—”) in the left panel of
figure 12.1. Our intuition may suggest that a simple linear separator such as the
one shown in figure 12.1 is an optimal choice for a classifier. Indeed, considerable
effort in learning theory has been invested into deriving optimality properties for
such a classification boundary.

The right panel, however, shows that the two labeled points are in fact located
on two concentric circles of unlabeled data. Looking at the right panel, it becomes
clear that the circular boundary is more natural given unlabeled data.
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Figure 12.1 Circle.
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Figure 12.2 Curve.

Consider now the left panel in figure 12.2. In the absence of unlabeled data the
black dot (marked “?”) is likely to be classified as blue (marked “—”). The unlabeled
data, however, makes classifying it as red (marked “+”) seem much more reasonable.

A third example is shown in figure 12.3. In the left panel, the unlabeled point
may be classified as blue (—) to agree with its nearest neighbor. However, unlabeled
data shown as gray clusters in the right panel change our belief.

These examples show how the geometry of unlabeled data may radically change
our intuition about classifier boundaries. We seek to translate these intuitions into
a framework for learning from labeled and unlabeled examples.

Recall now the standard setting of learning from examples. Given a pattern space
X, there is a probability distribution P on X x R according to which examples are
generated for function learning. Labeled examples are (x,y) pairs drawn according
to P. Unlabeled examples are simply « € X sampled according to the marginal
distribution P+ of P.

As we have seen, the knowledge of the marginal Px can be exploited for better
function learning (e.g., in classification or regression tasks). On the other hand,
if there is no identifiable relation between Px and the conditional P(y|z), the
knowledge of Px is unlikely to be of use.

Two possible connections between Px and P(y|z) can be stated as the following
important assumptions (also see the tutorial introduction in chapter 1 for related
discussion):
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Figure 12.3 Blobs.

1. Manifold assumption: Suppose that the marginal probability distribution un-
derlying the data is supported on a low-dimensional manifold. Then the family of
conditional distributions P(y|z) is smooth, as a function of x, with respect to the
underlying structure of the manifold.

2. Cluster assumption: The probability distribution P is such that points in the
same “cluster” are likely to have the same label.

We see that the data shown in figures 12.1 and 12.2 satisfy the manifold assump-
tion.

The picture in figure 12.3 is meant to show Gaussian clusters. The concentric
circles in figure 12.1 can also be thought of as “clusters,” although such clusters
are highly non-Gaussian and have an interesting geometric structure. One may
conjecture that many clusters in real-world data sets have such non-Gaussian
structures. This is evidenced, for example, by the frequent superiority of spectral
clustering over more traditional methods such as k-means.

In many natural situations, it is clear that the data are supported on a low-
dimensional manifold. This is often the case when points are generated by some
physical process. For example, in speech production the articulatory organs can
be modeled as a collection of tubes. The space of speech sounds is therefore
a low-dimensional manifold parameterized by lengths and widths of the tubes.
Photographs of an object from various angles form a three dimensional submanifold
of the image space. In other cases, such as in text retrieval tasks, it may be less
clear whether a low-dimensional manifold is present. However, even then, and also
for almost any imaginable source of meaningful high-dimensional data, the space of
possible configurations occupies only a tiny portion of the total volume available.
One therefore suspects that a nonlinear low-dimensional manifold may yield a useful
approximation to this structure.

To proceed with our discussion, we will make a specific assumption about the
connection between the marginal and the conditional distributions. We will assume
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that if two points x1,22 € X are close in the intrinsic geometry of P, then
the conditional distributions P(y|z1) and P(y|x2) are similar. In other words, the
conditional probability distribution P(y|x) varies smoothly along the geodesics in
the intrinsic geometry of Py. A more formal statement for this smoothness property
is that [ |VP(y|z)||*dux is small, where p is the probability distribution over the
manifold. That last quantity can be rewritten as (LP(y|z), P(y|z)), where L is the
weighted Laplacian associated to probability measure u. We will elaborate on these
objects later in the chapter.

We will introduce a new framework for data-dependent regularization that ex-
ploits the geometry of the probability distribution. It is important to note that the
resulting algorithms will take into account both manifold and cluster assumptions.
While this framework allows us to approach the full range of learning problems from
unsupervised to supervised, we focus on the problem of semi-supervised learning.
This chapter gathers material from Belkin et al. (2004c, 2005); Sindhwani (2004);
Sindhwani et al. (2005).

12.2 Incorporating Geometry in Regularization

Laplace-Beltrami
operator

We will now assume that the marginal distribution Py is supported on a low-
dimensional manifold M embedded in RY. We will be interested in constructing
spaces of functions which are attuned to the geometric structure of Py. More
specifically we will want to control the gradient of the functions of interest with
respect to the measure Poc: [\ [V f||*dPx. Here the gradient is taken with respect
to the underlying Riemannian manifold M and the integral is weighted by the
measure on that manifold.

If the manifold M has no boundary or if the probability distribution Py vanishes
at the boundary, it can be shown that

/ Ve Py = / FLre ()APx = (f£30 () 2o
M M

where Vy is the gradient on M and Lp, is the weighted Laplace-Beltrami
operator associated to measure Px.. This operator is key to penalizing functions
according to the intrinsic geometry of the probability distribution P.

We utilize these geometric intuitions to extend an established framework for
function learning. A number of popular algorithms such as support vector ma-
chines (SVMs), ridge regression, splines, and radial basis functions may be broadly
interpreted as regularization algorithms with different empirical cost functions and
complexity measures in an appropriately chosen reproducing kernel Hilbert space
(RKHS) (Poggio and Girosi, 1990; Vapnik, 1998; Scholkopf and Smola, 2002).

Recall that for a Mercer kernel K : X xX — R, there is an associated RKHS H g of
functions X — R with the corresponding norm || || x. Given a set of labeled examples
(xi,9:), © = 1,...,1 the standard framework estimates an unknown function by
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!
f* = argmin - (i, yi, [) + YUl % 12.1
reming 32V 1% (121)

where V is some loss function, such as squared loss (y; — f(z;))? for regularized
least squares (RLS) or the soft margin loss function max [0,1 — y; f(x;)] for SVM.
Penalizing the RKHS norm imposes smoothness conditions on possible solutions.
The classical representer theorem states that the solution to this minimization
problem exists in Hx and can be written as

Zal (wi, (12.2)

Therefore, the problem is reduced to optimizing over the finite dimensional space of
coefficients «;, which is the algorithmic basis for SVM, RLS, and other regression
and classification schemes.

We first consider the case when the marginal distribution is already known.

12.2.1 Marginal Distribution Py Is Known

Our goal is to extend the kernel framework by incorporating additional information
about the geometric structure of the marginal Py. We would like to ensure that
the solution is smooth with respect to both the ambient space and the marginal
distribution Px. To achieve that, we introduce an additional regularizer :

—_

l
f* = argmin + 5" Vi £) -+ 1all £ + 2l £ (12.3)
FeEHK i—1

where || f||% is an appropriate penalty term that should reflect the intrinsic structure

of P, e.g., <f7 L., (f)>L2((Px)'

Here v4 controls the complexity of the function in the ambient space while ~;
controls the complexity of the function in the intrinsic geometry of P. One can
derive an explicit functional form for the solution f* as shown in the following
theorem under some fairly general conditions (Belkin et al., 2004c):

Theorem 12.1 Assume that the intrinsic reqularization term is given by
113 = [ sDsars,
X
where D is a bounded operator from the RKHS associated to K to L?(Px). Then

the solution f* to the optimization problem in (12.3) above exists and admits the
following representation:

Zal (zi,x /x a(y) K (z,y) dPx(y). (12.4)
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We note that the Laplace operator as well as any differentiable operator will
satisfy the boundedness condition, assuming that the kernel is sufficiently differen-
tiable.

The representer theorem above allows us to express the solution f* directly in
terms of the labeled data, the (ambient) kernel K, and the marginal P. If Py
is unknown, we see that the solution may be expressed in terms of an empirical
estimate of Px. Depending on the nature of this estimate, different approximations
to the solution may be developed. In the next section, we consider a particular
approximation scheme that leads to a simple algorithmic framework for learning
from labeled and unlabeled data.

12.2.2 Marginal Distribution Py Unknown

In most applications of interest in machine learning the marginal P« is not known.
Therefore we must attempt to get empirical estimates of Py and || ||;. Note that
in order to get such empirical estimates it is sufficient to have unlabeled examples.

As discussed before, the natural penalty on a Riemannian manifold is the Laplace
operator. The optimization problem then becomes

—_

l
£ = axgming - Vi, )+ allfl 4 [ (Tef. 9
Pt M

feHk l
It can be shown that the Laplace-Beltrami operator on a manifold can be
approximated by graph Laplacian using the appropriate adjacency matrix (see
(Belkin, 2003; Lafon, 2004) for more details).
Thus, given a set of [ labeled examples {(z;,v:;)}}_; and a set of u unlabeled

examples {z; };jf{, we consider the following optimization problem :

l I+u
1
f* = argmin — (i, yis ) +vall f () j 2Wi'
i 3V Tl e+ Tt 30 ()~ Sl
1
= argmin — (zi,vi, f) + vall flI3% + ——=fTLf, 12.5
vemin 3V )+l + (12,5

where W;; are edge weights in the data adjacency graph, f = [f(z1),..., f(@1+4)]T,
and L is the graph Laplacian given by L = D — W. Here, the diagonal matrix D
is given by D;; = Zé‘:{ Wi;. The normalizing coefficient @ +l)2 is the natural scale
factor for the empirical estimate of the Laplace operator (on a sparse adjacency
i j=1 Wij instead). The following version of the
representer theorem shows that the minimizer has an expansion in terms of both

graph, one may normalize by Z

labeled and unlabeled examples and is a key to our algorithms.
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Theorem 12.2 The minimizer of optimization problem (12.5) admits an expansion

I+u

fr(@) =3 oi (@i, x) (12.6)

in terms of the labeled and unlabeled examples.

The proof is a variation of a standard orthogonality argument (Schélkopf and
Smola, 2002).

Remark Several natural choices of || ||1 exist. Some examples are:

1. Tterated Laplacians L*. Differential operators L* and their linear combinations
provide a natural family of smoothness penalties.

£t is a family of smoothing operators corresponding to

2. Heat semigroup e~
the process of diffusion (Brownian motion) on the manifold. For corresponding
operators on graphs, see (Kondor and Lafferty, 2002). One can take |f||2 =
fM fe**(f). We note that for small values of ¢ the corresponding Green’s function
(the heat kernel of M) can be approximated by a sharp Gaussian in the ambient

space.

3. Squared norm of the Hessian (cf. (Donoho and Grimes, 2003)). While the
Hessian H(f) (the matrix of second derivatives of f) generally depends on the
coordinate system, it can be shown that the Frobenius norm (the sum of squared
eigenvalues) of H is the same in any geodesic coordinate system and hence is
invariantly defined for a Riemannian manifold M. Using the Frobenius norm of
H as a regularizer presents an intriguing generalization of thin-plate splines. We

also note that L(f) = tr(H(f)).

Remark Note that K restricted to M (denoted by Knt) is also a kernel defined
on M with an associated RKHS Hyg of functions M — R. While this might suggest

fllr = llfvllin (fw is f restricted to M) as a reasonable choice for | f||r, it
turns out, that for the minimizer f* of the corresponding optimization problem,
we get ||f*llr = |f*lk, vielding the same solution as standard regularization,

although with a different v. This observation follows from the restriction properties
of RKHS (Belkin et al., 2004c). Therefore it is impossible to have an out-of-
sample extension without two different measures of smoothness. On the other hand,
a different ambient kernel restricted to M can potentially serve as the intrinsic
regularization term. For example, a sharp Gaussian kernel can be used as an
approximation to the heat kernel on M.

The representer theorem allows us to convert the optimization problem in (12.5)
into a finite dimensional problem of estimating the (I 4+ u) coefficients a* for the
expansion above. A family of algorithms can now be developed with different choices
of loss functions, ambient kernels, graph regularizers, and optimization strategies.
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12.3 Algorithms

Laplacian RLS

Laplacian SVM

12.3.1 Semi-Supervised Classification

We now present solutions to the optimization problem posed in (12.5). To fix
notation, we assume we have [ labeled examples {(z;,v:;)}._; and u unlabeled
examples {z; }zjﬂ‘ We use K interchangeably to denote the kernel function or

the Gram matrix.

Laplacian Regularized Least Squares (LapRLS) The Laplacian regularized
least squares algorithm solves (12.5) with the squared loss function: V(z;, y;, f) =
[yi — f(x;)]?. Since the solution is of the form given by (12.6), the objective function
can be reduced to a convex differentiable function of the (I + w)-dimensional
expansion coefficient vector a = [y, . .., ay44)7 whose minimizer is given by

il
(u+1)?

a* = (JK +vall + LK)™'Y. (12.7)
Here, K is the (I +u) x (I +u) Gram matrix over labeled and unlabeled points;
Y is an (I + u) dimensional label vector given by Y = [y1,...,u1,0,...,0]; and J is
an (I +u) x (I +u) diagonal matrix given by J = diag(1,...,1,0,...,0) with the
first [ diagonal entries as 1 and the rest 0.
Note that when v; = 0, (12.7) gives zero coefficients over unlabeled data. The
coefficients over labeled data are exactly those for standard RLS.

Laplacian Support Vector Machines (LapSVM) Laplacian SVMs solve
the optimization problem in (12.5) with the soft-margin loss function defined as
V(zi,yi, f) = max[0,1 — y; f(2;)],4: € {—1,+1}. Introducing slack variables and
using standard Lagrange multiplier techniques used for deriving SVMs (Vapnik,
1998), we first arrive at the following quadratic program in ! dual variables 3 :

1
Lo
* = — 12.8
s g%;ﬁ S8 QB (12.8)
subject to the contraints :22:1 yiBi =0, 0<06; < % ,i=1,...1 , where
VI _
Q=Y JK(2val + szK) Ty, (12.9)

Here, Y is the diagonal matrix Y;; = y;, K is the Gram matrix over both the labeled
and the unlabeled data; L is the data adjacency graph Laplacian; J is an I x (I 4 u)
matrix given by J;; = 1ifi = j, z; is a labeled example, and J;; = 0 otherwise. To
obtain the optimal expansion coefficient vector a* € RU+%) | one has to solve the
following linear system after solving the quadratic program above :
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Table 12.1

Laplacian SVM/RLS ‘

Input: [ labeled examples {(z;,v;)}._;, v unlabeled examples {z; }31%_1
Output: | Estimated function f: R™ — R

Step 1 | » Construct data adjacency graph with (I + u) nodes using, e.g., k
-nearest neighbors. Choose edge weights W;;, e.g., binary weights or
heat kernel weights W;; = e~ llzi—=;1%/4t,

Step 2 | » Choose a kernel function K(z,y). Compute the Gram matrix
K;; = K(zi, xj).

Step 3 | » Compute graph Laplacian matrix : L = D — W where D is a
diagonal matrix given by Dy = Zé?{ Wij.

Step 4 » Choose v4 and ~;.

Step 5 | » Compute o* using (12.7) for squared loss (Laplacian RLS) or using
Egs. 12.9 and 12.10 together with the SVM QP solver for soft margin
loss (Laplacian SVM).

Step 6 | » Output function f*(z) = Y\T% af K (24, ).

Equivalently, after step 4 construct the kernel function K (x,y) given
by Eq. 12.15, and use it in standard SVM/RLS (or with other

suitable kernel methods).

ot = (27AI+2(u11l)2LK)*1JTYﬁ*. (12.10)

One can note that when v; = 0, the SVM QP and Eqgs. 12.9 and 12.10, give
zero expansion coefficients over the unlabeled data. The expansion coefficients over
the labeled data and the Q matrix are as in standard SVM, in this case. Laplacian
SVMs can be easily implemented using standard SVM software and packages for
solving linear systems.

In section 12.4, we will discuss a data-dependent kernel defined using unlabeled
examples (Sindhwani et al., 2005), with which standard supervised SVM/RLS
implement Laplacian SVM/RLS. In table 12.1, we outline these algorithms.

The choice of the regularization parameters 4, ys is a subject of future research.
If there are enough labeled data, they can be be based on cross-validation or
performance on a held-out test set. In figure 12.4 we provide an intuition toward
the role of these parameters on a toy two-moons data set. When ~; = 0, Laplacian
SVM recovers standard supervised SVM boundaries. As vy is increased, the effect
of unlabeled data increases and the classification boundaries are appropriately
adjusted.

In figure 12.5 we plot the learning curves for Laplacian SVM/RLS on a two-class
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Figure 12.4 Two moons data set: Laplacian SVM with increasing intrinsic regulariza-

tion.
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Figure 12.5 Image classification: Laplacian SVM/RLS performance with respect to
number of labeled examples on unlabeled and test data.

image recognition problem. In many such real-world application settings, one may
expect significant benefit from utilizing unlabeled data and high-quality out-of-
sample extensions with these algorithms. For further empirical results see (Belkin
et al., 2004c; Sindhwani et al., 2005) and elsewhere in this book.

12.3.2 Unsupervised Learning and Data Representation

Regularized Spectral Clustering The unsupervised case can be viewed as a
special case of semi-supervised learning where one is given a collection of unlabeled
data points x1,...,x, and no labeled examples. Our basic algorithmic framework
embodied in the optimization problem in (12.3) has three terms: (i) fit to labeled



12.8  Algorithms

Clustering

eigenvalue
problem

effect of
increasing y

227

data, (ii) extrinsic regularization, and (iii) intrinsic regularization. Since no labeled
data are available, the first term does not arise anymore. Therefore we are left with
the following optimization problem:

. 2 2
. 12.11
frgjl{nK’YA||f||K+71||f||I ( )

Of course, only the ratio 2% matters. As before, || fl|# can be approximated using
the unlabeled data. Choosmg 15117 = [5e (Vnf, Ve f) and approximating it by the
empirical Laplacian, we are left with the following optimization problem :

= argmin VG + D (Fa) = ). (12.12)
S f(@)=0; ¥, f(z;)2=1 inj
feHK

Note that without the additional constraints (cf. (Belkin et al., 2004b)) the above
problem gives degenerate solutions.

As in the semi-supervised case, a version of the empirical representer theorem
holds showing that the solution to (12.12) admits a representation of the form

E O% 'I’La

By substituting back in (12.12), we come up with the following optimization
problem:

= argmin y|[fl% + D (f(zi) — f(x;))%,

1T Ka=0
aTK2a=1

i~
where 1 is the vector of all ones and a@ = (a1, ..., @,) and K is the corresponding
Gram matrix.

Letting P be the projection onto the subspace of R* orthogonal to K1, one
obtains the solution for the constrained quadratic problem, which is given by the

generalized eigenvalue problem.
P(yK + KLK)Pv = APK?Pv. (12.13)

The final solution is given by @ = Pv, where v is the eigenvector corresponding to
the smallest eigenvalue.

The method sketched above is a framework for regularized spectral clustering.
The regularization parameter -y controls the smoothness of the resulting function in
the ambient space. We also obtain a natural out-of-sample extension for clustering
points not in the original data set. Figure 12.5 shows this method on a toy two-
moons clustering problem. Unlike recent work (Bengio et al., 2004b; Brand, 2003)
on out-of-sample extensions, our method is based on a Representer theorem for
RKHS.
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Figure 12.6 Two moons data set: regularized clustering

Regularized Laplacian Eigenmaps One can take multiple eigenvectors of the
system in (12.13) and represent a point z in R as

u u
T — Za}K(mi,m),...,ZaTK(xi7x) )
i=1 i=1

where (a{ ...ad) is the jth eigenvector.

This leads to a new method for dimensionality reduction and data representation
that provides a natural out-of-sample extension of Laplacian eigenmaps (Belkin,
2003). The new representation of the data in R™ is optimal in the sense that it best
preserves its local structure (as estimated by the graph) in the original ambient
space.

12.3.3 Fully Supervised Learning

The fully supervised case represents the other end of the spectrum of learning. Since
standard supervised algorithms (SVM and RLS) are special cases of manifold regu-
larization, our framework is also able to deal with a labeled data set containing no
unlabeled examples. Additionally, manifold regularization can augment supervised
learning with intrinsic regularization, possibly in a class-dependent manner, which
suggests the following learning problem:

f* = argmin

1
feHk l

!
ZV(mi,yi7f) + vall % + Ly + Ar EILf. (12.14)
i=1

Here we introduce two intrinsic regularization parameters 7?, v; and regularize
separately for the two classes : f;, f_ are the vectors of evaluations of the function
f, and Ly, L_ are the graph Laplacians, on positive and negative examples
respectively. The solution to the above problem for RLS and SVM can be obtained
Vi Ly

by replacing y; L by the block-diagonal matrix < 1
Yr L—

) in the Laplacian

SVM and Laplacian RLS algorithms.
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warping an

RKHS
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other algorithms

By including an intrinsic regularization term || f||; in addition to the prior measure
of complexity || f||x of a function f in the RKHS H, the algorithmic framework
presented above reflects how unlabeled data may alter our complexity beliefs. This
data-dependent modification of the norm can be viewed as an attempt to appro-
priately warp an RKHS to conform to the geometry of the marginal distribution
(for a discussion, see (Sindhwani et al., 2005)). This is made precise in the following
discussion. The set of functions in H has an associated inner product (f, g>g{K for
fy9 € Hg. Given unlabeled data, the space of functions H; containing functions
in Hy but with the following modified inner product

(F0)g = (Fr9)g + L£T Lg

can be shown to be an RKHS with an associated kernel K. The regularization
term yall f]| iy in this RKHS provides the same complexity penalty as the joint
intrinsic and ambient regularization terms in Hy. Thus, once the kernel K is
available, one can employ the standard machinery of kernel methods designed for
supervised learning for semi-supervised inference. The form of the new kernel K
can be derived in terms of the kernel function K using reproducing properties of an
RKHS and orthogonality arguments (see (Sindhwani, 2004; Sindhwani et al., 2005)
for a derivation) and is given by

K(x,2) = K(z,2) - kKT (I + LLK) ' Lk., (12.15)
YA

where k, (and similarly k.) denotes the vector [K(z1,%), ..., K (214, 2)]". The

standard representer theorem can be now be invoked to show that the minimizer

of optimization problem (12.5) admits the following expansion in terms of labeled

examples only:

l

Fr@) =Y K (, ). (12.16)

i=1

With the new kernel K , this representer theorem reduces the minimization
problem (12.5) to that of estimating the [ expansion coefficients a*. In addition to
recovering the algorithms in section 12.3, this kernel can also be used to implement,
e.g., semi-supervised extensions of support vector regression, one-class SVM, and
Gaussian processes (see (Sindhwani et al., 2006)).

To develop an intuition toward how the intrinsic norm warps the structure of an
RKHS, consider the pictures shown in figure 12.4. A practitioner of kernel methods
would approach the two-circles problem posed in figure 12.1 by choosing a kernel
function K(z,y), and then taking a particular linear combination of this kernel
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(a) gaussian kernel centered (b) gaussian kernel centered (c) classifier learnt
on labeled point1 on labeled point2 in the RKHS
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Figure 12.7 Learning in an RKHS.

(a) deformed kernel centered (b) deformed kernel centered (c) classifier learnt
on labeled point1 on labeled point2 in the deformed RKHS

Figure 12.8 Warping an RKHS.

centered at the two labeled points in order to construct a classifier. Figure 12.7 (a,b)
shows this attempt with the popular Gaussian kernel. The resulting linear decision
surface, shown in figure 12.7 (c¢), is clearly inadequate for this problem.

In figure 12.8 (a,b) we sece level sets for the deformed kernel K centered on the
two labeled points in the two-circles problem.

The kernel deforms along the circle under the influence of the unlabeled data.
Using this kernel, instead of K (x,y), produces a satisfactory class boundary with
just two labeled points, as shown in figure 12.8 (c).

The procedure described above is a general nonparametric approach for con-
structing data-dependent kernels for semi-supervised learning. This approach differs
from prior constructions that have largely focussed on data-dependent methods for
parameter selection to choose a kernel from some parametric family, or by defining
a kernel matrix on the data points alone (transductive setting).
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12.5 Linear Methods for Large-Scale Semi-Supervised Learning

linear manifold
regularization

linear Laplacian
RLS

To turn semi-supervised learning into a technology, one needs to address issues of
scalability of algorithms and applicability to large data sets. The algorithms we
have described deal with dense matrices of size n x n and have O(n?) training
complexity with naive implementations. The expansion over labeled or unlabeled
examples is in general not sparse, even for Laplacian SVMs. One can possibly
employ, for example, various reduced set methods, low-rank kernel approximations,
or sparse greedy methods (see (Scholkopf and Smola, 2002) for a discussion of
general implementation issues in kernel methods) for efficient implementation of
these algorithms.

Due to their potential for dealing with massive data sets and widespread appli-
cability, linear semi-supervised methods generate special interest. The algorithms
described above can easily be specialized for constructing linear classifiers by choos-
ing the linear kernel K (z,y) = xTy. However, if the data-dimensionality d is much
smaller than the number of examples or the data are highly sparse, one can much
more efficiently solve the primal problem directly, once the graph regularizer is
constructed. We can learn a weight vector w € R? defining the linear classifier

f(x) = sign(wTz) as follows:

1 T T

w* = argmin
weRd

!

1

7 E V(@i yi,w @) + yallw|® +
i=1

Here, X is the (I 4+ u) x d data matrix.

For linear Laplacian RLS, taking V' to be the squared loss and setting the gradient
of the objective function to 0, we immediately obtain a linear system that can be
solved to obtain the desired weight vector:

l
(XT X, + yall + LWXTLX)w = X7y, (12.18)

I+

Here X is the submatrix of X corresponding to labeled examples and Y is the
vector of labels. This is a d X d system which can be easily solved when d is small.
When d is large but feature vectors are highly sparse, we can employ conjugate
gradient (CG) methods to solve this system. CG techniques are Krylov methods
that involve repeated multiplication of a candidate solution z by A for solving a
linear system Az = b. The matrix A need not be explicitly constructed so long
as the matrix vector product Az can be computed. In the case of linear Laplacian

RLS, we can construct the matrix-vector product fast due to the sparsity of X and
Lt

1. Fast matrix-vector products can also be formed for dense graph regularizers given by
a power series in the (sparse) graph Laplacian
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For linear Laplacian SVMs, we can rewrite problem 12.17 as

l
1
w* = argminy w! TT T w + 7 Z max [O, 1-— yi(szi)}

w inR4 i—1

in terms of the Cholesky factorization TTT of the positive definite matrix (y4l +
(H”_*—;)zXTLX). Changing variables by @ = T7w and & = T~ 'x, we can convert
the above problem into a standard SVM running only on the labeled examples
that are preprocessed with 7~!. When d is small, the preprocessing matrix can be
computed cheaply. The reparameterized SVM then runs only on a small number
of labeled examples and returns a weight vector w*. We obtain the solution of
the original problem by setting w* = (TT)f1 w*. We note in passing that the
inner product in the preprocessed space is given by 72 = 27(TTT)"'2. An
application of the Woodbury formula to compute the inverse (TT7)~! followed by
appropriate manipulations gives a simple “feature-space” derivation of the data-
dependent kernel in section 12.4. For high-dimensional sparse data sets, we can use
the large-scale training algorithm in (Keerthi and DeCoste, 2005) for Lo-SVM. At
the core of this algorithm are RLS iterations implemented using conjugate gradient
techniques. In conjunction with linear Laplacian RLS for large sparse data sets,
this algorithm can also be extended for large-scale semi-supervised learning.

12.6 Connections to Other Algorithms and Related Work

The broad connections of our approach to graph-based learning techniques and
kernel methods are summarized in table 12.2 through a comparison of objectives.
When 7 = 0, our algorithms ignore unlabeled data and perform standard regular-
ization, e.g in SVMs and RLS. By optimizing over an RKHS of functions defined
everywhere in the ambient space, we get out-of-sample extension for graph regu-
larization, when v4 — 0,7 > 0. In the absence of labeled examples, we perform
a regularized version of spectral clustering that is often viewed as a relaxation of
the discrete graph min-cut problem. We can also obtain useful data representations
within the same framework by regularized Laplacian eigenmaps.

The conceptual framework of our work is close, in spirit, to the measure-based
regularization approach of (Bousquet et al., 2004). The authors consider a gradient-
based regularizer that encourages smoothness with respect to the data density.
While Bousquet et al. (2004) use the gradient Vf(z) in the ambient space, we
use the gradient over a submanifold Viyf. In a situation where the data truly
lie on or near a submanifold M, the difference between these two penalizers can
be significant since smoothness in the normal direction to the data manifold is
irrelevant to classification or regression.

The intuition of incorporating a graph-based regularizer in the design of semi-
supervised variants of inductive algorithms has also been explored in (Yu et al.,
2004; Krishnapuram et al., 2004; Kegl and Wang, 2004). In (Yu et al., 2004), a
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Table 12.2 Objective functions for comparison (in the third column for unsupervised
algorithms, additional constraints are added to avoid trivial or unbalanced solutions). In
addition to these learning problems, the framework also provides the regularized Laplacian
eigenmaps algorithm for dimensionality reduction and data representation.

Supervised Partially Supervised Clustering
Kernel-based Classifiers Graph Regularization Graph Min-cut
argmin g q¢, argmingcp(i+u) argmingcy_j 4qyu
I Vi f(@) | 3 Vi £) +AfTLE | § 300, Wi (f — £5)?
+yIIfII% Out-of-sample Eztn. Spectral Clustering
argmin r¢ ¢, argmingpu %fTLf
% Zézl V(yi, £i) +vfTLE | Out-of-sample Extn.
Manifold Regularization argmin rc ¢, %fTLf
argmin ¢e g, Reg. Spectral Clust.
LS Vi £ )+ ——
AllfI% + s fTLE | LETLE | 111

least-squares algorithm is proposed that provides an out-of-sample extension for
graph transduction in the span of a fixed set of basis functions {¢; : X — R}:_;.
Thus, the optimization problem in Eq. 12.5 is solved over this span for the squared
loss leading to a linear system such as Eq. 12.18 (set X;; = ¢,(x;) and v4 = 0)
whose size is given by the number of basis functions s. For a small set of basis
functions, this system can be solved more efficiently. Yu et al. (2004) also discuss
data representation within this framework.

In (Krishnapuram et al., 2004), the authors impose a prior derived from the
graph Laplacian, over parameters of a multinomial logistic regression model. For
an r-class problem, the class probabilities are modeled as

w7

T (T
Zi:1 €

where y9) is an indicator variable for class j and w® € R is the weight vector for

x

P(yP = 1lz) = 1<j<r,
class i. The prior on weight vector w is given by

—w® (4P XTLX 4+ D@) w7
2 )

where D) is a parameterized diagonal matrix providing extra regularization similar
to the ambient penalty term in manifold regularization. Bayesian inference is per-
formed to learn the maximum a posteriori (MAP) estimate of the model parameters
with an expectation-maximization algorithm.

In (Kegl and Wang, 2004), an extension of the Adaboost algorithm is proposed



234

The Geometric Basis of Semi-Supervised Learning

(also discussed elsewhere in this book) that implements similar intuitions within
the framework of boosting techniques. In (Altun et al., 2005), a generalization of
the problem in Eq. 12.5 is presented for semi-supervised learning of structured
variables.

By introducing approximations to avoid graph recomputation, methods for out-
of-sample extension have also been suggested without explicitly operating in an
ambiently defined function or model space. In (Delalleau et al., 2005) an induction
formula is derived by assuming that the addition of a test point to the graph does
not change the transductive solution over the unlabeled data. In other words, if
f=1[f1...fitu ft] denotes a function defined on the augmented graph, with f; as
its value on the node corresponding to the test point, then minimizing the objective
function for graph regularization (with L as the regularizer) keeping the values on
the original nodes fixed, one can obtain a Parzen windows expression for f;:

_ > Wi fi
Zi Wy

where W denotes the adjacency matrix as before. In (Zhu et al., 2003c¢), a test point

fe

is classified according to its nearest neighbor on the graph, whose classification is
available after transductive inference. In (Chapelle et al., 2003), graph kernels are
constructed by modifying the spectrum of the Gram matrix of a kernel evaluated
over labeled and unlabeled examples. Unseen test points are approximated in the
span of the labeled and unlabeled data, and this approximation is used to extend
the graph kernel.

The regularized Laplacian eigenmap algorithms presented in section 12.3.2 have
also been simultaneously and independently developed by Vert and Yamanishi
(2004) in the context of extending a partially known graph. The graph inference
problem is posed as follows: Suppose a graph G = (V, E) with vertices V and edges
E is observed and is known to be a subgraph of an unknown graph G’ = (V’, E')
with V' C V' and E C E’. Given the vertices V' — V, infer the edges £’ — E. If
the vertices v are elements of some set V on which a kernel function K : V x V is
defined, then one can infer the graph in two steps: Find a map ¢ : V +— R™ and
induce a nearest-neighbor graph on the embedded points. To find the map ¥ in
the RKHS corresponding to K, one can set up an optimization problem (similar to
that in regularized classification), involving a graph Laplacian-based “data fit” term
that measures how well 1) preserves the local structure of the observed graph and
the RKHS regularizer that provides ambient smoothness. This is also the objective
function of regularized Laplacian eigenmaps, and involes solving the generalized
eigenvalue problem (12.13) for multiple eigenvectors.

12.7 Future Directions

We have discussed a general framework for incorporating geometric structures in
the design of learning algorithms. Our framework may be extended to include
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additional domain structure, e.g., in the form of invariances and structured outputs.
Many directions are being pursued toward improving the scalability and efficiency
of our algorithms, while developing extensions to handle unlabeled data in, e.g.,
support vector regression, one-class SVMs, and Gaussian processes. We plan to
pursue applications of these methods to a variety of real-world learning tasks, and
investigate issues concerning generalization analysis and model selection.
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Many real-world machine learning problems are situated on finite discrete sets, in-
cluding dimensionality reduction, clustering, and transductive inference. A variety
of approaches for learning from finite sets has been proposed from different motiva-
tions and for different problems. In most of those approaches, a finite set is modeled
as a graph, in which the edges encode pairwise relationships among the objects in
the set. Consequently many concepts and methods from graph theory are applied,
in particular, graph Laplacians.

In this chapter we present a systemic framework for learning from a finite set rep-
resented as a graph. We develop discrete analogues of a number of differential oper-
ators, and then construct a discrete analogue of classical regularization theory based
on those discrete differential operators. The graph Laplacian-based approaches are
special cases of this general discrete regularization framework. More importantly,
new approaches based on other different differential operators are derived as well.

13.1 Introduction

weighted graph

Many real-world machine learning problems can be described as follows: given a set
of objects X = {x1,22,...,2, T141,..., 2, } from a domain X (e.g., R?) in which the
first [ objects are labeled as y1, ...,y € Y = {1, —1}, the goal is to predict the labels
of remaining unlabeled objects indexed from [ 4+ 1 to n. If the objects to classify
are totally unrelated to each other, we cannot make any prediction statistically
better than random guessing. Typically we may assume that there exist pairwise
relationships among data. For example, given a finite set of vectorial data, the
pairwise relationships among data points may be described by a kernel (Schélkopf
and Smola, 2002). A data set endowed with pairwise relationships can be naturally
modeled as a weighted graph. The vertices of the graph represent the objects, and
the weighted edges encode the pairwise relationships. If the pairwise relationships
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Figure 13.1 The relations among induction, deduction, and transduction.

are symmetric, the graph is undirected; otherwise, the graph is directed. A typical
example for directed graphs is the World Wide Web (WWW), in which hyperlinks
between webpages may be thought of as directed edges.

Any supervised learning algorithm can be applied to the above inference problem,
e.g., by training a classifier f : X — Y with the set of pairs {(z1,v1),..., (z;,y)},
and then using the trained classifier f to predict the labels of the unlabeled objects.
Following this approach, one will have estimated a classification function defined on
the whole domain X before predicting the labels of the unlabeled objects. According
to (Vapnik, 1998) (see also chapter 24), estimating a classification function defined
on the whole domain X is more complex than the original problem which only
requires predicting the labels of the given unlabeled objects, and a better approach
is to directly predict the labels of the given unlabeled objects. Therefore here
we consider estimating a discrete classification function which is defined on the
given objects X only. Such an estimation problem is called transductive inference
(Vapnik, 1998). In psychology, transductive reasoning means linking particular to
particular with no consideration of the general principles. It is generally used by
young children. In contrast, deductive reasoning, which is used by adults and older
children, means the ability to come to a specific conclusion based on a general
premise (cf. figure 13.1).

It is well known that many meaningful inductive methods such as support
vector machines (SVMs) can be derived from a regularization framework, which
minimizes an empirical loss plus a regularization term. Inspired by this work, we
define discrete analogues of a number of differential operators, and then construct
a discrete analogue of classical regularization theory (Tikhonov and Arsenin, 1977;
Wahba, 1990) using the discrete operators. Much existing work, including spectral
clustering, transductive inference, and dimensionality reduction can be understood
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in this framework. More importantly, a family of new approaches is derived.

13.2 Discrete Analysis

weighted graph

Hilbert spaces

In this section, we first introduce some basic notions on graph theory, and then
propose a family of discrete differential operators, which constitute the basis of the
discrete regularization framework presented in the next section.

13.2.1 Preliminaries

A graph G = (V, E) consists of a finite set V, together with a subset E C V x V.
The elements of V' are the vertices of the graph, and the elements of E are the
edges of the graph. We say that an edge e is incident on vertex v if e starts from
v. A self-loop is an edge which starts and ends at the same vertex. A path is a
sequence of vertices (v1,va, ..., Uy ) such that [v;_1,v;] is an edge for all 1 < ¢ < m.
A graph is connected when there is a path between any two vertices. A graph is
undirected when the set of edges is symmetric, i.e., for each edge [u,v] € E we also
have [v,u] € E. In the following, the graphs are always assumed to be connected,
undirected, and have no self-loops or multiple edges; for an example, see figure 13.2.

A graph is weighted when it is associated with a function w : E — R4 which
is symmetric, i.e. w([u,v]) = w([v,u]), for all [u,v] € E. The degree function
d:V — Ry is defined to be

d(v) =Y w(lu,v)),

u~v

where u ~ v denote the set of the vertices adjacent with v, i.e. [u,v] € E. Let
H(V) denote the Hilbert space of real-valued functions endowed with the usual
inner product

(fs 9)%(&/) = Z f(v)g(v),

veV

for all f,g € H(V). Similarly define H(E). In what follows, we will omit the
subscript of inner products if we do not think it is necessary. Note that function
h € H(E) have not to be symmetric. In other words, we do not require h([u,v]) =

h([v, u]).
13.2.2 Gradient and Divergence Operators

We define the discrete gradient and divergence operators, which can be thought of
as discrete analogues of their counterparts in the continuous case.
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Figure 13.2 An undirected graph.

Definition 13.1 The graph gradient is an operator V : H(V) — H(E) defined by

@) = o Aty = oD ) ot i .15

The gradient measures the variation of a function on each edge. Clearly,

(VH([w,v]) = =(V)([v, u]), (13.2)

i.e., Vf is skew-symmetric.

Remark 13.2 An obvious problem is why we define a graph gradient as Eq 13.1.
In the uniform 2-dimensional lattice case, a natural discrete gradient is defined by

(VA + 1) = f+1) = f0),

where i denotes the index of a node of the lattice. Unlike the lattice case, the problem
that we have to deal with here is the irreqularity of a general graph. Intuitively, in
our definition, before computing the variation of a function between two adjacent
vertices, we break the function value at each verter among its adjacent edges, and
the value assigned to each edge is proportional to the edge weight. Mathematically,
such a definition can make us finally recover the well-known graph Laplacian in a
way parallel to continuous case (see section 13.2.3).

We may also define the graph gradient at each vertex. Given a function f € H(V)
and a vertex v, the gradient of f at v is defined by Vf(v) := {(Vf)([v,u])|[v,u] €
E}. We also often denote V f(v) by V, f. Then the norm of the graph gradient V f
at vertex v is defined by
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graph divergence

19,1 = (Z<Vf>2<[u7v1>)é,

and the p-Dirichlet form of the function f is defined by
1
=5 2 IVufI”
veV

Intuitively, the norm of the graph gradient measures the roughness of a function
around a vertex, and the p-Dirichlet form the roughness of a function over the
graph. In addition, we define |V f([v,u])|| := ||V, f||. Note that ||V f|| has been
defined in the space H(E) as ||V f|| = (V/, Vf>i]{/(E

Definition 13.3 The graph divergence is an operator div : H(E) — H(V') which
satisfies

(Vf,hscwy = (f, — div h)sevy, for all f € H(V),h € H(E). (13.3)

In other words, —div is defined to be the adjoint of the graph gradient. Equa-
tion (13.3) can be thought of as a discrete analogue of the Stokes theorem.! Note
that the inner products in the left and right sides of (13.3) are respectively in the
spaces H(E) and H(V).

Proposition 13.4 The graph divergence can be computed as

(div h)( Z (h([uu]) - h([u,v])), (13.4)

u~v

1. Given a compact Riemannian manifold (M, ¢g) with a function f € C°° (M) and a vector
field X € X(M), it follows from the Stokes theorem that [, (Vf, X) = — [, (div X)f.
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Proof
(ViR = > V([ v)h(u,0])
[u,v]eE
_ ([w,v]) [w >h
[u v] EE
S -y wgg; wh(fu, o)
[u,v]€E [u,v]€E
= 2 3/" -2 wg(; D (i, o))
reV u~r reV o~r
. o),
gf(§ > e aro)
S DML ( w@—hWMO-
rev u~T
The last equality implies (13.4). ]

Intuitively, the divergence measures the net outflow of function h at each vertex.
Note that if h is symmetric, then (div h)(v) =0 for all v € V.

13.2.3 Laplace Operator

In this section, we define the graph Laplacian, which can be thought of as discrete
analogue of the Laplace-Beltrami operator on Riemannian manifolds.

Definition 13.5 The graph Laplacian is an operator A : H(V) — H(V') defined
by 2

Af = _% div(Vf). (13.5)

Substituting (13.1) and (13.4) into (13.5), we have

(Af)(w) —Z i <Vf)([ v]) = (W)([%M))

u~v

B w([u, v]) w([u, v])
= > (%dmf@— ﬂmﬂ@

u~v

*gwmwfm

(13.6)

2. The Laplace-Beltrami operator A : C*°(M) — C*(M) is defined to be Af =
—div(Vf). The additional factor 1/2 in (13.5) is due to each edge being counted twice.
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convergence
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The graph Laplacian is a linear operator because both the gradient and divergence
operators are linear. Furthermore, the graph Laplacian is self-adjoint,

(Af,0) = 5~ div(V1),0) = 3(Vf,Va) = 3(F, ~div(Vg)) = {, Ag),

and positive semi-definite:

(A1) = 3= div(V5),f ) = 3(VF,V1) = 8a(§) 2 0. (13.7)

It immediately follows from (13.7) that
Theorem 13.6 2Af = D8,.

Remark 13.7 Equation (13.6) shows that our graph Laplacian defined by (13.5)
is identical to the Laplace matriz in (Chung, 1997) defined to be A = D=Y/?(D —
W)D=Y2 where D is a diagonal matriz with D(v,v) = d(v), and W a matriz
with W (u,v) = w([u,v]) if [u,v] is an edge and W (u,v) = 0 otherwise. It is worth
mentioning that the matriz L = D — W is often referred to as the combinatorial
(or unnormalized) graph Laplacian, or simply the graph Laplacian. Obviously, this
Laplacian can also be derived in a similar way. Specifically, define a graph gradient

by
(VH([w,v]) :== Vw(u,v])(f(v) = f(w)), for all [u,v] € E,

and then the rest proceeds as the above.

Remark 13.8 For the connection between graph Laplacians (including the Lapla-
cian we presented here) and the usual Laplacian in continuous case, we refer the
reader to (von Luzburg et al., 2005; Hein et al., 2005; Bousquet et al., 2004). The
main point is that, if we assume the vertices of a graph are identically and indepen-
dently sampled from some unknown but fixed distribution, when the sampling size
goes to infinity, the combinatorial graph Laplacian does not converge to the usual
Laplacian unless the distribution is uniform.

13.2.4 Curvature Operator

In this section, we define the graph curvature which can be regarded as a discrete
analogue of the mean curvature in continuous case.

Definition 13.9 The graph curvature is an operator k : H(V') — H(V) defined by

1 (VS
Kf = 2dv(||Vf||>' (13.8)
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Substituting (13.1) and (13.4) into (13.8), we obtain

= ([, ] v/ v VI v, U
) = S () - k()

u~v

- Z [ 1 (f(v) _ I )_ 1 (f(U) _ )
IVufINVd(w) — Vdw) /) IVefI\d(u) —\/d(v)
)

u~v

- 5" (IIVlfII * ||V1f||>( (?u ) (13

u~v

Unlike the graph Laplacian (13.5), the graph curvature is a nonlinear operator.
As in theorem 13.6, we have

Theorem 13.10 xf = D¢38;.

Proof
(Debu)l) = ;H%ﬁ“]ﬁg) dfxgz@))* o (10~ T
- ;“’“ D<||Vuf|| o) (G - d<$gz<v>)

- 2 (IIVifII IV, f||>< c(z<>> féz)n)

Comparing the last equality with (13.9) completes the proof. .

13.2.5 p-Laplace Operator

In this section, we generalize the graph Laplacian and curvature to an operator,
which can be thought of as the discrete analogue of the p-Laplacian in continuous
case (Hardt and Lin, 1987; Heinonen et al., 1993).

Definition 13.11 The graph p-Laplacian is an operator A, : H(V) — H(V)
defined by

A, f = —5 div([ VP2V )). (13.10)

Clearly, Ay = k, and Ag = A. Substituting (13.1) and (13.4) into (13.10), we
obtain
flo) — flu)
SV (LR | 3.11)
v Vdw)  /d(u)

which generalizes (13.6) and (13.9).
As before, it can be shown that

(Apf)(v

Theorem 13.12 pA,f = D¢§,.
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Remark 13.13 There is much literature on the p-Laplacian in continuous case.
We refer the reader to (Heinonen et al., 1993) for a comprehensive study. There
is also some work on the discrete 