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Stochasticity and limited precision of synaptic weights in neural network models are key aspects
of both biological and hardware modeling of learning processes. Here we show that a neural network
model with stochastic binary weights naturally gives prominence to exponentially rare dense regions
of solutions with a number of desirable properties such as robustness and good generalization per-
formance, while typical solutions are isolated and hard to find. Binary solutions of the standard
perceptron problem are obtained from a simple gradient descent procedure on a set of real values
parametrizing a probability distribution over the binary synapses. Both analytical and numerical
results are presented. An algorithmic extension aimed at training discrete deep neural networks is
also investigated.

Learning can be regarded as an optimization process
over the connection weights of a neural network. In
nature, synaptic weights are known to be plastic, low
precision and unreliable, and it is an interesting issue
to understand if this stochasticity can help learning or
if it is an obstacle. The debate about this issue has a
long history and is still unresolved (see [1] and refer-
ences therein). Here, we provide quantitative evidence
that the stochasticity associated with noisy low preci-
sion synapses can drive elementary supervised learning
processes towards a particular type of solutions which,
despite being rare, are robust to noise and generalize
well — two crucial features for learning processes.

In recent years, multi-layer (deep) neural networks
have gained prominence as powerful tools for tackling a
large number of cognitive tasks [2]. In a K-class classi-
fication task, neural network architectures are typically
trained as follows. For any input x ∈ X (the input space
X typically being a tensor space) and for a given set of
parameters W , called synaptic weights, the network de-
fines a probability density function P (y |x,W ) over the
K possible outcomes. This is done through composition
of affine transformations involving the synaptic weights
W , element wise non-linear operators, and finally a soft-
max operator that turns the outcome of previous opera-
tions into a probability density function [3]. The weights

W are adjusted, in a supervised learning scenario, using
a training set D of M known input-output associations,
D = {(xµ, yµ)}Mµ=1. The learning problem is reframed
into the problem of maximizing a log-likelihood L̃ (W )
over the synaptic weights W :

max
W

L̃ (W ) :=
∑

(x,y)∈D

logP (y |x,W ) (1)

The maximization problem is approximately solved
using variants of the Stochastic Gradient Descent
(SGD) procedure over the loss function −L̃ (W ) [4].
In a Bayesian approach instead one is interested
in computing the posterior distribution P (W | D) ∝
P (D |W )P (W ), where P (W ) is some prior over the
weights W . In deep networks, unfortunately, the ex-
act computation of P (W | D) is typically infeasible and
various approximated approaches have been proposed
[5–7].

Shallow neural network models, such as the percep-
tron model for binary classification, are amenable to an-
alytic treatment while exposing a rich phenomenology.
They have attracted great attention from the statistical
physics community for many decades [8–16]. In the per-
ceptron problem we have binary outputs y ∈ {−1,+1},
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while inputs x and weights W are N -components vec-
tors. Under some statistical assumptions on the training
set D and for large N , single variable marginal prob-
abilities P (Wi | D) can be computed efficiently, using
Belief Propagation [17–19]. The learning dynamics has
also been analyzed, in particular in the online learning
setting [11, 20]. In a slightly different perspective the
perceptron problem is often framed as the task of min-
imizing the error-counting Hamiltonian

min
W

H (W ) :=
∑

(x,y)∈D

Θ

(
−y

N∑
i=1

Wi xi

)
, (2)

where Θ (x) is the Heaviside step function, Θ (x) = 1
if x > 0 and 0 otherwise. As a constraint satisfaction
problem, it is said to be satisfiable (SAT) if zero en-
ergy (i.e. H (W ) = 0) configurations exists, unsatisfi-
able (UNSAT) otherwise. We call solutions such con-
figurations. Statistical physics analysis, assuming ran-
dom and uncorrelated D, shows a sharp threshold at a
certain αc = M/N , when N grows large, separating a
SAT phase from an UNSAT one. Moreover, restricting
the synaptic space to binary values,Wi = ±1, leads to
a more complex scenario: most solutions are essentially
isolated and computationally hard to find [13, 21]. Some
efficient algorithms do exist though [12, 22] and gener-
ally land in a region dense of solutions. This apparent
inconsistency has been solved through a large deviation
analysis which revealed the existence of sub-dominant
and dense regions of solutions [14, 23]. This analysis in-
troduced the concept of Local Entropy [14] which sub-
sequently led to other algorithmic developments [24–26]
(see also [27] for related analysis).

In the generalization perspective, solutions within a
dense region may be loosely considered as representa-
tive of the entire region itself, and therefore act as bet-
ter pointwise predictors than isolated solutions, since
the optimal Bayesian predictor is obtained averaging all
solutions [14].

Here, we propose a method to solve the binary per-
ceptron problem (2) through a relaxation to a distribu-
tional space. We introduce a perceptron problem with
stochastic discrete weights, and show how the learning
process is naturally driven towards dense regions of solu-
tions, even in the regime in which they are exponentially

rare compared to the isolated ones. In perspective, the
same approach can be extended to the general learning
problem (1), as we will show.

Denote with Qθ (W ) a family of probability distri-
butions over W parametrized by a set of variables θ.
Consider the following problem:

max
θ
L (θ) :=

∑
(x,y)∈D

logEW∼Qθ P (y |x,W ) (3)

Here L (θ) is the log-likelihood of a model where
for each training example (x, y) ∈ D the synap-
tic weights are independently sampled according to
Qθ (W ). Within this scheme two class predic-
tors can be devised for any input x: ŷ1 (x) =
argmaxy P (y |x, Ŵ ), where Ŵ = argmaxW Qθ (W ),
and ŷ2 (x) = argmaxy

´
dW P (y |x,W )Qθ (W ). In this

paper we will analyze the quality of the training error
given by the first predictor. Generally, dealing with
Problem (3) is more difficult than dealing with Prob-
lem (1), since it retains some of the difficulties of the
computation of P (W | D). Also notice that for any max-
imizer W ? of Problem (1) we have that δ (W −W ?) is
a maximizer of Problem (3) provided that it belongs to
the parametric family, as can be shown using Jensen’s
inequality. Problem (3) is a "distributional" relaxation
of Problem (1).

Optimizing L (θ) instead of L̃ (W ) may seem an un-
necessary complication. In this paper we argue that
there are two reasons for dealing with this kind of task.
First, when the configuration space of each synapse
is restricted to discrete values, the network cannot be
trained with SGD procedures. The problem, while being
very important for computational efficiency and mem-
ory gains, has been tackled only very recently [5, 28].
Since variables θ typically lie in a continuous manifold
instead, standard continuous optimization tools can be
applied to L (θ). Also, the learning dynamics on L (θ)
enjoys some additional properties when compared to the
dynamics on L̃ (W ). In the latter case additional reg-
ularizers, such as dropout and L2 norm, are commonly
used to improve generalization properties [4]. The SGD
in the θ-space instead already incorporates the kind of
natural regularization intrinsic in the Bayesian approach
and the robustness associated to high local entropy [14].
Here we make a case for these arguments by a numerical
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Figure 1. (Left) The training error and the squared norm
against the number of training epochs, for α = 0.55 and
N = 10001, averaged over 100 samples. (Right) Success
probability in the classification task as a function of the load
α for networks of size N = 1001, 10001 averaging 1000 and
100 samples respectively. In the inset we show the average
training error at the end of GD as a function of α.

and analytical study of the proposed approach for the
binary perceptron. We also present promising prelimi-
nary numerical results on deeper networks.
Learning for the Stochastic Perceptron. Following

the above discussion, we now introduce our binary
stochastic perceptron model. For each input x pre-
sented, N synaptic weights W = (W1, . . . ,WN ), Wi ∈
{−1,+1}, are randomly extracted according to the dis-
tribution

Qm (W ) =

N∏
i=1

[
1 +mi

2
δWi,+1 +

1−mi

2
δWi,−1

]
(4)

where δa,b is the Kronecker delta symbol. We will refer
to the set m = (mi)i, where mi ∈ [−1, 1] ∀i, as the
magnetizations or the control parameters. We choose
the probability P (y |x,W ) on the class y ∈ {−1,+1}
for a given input x as follows:

P (y |x,W ) = Θ

(
y

N∑
i=1

Wi xi

)
. (5)

While other possibilities for P (y |x,W ) could be con-
sidered, this particular choice is directly related to the
form of the Hamiltonian in Problem (2), which we
ultimately aim to solve. Given a training set D =
{(xµ, yµ)}Mµ=1, we can then compute the log-likelihood
function of Eq. (3), with the additional assumption that
N is large and the central limit theorem applies. It reads

L (m) =
∑

(x,y)∈D

logH

(
−

y
∑
imi xi√∑

i (1−m2
i )x

2
i

)
, (6)

where H (x) :=
´∞
x
dz e−z

2/2/
√

2π. Minimizing
−L (m) instead of finding the solutions of Problem (2)
allows us to use the simplest method for approximately
solving continuous optimization problems, the Gradient
Descent (GD) algorithm:

mt+1
i ← clip

(
mt
i + η ∂miL

(
mt
))

. (7)

We could have adopted the more efficient SGD ap-
proach, however in our case simple GD is already effec-
tive. In the last equation η is a suitable learning rate and
clip (x) := max (−1,min (1, x)), applied element-wise.
Parameters are randomly initialized to small values,
m0
i ∼ N

(
0, N−1

)
. At any epoch t in the GD dynamics

a binarized configuration Ŵ t
i = sign (mt

i) can be used to
compute the training error Êt = 1

MH
(
Ŵ t
)
. We con-

sider a training set D where each input component xµi is
sampled uniformly and independently in {−1, 1} (with
this choice we can set yµ = 1∀µ without loss of general-
ity). The evolution of the network during GD is shown
in Fig. 1. The training error goes progressively to zero
while the mean squared norm of the control variables
qt? = 1

N

∑
i (mt

i)
2 approaches one. Therefore the distri-

bution Qm concentrates around a single configuration
as the training is progressing. This natural flow is simi-
lar to the annealing of the coupling parameter manually
performed in local entropy inspired algorithms [25, 26].
We also show in Fig. 1 the probability over the realiza-
tions of D of finding a solution of the binary problem as
function of the load α = M/N . The algorithmic capac-
ity of GD is approximately αGD ≈ 0.63. This value has
to be compared to the theoretical capacity αc ≈ 0.83,
above which there are almost surely no solutions [9],
and state-of-the-art algorithms based on message pass-
ing heuristics for which we have a range of capacities
αMP ∈ [0.6, 0.74] [12, 22, 29]. Therefore GD reaches
loads only slightly worse than those reached by much
more fine tuned algorithms, a surprising results for such
a simple procedure. Also, for α slightly above αGD
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the training error remains comparably low, as shown
in Fig. 1. In our experiments most variants of the GD
procedure of Eq. (7) performed just as well: e.g. SGD
ors GD computed on the fields hti = tanh−1 (mt

i) rather
than the magnetizations[30]. Other updates rules for
the control parameters can be derived as multiple pass
of on-line Bayesian learning [31, 32]. Variations of rule
(7) towards biological plausibility are discussed in the
SM [33].
Deep Networks. We applied our framework to deep

neural networks with binary stochastic weights and sign
activation functions. Using an uncorrelated neuron ap-
proximation, as in Ref. [6], we trained the network using
the standard SGD algorithm with backpropagation. We
give the details in the SM. On the MNIST benchmark
problem [34], using a network with three hidden layers
we achieved ∼ 1.7% test error, a very good result for a
network with binary weights and activations and with
no convolutional layers [35]. No other existing approach
to the binary perceptron problem has been extended yet
to deeper settings.
Statistical mechanics Analysis. We now proceed

with the analytical investigation of the equilibrium
properties of the stochastic perceptron, which partly
motivates the good performance of the GD dynamics.
The starting point of the analysis is the partition func-
tion

Z =

ˆ
Ω

∏
i

dmi δ

(∑
i

m2
i − q?N

)
eβL(m) (8)

where Ω = [−1, 1]
N , β is an inverse temperature, and

we constrained the squared norm to q?N in order to
mimic the natural flow of qt? in the training process.
The dependence on the training set D is implicit in last
equation. We shall denote with ED the average over the
training sets with i.i.d. input and output components
uniform in {−1, 1}. We investigate the average proper-
ties of the system for large N and fixed load α = M/N
using the replica method in the Replica Symmetric (RS)
ansatz [36]. Unfortunately the RS solution becomes lo-
cally unstable for very large β. Therefore, instead of
taking the infinite β limit to maximize the likelihood
we will present the results obtained for β large but still
in the RS region. The details of the free energy cal-
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Figure 2. (Left) Energy of the Binarized Configuration ver-
sus the control variable q?. We show the equilibrium pre-
diction of Eq. (9), and numerical results from the GD algo-
rithm and a GD algorithm variant where after each update
we rescale the norm ofm to q? until convergence before mov-
ing to the next value of q? according to a certain schedule.
The results are averaged over 20 random realizations of the
training set with N = 10001. (Right) Entropy of binary
solutions at fixed distance d from BCs of the spherical, bi-
nary and stochastic perceptron (q? = 0.7, 0.8 and 0.9 from
bottom to top) at thermodynamic equilibrium. In both fig-
ures α = 0.55, also β = 20 for the stochastic perceptron and
β = ∞ for the spherical and binary ones.

culation and of the stability check can be found in the
SM.
Energy of the Binarized Configuration. We now an-

alyze some properties of the mode of the distribution
Qm (W ), namely Ŵi = sign (mi), that we call Binarized
Configuration (BC). The average training error per pat-
tern is:

E = lim
N→∞

1

αN
ED

 ∑
(x,y)∈D

〈
Θ

(
−y
∑
i

sign (mi)xi

)〉
(9)

where 〈•〉 is the thermal average over m according
to the partition function (8), which implicitly depends
on D, q? and β. The last equation can be computed
analytically within the replica framework (see SM). In
Fig. 2 (Left) we show that for large β the BC becomes
a solution of the problem when q? approaches one. This
is compared to the values of the training error obtained
from GD dynamics at corresponding values of q?, and
a modified GD dynamics where we let the system equi-
librate at fixed q?. The latter case, although we are
at finite N and we are considering a dynamical process
that could suffer the presence of local minima, is in rea-
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sonable agreement with the equilibrium result of Eq.
(9).
Geometrical structure of the solution space. Most so-

lutions of the binary perceptron problem are isolated
[13], while a subdominant but still exponentially large
number belongs to a dense connected region [14]. So-
lutions in the dense region are the only ones that are
algorithmically accessible. Here we show that BCs of
the stochastic binary perceptron typically belong to the
dense region, provided q? is high enough. To prove this
we count the number of solutions at a fixed Hamming
distance d from typical BC (this corresponds to fixing
an overlap p = 1−2d). Following the approach of Franz
and Parisi [37] we introduce the constrained partition
function

Z(d,m) =
∑
W

∏
(x,y)∈D

Θ

(
y
∑
i

Wixi

)

× δ

(
N (1− 2d)−

∑
i

sign (mi)Wi

)
, (10)

where the sum is over the {−1,+1}N binary config-
urations. The Franz-Parisi entropy S (d) is then given
by

S(d) = lim
N→∞

1

N
ED 〈log Z (d,m)〉 . (11)

We show how to compute S (d) in the SM. In Fig. 2
(Right) we compare S (d) for the stochastic perceptron
with the analogous entropies obtained substituting the
expectation 〈•〉 over m in Eq. (11) with a uniform sam-
pling from the solution space of the spherical (the model
of Ref. [8]) and the binary (as in Ref. [13]) perceptron.
The distance gap between the BC and the nearest bi-
nary solutions (i.e., the value of the distance after which
S(d) becomes positive) vanishes as q? is increased: in
this regime the BC belongs to the dense cluster and we
have an exponential number of solutions at any distance
d > 0. Typical binary solutions and binarized solutions
of the continuous perceptron are isolated instead (finite
gap, corresponding to S(d) = 0 at small distances). In
the SM we provide additional numerical results on the
properties of the energetic landscape in the neighbor-

hood of different types of solutions, showing that solu-
tions in flatter basins achieve better generalization than
those in sharp ones.
Conclusions. Our analysis shows that stochastic-

ity in the synaptic connections may play a fundamen-
tal role in learning processes, by effectively reweighting
the error loss function, enhancing dense, robust regions,
suppressing narrow local minima and improving gener-
alization.

The simple perceptron model allowed us to derive an-
alytical results as well as to perform numerical tests.
Moreover, as we show in the SM, when considering
discretized priors, there exist a connection with the
dropout procedure which is popular in modern deep
learning practice. However, the most promising imme-
diate application is in the deep learning scenario, where
this framework can be extended adapting the tools de-
veloped in Refs. [6, 7], and where we already achieved
state-of-the-art results in our preliminary investigations.

Hopefully, the general mechanism shown here can also
help to shed some light on biological learning processes,
where the role of low precision and stochasticity is still
an open question. Finally, we note that this procedure is
not limited to neural network models; for instance, ap-
plication to constraint satisfaction problems is straight-
forward.

CB, HJB and RZ acknowledge ONR Grant N00014-
17-1-2569.
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