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Abstract

For the last decade, it has been shown that neuroimaging can be a potential tool for the diagnosis

of Alzheimer’s Disease (AD) and its prodromal stage, Mild Cognitive Impairment (MCI), and also

fusion of different modalities can further provide the complementary information to enhance

diagnostic accuracy. Here, we focus on the problems of both feature representation and fusion of

multimodal information from Magnetic Resonance Imaging (MRI) and Positron Emission

Tomography (PET). To our best knowledge, the previous methods in the literature mostly used

hand-crafted features such as cortical thickness, gray matter densities from MRI, or voxel

intensities from PET, and then combined these multimodal features by simply concatenating into a

long vector or transforming into a higher-dimensional kernel space. In this paper, we propose a

novel method for a high-level latent and shared feature representation from neuroimaging

modalities via deep learning. Specifically, we use Deep Boltzmann Machine (DBM)1, a deep

network with a restricted Boltzmann machine as a building block, to find a latent hierarchical

feature representation from a 3D patch, and then devise a systematic method for a joint feature

representation from the paired patches of MRI and PET with a multimodal DBM. To validate the

effectiveness of the proposed method, we performed experiments on ADNI dataset and compared

with the state-of-the-art methods. In three binary classification problems of AD vs. healthy

Normal Control (NC), MCI vs. NC, and MCI converter vs. MCI non-converter, we obtained the

maximal accuracies of 95.35%, 85.67%, and 74.58%, respectively, outperforming the competing

methods. By visual inspection of the trained model, we observed that the proposed method could

hierarchically discover the complex latent patterns inherent in both MRI and PET.

1Although it is clear from the context that the acronym DBM denotes “Deep Boltzmann Machine” in this paper, we would clearly
indicate that DBM here is not related to “Deformation Based Morphometry”.
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1. Introduction

Alzheimer’s Disease (AD), characterized by progressive impairment of cognitive and

memory functions, is the most prevalent cause of dementia in elderly subjects. According to

a recent report by Alzheimer’s Association, the number of subjects with AD is significantly

increasing every year, and 10 to 20 percent of people aged 65 or older have Mild Cognitive

Impairment (MCI), known as a prodromal stage of AD (Alzheimer’s Association, 2012).

However, due to the limited period for which the symptomatic treatments could be effective,

it has been of great importance for early diagnosis and prognosis of AD/MCI in the clinic.

To this end, many researchers have devoted their efforts to find biomarkers and develop a

computer-aided system, with which we can effectively predict or diagnose the diseases.

Recent studies have shown that the neuroimaging such as Magnetic Resonance Imaging

(MRI) (Davatzikos et al., 2011; Cuingnet et al., 2011; Wee et al., 2011; Li et al., 2012;

Zhang et al., 2012; Zhou et al., 2011), Positron Emission Tomography (PET) (Nordberg et

al., 2010), functional MRI (fMRI) (Greicius et al., 2004; Suk et al., 2013), can be nice tools

for diagnosis or prognosis of AD/MCI. Furthermore, fusing the complementary information

from multiple modalities helps enhance the diagnostic accuracy (Fan et al., 2007a; Perrin et

al., 2009; Kohannim et al., 2010; Walhovd et al., 2010; Cui et al., 2011; Hinrichs et al.,

2011; Zhang et al., 2011; Wee et al., 2012; Westman et al., 2012; Yuan et al., 2012; Zhang

and Shen, 2012; Suk and Shen, 2013).

Various types of features or patterns extracted from neuroimaging modalities have been

considered for brain disease diagnosis with machine learning methods. Here, we divide the

previous feature extraction approaches into three categories: voxel-based approach, Region

Of Interest (ROI)-based approach, and patch-based approach. A voxel-based approach is the

most simple and direct way that uses the voxel intensities as features in classification (Baron

et al., 2001; Ishii et al., 2005). Although it is simple and intuitive in terms of interpretation

of the results, its main limitations are the high-dimensionality of feature vectors and also the

ignorance of regional information. ROI-based approach considers the structurally or

functionally predefined brain regions and extracts representative features from each region

(Nordberg et al., 2010; Kohannim et al., 2010; Walhovd et al., 2010; Davatzikos et al., 2011;

Cuingnet et al., 2011; Zhang and Shen, 2012; Suk and Shen, 2013). Thanks to the relatively

low feature dimensionality and the whole brain coverage, it is widely used in the literature.

However, the features extracted from ROIs are very coarse in the sense that they cannot

reflect small or subtle changes involved in the brain diseases. Note that the disease-related

structural/functional changes occur in multiple brain regions. Furthermore, since the

abnormal regions affected by neurodegenerative diseases can be part of ROIs or span over

multiple ROIs, the simple voxel- or ROI-based approach may not effectively capture the

diseased-related pathologies. To tackle these limitations, recently, Liu et al. proposed a
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patch-based method that first dissected brain areas into small 3D patches, extracted features

from each selected patch individually, and then combined the features hierarchically in a

classifier level (Liu et al., 2012, 2013).

As for the fusion of multiple modalities including MRI, PET, biological and neurological

data for discriminating AD/MCI patients from healthy Normal Control (NC), Kohannim et

al. concatenated features from modalities into a vector and used a Support Vector Machine

(SVM) classifier (Kohannim et al., 2010). Walhovd et al. applied multi-method stepwise

logistic regression analyses (Walhovd et al., 2010), and Westman et al. exploited a

hierarchical modeling of orthogonal partial least squares to latent structures (Westman et al.,

2012). Hinrichs et al., Zhang et al., and Suk and Shen, independently, utilized a kernel-

based machine learning technique (Hinrichs et al., 2011; Zhang et al., 2011; Suk and Shen,

2013).

In this paper, we consider the problems of both feature representation and multimodal data

fusion for computer-aided AD/MCI diagnosis. Specifically, for feature representation, we

exploit a patch-based approach since it can be considered as an intermediate level between

voxel-based approach and ROI-based approach, thus efficiently handling the concerns of the

high feature dimension and also the sensitivity to small change. Furthermore, from a clinical

perspective, neurologists or radiologists examine brain images by searching local distinctive

regions and then combine the interpretations with neighboring ones and ultimately with the

whole brain. In these regards, we believe that the patch-based approach can effectively

handle the region-wide pathologies, which may not be limited to specific ROIs, and accords

with the neurologists or radiologists’ perspective in terms of examining images, i.e.,

investigating local patterns and then combining local information distributed in the whole

brain for making a clinical decision. In this way, we can also extract richer information that

helps enhance diagnostic accuracy.

However, unlike Liu et al.’s method that directly used the gray matter density values in each

patch as features, we propose to use a latent high-level feature representation. Meanwhile, in

the fusion of multimodal information, the previous methods often applied either simple

concatenation of features extracted from multiple modalities or kernel methods to combine

them in a high-dimensional kernel space. However, the feature extraction and feature

combination were often performed independently. In this work, we propose a novel method

of extracting a shared feature representation from multiple modalities, i.e., MRI and PET.

As investigated in the previous studies (Pichler et al., 2010; Catana et al., 2012), there exist

the inherent relations between modalities of MRI and PET. Thus, finding the shared feature

representation, which combines the complementary information from modalities, is helpful

to enhance performance on AD/MCI diagnosis.

From a feature representation perspective, it is noteworthy that unlike the previous

approaches (Hinrichs et al., 2011; Kohannim et al., 2010; Walhovd et al., 2010; Zhang et al.,

2011; Westman et al., 2012; Zhang and Shen, 2012; Liu et al., 2012, 2013) that considered

simple low-level features, which are often vulnerable to noises, we propose to consider high-

level or abstract features for improving the robustness to noises. For obtaining the latent

high-level feature representations inherent in a patch observation such as correlations among
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voxels that cover different brain regions, we exploit a deep learning strategy (LeCun et al.,

1998; Bengio, 2009), which has been successfully applied to medical imaging analysis (Shin

et al., 2013; Liao et al., 2013; Ciresan et al., 2013; Suk and Shen, 2013; Hjelm et al., 2014).

Among various deep models, we use a Deep Boltzmann Machine (DBM) (Salakhutdinov

and Hinton, 2009) that can hierarchically find feature representations in a probabilistic

manner. Rather than using the noisy voxel intensities as features as Liu et al. did (Liu et al.,

2013), the high-level representation obtained via DBM is more robust to noises and thus

helps enhance diagnostic performances. Meanwhile, from a multimodal data fusion

perspective, unlike the conventional multimodal feature combination methods that first

extract modality-specific features and then fuse their complementary information during

classifier learning, the proposed multimodal DBM fuses the complementary information

from different modalities during a feature representation step. Note that once we extract

features from each modality, we may already lose some good correlation information

between modalities. Therefore, it is important to discover a shared representation by fully

utilizing the original information in each modality during feature representation procedure.

In our multimodal data fusion method, thanks to the methodological characteristic of the

DBM (i.e., undirected graphical model), it allows the bidirectional information flow from

one modality (e.g., MRI) to the other modality (e.g., PET) and vice versa. Therefore, we can

distribute feature representations over different layers in the path between modalities and

thus efficiently discover a shared representation while still utilizing the full information in

the observations.

2. Materials and Image Processing

2.1. Subjects

In this work, we use the ADNI dataset publicly available on the web2, but consider only the

baseline MRI and 18-Fluoro-DeoxyGlucose PET (FDG-PET) data acquired from 93 AD

subjects, 204 MCI subjects including 76 MCI converters (MCI-C) and 128 MCI non-

converters (MCI-NC), and 101 NC subjects3. The demographics of the subjects are detailed

in Table 1.

With regard to the general eligibility criteria in ADNI, subjects were in the age of between

55 and 90 with a study partner, who could provide an independent evaluation of functioning.

General inclusion/exclusion criteria4 are as follows: 1) NC subjects: MMSE scores between

24 and 30 (inclusive), a Clinical Dementia Rating (CDR) of 0, non-depressed, non-MCI, and

non-demented; 2) MCI subjects: MMSE scores between 24 and 30 (inclusive), a memory

complaint, objective memory loss measured by education adjusted scores on Wechsler

Memory Scale Logical Memory II, a CDR of 0.5, absence of significant levels of

impairment in other cognitive domains, essentially preserved activities of daily living, and

an absence of dementia; and 3) mild AD: MMSE scores between 20 and 26 (inclusive),

CDR of 0.5 or 1.0, and meets the National Institute of Neurological and Communicative

2Available at ‘http://www.loni.ucla.edu/ADNI’.
3Although there exist in total more than 800 subjects in ADNI database, only 398 subjects have the baseline data including the
modalities of both MRI and FDG-PET.
4Refer to ‘http://www.adniinfo.org’ for the details.
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Disorders and Stroke and the Alzheimer’s Disease and Related Disorders Association

(NINCDS/ADRDA) criteria for probable AD.

2.2. MRI/PET Scanning and Image Processing

The structural MR images were acquired from 1.5T scanners. We downloaded data in the

Neuroimaging Informatics Technology Initiative (NIfTI) format, which had been pre-

processed for spatial distortion correction caused by gradient nonlinearity and B1 field

inhomogeneity. The FDG-PET images were acquired 30-60 minutes post-injection,

averaged, spatially aligned, interpolated to a standard voxel size, normalized in intensity,

and smoothed to a common resolution of 8 mm full width at half maximum.

The MR images were preprocessed by applying the typical procedures of Anterior

Commissure (AC)-Posterior Commissure (PC) correction, skull-stripping, and cerebellum

removal. Specifically, we used MIPAV software5 for AC-PC correction, resampled images

to 256 × 256 × 256, and applied N3 algorithm (Sled et al., 1998) to correct non-uniform

tissue intensities. After skull stripping (Wang et al., 2014) and cerebellum removal, we

manually checked the skull-stripped images to ensure clean and dura removal. Then, FAST

in FSL package6 (Zhang et al., 2001) was used to segment the structural MR images into

three tissue types of Gray Matter (GM), White Matter (WM), and CerebroSpinal Fluid

(CSF). Finally, all the three tissues of MR image were spatially normalized onto a standard

space, for which in this work we used a brain atlas already aligned with the MNI coordinate

space (Kabani et al., 1998), via HAMMER (Shen and Davatzikos, 2002), although other

advanced registration methods can also be applied for this process (Friston, 1995; Xue et al.,

2006; Yang et al., 2008; Tang et al., 2009; Jia et al., 2010). Then, the regional volumetric

maps, called RAVENS maps, were generated by a tissue preserving image warping method

(Davatzikos et al., 2001). It is noteworthy that the values of RAVENS maps are proportional

to the amount of original tissue volume for each region, giving a quantitative representation

of the spatial distribution of tissue types. Due to its relatively high relatedness to AD/MCI

compared to WM and CSF (Liu et al., 2012), in this work, we considered only the spatially

normalized GM volumes, called GM tissue densities, for classification. Regarding FDG-

PET images, they were rigidly aligned to the respective MR images. The GM density maps

and the PET images were further smoothed using a Gaussian kernel (with unit standard

deviation) to improve the signal-to-noise ratio. We downsampled both the GM density maps

and PET images to 64×64×64 voxels7 according to Liu et al.’s work (Liu et al., 2013),

which saved the computational time and memory cost, but without sacrificing the

classification accuracy.

3. Method

In Fig. 1, we illustrate a schematic diagram of our framework for AD/MCI diagnosis. Given

a pair of MRI and PET images, we first select class-discriminative patches by means of a

statistical significance test between classes. Using the tissue densities of a MRI patch and

5Available at ‘http://mipav.cit.nih.gov/clickwrap.php’.
6Available at ‘http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/’.
7The final voxel size is 4×4×4 mm3.
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the voxel intensities of a PET patch as observations, we build a patch-level feature learning

model, called a MultiModal DBM (MM-DBM), that finds a shared feature representation

from the paired patches. Here, instead of using the original real-valued tissue densities of

MRI and the voxel intensities of PET as inputs to MM-DBM, we first train a Gaussian

Restricted Boltzmann Machine (RBM) and use it as a preprocessor to transform the real-

valued observations into binary vectors, which become the input to MM-DBM. After

finding latent and shared feature representations of the paired patches from the trained MM-

DBM, we construct an image-level classifier by fusing multiple classifiers in a hierarchical

manner, i.e., patch-level classifier learning, mega-patch construction, and a final ensemble

classification.

3.1. Patch Extraction

For the class-discriminative patch extraction, we exploit statistical significance for voxels in

each patch, i.e., p-values, following Liu et al.’s work (Liu et al., 2013). It is noteworthy that

in this step, we take advantage of a group-wise analysis via voxel-wise statistical test. That

is, by first performing group comparison, e.g., AD and NC, we can find the statistically

significant voxels, which can provide useful information for brain disease diagnosis. Based

on these voxels, we can then define the class-discriminative patches to further utilize local

regional information. By considering only the selected discriminative patches rather than all

patches in an image, we can obtain both performance improvement in classification and

reduction in computational cost. Throughout this paper, a patch is defined as a three-

dimensional cube with a size of w × w × w in a brain image, i.e., MRI or PET. Given a set of

training images, we first perform two-sample t-test on each voxel, and then select voxels

with the p-value smaller than the predefined threshold8. For each of the selected voxels, by

taking each of them as a center, we extract patches with a size of w × w × w, and then

compute a mean p-value by averaging the p-values of all voxels within a patch. Finally, by

scanning all the extracted patches, we select class-discriminative patches in a greedy manner

with the following rules:

• The candidate patch should be overlapped less than 50% with any of the selected

patches.

• Among the candidate patches that satisfy the rule above, we select patches whose

mean p-values are smaller than the average p-value of all candidate patches.

For the multimodal case, i.e., MRI and PET in our work, we apply the steps of testing the

statistical significance, extracting patches, and computing the mean p-values as explained

above, for each modality independently. But for the last step of selecting class-

discriminative patches, we consider multiple modalities together. That is, regarding the

second rule, the mean p-value of a candidate patch should be smaller than that of all

candidate patches of all the modalities. Once a patch location is determined from one

modality, a patch of the same location in the other modality is paired for multimodal joint

feature representation, which is described in the following section.

8In this work, we set the threshold to 0.05.
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3.2. Patch-Level Deep Feature Learning

Recently, Liu et al. presented a hierarchical framework that gradually integrated features

from a number of local patches extracted from a GM density map (Liu et al., 2013).

Although they showed the efficacy of their method for AD/MCI diagnosis, it is well-known

that the structural or functional images are susceptible to acquisition noise, intensity

inhomogeneity, artifacts, etc. Furthermore, the raw voxel density or intensity values in a

patch can be considered as low-level features that do not efficiently capture more

informative high-level features. To this end, in this paper, we propose a deep learning based

high-level structural and functional feature representation from MRI and PET, respectively,

for AD/MCI classification.

In the following, we first introduce an RBM, which has recently become a prominent tool

for feature learning with applications in a wide variety of machine learning fields. Then, we

describe a DBM, a network of stacking multiple RBMs, with which we discover a latent

hierarchical feature representation from a patch. We finally explain a systemic method to

find a joint feature representation from multimodal neuroimaging data, such as MRI and

PET.

3.2.1. Restricted Boltzmann Machine—An RBM is a two-layer undirected graphical

model with visible and hidden units or variables in each layer (Fig. 2). Hereafter, we use

units and variables interchangeably. It assumes a symmetric connectivity W between the

visible layer and the hidden layer, but no connections within the layers, and each layer has a

bias term, a and b, respectively. In Fig. 2, the units of the visible layer v = [vi], i = {1, · · · ,

D}, correspond to the observations while the units of the hidden layer h = [hj], j = {1, · · · ,

F}, models the structures or dependencies over visible variables, where D and F denote,

respectively, the numbers of visible and hidden units. In our work, the voxel intensities of a

patch become the values of the visible units, and the hidden units represent the complex

relations of the input units, i.e., voxels in a patch, that can be captured by the symmetric

matrix W. It is worth noting that because of the symmetricity of the matrix W, we can also

reconstruct the input observations, i.e., a patch, from the hidden representations. Therefore,

an RBM is also considered as an auto-encoder (Hinton and Salakhutdinov, 2006). This

favourable characteristic is also used in RBM parameters learning (Hinton et al., 2006).

In RBM, a joint probability of (v, h) is given by:

(1)

where Θ = {W = [Wij] ∈ RD×F, a = [ai] ∈ RD, b = [bj] ∈ RF}, E(v, h; Θ) is an energy

function, and Z(Θ) is a partition function that can be obtained by summing over all possible

pairs of v and h. For the sake of simplicity, by assuming binary visible and hidden units, the

energy function E(v, h; Θ) is defined by
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(2)

The conditional distribution of the hidden variables given the visible variables and also the

conditional distribution of the visible variables given the hidden variables are, respectively,

computed as follows:

(3)

(4)

where  is a logistic sigmoid function. Due to the unobservable hidden

variables, the objective function is defined as the marginal distribution of the visible

variables as follows:

(5)

In our work, the observed patch values from MRI and PET are real-valued v ∈ RD. For this

case, it is common to use a Gaussian RBM (Hinton and Salakhutdinov, 2006), in which the

energy function is given by

(6)

where σi denotes a standard deviation of the i-th visible variable and Θ = {W, a, b, σ = [σi]

∈ RD}. This variation leads to the following conditional distribution of visible variables

given the binary hidden variables

(7)

3.2.2. Deep Boltzmann Machine—A DBM is an undirected graphical model, structured

by stacking multiple RBMs in a hierarchical manner. That is, a DBM contains a visible layer

v and a series of hidden layers h1 ∈ {0, 1}F1, · · · , hi ∈ {0, 1}Fi, · · · , hL ∈ {0, 1}FL, where

Fi denotes the number of units in the i-th hidden layer and L is the number of hidden layers.
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We should note that, hereafter, for simplicity, we omit bias terms and assume that the visible

and hidden variables are binary9 or probability, and the following description on DBM is

based on Salakhutdinov and Hinton’s work (Salakhutdinov and Hinton, 2012).

Thanks to the hierarchical nature in the deep network, one of the most important

characteristics of the DBM is to capture highly non-linear and complicated patterns or

statistics such as the relations among input values. Another important feature of the DBM is

that the hierarchical latent feature representation can be learned directly from the data

without human intervention. In other words, unlike the previous methods that mostly

considered hand-crafted/predefined features (Zhang et al., 2011; Fan et al., 2007b; Liu et al.,

2013) or outputs from the predefined functions (Dinov et al., 2005; Hackmack et al., 2012),

we assign the role of determining feature representations to a DBM and find them

autonomously from the training samples. Utilizing its representational and self-taught

learning properties, we can find a latent representation of the original GM tissue intensities

and/or PET voxel intensities in a patch. When an input patch is presented to a DBM, the

different layers of the network represent different levels of information. That is, the lower

the layer in the network, the simpler patterns (e.g., linear relations of input variables); the

higher the layer, the more complicated or abstract patterns inherent in the input values (e.g.,

non-linear relations among input variables).

The rationale of using DBM for feature representation is as follows: (1) It can learn internal

latent representations that capture non-linear complicated patterns and/or statistical

structures in a hierarchical manner (Bengio, 2009; Bengio et al., 2007; Hinton et al., 2006;

Mohamed et al., 2012). However, unlike many other deep network models such as deep

belief network (Hinton and Salakhutdinov, 2006), and stacked auto-encoder (Shin et al.,

2013), the approximate inference procedure after the initial bottom-up pass incorporates top-

down feedback, which allows DBM to use higher-level knowledge to resolve uncertainty

about intermediate-level features, thus creating better data-dependent representations and

statistics for learning (Salakhutdinov and Hinton, 2012). Thanks to this two-way

dependencies, i.e., bottom-up and top-down, it was shown that DBMs outperform the other

deep learning methods in computer vision (Salakhutdinov and Hinton, 2009; Montavon et

al., 2012; Srivastava and Salakhutdinov, 2012). To this end, we use a DBM to discover

hierarchical feature representation from neuroimaging, e.g., MRI and PET in our work.

Fig. 3(a) shows an example of the three-layer DBM. The energy of the state (v, h1, h2) in the

DBM is given by

(8)

where  and  are, respectively, symmetric

connections of (v, h1) and (h1, h2), and Θ = {W1, W2}. Then the probability that the model

assigns to a visible vector v is given by:

9In our experiments, we trained a Gaussian RBM by fixing the standard deviations to 1 and transformed the observed real-values from
MRI and PET to binary vectors using it as a preprocessor, following Nair and Hinton’s work (Nair and Hinton, 2008).
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(9)

where Z(Θ) is a normalizing factor. Given the values of the units in the neighboring layer(s),

the probability of the binary visible or binary hidden units being set to 1 is computed as

follows:

(10)

(11)

(12)

Note that in the computation of the probability of the hidden units h1, we incorporate both

the lower visible layer v and the higher hidden layer h2, and this makes DBM differentiated

from other deep learning models and also more robust to noisy observations (Salakhutdinov

and Hinton, 2009; Srivastava and Salakhutdinov, 2012).

Unlike the conventional generative DBM, in this work, we consider a discriminative DBM,

by injecting a discriminative RBM (Larochelle and Bengio, 2008) at the top hidden layer.

That is, the top hidden layer is connected to both the lower hidden layer and the additional

label layer (Fig 3(b)), which indicates the label of the input v. In this way, we can train

DBM to discover hierarchical and discriminative feature representations by integrating the

process of discovering features of inputs with their use in classification (Larochelle and

Bengio, 2008). Our model does not require an additional fine-tuning step for classification

as done in (Salakhutdinov and Hinton, 2009; Ngiam et al., 2011). With the inclusion of the

additional label layer, the energy of the state (v, h1, h2, o) in the modified DBM is given by

(13)

where U = [Ulk] ∈ RC×F2 and o = [ol] ∈ {0, 1}C denote, respectively, a connectivity between

the top hidden layer and the label layer and a classlabel indicator vector, C is the number of

classes, and Θ = {W1, W2, U}. The probability of an observation (v, o) is computed by

(14)

The conditional probability of the top hidden units being set to 1 is given by
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(15)

For the label layer, we use a logistic function

(16)

In this way, the hidden units capture class-predictive information about the input vector.

Here, we should note that the label layer connected to the top hidden layer is considered

during only the training phase of finding the class-discriminative parameters.

From a feature learning perspective, in the low layer of our model, basic image features such

as spots and edges are captured from the input data. The learned low-level features are

further fed into the high-level of the network, which encodes more abstract and higher level

semantic information inherent in the input data. But, here, we should note that the output

layer linked to the top hidden layer imposes the learned features to be discriminative

between classes.

In order to learn the parameters Θ = {W1, W2, U}, we maximize the log-likelihood of the

observed data (v, o). The derivative of the log-likelihood of the observed data with respect to

the model parameters takes the simple form of

(17)

(18)

where < · >data denotes the data-dependent statistics obtained by sampling the model

conditioned on the visible units v(≡ h0) and the label units o clamped to the observation and

the corresponding label, respectively, and < · >model denotes the data-independent statistics

obtained by sampling from the model. When the model approximates the data distribution

well, it can be reached for the equilibrium of data-dependent and data-independent statistics.

In parameters learning, we use a gradient-based optimization strategy. In Eq. (17) and Eq.

(18), we need to compute the data-dependent and the data-independent statistics. First,

because of the two-way dependency in DBM, it is not tractable for the data-dependent

statistics. Fortunately, variational mean-field approximation works well for estimating the

data-dependent statistics. For the details of computing the data-dependent statistics, please

refer to Appendix A and (Salakhutdinov and Hinton, 2012).

Here, we should note that due to the large number of parameters involved in the DBM, it

generally requires a huge number of training samples for generalization, which is not valid
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in practice, especially for the neuroimaging studies. However, Hinton et al. recently

introduced a greedy layer-wise learning algorithm and successfully applied to learn a deep

belief network (Hinton and Salakhutdinov, 2006). Since the pioneering work, many research

groups have used this approach to initialize the parameters in deep learning and called it

‘pre-training’ (Hinton et al., 2006; Bengio, 2009). We apply the same procedure to provide a

good initial configuration of the parameters, which helps the learning procedure converge

much faster than random initialization. The key idea in a greedy layer-wise learning is to

train one layer at a time by maximizing the variational lower bound. That is, we first train

the 1st hidden layer with the training data as input, and then train the 2nd hidden layer with

the outputs from the 1st hidden layer as input, and so on. That is, the representation of the l-

th hidden layer is used as input for the (l + 1)-th hidden layer and this pairwise model

becomes an RBM. Here, it should be mentioned that, unlike the other deep networks,

because the DBM integrates both bottom-up and top-down information, the first and last

RBMs in the network need modification by using weights twice as big as in one direction.

Since the detailed explanation on this issue is out of domain of our work, please refer to

(Salakhutdinov and Hinton, 2012) for details.

In a nutshell, the learning proceeds by two steps: (1) a greedy-layer-wise pre-training for a

good initial setup of the modal parameters, and (2) iterative alternation of variational mean-

field approximation to estimate the posterior probabilities of hidden units and stochastic

approximation to update model parameters (refer to Appendix A). After learning the

parameters, we can then obtain a latent feature representation for an input sample, by

inferring the probabilities of the hidden units in the trained DBM10.

3.3. Multimodal Deep Feature Fusion

There are increasing evidences that biomarkers from different modalities can provide

complementary information in AD/MCI diagnosis (Perrin et al., 2009; Kohannim et al.,

2010; Hinrichs et al., 2011; Zhang et al., 2011; Suk and Shen, 2013). Unlike the previous

methods that either simply concatenated features from multiple modalities into a long vector

(Kohannim et al., 2010) or fused the modality-dependent features in a kernel space (Hinrichs

et al., 2011; Zhang et al., 2011; Suk and Shen, 2013), in this work, we propose a systematic

method of extracting multimodal feature representations in a probabilistic manner.

Different modalities will have different statistical properties, thus making it difficult to

jointly model them using a shallow architecture. Therefore, simple concatenation of the

features of multiple modalities can cause strong connections among the variables of

individual modality, but few units across modalities (Ngiam et al., 2011). In order to tackle

this problem, Srivastava and Salakhutdinov proposed a MultiModal DBM (MM-DBM) to

combine images and texts for information retrieval (Srivastava and Salakhutdinov, 2012).

Motivated by their work, in this paper, we devise a modified MM-DBM, in which the top

hidden layer has multiple entries of the lower hidden layers and the label layer, to extract a

shared feature representation by fusing neuroimaging information of MRI and PET. Fig. 4

10Instead of the standard mean-field approximation, inspired by Montavon et al.’s work (Montavon et al., 2012), in this work, we
traverse the trained DBM in a feed-forward manner, i.e., f = sigm(W2 · sigm(W1v)), for feature representations. The same strategy is
applied for the multimodal DBM described in Section 3.3.
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presents a multimodal deep network in which one path represents the statistical properties of

MRI and the other path represents those of PET, and the top shared hidden layer finally

discovers the shared properties of the modalities in a supervised manner. We argue that this

joint feature representation discriminates our method from the previous multimodal methods

(Hinrichs et al., 2011; Zhang et al., 2011; Suk and Shen, 2013), which first extracted

features from each modality independently, and then combined them through kernel

machines.

The joint distribution over the multimodal inputs of MRI and PET can be estimated as

follows:

(19)

where the subscripts M, P, and S denote, respectively, units of the MRI path, the PET path,

and the shared hidden layer. Regarding parameters learning for MM-DBM, the same

strategy with the unimodal DBM learning can be applied. For details, please refer to

Appendix B.

3.4. Image-Level Hierarchical Classifier Learning

In order to combine the distributed patch information over an image and build an image-

level classifier, we use a hierarchical classifier learning scheme, proposed by Liu et al. (Liu

et al., 2013). That is, we first build a classifier for each patch, independently, and then

combine them in a hierarchical manner by feeding the outputs from the lower-level

classifiers to the upper-level classifier. Specifically, we build a three-level classifier for

decision: patch-level, mega-patch-level, and image-level. For the patch-level classification, a

linear Support Vector Machine (SVM) is trained for each patch location independently with

the (MM-)DBM-learned feature representations as input. The output from a patch-level

SVM, measured by the relative distance from the decision hyperplane, is then converted to a

probability via a soft-max function. Here, we should note that in patch-level classifier

learning, we randomly partition the training data into a training set and a validation set1. The

patch-level classifier is trained on the training set, and then the classification accuracy is

obtained with the validation set.

In the following hierarchy, instead of considering all patch-level classifiers’ output

simultaneously, we agglomerate the information of the locally distributed patches by

constructing spatially distributed ‘mega-patches’ under the consideration that the disease-

related brain areas are distributed over some distant brain regions with arbitrary shape and

size (Liu et al., 2013). Similar to the patch extraction described in Section 3.1, we construct

mega-patches and the respective classifiers in a greedy manner. Concretely, we first sort the

patches in a descending order based on the classification accuracy obtained with the

11In our work, we set 80% of the entire training data as a training set and the rest for a validation set.
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validation set in patch-level classifier learning. Starting with the patch with the highest

classification accuracy as a new mega-patch, we greedily merge the neighboring patches

into the mega-patch. The merging condition is that, if and only if, a mega-patch classifier,

which is trained with the patches already included in the current mega-patch and also the

candidate patch under consideration, produces a better classification accuracy. The process

is repeated until all the patches are visited. The size of the constructed mega-patches and

their component-patches are determined by a cross-validation. We also constrain that none

of the final mega-patches overlap each other larger than the half of the respective mega-

patches’ size. Note that, in the step of the mega-patch classifier learning, some patches that

are not informative in classification are discarded, and each mega-patch classifier covers

different regions of the brain with a different size.

Finally, we build an image-level classifier by fusing the mega-patch classifiers. We select an

optimal subset of mega-patches in a forward greedy search strategy for a final fusion.

However, since the mega-patch selection is performed on the training data, the resulting

image-level classifier may not be optimal for the testing data. To this end, we divide the

training data into multiple subsets, and train an image-level classifier in each subset

individually12. In this way, we can build multiple image-level classifiers, each of which

selects possibly a different subset of mega-patches. By counting the selected frequency of

mega-patches in each image-level classifier, we can finally compute the relative importance

of the mega-patches. After normalizing the frequencies, we use them as weights of the

respective mega-patches. The final decision in image-level classifiers is made by a weighted

combination of the mega-patch classifiers’ outputs.

4. Experimental Results and Discussions

In this section, we evaluate the effectiveness of the proposed method for (1) a latent feature

representation with DBM and (2) a shared feature representation between MRI and PET

with an MM-DBM, by considering three binary classification problems: AD vs. NC, MCI

vs. NC, MCI converter (MCI-C) vs. MCI non-converter (MCI-NC). Due to the limited

number of data, we applied a 10-fold cross validation technique. Specifically, we randomly

partitioned the dataset into 10 subsets, each of which included 10% of the total data. We

repeated experiments for each classification problem 10 times, by using 9 out of 10 subsets

for training and the remaining one for testing at each time. It is worth noting that, for each

classification problem, during a training phase, we performed patch selection, (MM-)DBM

and SVM model learning only using the 9 training subsets. Based on the selected patches

and also the trained (MM-)DBM and SVM models, we finally evaluated the performance on

the left-out testing subset. We compare the proposed method with Liu et al.’s method (Liu et

al., 2013), using the same training and testing set in each experiment for a fair comparison.

4.1. Experimental Setup

As for the patch size w, we set it to 11 by following Liu et al.’s work (Liu et al., 2013).

During mega-patch construction, the size of a mega-patch was allowed in the range of w ×

12In this work, we set the number of subsets to 10.
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[1.2, 1.4, 1.6, 1.8, 2] and the optimal size for each mega-patch was determined by cross-

validation as explained in Section 3.4.

In building (MM)-DBM of GM patches and/or PET patches, we can use Gaussian visible

units for the input patches by considering the voxels as continuous variables. However,

learning (MM-)DBMs with Gaussian visible units is very slow and requires a huge number

of parameter updates, compared with the binary visible units. To this end, we first trained

RBM with 1, 331(= 113) Gaussian visible units and also 500 binary hidden units by using

contrastive divergence learning (Hinton et al., 2006) for 1000 epochs13. After training a

Gaussian RBM for each modality, we used it as a preprocessor, following Nair and Hinton’s

work (Nair and Hinton, 2008), that effectively converts GM tissue densities or PET voxel

intensities into 500-dimensional binary vectors. We then used the binary vectors as

‘preprocessed data’ to train our (MM-)DBMs. We should note that the Gaussian RBMs were

not updated during (MM-)DBMs learning.

We structured a three-layer DBM for MRI (MRI-DBM) and PET (PET-DBM), respectively,

and a four-layer DBM for MRI+PET (MM-DBM). For all these models, we used binary

visible and binary hidden units. Both the MRI-DBM and the PET-DBM were structured

with 500(visible)-500(hidden)-500(hidden), and the MM-DBM was structured with

500(visible)-500(hidden)-500(hidden) for a MRI pathway,

500(visible)-500(hidden)-500(hidden) for a PET pathway, and finally 1,000 hidden units for

the shared hidden layer. In (MM-)DBM learning, we updated the parameters, i.e., weights

and biases, with a learning rate of 10−3 and a momentum of 0.5 with an increment gradually

up to 0.9 for 500 epochs. We used the trained parameters of MRI-DBM and PET-DBM as

the initial setup of the MRI and PET pathways in MM-DBM learning. We implemented the

DBM method based on Salakhutdinov’s codes14.

We used a linear SVM for the hierarchical classifiers, i.e., patch-level classifier, mega-

patch-level classifier, and image-level classifier. An LIBSVM toolbox15 was used for SVM

learning and classification. The free parameter that controls the soft margin was determined

by a nested cross-validation.

4.2. Extracted Patches and Trained DBMs

In Fig. 5, we presented the example images overlaid with p-values of the voxels, obtained

from AD and NC groups, based on which we selected patch locations for AD and NC

classification. It is worth noting that, for both modalities, the voxels in the subcortical and

medial temporal areas showed low p-values, i.e., statistically different between classes,

while for other areas, each modality presents slightly different p-value distributions, from

which we could possibly obtain complementary information for classification. Samples of

the selected 3D patches are also presented in Fig. 6, in which one 3D volume is displayed in

each row, for each modality. Taking these patches as input data to a Gaussian RBM and then

transforming to binary vectors, we trained our feature representation models, i.e., MRI-

13The input data were first normalized and whitened by zero component analysis, and the standard deviation was fixed to 1 during the
parameter updates.
14Available at ‘http://www.cs.toronto.edu/~rsalakhu/DBM.html’.
15Available at ‘http://www.csie.ntu.edu.tw/~cjlin/libsvm/’.
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DBM, PET-DBM, and MM-DBM. Regarding the trained MM-DBM, we visualized the

trained weights in Fig. 7 by linearly projecting them to the input space for intuitive

interpretation of the feature representations16. In the figure, the left images represent the

trained weights of our Gaussian RBMs that were used to convert the real-valued patches into

binary vectors as a preprocessor, and the right images represent the trained weights of the

first-layer hidden units of the respective modality’s pathway in our MM-DBM. From the

figure, we can regard the hidden units in the Gaussian RBM as simple cells of a human

visual cortex that maximally responds to specific spot- or edge-like stimulus patterns within

the receptive field, i.e., a patch in our case. In particular, each hidden unit in a Gaussian

RBM finds simple volumetric or functional patterns in the input 3D patch by assigning

different weights to the corresponding voxels. For example, hidden units of the Gaussian

RBM for MRI (left in Fig. 7(a)) focus on different parts of a patch to detect a simple spot- or

edge-like pattern in the input 3D GM patch. The hidden units in a Gaussian RBM for PET

(left in Fig. 7(b)) can be understood as descriptors that discover local functional relations

among voxels within a patch.

Note that the hidden units of a Gaussian RBM for either MRI or PET find, respectively, the

structural or functional relations among voxels in a localized way. Meanwhile, the hidden

units in our (MM-)DBM served as complex filters of a human visual cortex that combine the

outputs from the simple cells and maximally responds to more complex patterns within the

receptive field. For example, the weights of hidden units in the hidden layer of the MRI

pathway in an MM-DBM (right in Fig. 7(a)) discover more complicated structural patterns

in the input 3D GM patch, such as combination of edges orienting in different directions.

With respect to the PET, the weights of hidden units in the hidden layer of the PET pathway

in an MM-DBM (right in Fig. 7(b)) discover non-linear functional relations among voxels

within a 3D patch. In this way, as it forwards to the higher layer, the (MM-)DBM finds

complex latent features in the input patch, and ultimately in the top hidden layer, the hidden

units discover the inter-modality relations in between the pair of MRI and PET patches, each

of which comes from the same location in a brain.

4.3. Performance Evaluation

Let TP, TN, FP, and FN denote, respectively, True Positive, True Negative, False Positive,

and False Negative. In this work, we consider the following quantitative measurements and

presented the performances of the competing methods in Table 2.

• ACCuracy (ACC) = (TP+TN) / (TP+TN+FP+FN)

• SENsitivity (SEN) = TP / (TP+FN)

• SPECificity (SPEC) = TN / (TN+FP)

• Balanced ACcuracy (BAC) = (SEN+SPEC) / 2

• Positive Predictive Value (PPV) = TP / (TP+FP)

• Negative Predictive Value (NPV) = TN / (TN+FN)

16For the hidden units of the MRI pathway and the PET pathway, their weights were visualized as a weighted linear combination of
the weights of the Gaussian RBM, similar to Lee et al.’s work (Lee et al., 2009).
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• Area Under the receiver operating characteristic Curve (AUC)

In the classification of AD and NC, the proposed method showed the mean accuracies of

92.38% (MRI), 92.20% (PET), and 95.35% (MRI+PET). Compared to Liu et al.’s method

that showed the accuracies of 90.18% (MRI), 89.13% (PET), and 90.27% (MRI+PET)17,

the proposed method improved by 2.2% (MRI), 3.07% (PET), and 5.08% (MRI+PET). That

is, the proposed method outperformed Liu et al.’s method in all the cases of MRI, PET, and

MRI+PET. In the discrimination of MCI from NC, the proposed method showed the

accuracies of 84.24% (MRI), 84.29% (PET), and 85.67% (MRI+PET). Meanwhile, Liu et

al.’s method showed the accuracies of 81% (MRI), 81.14% (PET), and 83.90% (MRI+PET).

Again, the proposed method outperformed Liu et al.’s method by making performance

improvements of 3.24% (MRI), 3.15% (PET), and 1.77% (MRI+PET). In the classification

between MCI-C and MCI-NC, which is the most important for early diagnosis and

treatment, Liu et al.’s method achieved the accuracies of 64.75% (MRI), 67.17% (PET), and

73.33% (MRI+PET). Compared to these results, the proposed method improved the

accuracies by 7.67% (MRI), 3.58% (PET), and 2.59% (MRI+PET), respectively. Concisely,

in our three binary classifications, based on the classification accuracy, the proposed method

clearly outperformed Liu et al.’s method by achieving the maximal accuracies of 95.35%

(AD vs. NC), 85.67% (MCI vs. NC), and 75.92% (MCI-C vs. MCI-NC), respectively.

Regarding sensitivity and specificity, the higher the sensitivity, the lower the chance of mis-

diagnosing AD/MCI patients; also the higher the specificity, the lower the chance of mis-

diagnosing NC to AD/MCI. Although the proposed method had a lower sensitivity than that

of Liu et al.’s method for a couple of cases, e.g., 90.06% (Liu et al.’s method) vs. 88.04%

(proposed) with PET in the AD diagnosis, 98.97% (Liu et al.’s method) vs. 95.37%

(proposed) with MRI+PET in the MCI diagnosis, and 40.02% (Liu et al.’s method) vs.

25.45% (proposed) with PET in the MCI-C diagnosis, in general, the proposed method

showed higher sensitivity and specificity in all three classification problems. Hence, from a

clinical point of view, the proposed method is less likely to mis-diagnose subjects with

AD/MCI and vice versa, compared to Liu et al.’s method.

Meanwhile, because of the data imbalance between classes, i.e., AD (93 subjects), MCI (204

subjects; 76 MCI-C and 128 MCI-NC subjects), and NC (101 subjects), we obtained low

sensitivity (MCI vs. NC) or specificity (MCIC vs. MCI-NC). The balanced accuracy, which

is calculated by taking the average of sensitivity and specificity, avoids inflated performance

estimates on imbalanced datasets. Based on this metric, we clearly see that the proposed

method is superior to the competing method. Note that in discrimination between MCI and

NC, while the accuracy improvement by the proposed method with MRI+PET was 1.43%

and 1.38% compared to the same method with MRI and PET, respectively, in terms of the

balanced accuracy, the improvements went up to 3.93% (vs. MRI) and 2.95% (vs. PET).

With a further concern on low sensitivity and specificity, especially in classifications of

MCI vs. NC and MCI-C vs. MCI-NC, we also computed a Positive Predictive Value (PPV)

and a Negative Predictive Value (NPV). Statistically, PPV and NPV measure, respectively,

17For the multimodal case, we concatenated the patches of modalities into a single vector for Liu et al.’s method.
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the proportion of subjects with AD, MCI, or MCI-C who are correctly diagnosed as patients,

and the proportion of subjects without AD, MCI, or MCI-C who are correctly diagnosed as

cognitive normal. Based on a recent report by Alzheimer’s Association (Alzheimer’s

Association, 2012), the AD prevalence is projected to be 11 millions to 16 millions by 2050.

For MCI and MCI-C, although there is high variation among reports depending on

definitions, the median of the prevalence estimates of MCI or MCI-C in the literature is

26.4% (MCI) and 4.9% (amnestic MCI) (Ward et al., 2012). Regarding the AD prevalence

by 2050, the proposed method, which achieved 96.80% of the PPV in the classification of

AD and NC, can correctly identify 10.648 millions to 15.488 millions of subjects with AD

while Liu et al.’s method, whose respective PPV was 90.56%, can identify 9.9616 millions

to 14.4896 millions of subjects with AD. Accordingly, our method can correctly identify as

many as 0.6864 millions to 0.9984 millions of subjects more.

The Receiver Operating Characteristic (ROC) curve18 and the Area Under the ROC Curve

(AUC) are also widely used metrics to evaluate the performance of diagnostic tests in brain

disease as well as other medical areas. In particular, the AUC can be thought as a measure of

the overall performance of a diagnostic test. The proposed method with MRI+PET showed

the best AUCs of 0.9877 in AD vs. NC, 0.8808 in MCI vs. NC, and 0.7466 in MCI-C vs.

MCI-NC. Compared to Liu et al.’s method with MRI+PET, the proposed multimodal

method increased the AUCs by 0.0222 (AD vs. NC), 0.0507 (MCI vs. NC), and 0.0307

(MCI-C vs. MCI-NC). Noticeably, the proposed method with MRI enhanced the AUC as

much as 0.0987 than the corresponding AUC of Liu et al.’s method. It is also noteworthy

that in the classification of MCI and NC, the proposed method with MRI+PET improved the

AUC by 0.0330 (vs. MRI) and 0.0389 (vs. PET), while the improvements in the

classifications of AD vs. NC and MCI-C vs. MCI-NC were, respectively, 0.0180/0.0079 (vs.

MRI/PET) and 0.0124/0.0251 (vs. MRI/PET).

Based on the quantitative measurements depicted above, the proposed method clearly

outperforms Liu et al.’s method. In terms of modalities used for classification, similar to the

previous work (Hinrichs et al., 2011; Zhang et al., 2011; Suk and Shen, 2013), we also

obtained the best performances with the complementary information from multiple

modalities, i.e., MRI+PET.

4.4. Comparison with State-of-the-Art Methods

In Table 3, we also compared the classification accuracies of the proposed method with

those of the state-of-the-art methods that considered multi-modality in classifications of AD

vs. NC, MCI vs. NC, and MCI-C vs. MCI-NC. Note that, due to different datasets and

different approaches of extracting features and building classifiers, it is not fair to directly

compare the performances among methods. Nonetheless, it is remarkable that the proposed

method showed the highest accuracies among the methods in all the binary classification

problems. It is also worth noting that our method is the only one that considered the patch-

based approach for feature extraction, while the other methods used an ROI-based approach.

18A plot of test true positive rate versus its false positive rate.
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4.5. Importance of Brain Areas in Classification

For the investigation of the relative importance of different brain areas determined by the

proposed method for AD/MCI diagnosis, we visualized the weights of the selected patches

in Fig. 8. Specifically, the weight of each patch was calculated by accumulating the selected

frequency of mega-patches in final ensemble classifiers over cross-validations. That is, the

weight of a patch was determined with the sum of the weights of the mega-patches that

included the patch and was used in the final decision. The high weighted patches were in

accordance with the previous reports on AD/MCI studies. Those were distributed around a

medial temporal lobe (that includes amygdala, hippocampal formation, entorhinal cortex)

(Braak and Braak, 1991; Visser et al., 2002; Mosconi, 2005; Lee et al., 2006; Devanand et

al., 2007; Burton et al., 2009; Desikan et al., 2009; Ewers et al., 2012; Walhovd et al., 2010),

superior/medial frontal gyrus (Johnson et al., 2005), precentral/postcentral gyrus (Belleville

et al., 2011), precuneus (Bokde et al., 2006; Singh et al., 2006; Davatzikos et al., 2011),

thalamus, putamen (de Jong et al., 2008), caudate nucleus (Dai et al., 2009), etc.

4.6. Limitations

In our experiments, we validated the efficacy of the proposed method in three classification

problems by achieving the best performances. However, there still exist some limitations of

the proposed method.

First, even though we could visualize the trained weights in our (MM-)DBMs in Fig. 7, from

a clinical perspective, it is difficult to understand or interpret the resulting feature

representations. Particularly, with respect to the investigation of brain abnormalities affected

by neurodegenerative disease, i.e., AD or MCI, our method cannot provide useful clinical

information. In this regard, it could be a good research direction in which we further extend

the proposed method to find or detect brain abnormalities in terms of brain regions or areas

for easy understanding to clinicians.

Second, in our experiments, we manually determined the number of hidden units in each

layer. Furthermore, we used a relatively small data samples (93 AD, 76 MCI-C, 128 MCI-

NC, and 101 NC). Therefore, the network structures used to discover high-level feature

representations in our experiments were not necessarily optimal. We believe that it needs

more intensive studies such as learning the optimal network structure from big data for

practical use of deep learning in clinical settings.

Third, as the graphical model illustrated in Fig. 4, the current method only considers bi-

modalities of MRI and PET. However, it is generally beneficiary to combine as many

modalities as possible to use their richer information. Therefore, it is necessary to build a

more systematic model that can efficiently find and use complementary information from

genetics, proteomics, imaging, cognition, disease status, and other phenotypic modalities.

Lastly, according to a recent broad spectrum of studies, there are increasing evidences that

subjective cognitive complaint is one of the important genetic risk factors, which increases

the risk of progression to MCI or AD (Loewenstein et al., 2012; Mark and Sitskoorn, 2013).

That is, among the cognitively normal elderly individuals who have subjective cognitive

impairments, there exists a high possibility for some of them to be in the stage of ‘pre-MCI’.

Suk et al. Page 19

Neuroimage. Author manuscript; available in PMC 2015 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



However, in the ADNI dataset, there is no related information. Thus, in our experiments, the

NC group could include both genuine controls and those with subjective cognitive

complaints.

5. Conclusions

In this paper, we proposed a method for a shared latent feature representation from MRI and

PET in deep learning. Specifically, we used DBM to find a latent feature representation

from a volumetric patch and further devised method to systemically discover a joint feature

representation from multi-modality. Unlike the previous methods that mostly considered the

direct use of the GM tissue densities from MRI and/or voxel intensities from PET and then

fused the complementary information in a kernel technique, the proposed method learned

high-level features in a self-taught manner via deep learning, and thus could efficiently

combine the complimentary information from MRI and PET during feature representation

procedure. Experimental results on ADNI dataset showed that the proposed method is

superior to the previous methods in terms of various quantitative metrics.
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Appendix A: Variational Approximation for DBM Learning

The main idea of applying variational approximation is to assume that the true posterior

distribution over latent variables P(h1, h2∣v; Θ) for each training vector v is unimodal and

can be replaced by an approximate posterior Q(h1, h2∣v; Ω), which can be computed

efficiently, and the parameters are updated to maximize the variational lower bound on the

log-likelihood

(A.1)

(A.2)

where H(·) is the entropy functional, KL[·∥·] denotes Kullback-Leibler divergence, and ω is

a variational parameter set. For computational simplicity and learning speed, the naïve

mean-field approximation, which uses a fully factorized distribution, is generally used in the

literature (Tanaka, 1998). That is, where

(A.3)
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where , , ,

, and . It alternatively

estimates the state of the hidden units, μ1 and μ2, for fixed Θ until convergence:

(A.4)

(A.5)

Regarding the data-independent statistics, we apply a stochastic approximation procedure to

obtain samples, also called particles, of , ,  and  by running repeatedly the alternate

Gibbs sampler on a set of particles. Once both the data-dependent and data-independent

statistics are computed, we then update parameters as follows:

(A.6)

(A.7)

(A.8)

where αt is a learning rate, and N and M denote, respectively, the numbers of training data

and particles, and superscripts n and m denote, respectively, indices of an observation and a

particle.

Appendix B: Learning Multimodal DBM Parameters

The same approach to the unimodal DBM described in Section 3.2.2 can be applied, i.e.,

iterative alternation of the variational mean-field approximation for data-dependent statistics

and the stochastic approximation procedure for data-independent statistics, and parameters

update. Let  and V = {vM, vP}. In variational learning of our MM-

DBM, a fully factorized mean-field variational function for approximation of the true

posterior distribution  is defined as follows:
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(B.

1)

where  is a mean-field parameter set with

, , ,

, and . Referring Eq. (A.4) and Eq. (A.5),

given a fixed model parameter Θ, it is straightforward to estimate the mean-field parameters

Ω.

The learning proceeds by iteratively alternating the variational mean-field inference to find

the values of Ω for the fixed current model parameters Θ and the stochastic approximation

procedure to update model parameters Θ given the variational parameters Ω. Finally, the

shared feature representations can be obtained by inferring the values of the hidden units in

the top hidden layer from the trained MM-DBM.
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Highlights

A novel method for a high-level latent feature representation from neuroimaging data

A systematic method for joint feature representation of multimodal neuroimaging data

Hierarchical patch-level information fusion via an ensemble classifier

Maximal diagnostic accuracies of 93.52% (AD vs. NC), 85.19% (MCI vs. NC), and

74.58% (MCI converter vs. MCI non-converter)
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Figure 1.
Schematic illustration of the proposed method in hierarchical feature representation and

multimodal fusion with deep learning for AD/MCI Diagnosis. (I: image size, w: patch size,

K: # of the selected patches, m: modality index, FG: # of hidden units in a Gaussian

restricted Boltzmann machine, i.e., preprocessor, FS: # of hidden units in the top layer of a

multimodal deep Boltzmann machine).
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Figure 2.
An architecture of a restricted Boltzmann machine (a) and its simplified representation (b).
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Figure 3.
An architecture of (a) a conventional deep Boltzmann machine and (b) its discriminative

version with label information at the top layer.
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Figure 4.
An architecture of a multimodal deep Boltzmann machine for neuroimaging data fusion.
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Figure 5.
Visualization of the p-value distributions used to select the patch locations of MRI and PET

in AD and NC classification.
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Figure 6.
Samples of the selected patches, whose voxel values are the input to the (MM-)DBM.
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Figure 7.
Visualization of the trained weights of our modality-specific Gaussian RBMs (left) used for

data conversion from a real-valued vector to a binary vector, and those of our MM-DBM

(right) used for latent feature representations. For the weights of our MM-DBM, they

correspond to the first hidden layer in the respective modality’s pathway in the model. In

each subfigure, one row corresponds to one hidden unit in the respective Gaussian RBM or

MM-DBM.
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Figure 8.
Patch weight distributions in classification of AD vs. NC and MCI vs. NC.
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Table 1

Demographic and clinical information of the subjects. (SD: Standard Deviation)

AD (93) MCI (204) NC (101)

Female/Male 36/57 68/136 39/62

Age (Mean±SD)
[min-max]

75.49±7.4
[55-88]

74.97±7.2
[55-89]

75.93±4.8
[62-87]

Education (Mean±SD)
[min-max]

14.66±3.2
[4-20]

15.75±2.9
[7-20]

15.83±3.2
[7-20]

MMSE (Mean±SD)
[min-max]

23.45±2.1
[18-27]

27.18±1.7
[24-30]

28.93±1.1
[25-30]

CDR (Mean±SD)
[min-max]

0.8±0.25
[0.5-1]

0.5±0.03
[0-0.5]

0±0
[0-0]

Neuroimage. Author manuscript; available in PMC 2015 November 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Suk et al. Page 37

Table 2

A summary of the performances of two methods.

Method Modality ACC
(%)

SEN
(%)

SPEC
(%)

BAC
(%)

PPV
(%)

NPV
(%) AUC

AD/NC

Liu et al.

MRI 90.18±5.25 91.54 90.61 91.08 88.94 90.67 0.9620

PET 89.13±6.81 90.06 89.36 89.71 88.49 89.26 0.9594

MRI+PET 90.27±7.02 89.48 92.44 90.96 90.56 88.70 0.9655

Proposed

MRI 92.38±5.32 91.54 94.56 93.05 92.65 90.84 0.9697

PET 92.20±6.70 88.04 96.33 92.19 95.03 89.66 0.9798

MRI+PET 95.35±5.23 94.65 95.22 94.93 96.80 95.67 0.9877

MCI/NC

Liu et al.

MRI 81.00±4.98 97.08 48.18 72.63 79.14 88.99 0.8352

PET 81.14±10.22 96.03 52.59 74.31 80.26 84.16 0.8231

MRI+PET 83.90±5.80 98.97 52.59 75.78 81.18 97.22 0.8301

Proposed

MRI 84.24±6.26 99.58 53.79 76.69 81.23 98.75 0.8478

PET 84.29±7.22 98.69 56.87 77.78 81.99 94.57 0.8297

MRI+PET 85.67±5.22 95.37 65.87 80.62 85.02 89.00 0.8808

MCI-C/MCI-NC

Liu et al.

MRI 64.75± 14.83 22.22 89.57 55.90 46.29 77.39 0.6355

PET 67.17±13.43 40.02 82.61 61.32 64.13 70.31 0.6911

MRI+PET 73.33±12.47 33.25 97.52 65.38 80.00 73.18 0.7159

Proposed

MRI 72.42±13.09 36.70 90.98 63.84 65.49 77.84 0.7342

PET 70.75±13.23 25.45 96.55 61.00 75.00 70.69 0.7215

MRI+PET 75.92±15.37 48.04 95.23 71.63 83.50 74.33 0.7466
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Table 3

Comparison of classification accuracy with state-of-the-art methods. The numbers in the parentheses denote

the number of AD/MCI(MCI-C,MCI-NC)/NC subjects in the dataset used.

Methods Dataset Features AD vs. NC
(%)

MCI vs. NC
(%)

MCI-C vs. MCI-NC
(%)

(Kohannim et al., 2010) MRI+PET+CSF
(40/83(43,40)/43) ROI 90.7 75.8 n/a

(Walhovd et al., 2010) MRI+CSF
(38/73/42) ROI 88.8 79.1 n/a

(Hinrichs et al., 2011) MRI+PET ROI
(48/119(38,81)/66) 92.4 n/a 72.3

(Westman et al., 2012) MRI+CSF ROI
(96/162(81,81)/111) 91.8 77.6 66.4

(Zhang and Shen, 2012) MRI+PET+CSF
(45/91(43,48)/50) ROI 93.3 83.2 73.9

Proposed method MRI+PET
(93/204(76,128)/101) Patch 95.35 85.67 75.92

Neuroimage. Author manuscript; available in PMC 2015 November 01.


