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α-Rank: Multi-Agent Evaluation by 
Evolution
Shayegan Omidshafiei1, Christos Papadimitriou5, Georgios Piliouras   4, Karl Tuyls1, 
Mark Rowland2, Jean-Baptiste Lespiau1, Wojciech M. Czarnecki2, Marc Lanctot3, 
Julien Perolat2 & Remi Munos1

We introduce α-Rank, a principled evolutionary dynamics methodology, for the evaluation and ranking 
of agents in large-scale multi-agent interactions, grounded in a novel dynamical game-theoretic 
solution concept called Markov-Conley chains (MCCs). The approach leverages continuous-time and 
discrete-time evolutionary dynamical systems applied to empirical games, and scales tractably in 
the number of agents, in the type of interactions (beyond dyadic), and the type of empirical games 
(symmetric and asymmetric). Current models are fundamentally limited in one or more of these 
dimensions, and are not guaranteed to converge to the desired game-theoretic solution concept 
(typically the Nash equilibrium). α-Rank automatically provides a ranking over the set of agents under 
evaluation and provides insights into their strengths, weaknesses, and long-term dynamics in terms 
of basins of attraction and sink components. This is a direct consequence of the correspondence we 
establish to the dynamical MCC solution concept when the underlying evolutionary model’s ranking-
intensity parameter, α, is chosen to be large, which exactly forms the basis of α-Rank. In contrast to the 
Nash equilibrium, which is a static solution concept based solely on fixed points, MCCs are a dynamical 
solution concept based on the Markov chain formalism, Conley’s Fundamental Theorem of Dynamical 
Systems, and the core ingredients of dynamical systems: fixed points, recurrent sets, periodic orbits, 
and limit cycles. Our α-Rank method runs in polynomial time with respect to the total number of 
pure strategy profiles, whereas computing a Nash equilibrium for a general-sum game is known to 
be intractable. We introduce mathematical proofs that not only provide an overarching and unifying 
perspective of existing continuous- and discrete-time evolutionary evaluation models, but also reveal 
the formal underpinnings of the α-Rank methodology. We illustrate the method in canonical games and 
empirically validate it in several domains, including AlphaGo, AlphaZero, MuJoCo Soccer, and Poker.

This paper introduces a principled, practical, and descriptive methodology, which we call α-Rank. α-Rank ena-
bles evaluation and ranking of agents in large-scale multi-agent settings, and is grounded in a new game-theoretic 
solution concept, called Markov-Conley chains (MCCs), which captures the dynamics of multi-agent interac-
tions. While much progress has been made in learning for games such as Go1,2 and Chess3, computational gains 
are now enabling algorithmic innovations in domains of significantly higher complexity, such as Poker4 and 
MuJoCo soccer5 where ranking of agents is much more intricate than in classical simple matrix games. With 
multi-agent learning domains of interest becoming increasingly more complex, we need methods for evaluation 
and ranking that are both comprehensive and theoretically well-grounded.

Evaluation of agents in a multi-agent context is a hard problem due to several complexity factors: strategy and 
action spaces of players quickly explode (e.g., multi-robot systems), models need to be able to deal with intransitive 
behaviors (e.g., cyclical best-responses in Rock-Paper-Scissors, but at a much higher scale), the number of agents 
can be large in the most interesting applications (e.g., Poker), types of interactions between agents may be complex 
(e.g., MuJoCo soccer), and payoffs for agents may be asymmetric (e.g., a board-game such as Scotland Yard).

This evaluation problem has been studied in Empirical Game Theory using the concept of empirical games 
or meta-games, and the convergence of their dynamics to Nash equilibria6–9. In Empirical Game Theory a 
meta-game is an abstraction of the underlying game, which considers meta-strategies rather than primitive 
actions6,8. In the Go domain, for example, meta-strategies may correspond to different AlphaGo agents (e.g., 
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each meta-strategy is an agent using a set of specific training hyperparameters, policy representations, and so on). 
The players of the meta-game now have a choice between these different agents (henceforth synonymous with 
meta-strategies), and payoffs in the meta-game are calculated corresponding to the win/loss ratio of these agents 
against each other over many rounds of the full game of Go. Meta-games, therefore, enable us to investigate the 
strengths and weaknesses of these agents using game-theoretic evaluation techniques.

Existing meta-game analysis techniques, however, are still limited in a number of ways: either a low number 
of players or a low number of agents (i.e., meta-strategies) may be analyzed6–8,10. Specifically, on the one hand 
continuous-time meta-game evaluation models, using replicator dynamics from Evolutionary Game Theory11–15, 
are deployed to capture the micro-dynamics of interacting agents. These approaches study and visualize basins of 
attraction and equilibria of interacting agents, but are limited as they can only be feasibly applied to games involv-
ing few agents, exploding in complexity in the case of large and asymmetric games. On the other hand, exist-
ing discrete-time meta-game evaluation models (e.g.16–20) capture the macro-dynamics of interacting agents, but 
involve a large number of evolutionary parameters and are not yet grounded in a game-theoretic solution concept.

To further compound these issues, using the Nash equilibrium as a solution concept for meta-game evaluation 
in these dynamical models is in many ways problematic: first, computing a Nash equilibrium is computationally 
difficult21,22; second, there are intractable equilibrium selection issues even if Nash equilibria can be computed23–25; 
finally, there is an inherent incompatibility in the sense that it is not guaranteed that dynamical systems will con-
verge to a Nash equilibrium26,27, or, in fact, to any fixed point. However, instead of taking this as a disappointing 
flaw of dynamical systems models, we see it as an opportunity to look for a novel solution concept that does not 
have the same limitations as Nash in relation to these dynamical systems. Specifically, exactly as J. Nash used one 
of the most advanced topological results of his time, i.e., Kakutani’s fixed point theorem28, as the basis for the Nash 
solution concept, in the present work, we employ Conley’s Fundamental Theorem of Dynamical Systems29 and 
propose the solution concept of Markov-Conley chains (MCCs). Intuitively, Nash is a static solution concept solely 
based on fixed points. MCCs, by contrast, are a dynamic solution concept based not only on fixed points, but also 
on recurrent sets, periodic orbits, and limit cycles, which are fundamental ingredients of dynamical systems. The 
key advantages are that MCCs comprehensively capture the long-term behaviors of our (inherently dynamical) 
evolutionary systems, and our associated α-Rank method runs in polynomial time with respect to the total num-
ber of pure strategy profiles (whereas computing a Nash equilibrium for a general-sum game is PPAD-complete21).

Main Contributions: α-Rank and MCCs
The contribution of this paper is three-fold: 1) the introduction of a multi-population discrete-time model, which 
enables evolutionary analysis of many-player interactions even in asymmetric games, 2) the introduction of the 
MCC solution concept, a new game-theoretic concept that captures the dynamics of multi-agent interactions, and 
subsequent connection to the discrete-time model, and 3) the specific ranking strategy/algorithm for the general 
multi-population setting that we call α-Rank. While MCCs do not immediately address the equilibrium selection 
problem, we show that by introducing a perturbed variant that corresponds to a generalized multi-population 
discrete-time dynamical model, the underlying Markov chain containing them becomes irreducible and yields 
a unique stationary distribution. The ordering of the strategies of agents in this distribution gives rise to our 
α-Rank methodology. α-Rank provides a summary of the asymptotic evolutionary rankings of agents in the sense 
of the time spent by interacting populations playing them, yielding insights into their evolutionary strengths. It 
both automatically produces a ranking over agents favored by the evolutionary dynamics and filters out transient 
agents (i.e., agents that go extinct in the long-term evolutionary interactions).

Paper Overview
Due to the interconnected nature of the concepts discussed herein, we provide in Fig. 1 an overview of the paper 
that highlights the relationships between them. Due to the technical background necessary for fully understand-
ing the paper contribution, we give readers the choice of a ‘short’ vs. ‘long’ read-through of the paper, with the 
short read-through consisting of the sections highlighted in green in Fig. 1 and suited for the reader who wants to 
quickly grasp the high-level ideas, and the long read-through consisting of all technical details.

Specifically, the paper is structured as follows: we first provide a review of preliminary game-theoretic con-
cepts, including the Nash equilibrium (box ① in Fig. 1), which is a long-standing yet static solution concept. We 
then overview the replicator dynamics micro-model (②), which provides low-level insights into agent interac-
tions but is limited in the sense that it can only feasibly be used for evaluating three to four agents. We then intro-
duce a generalized evolutionary macro-model (③) that extends previous single-population discrete-time models 
(④) and (as later shown) plays an integral role in our α-Rank method. We then narrow our focus on a particular 
evolutionary macro-model (③) that generalizes single-population discrete-time models (④) and (as later shown) 
plays an integral role in our α-Rank method. Next, we highlight a fundamental incompatibility of the dynamical 
systems and the Nash solution concept (⑤), establishing fundamental reasons that prevent dynamics from con-
verging to Nash. This limitation motivates us to investigate a novel solution concept, using Conley’s Fundamental 
Theorem of Dynamical Systems as a foundation (⑥).

Conley’s Theorem leads us to the topological concept of chain components, which do capture the irreducible 
long-term behaviors of a continuous dynamical system, but are unfortunately difficult to analyze due to the lack 
of an exact characterization of their geometry and the behavior of the dynamics inside them. We, therefore, 
introduce a discrete approximation of these limiting dynamics that is more feasible to analyze: our so-called 
Markov-Conley chains solution concept (⑦). While we show that Markov-Conley chains share a close theoret-
ical relationship with both discrete-time and continuous-time dynamical models (⑧), they unfortunately suffer 
from an equilibrium selection problem and thus cannot directly be used for computing multi-agent rankings. To 
address this, we introduced a perturbed version of Markov-Conley chains that resolves the equilibrium selection 
issues and yields our α-Rank evaluation method (⑨). α-Rank computes both a ranking and assigns scores to 
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agents using this perturbed model. We show that this perturbed model corresponds directly to the generalized 
macro-model under a particular setting of the latter’s so-called ranking-intensity parameter α. α-Rank not only 
captures the dynamic behaviors of interacting agents, but is also more tractable to compute than Nash for general 
games. We validate our methodology empirically by providing ranking analysis on datasets involving interactions 
of state-of-the-art agents including AlphaGo1, AlphaZero3, MuJoCo Soccer5, and Poker30, and also provide scal-
ability properties and theoretical guarantees for the overall ranking methodology.

Preliminaries and Methods
In this section, we concisely outline the game-theoretic concepts and methods necessary to understand the 
remainder of the paper. We also introduce a novel game-theoretic concept, Markov-Conley chains, which we 
use to theoretically ground our results in. Readers familiar with game theory or dynamical systems may wish to, 
respectively, skip Sections 2.1.1 to 2.1.3 and Sections 2.4.1 and 2.4.2. For a detailed discussion of the concepts we 
refer the reader to6,13,31,32.

Game theoretic concepts.  Normal form games.  A K-wise interaction Normal Form Game (NFG) G is 
defined as ∏ ∏= =K S M( , , )k

K k
k
K k

1 1 , where each player ∈ …k K{1, , } chooses a strategy sk from its strategy set Sk 
and receives a payoff ∏ →=M S:k

i
K i

1 . We henceforth denote the joint strategy space and payoffs, respectively, 
as ∏ Sk

k and ∏ Mk
k. We denote the strategy profile of all players by = … ∈ ∏s s s S( , , )K

k
k1 , the strategy profile 

of all players except K  by −s k, and the payoff profile by …− −M s s M s s( ( , ), , ( , ))K K K1 1 1 . An NFG is symmetric if the 
following two conditions hold: first, all players have the same strategy sets (i.e., ∀ =k l S S, k l); second, if a permu-
tation is applied to the strategy profile, the payoff profile is permuted accordingly. The game is asymmetric if one 
or both of these conditions do not hold. Note that in a 2-player ( =K 2) NFG the payoffs for both players (M 
above) are typically represented by a bi-matrix A B( , ), which gives the payoff for the row player in A, and the 
payoff for the column player in B. If =S S1 2 and =A BT, then this 2-player game is symmetric.

In the case of randomized (mixed) strategies, we typically overload notation as follows: if xk is a mixed strategy 
for each player k and −x k the mixed profile excluding that player, then we denote by −M x x( , )k k k  the expected 
payoff of player k, ∼ ∼

−
− − M s sE [ ( , )]s x s x

k k k
,k k k k . Given these preliminaries, we are now ready to define the Nash 

equilibrium concept:

Figure 1.  Paper at a glance. Numerical ordering of the concept boxes corresponds to the paper flow, with 
sections and/or theorems indicated where applicable. Due to the technical background necessary for fully 
understanding the paper contribution, we give readers the choice of a ‘short’ vs. ‘long’ read-through of the paper, 
with the short read-through consisting of the sections highlighted in green in this figure and suited for the 
reader who wants to quickly grasp the high-level ideas, and the long read-through consisting of all technical 
details. The methods and ideas used herein may be classified broadly as either game-theoretic solution concepts 
(namely, static or dynamic) and evolutionary dynamics concepts (namely, continuous- or discrete-time). The 
insights gained by analyzing existing concepts and developing new theoretical results carves a pathway to the 
novel combination of our general multi-agent evaluation method, α-Rank, and our game-theoretic solution 
concept, Markov-Conley Chains.
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Definition 2.1.1 (Nash equilibrium). A mixed strategy profile = …x x x( , , )K1  is a Nash equilibrium if for all 
players k: ′ =′

− −M x x M x xmax ( , ) ( , )x
k k k k k k

k .
Intuitively, a strategy profile x is a Nash equilibrium of the NFG if no player has an incentive to unilaterally 

deviate from its current strategy.

Meta-games.  A meta-game (or an empirical game) is an NFG that provides a simplified model of an underlying 
multi-agent system (e.g., an auction, a real-time strategy game, or a robot football match), which considers 
meta-strategies or ‘styles of play’ of agents, rather than the full set of primitive strategies available in the underly-
ing game6,8,9. Empirical (or meta-) games will play an instrumental role in our endeavor. Note also that a different 
notion of meta-games is discussed in earlier work33, but plays no role here. In this paper, the meta-strategies 
considered are learning agents (e.g., different variants of AlphaGo agents, as exemplified in Section 1). Thus, we 
henceforth refer to meta-games and meta-strategies, respectively, as ‘games’ and ‘agents’ when the context is clear. 
For example, in AlphaGo, styles of play may be characterized by a set of agents AG r AG v AG p{ ( ), ( ), ( )}, where AG 
stands for the algorithm and indexes r, v, and p stand for rollouts, value networks, and policy networks, respectively, 
that lead to different play styles. The corresponding meta-payoffs quantify the outcomes when players play pro-
files over the set of agents (e.g., the empirical win rates of the agents when played against one another). These 
payoffs can be calculated from available data of the agents’ interactions in the real multi-agent systems (e.g., wins/
losses in the game of Go), or they can be computed from simulations. The question of how many such interactions 

Figure 2.  Overview of the discrete-time macro-model. (a) Evolutionary concepts terminology. (b) We have a 
set of individuals in each population k, each of which is programmed to play a strategy from set Sk. Under the 
mutation rate μ → 0 assumption, at most one population is not monomorphic at any time. Each individual in a 
K-wise interaction game has a corresponding fitness −f s s( , )k k k  dependent on its identity k, its strategy sk, and 
the strategy profile −s k of the other players. (c) Let the focal population denote a population k wherein a rare 
mutant strategy appears. At each timestep, we randomly sample two individuals in population k; the strategy of 
the first individual is updated by either probabilistically copying the strategy of the second individual, mutating 
with a very small probability to a random strategy, or sticking with its own strategy. (d) Individual in the focal 
population copies the mutant strategy. (e) The mutant propagates in the focal population, yielding a new 
monomorphic population profile.
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are necessary to have a good approximation of the true underlying meta-game is discussed in6. A meta-game itself 
is an NFG and can, thus, leverage the game-theoretic toolkit to evaluate agent interactions at a high level of 
abstraction.

Micro-model: replicator dynamics.  Dynamical systems is a powerful mathematical framework for specifying the 
time dependence of the players’ behavior (see the Supplementary Material for a brief introduction).

For instance, in a two-player asymmetric meta-game represented as an NFG × =S S M A B(2, , ( , ))1 2 , the 
evolution of players’ strategy profiles under the replicator dynamics34,35 is given by,

Figure 3.  Conceptual examples of finite-population models, for population size =m 50 and ranking-intensity 
α = .0 1. (a) Payoffs (top) and single-population discrete-time dynamics (bottom) for Rock-Paper-Scissors 
game. Graph nodes correspond to monomorphic populations R, P, and S. (b) Payoffs (top) and multi-
population discrete-time dynamics (bottom) for Battle of the Sexes game. Strategies O and M respectively 
correspond to going to the Opera and Movies. Graph nodes correspond to monomorphic population profiles 
(s1; s2). The stationary distribution p has 0.5 mass on each of profiles (O;O) and (M;M), and 0 mass elsewhere.

Figure 4.  Canonical game payoffs and replicator dynamics trajectories. Each point encodes the probability 
assigned by the players to their first strategy. The matching pennies replicator dynamics have one chain 
component, consisting of the whole domain. The coordination game dynamics have five chain components 
(corresponding to the fixed points, four in the corners and one mixed, which are recurrent by definition), as was 
formally shown by26.
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= − = − ∀ ∈ × x x Ay x Ay y y x B x By i j S S(( ) ) (( ) ) ( , ) , (1)i i i
T

j j
T

j
T 1 2

where xi and yj are, respectively, the proportions of strategies ∈i S1 and ∈j S2 in two infinitely-sized populations, 
each corresponding to a player. This system of coupled differential equations models the temporal dynamics of 
the populations’ strategy profiles when they interact, and can be extended readily to the general K-wise interac-
tion case (see Supplementary Material Appendix S2.1 for more details).

Figure 6.  Rock-Paper-Scissors game. (a) Discrete-time dynamics. (b) Ranking-intensity sweep. (c) α-Rank results.

Figure 5.  Topology of dynamical systems: an ε T( , )-chain from x0 to x4 with respect to flow ϕ is exemplified 
here by the solid arrows and sequence of points x x x x x, , , ,0 1 2 3 4. If the recurrent behavior associated with point 
x0 (indicated by the dashed arrow) holds for all ε > 0 and >T 0, then it is a chain recurrent point.
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The replicator dynamics provide useful insights into the micro-dynamical characteristics of games, revealing 
strategy flows, basins of attraction, and equilibria36 when visualized on a trajectory plot over the strategy simplex 
(e.g., Fig. 4). The accessibility of these insights, however, becomes limited for games involving large strategy 
spaces and many-player interactions. For instance, trajectory plots may be visualized only for subsets of three or 
four strategies in a game, and are complex to analyze for multi-population games due to the inherently-coupled 
nature of the trajectories. While methods for scalable empirical game-theoretic analysis of games have been 
recently introduced, they are still limited to two-population games6,7.

Macro-model: discrete-time dynamics.  This section presents our main evolutionary dynamics model, which 
extends previous single-population discrete-time models and is later shown to play an integral role in our α-Rank 
method and can also be seen as an instantiation of the framework introduced in20.

A promising alternative to using the continuous-time replicator dynamics for evaluation is to consider 
discrete-time finite-population dynamics. As later demonstrated, an important advantage of the discrete-time 
dynamics is that they are not limited to only three or four strategies (i.e., the agents under evaluation) as in the 
continuous-time case. Even though we lose the micro-dynamical details of the strategy simplex, this discrete-time 
macro-dynamical model, in which we observe the flows over the edges of the high-dimensional simplex, still 
provides useful insights into the overall system dynamics.

To conduct this discrete-time analysis, we consider a selection-mutation process but with a very small muta-
tion rate (following the small mutation rate theorem, see37). Before elaborating on the details we specify a number 
of important concepts used in the description below and clarify their respective meanings in Fig. 2a. Let a mono-
morphic population denote a population wherein all individuals play identical strategies, and a monomorphic 

Figure 7.  Biased Rock-Paper-Scissors game. (a) Payoff matrix. (b) Discrete-time dynamics. (c) Ranking-
intensity sweep. (d) α-Rank results.

https://doi.org/10.1038/s41598-019-45619-9
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population profile denote a set of monomorphic populations, where each population may be playing a differ-
ent strategy (see Fig. 2b). Our general idea is to capture the overall dynamics by defining a Markov chain over 
states that correspond to monomorphic population profiles. We can then calculate the transition probabil-
ity matrix over these states, which captures the fixation probability of any mutation in any given population  

Domain Results Symmetric? # of Populations
# of 
Strategies

Rock-Paper-Scissors Section 3.2.1 ✓ 1 [3]

Biased Rock-Paper-Scissors Section 3.2.2 ✓ 1 [3]

Battle of the Sexes Section 3.2.3 ✗ 2 [2, 2]

AlphaGo Section 3.4.1 ✓ 1 [7]

AlphaZero Chess Section 3.4.2 ✓ 1 [56]

MuJoCo Soccer Section 3.4.3 ✓ 1 [10]

Kuhn Poker Section 3.4.4 ✗ 3 [4, 4, 4]

Section 3.4.4 ✗ 4 [4, 4, 4, 4]

Leduc Poker Section 3.4.5 ✗ 2 [3, 3]

Table 1.  Overview of multi-agent domains evaluated in this paper. These domains are extensive across multiple 
axes of complexity, and include symmetric and asymmetric games with different numbers of populations and 
ranges of strategies.

Figure 8.  Battle of the Sexes. (a) Discrete-time dynamics (see (c) for node-wise scores corresponding to 
stationary distribution masses). (b) Ranking-intensity sweep. (c) α-Rank results.

https://doi.org/10.1038/s41598-019-45619-9
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(i.e., the probability that the mutant will take over that population). By computing the stationary distribution 
over this matrix we find the evolutionary population dynamics, which can be represented as a graph. The nodes 
of this graph correspond to the states, with the stationary distribution quantifying the average time spent by the 
populations in each node19,38.

A large body of prior literature has conducted this discrete-time Markov chain analysis in the context of 
pair-wise interaction games with symmetric payoffs16,17,19,38,39. Recent work applies the underlying assumption of 
small-mutation rates37 to propose a general framework for discrete-time multi-player interactions20, which 
applies to games with asymmetric payoffs. In our work, we formalize how such an evolutionary model, in the 
micro/macro dynamics spectrum, should be instantiated to converge to our novel and dynamical solution con-
cept of MCCs. Additionally, we show (in Theorem 2.1.3) that in the case of identical per-population payoffs (i.e., 
∀ =k M M, k ) our generalization reduces to the single-population model used by prior works. For completeness, 
we also detail the single population model in the Supplementary Material (see Appendix S2.2).We now formally 
define the generalized discrete-time model.

Recall from Section 2.1.1 that each individual in a K-wise interaction game receives a local payoff −M s s( , )k k k  
dependent on its identity k, its strategy sk, and the strategy profile −s k of the other −K 1 individuals involved in 
the game. To account for the identity-dependent payoffs of such individuals, we consider the interactions of K 
finite populations, each corresponding to a specific identity ∈ …k K{1, , }.

In each population k, we have a set of strategies Sk that we would like to evaluate for their evolutionary 
strength. We also have a set of individuals A in each population k, each of which is programmed to play a strategy 
from the set Sk. Without loss of generality, we assume all populations have m individuals.

Individuals interact K-wise through empirical games. At each timestep T , one individual from each popula-
tion is sampled uniformly, and the K  resulting individuals play a game. Let ps

k
k denote the number of individuals 

in population k playing strategy sk and p denote the joint population state (i.e., vector of states of all populations). 
Under our sampling protocol, the fitness of an individual that plays strategy sk is,

Figure 9.  AlphaGo (Nature dataset). (a) Discrete-time dynamics. (b) Ranking-intensity sweep. (c) α-Rank 
results.

https://doi.org/10.1038/s41598-019-45619-9
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−

∈ …− −
f s p M s s
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(2)

k k k

s S

k k k

c K k

s
c

{1, , }\k k

c

We consider any two individuals from a population k, with respective strategies τ σ ∈ S, k and respective fit-
nesses τ −f p( , )k k  and σ −f p( , )k k  (dependent on the values of the meta-game table). We introduce here a 
discrete-time dynamics, where the strategy of the first individual (playing τ) is then updated by either mutating 
with a very small probability to a random strategy (Fig. 2c), probabilistically copying the strategy σ of the second 
individual (Fig. 2d), or sticking with its own strategy τ. The idea is that strong individuals will replicate and spread 
throughout the population (Fig. 2e). While one could choose other variants of discrete-time dynamics40, we show 
that this particular choice both yields useful closed-form representations of the limiting behaviors of the popula-
tions, and also coincides with the MCC solution concept we later introduce under specific conditions.

As individuals from the same population never directly interact, the state of a population k has no bearing on 
the fitnesses of its individuals. However, as evident in (2), each population’s fitness may directly be affected by the 
competing populations’ states. The complexity of analyzing such a system can be significantly reduced by making 
the assumption of a small mutation rate37. Let the ‘focal population’ denote a population k wherein a mutant strat-
egy appears. We denote the probability for a strategy to mutate randomly into another strategy ∈s Sk k by μ and 
we will assume it to be infinitesimally small (i.e., we consider a small-mutation limit μ → 0). If we neglected 
mutations, the end state of this evolutionary process would be monomorphic. If we introduce a very small muta-
tion rate this means that either the mutant fixates and takes over the current population, or the current population 
is capable of wiping out the mutant strategy37. Therefore, given a small mutation rate, the mutant almost always 
either fixates or disappears before a new mutant appears in the current population. This means that any given 
population k will almost never contain more than two strategies at any point in time. We refer the interested 
reader to20 for a more extensive treatment of these arguments.

Applying the same line of reasoning, in the small-mutation rate regime, the mutant strategy in the focal pop-
ulation will either fixate or go extinct much earlier than the appearance of a mutant in any other population37. 
Thus, at any given time, there can maximally be only one population with a mutant, and the remaining 

Figure 10.  AlphaZero dataset. (a) Discrete-time dynamics. (b) Ranking-intensity sweep. (c) α-Rank results.
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populations will be monomorphic; i.e., in each competing population ∈ …c K{1, , }\k, = 1
p

m
scc  for a single strat-

egy and 0 for the rest. As such, given a small enough mutation rate, analysis of any focal population k needs only 
consider the monomorphic states of all other populations. Overloading the notation in (2), the fitness of an indi-
vidual from population k that plays sk then considerably simplifies to

=− −f s s M s s( , ) ( , ), (3)k k k k k k

where −s k denotes the strategy profile of the other populations.
Let τp

k and σp
k respectively denote the number of individuals playing τ  and σ in focal population k, where 

+ =τ σp p mk k . Per (3), the fitness of an individual playing τ in the focal population while the remaining popula-
tions play monomorphic strategies −s k is given by τ τ=− −f s M s( , ) ( , )k k k k . Likewise, the fitness of any individual 
in k playing σ is, σ σ=− −f s M s( , ) ( , )k k k k .

We randomly sample two individuals in population k and consider the probability that the one playing τ cop-
ies the other individual’s strategy σ. The probability with which the individual playing strategy τ  will copy the 
individual playing strategy σ can be described by a selection function  τ σ→ −s( , )k , which governs the dynamics 
of the finite-population model. For the remainder of the paper, we focus on the logistic selection function (aka 
Fermi distribution),

 τ σ→ =
+

= +
α σ

α τ α σ

α τ σ− −
−−

− −

− −( )s e

e e
e( , ) 1 ,

(4)
k

f s

f s f s
f s f s

( , )

( , ) ( , )
( ( , ) ( , ))

1k k

k k k k

k k k k

with α determining the selection strength, which we call the ranking-intensity (the correspondence between α 
and our ranking method will become clear later). There are alternative definitions of the selection function that 

Figure 11.  AlphaZero (chess) agent evaluations throughout training. (a) α-Score vs. Training Time.  
(b) Maximum Entropy Nash vs. Training Time. (c) α-Score - Maximum Entropy Nash difference.
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may be used here, we merely focus on the Fermi distribution due to its extensive use in the single-population 
literature16,17,19.

Based on this setup, we define a Markov chain over the set of strategy profiles ∏ Sk
k with ∏ | |Sk

k  states. Each 
state corresponds to one of the strategy profiles ∈ ∏s Sk

k, representing a multi-population end-state where each 
population is monomorphic. The transitions between these states are defined by the corresponding fixation prob-
abilities (the probability of overtaking the population) when a mutant strategy is introduced in any single mono-
morphic population k. We now define the Markov chain, which has ∏ | |S( )k

k 2 transition probabilities over all 
pairs of monomorphic multi-population states. Denote by ρσ τ

−s( )k k
,  the probability of mutant strategy τ fixating in 

a focal population k of individuals playing σ, while the remaining −K 1 populations remain in their monomor-
phic states −s k. For any given monomorphic strategy profile, there are a total of ∑ | | −S( 1)k

k  valid transitions to 
a subsequent profile where only a single population has changed its strategy. Thus, letting η =

∑ | | −S
1

( 1)k
k

, then 

ηρσ τ
−s( )k k

,  is the probability that the joint population state transitions from σ −s( , )k  to state τ −s( , )k  after the occur-
rence of a single mutation in population k. The stationary distribution over this Markov chain tells us how much 
time, on average, the dynamics will spend in each of the monomorphic states.

The fixation probabilities (of a rare mutant playing τ  overtaking the focal population k) can be calculated as 
follows. The probability that the number of individuals playing τ decreases/increases by one in the focal popula-
tion is given by,

τ σ =
−

+ .τ σ α τ σ− ± −
−− −

 ( )T p s
p p

m m
e( , , , )

( 1)
1

(5)
k k k

k k
f s f s( 1) ( ( , ) ( , ))

1k k k k

The fixation probability ρσ τ
−s( )k k

,  of a single mutant with strategy τ  in a population k of −m 1 individuals 
playing σ is derived as follows. Let τ σ= −− −u f s f s( , ) ( , )k k k k , then,

Figure 12.  MuJoCo soccer dataset. (a) Discrete-time dynamics. (b) Ranking-intensity sweep. (c) α-Rank 
results.
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Figure 13.  Example cycles in the MuJoCo soccer domain.
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Figure 14.  3-player Kuhn poker (ranking conducted on all 64 pure strategy profiles). (a) Discrete-time 
dynamics. (b) Ranking-intensity sweep. (c) α-Rank results.
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This corresponds to the computation of an m-step transition in the Markov chain corresponding to 
 τ σ→ −s( , )k 41. The quotient τ σ

τ σ

− −

+ −

T p s

T p s

( , , , )

( , , , )

k k k

k k k

( 1)

( 1)
 expresses the likelihood (odds) that the mutation process in popu-

lation k continues in either direction: if it is close to zero then it is very likely that the number of mutants (individ-
uals with strategy τ  in population k) increases; if it is very large it is very likely that the number of mutants will 
decrease; and if it close to one then the probabilities of increase and decrease of the number of mutants are equally 
likely. This yields the following Markov transition matrix corresponding to the jump from strategy profile 
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Figure 15.  4-player Kuhn poker (ranking conducted on all 256 pure strategy profiles). (a) Discrete-time 
dynamics. (b) Ranking-intensity sweep. (c) α-Rank results.
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The following theorem formalizes the irreducibility of this finite-population Markov chain, a property that 
is well-known in the literature (e.g., see [37, Theorem 2] and [20, Theorem 1]) but stated here for our specialized 
model for completeness.

Theorem 2.1.2 Given finite payoffs, the Markov chain with transition matrix C is irreducible (i.e., it is possible to get 
to any state starting from any state). Thus a unique stationary distribution π (where π π=CT T and π∑ = 1i i ) exists.

Proof. Refer to the Supplementary Material for the proof.� 
This unique π provides the evolutionary ranking, or strength of each strategy profile in the set ∏ Sk

k, expressed 
as the average time spent in each state in distribution π.

This generalized discrete-time evolutionary model, as later shown, will form the basis of our α-Rank method. 
We would like to clarify the application of this general model to the single population case, which applies only to 
symmetric 2-player games and is commonly used in the literature (see Appendix S1).

Application to Single-Population (Symmetric Two-Player) Games. For completeness, we provide a detailed 
outline of the single population model in the Supplementary Material Appendix S2.2. We also include remarks 
regarding the validity of the monomorphic population assumption, as used in our model and those of prior 
works.

Theorem 2.1.3 (Multi-population model generalizes the symmetric single-population model). The general 
multi-population model inherently captures the dynamics of the single population symmetric model.

Proof. (Sketch) In the pairwise symmetric game setting, we consider only a single population of interacting indi-
viduals (i.e., =K 1), where a maximum of two strategies may exist at any time in the population due to the small 
mutation rate assumption. At each timestep, two individuals (with respective strategies τ σ ∈ S, 1) are sampled 
from this population and play a game using their respective strategies τ  and σ. Their respective fitnesses then 

Figure 16.  PSRO poker dataset. (a) Discrete-time dynamics (top 8 agents shown only). (b) Ranking-intensity 
sweep. (c) α-Rank strategy rankings and scores (top 8 agents shown only).

https://doi.org/10.1038/s41598-019-45619-9


17Scientific Reports |          (2019) 9:9937  | https://doi.org/10.1038/s41598-019-45619-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

correspond directly to their payoffs, i.e., τ σ=τf M( , ) and σ τ=σf M( , ). With this change, all other derivations 
and results follow directly the generalized model. For example, the probability of decrease/increase of a strategy 
of type τs  in the single-population case translates to,

τ σ =
−

+τ σ α± − −τ σT p
p p

m m
e( , , )

( 1)
(1 ) ,

(15)
f f( 1) ( ) 1

and likewise for the remaining equations.� 
In other words, the generalized model is general in the sense that one can not only simulate symmetric pair-

wise interaction dynamics, but also K-wise and asymmetric interactions.
Linking the Micro- and Macro-dynamics Models. We have introduced, so far, a micro- and macro-dynamics 

model, each with unique advantages in terms of analyzing the evolutionary strengths of agents. The formal rela-
tionship between these two models remains of interest, and is established in the limit of a large population:

Theorem 2.1.4 (Discrete-Continuous Edge Dynamics Correspondence). In the large-population limit, the 
macro-dynamics model is equivalent to the micro-dynamics model over the edges of the strategy simplex. 
Specifically, the limiting model is a variant of the replicator dynamics with the caveat that the Fermi revision 
function takes the place of the usual fitness terms.

Proof. Refer to the Supplementary Material for the proof.� 
Therefore, a correspondence exists between the two models on the ‘skeleton’ of the simplex, with the 

macro-dynamics model useful for analyzing the global evolutionary behaviors over this skeleton, and the 
micro-model useful for ‘zooming into’ the three- or four-faces of the simplex to analyze the interior dynamics.

In the next sections, we first give a few conceptual examples of the generalized discrete-time model, then dis-
cuss the need for a new solution concept and the incompatibility between Nash equilibria and dynamical systems. 
We then directly link the generalized model to our new game-theoretic solution concept, Markov-Conley chains 
(in Theorem 2.5.1).

Conceptual examples.  We present two canonical examples that visualize the discrete-time dynamics and 
build intuition regarding the macro-level insights gained using this type of analysis.

Rock-Paper-Scissors.  We first consider the single-population (symmetric) discrete-time model in the 
Rock-Paper-Scissors (RPS) game, with the payoff matrix shown in Fig. 3a (top). One can visualize the 
discrete-time dynamics using a graph that corresponds to the Markov transition matrix C defined in (14), as 
shown in Fig. 3a (bottom).

Figure 17.  A retrospective look on the paper contributions. We introduced a general descriptive multi-agent 
evaluation method, called α-Rank, which is practical in the sense that it is easily applicable in complex game-
theoretic settings, and theoretically-grounded in a solution concept called Markov-Conley chains (MCCs). α-
Rank has a strong theoretical and specifically evolutionary interpretation; the overarching perspective considers 
a chain of models of increasing complexity, with a discrete-time macro-dynamics model on one end, 
continuous-time micro-dynamics on the other end, and MCCs as the link in between. We provided both 
scalability properties and theoretical guarantees for the overall ranking methodology.
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Nodes in this graph correspond to the monomorphic population states. In this example, these are the states of 
the population where all individuals play as agents Rock, Paper, or Scissors. To quantify the time the population 
spends as each agent, we indicate the corresponding mass of the stationary distribution π within each node. As 
can be observed in the graph, the RPS population spends exactly 1

3
 of its time as each agent.

Edges in the graph correspond to the fixation probabilities for pairs of states. Edge directions corresponds to 
the flow of individuals from one agent to another, with strong edges indicating rapid flows towards ‘fitter’ agents. 
We denote fixation probabilities as a multiple of the neutral fixation probability baseline, ρ =m m

1 , which corre-
sponds to using the Fermi selection function with α = 0. To improve readability of the graphs, we also do not 
visualize edges looping a node back to itself, or edges with fixation probabilities lower than ρm. In this example, we 
observe a cycle (intransitivity) involving all three agents in the graph. While for small games such cycles may be 
apparent directly from the structure of the payoff table, we later show that the graph visualization can be used to 
automatically iterate through cycles even in K-player games involving many agents.

Battle of the sexes.  Next we illustrate the generalized multi-population (asymmetric) model in the Battle of the 
Sexes game, with the payoff matrix shown in Fig. 3b (top). The graph now corresponds to the interaction of two 
populations, each representing a player type, with each node corresponding to a monomorphic population profile 
s s( , )1 2 . Edges, again, correspond to fixation probabilities, but occur only when a single population changes its 

strategy to a different one (an artifact of our small mutation assumption). In this example, it is evident from the 
stationary distribution that the populations spend an equal amount of time in profiles O O( , ) and M M( , ), and 
essentially zero time in states O M( , ) and M O( , ).

The incompatibility of nash equilibrium and dynamical systems.  Continuous- and discrete-time 
dynamical systems have been used extensively in Game Theory, Economics, and Algorithmic Game Theory. In 
the particular case of multi-agent evaluation in meta-games, this type of analysis is relied upon for revealing use-
ful insights into the strengths and weaknesses of interacting agents6. Often, the goal of research in these areas is to 
establish that, in some sense, the investigated dynamics actually converge to a Nash equilibrium; there has been 
limited success in this front, and there are some negative results42–44. In fact, all known dynamics in games (the 
replicator dynamics, the many continuous variants of the dynamics used in the proof of Nash’s theorem, etc.) do 
cycle. To compound this issue, meta-games are often large, extend beyond pair-wise interactions, and may not be 
zero-sum. While solving for a Nash equilibrium can be done in polynomial time for zero-sum games, doing so in 
general-sum games is known to be PPAD-complete21, which severely limits the feasibility of using such a solution 
concept for evaluating our agents.

Of course, some dynamics are known to converge to relaxations of the Nash equilibrium, such as the corre-
lated equilibrium polytope or the coarse correlated equilibria45. Unfortunately, this “convergence” is typically con-
sidered in the sense of time average; time averages can be useful for establishing performance bounds for games, 
but tell us little about actual system behavior — which is a core component of what we study through games. For 
certain games, dynamics may indeed converge to a Nash equilibrium, but they may also cycle. For example, it is 
encouraging that in all 2 × 2 matrix games these equilibria, cycles, and slight generalizations thereof are the only 
possible limiting behaviors for continuous-time dynamics (i.e., flows). Unfortunately, this clean behavior (con-
vergence to either a cycle or, as a special case, to a Nash equilibrium) is an artifact of the two-dimensional nature 
of 2 × 2 games, a consequence of the Poincaré–Bendixson theorem46. There is a wide range of results in different 
disciplines arguing that learning dynamics in games tend to not equilibrate to any Nash equilibrium but instead 
exhibit complex, unpredictable behavior (e.g.42,47–51). The dynamics of even simple two-person games with three 
or more strategies per player can be chaotic52, that is, inherently difficult to predict and complex. Chaos goes 
against the core of our objectives, leaving little hope for building a predictive theory of player behavior based on 
dynamics in terms of Nash equilibrium.

Markov-Conley chains: A dynamical solution concept.  Recall our overall objective: we would like to 
understand and evaluate multi-agent interactions using a detailed and realistic model of evolution, such as the 
replicator dynamics, in combination with a game-theoretic solution concept. We start by acknowledging the fun-
damental incompatibility between dynamics and the Nash equilibrium: dynamics are often incapable of reaching 
the Nash equilibrium. However, instead of taking this as a disappointing flaw of dynamics, we see it instead as 
an opportunity to look for a novel solution concept that does not have the same limitations as Nash in relation to 
these dynamical systems. We contemplate whether a plausible algorithmic solution concept can emerge by asking, 
what do these dynamics converge to? Our goal is to identify the non-trivial, irreducible behaviors of a dynamical 
system and thus provide a new solution concept — an alternative to Nash’s — that will enable evaluation of of 
multi-agent interactions using the underlying evolutionary dynamics. We carve a pathway towards this alternate 
solution concept by first considering the topology of dynamical systems.

Topology of dynamical systems and conley’s theorem.  Dynamicists and topologists have seeked means of extend-
ing to higher dimensions the benign, yet complete, limiting dynamical behaviors described in Section 2.3 that 
one sees in two dimensions: convergence to cycles (or equilibria as a special case). That is, they have been trying 
to find an appropriate relaxation of the notion of a cycle such that the two-dimensional picture is restored. New 
conceptions of “periodicity” and “cycles” were indeed discovered, in the form of chain recurrent sets and chain 
components, which we define in this section. These key ingredients form the foundation of Conley’s Fundamental 
Theorem of Dynamical Systems, which in turn leads to the formulation of our Markov-Conley chain solution 
concept and associated multi-agent evaluation scheme.
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Definitions.  To make our contribution formal, we need define certain topological concepts, following the 
treatment of Conley29. Our chain recurrence approach and the theorems in this section follow from53. We also 
provide the interested reader a general background on dynamical systems in Supplementary Material S2 in order 
to make our work self-contained.

Let φ × X:  → denote a flow on a topological space X. We sometimes write φ x( )t  for φ t x( , ) and denote a 
flow φ × →X X:  by φ →X X:t , where ∈t . For more background on dynamical systems see section S2 in 
the appendix.

Definition 2.4.1 ((ε, T)-chain). Let φ be a flow on a metric space X d( , ). Given ε > 0, >T 0, and ∈x y X, , an 
ε T( , )-chain from x to y with respect to φ and d is a pair of finite sequences = … =−x x x x x y, , , ,n n0 1 1  in X and 

… −t t, , n0 1 in ∞T[ , ), denoted together by … … −x x t t( , , ; , , )n n0 0 1  such that,

φ ε<+d x x( ( ), ) , (16)t
i i 1

i

for = … −i n0, 1, 2, , 1.
Intuitively, an ε T( , ) chain corresponds to the forward dynamics under flow φ connecting points ∈x y X, , 

with slight perturbations allowed at each timestep (see Fig. 5 for an example). Note these deviations are allowed 
to occur at step-sizes T bounded away from 0, as otherwise the accumulation of perturbations could yield trajec-
tories completely dissimilar to those induced by the original flow54.

Definition 2.4.2 (Forward chain limit set). Let φ be a flow on a metric space X d( , ). The forward chain limit set of 
∈x X with respect to φ and d is the set,

∩φ ε φΩ = ∈ | ∃ − .
ε

+

>
x y X T x y( , ) { an( , ) chain from to with respect to }

(17)T, 0

Definition 2.4.3 (Chain equivalent points). Let φ be a flow on a metric space X d( , ). Two points ∈x y X,  are chain 
equivalent with respect to φ and d if φ∈ Ω+y x( , ) and φ∈ Ω+x y( , ).

Definition 2.4.4 (Chain recurrent point). Let φ be a flow on a metric space X d( , ). A point ∈x X is chain recurrent 
with respect to φ and d if x is chain equivalent to itself; i.e., there exists an ε T( , )-chain connecting x to itself for 
every ε > 0 and >T 0.

Chain recurrence can be understood as an orbit with slight perturbations allowed at each time step (see Fig. 5), 
which constitutes a new conception of “periodicity” with a very intuitive explanation in Computer Science terms: 
Imagine Alice is using a computer to simulate the trajectory of a dynamical system that induces a flow φ. Each 
iteration of the dynamical process computed by Alice, with a minimum step-size T, induces a rounding error ε. 
Consider an adversary, Bob, who can manipulate the result at each timestep within the ε-sphere of the actual 
result. If, regardless of ε or minimum step-size T , Bob can persuade Alice that her dynamical system starting from 
a point x returns back to this point in a finite number of steps, then this point is chain recurrent.

This new notion of “periodicity” (i.e., chain recurrence) leads to a corresponding notion of a “cycle” captured 
in the concept of chain components, defined below.

Definition 2.4.5 (Chain recurrent set). The chain recurrent set of flow φ, denoted  φ( ), is the set of all chain recur-
rent points of φ.

Definition 2.4.6 (Chain equivalence relation ~). Let the relation ~ on  φ( ) be defined by ∼x y if and only if x is 
chain equivalent to y. This is an equivalence relation on the chain recurrent set φ( ) .

Definition 2.4.7 (Chain component). The equivalence classes in  φ( ) of the chain equivalence relation ~ are called 
the chain components of φ.

In the context of the Alice and Bob example, chain components are the maximal sets A such that for any two 
points ∈x y A, , Bob can similarly persuade Alice that the flow φ induced by her dynamical system can get her 
from x to y in a finite number of steps. For example the matching pennies replicator dynamics (shown in Fig. 4a) 
have one chain component, consisting of the entire domain; in the context of the Alice and Bob example, the 
cyclical nature of the dynamics throughout the domain means that Bob can convince Alice that any two points 
may be connected using a series of finite perturbations ε, for all ε > 0 and >T 0. On the other hand, the coordi-
nation game replicator dynamics (shown in Fig. 4b) has five chain components corresponding to the fixed points 
(which are recurrent by definition): four in the corners, and one mixed strategy fixed point in the center. For a 
formal treatment of these examples, see26,27.

Points in each chain component are transitive by definition. Naturally, the chain recurrent set φ( )  can be 
partitioned into a (possibly infinitely many) number of chain components. In other words, chain components 
constitute the fundamental topological concept needed to define the irreducible behaviors we seek.

Conley’s theorem.  We now wish to characterize the role of chain components in the long-term dynamics 
of systems, such that we can evaluate the limiting behaviors of multi-agent interactions using our evolutionary 
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dynamical models. Conley’s Fundamental Theorem of Dynamical Systems leverages the above perspective on 
“periodicity” (i.e., chain recurrence) and “cycles” (i.e., chain components) to decompose the domain of any 
dynamical system into two classes: 1) chain components, and 2) transient points.

We now need to formally define a complete Lyapunov function to introduce Conley’s theorem. In game theo-
retic terms, one can understand this concept as the analog of a potential function, which strictly decreases along 
the dynamics trajectories in potential games, eventually leading to an equilibrium55. Correspondingly, under a 
complete Lyapunov function, the dynamics are led to chain recurrent sets (as opposed to equilibria). Formally:

Definition 2.4.8 (Complete Lyapunov function). Let φ be a flow on a metric space X d( , ). A complete Lyapunov 
function for φ is a continuous function γ →X:  such that,

	 1.	 γ φ x( ( ))t  is a strictly decreasing function of t for all  φ∈x X\ ( ),
	 2.	 for all  φ∈x y, ( ) the points x, y are in the same chain component if and only if γ γ=x y( ) ( ),
	 3.	 γ φ( ( ))  is nowhere dense.

Conley’s Theorem, the important result in topology that will form the basis of our solution concept and rank-
ing scheme, is as follows:

Theorem 2.4.9 (Conley’s Fundamental Theorem of Dynamical Systems29, informal statement). The domain of any 
dynamical system can be decomposed into its (possibly infinitely many) chain components; the remaining points 
are transient, each led to the recurrent part by a Lyapunov function.

Conley’s Theorem, critically, guarantees the existence of complete Lyapunov functions:

Theorem 2.4.10 Every flow on a compact metric space has a complete Lyapunov function29.
In other words, the space X is decomposed into points that are chain recurrent and points that are led to the 

chain recurrent part in a gradient-like fashion with respect to a Lyapunov function that is guaranteed to exist. 
This implies that every game can be cast as a “potential” game if we consider chain recurrent sets as our solution 
concept.

Asymptotically stable sink chain components.  Our objective is to investigate the likelihood of an agent being 
played in a K-wise meta-game by using a reasonable model of multi-agent evolution, such as the replicator 
dynamics. While chain components capture the limiting behaviors of dynamical systems (in particular, evolu-
tionary dynamics that we seek to use for our multi-agent evaluations), they can be infinite in number (as men-
tioned in Section 2.4.1); it may not be feasible to compute or use them in practice within our evaluation scheme. 
To resolve this, we narrow our focus onto a particular class of chain components called asymptotically stable sink 
chain components, which we define in this section. Asymptotically stable sink chain components are a natural 
target for this investigation as they encode the possible “final” long term system; by contrast, we can escape out 
of other chain components via infinitesimally small perturbations. We prove in the subsequent section (Theorem 
2.4.23, specifically) that, in the case of replicator dynamics and related variants, asymptotically stable sink chain 
components are finite in number; our desired solution concept is obtained as an artifact of this proof.

We proceed by first showing that the chain components of a dynamical system can be partially ordered by 
reachability through chains, and we focus on the sinks of this partial order. We start by defining a partial order on 
the set of chain components:

Definition 2.4.11 Let φ be a flow on a metric space and A1, A2 be chain components of the flow. Define the relation 
A1 ≤C A2 to hold if and only if there exists ∈x A2 and ∈y A1 such that φ∈ Ω+y x( , ).

Intuitively, A1 ≤C A2, if we can reach A1 from A2 with ε T( , )-chains for arbitrarily small ε and T .

Theorem 2.4.12 (Partial order on chain components). Let φ be a flow on a metric space and A1, A2 be chain com-
ponents of the flow. Then the relation defined by A1 ≤C A2 is a partial order.

Proof. Refer to the Supplementary Material for the proof.� 
We will be focusing on minimal elements of this partial order, i.e., chain components A such that there does 

not exist any chain component B such that B ≤C A. We call such chain components sink chain components.

Definition 2.4.13 (Sink chain components). A chain component A is called a sink chain component if there does 
not exist any chain component ≠B A such that B ≤C A.

We can now define the useful notion of asymptotically stable sink chain components, which relies on the 
notions of Lyapunov stable, asymptotically stable, and attracting sets.

Definition 2.4.14 (Lyapunov stable set). Let φ be a flow on a metric space X d( , ). A set ⊂A X is Lyapunov stable if 
for every neighborhood O of A there exists a neighborhood O′ of A such that every trajectory that starts in O′ is 
contained in O; i.e., if ∈ ′x O  then φ ∈t x O( , )  for all ≥t 0.

Definition 2.4.15 (Attracting set). Set A is attracting if there exists a neighborhood O of A such that every trajec-
tory starting in O converges to A.

Definition 2.4.16 (Asymptotically stable set). A set is called asymptotically stable if it is both Lyapunov stable and 
attracting.
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Definition 2.4.17 (Asymptotically stable sink chain component). Chain component A is called an asymptotically 
stable sink chain component if it is both a sink chain component and an asymptotically stable set.

Markov-Conley chains.  Although we wish to study asymptotically stable sink chain components, it is difficult to 
do so theoretically as we do not have an exact characterization of their geometry and the behavior of the dynamics 
inside them. This is a rather difficult task to accomplish even experimentally. Replicator dynamics can be chaotic 
both in small and large games52,56. Even when their behavior is convergent for all initial conditions, the resulting 
equilibrium can be hard to predict and highly sensitive to initial conditions57. It is, therefore, not clear how to 
extract meaningful information even from many trial runs of the dynamics. These issues are exacerbated especially 
when games involve more than three or four strategies, where even visualization of trajectories becomes difficult.

Instead of studying the actual dynamics, a computationally amenable alternative is to use a discrete-time 
discrete-space approximation with similar limiting dynamics, but which can be directly and efficiently ana-
lyzed. We will start off by the most crude (but still meaningful) such approximations: a set of Markov chains 
whose state-space is the set of pure strategy profiles of the game. We refer to each of these Markov chains as a 
Markov-Conley chain, and prove in Theorem 2.4.23 that a finite number of them exist in any game under the 
replicator dynamics (or variants thereof).

Let us now formally define the Markov-Conley chains of a game, which rely on the notions of the response 
graph of a game and its sink strongly connected components.

Definition 2.4.18 (Strictly and weakly better response). Let ∈ ∏s s S,i j k
k be any two pure strategy profiles of the 

game, which differ in the strategy of a single player k. Strategy sj is a strictly (respectively, weakly) better response 
than si for player k if her payoff at sj is larger than (respectively, at least as large as) her payoff at si.

Definition 2.4.19 (Response graph of a game). The response graph of a game G is a directed graph whose vertex set 
coincides with the set of pure strategy profiles of the game, ∏ Sk

k. Let ∈ ∏s s S,i j k
k be any two pure strategy profiles 

of the game. We include a directed edge from si to sj if sj is a weakly better response for player k as compared to si.

Definition 2.4.20 (Strongly connected components). The strongly connected components of a directed graph are 
the maximal subgraphs wherein there exists a path between each pair of vertices in the subgraph.

Definition 2.4.21 (Sink strongly connected components). The sink strongly connected components of a directed 
graph are the strongly connected components with no out-going edges.

The response graph of a game has a finite number of sink strongly connected components. If such a compo-
nent is a singleton, it is a pure Nash equilibrium by definition.
Definition 2.4.22 (Markov-Conley chains (MCCs) of a game). A Markov-Conley chain of a game G is an irreduc-
ible Markov chain, the state space of which is a sink strongly connected component of the response graph associ-
ated with G. Many MCCs may exist for a given game G. In terms of the transition probabilities out of a node si of 
each MCC, a canonical way to define them is as follows: with some probability, the node self-transitions. The rest 
of the probability mass is split between all strictly and weakly improving responses of all players. Namely, the 
probability of strictly improving responses for all players are set equal to each other, and transitions between 
strategies of equal payoff happen with a smaller probability also equal to each other for all players.

When the context is clear, we sometimes overload notation and refer to the set of pure strategy profiles in a 
sink strongly connected component (as opposed to the Markov chain over them) as an MCC. The structure of 
the transition probabilities introduced in Definition 2.4.22 has the advantage that it renders the MCCs invariant 
under arbitrary positive affine transformations of the payoffs; i.e., the resulting theoretical and empirical insights 
are insensitive to such transformations, which is a useful desideratum for a game-theoretic solution concept. 
There may be alternative definitions of the transition probabilities that may warrant future exploration.

MCCs can be understood as a discrete approximation of the chain components of continuous-time dynamics 
(hence the connection to Conley’s Theorem). The following theorem formalizes this relationship, and establishes 
finiteness of MCCs:

Theorem 2.4.23 Let φ be the replicator flow when applied to a K-player game. The number of asymptotically stable 
sink chain components is finite. Specifically, every asymptotically stable sink chain component contains at least 
one MCC; each MCC is contained in exactly one chain component.

Proof. Refer to the Supplementary Material for the proof.� 
The notion of MCCs is thus used as a stepping stone, a computational handle that aims to mimic the long term 

behavior of replicator dynamics in general games. Similar results to Theorem 2.4.23 apply for several variants of 
replicator dynamics13 as long as the dynamics are volume preserving in the interior of the state space, preserve the 
support of mixed strategies, and the dynamics act myopically in the presence of two strategies/options with fixed 
payoffs (i.e., if they have different payoffs then converge to the best, if they have the same payoffs then remain 
invariant).

From Markov-Conley chains to the discrete-time macro-model.  The key idea behind the order-
ing of agents we wish to compute is that the evolutionary fitness/performance of a specific strategy should be 
reflected by how often it is being chosen by the system/evolution. We have established the solution concept of 
Markov-Conley chains (MCCs) as a discrete-time sparse-discrete-space analogue of the continuous-time replica-
tor dynamics, which capture these long-term recurrent behaviors for general meta-games (see Theorem 2.4.23). 
MCCs are attractive from a computational standpoint: they can be found efficiently in all games by computing the 
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sink strongly connected components of the response graph, addressing one of the key criticisms of Nash equilib-
ria. However, similar to Nash equilibria, even simple games may have many MCCs (e.g., five in the coordination 
game of Fig. 4b). The remaining challenge is, thus, to solve the MCC selection problem.

One of the simplest ways to resolve the MCC selection issue is to introduce noise in our system and study a 
stochastically perturbed version, such that the overall Markov chain is irreducible and, therefore, has a unique 
stationary distribution that can be used for our rankings. Specifically, we consider the following stochastically 
perturbed model: we choose a player k at random, and, if it is currently playing strategy si

k, we choose one of its 
strategies sj

k at random and set the new system state to be ε ε+ −− −s s s s( , ) (1 )( , )k k
j
k k . Remarkably, these per-

turbed dynamics correspond closely to the macro-model introduced in Section 2.1.4 for a particularly large 
choice of ranking-intensity value α:

Theorem 2.5.1 In the limit of infinite ranking-intensity α, the Markov chain associated with the generalized 
multi-population model introduced in Section 2.1.4 coincides with the MCC.

Proof. Refer to the Supplementary Material for the proof.� 
A low ranking-intensity (α  1) corresponds to the case of weak selection, where a weak mutant strategy can 

overtake a given population. A large ranking-intensity, on the other hand, ensures that the probability that a 
sub-optimal strategy overtakes a given population is close to zero, which corresponds closely to the MCC solution 
concept. In practice, setting the ranking-intensity to infinity may not be computationally feasible; in this case, the 
underlying Markov chain may be reducible and the existence of a unique stationary distribution (which we use 
for our rankings) may not be guaranteed. To resolve the MCC selection problem, we require a perturbed model, 
but one with a large enough ranking-intensity α such that it approximates an MCC, but small enough such that 
the MCCs remain connected. By introducing this perturbed version of Markov-Conley chains, the resulting 
Markov chain is now irreducible (per Theorem 2.1.2). The long-term behavior is thus captured by the unique 
stationary distribution under the large-α limit. Our so-called α-Rank evaluation method then corresponds to the 
ordering of the agents in this particular stationary distribution. The perturbations introduced here imply the need 
for a sweep over the ranking-intensity parameter α – a single hyperparameter – which we find to be computation-
ally feasible across all of the large-scale games we analyze using α-Rank.

The combination of Theorem 2.4.23 and Theorem 2.5.1 yields a unifying perspective involving a chain 
of models of increasing complexity: the continuous-time replicator dynamics is on one end, our generalized 
discrete-time concept is on the other, and MCCs are the link in between (see Fig. 17).

Results
In the following we summarize our generalized ranking model and the main theoretical and empirical results. 
We start by outlining how the α-Rank procedure exactly works. Then we continue with illustrating α-Rank in a 
number of canonical examples. We continue with some deeper understanding of α-Rank’s evolutionary dynamics 
model by introducing some further intuitions and theoretical results, and we end with an empirical validation of 
α-Rank in various domains.

α-Rank: evolutionary ranking of strategies.  We first detail the α-Rank algorithm, then provide some 
insights and intuitions to further facilitate the understanding of our ranking method and solution concept.

Algorithm.  Based on the dynamical concepts of chain recurrence and MCCs established, we now detail a 
descriptive method, titled α-Rank, for computing strategy rankings in a multi-agent interaction:

	 1.	 Construct the meta-game payoff table Mk for each population k from data of multi-agent interactions, or 
from running game simulations.

	 2.	 Compute the transition matrix C as outlined in Section 2.1.4. Per the discussions in Section 2.5, one must 
use a sufficiently large ranking-intensity value α in (4); this ensures that α-Rank preserves the ranking of 
strategies with closest correspondence to the MCC solution concept. Note that setting α arbitrarily high 
can result in numerical issues that make the representation of the Markov chain used in simulations 
reducible. As a large enough value is dependent on the domain under study, a useful heuristic is to conduct 
a sweep over α, starting from a small value and increasing it exponentially until convergence of rankings.

	 3.	 Compute the unique stationary distribution, π, of transition matrix C. Each element of the stationary 
distribution corresponds to the time the populations spend in a given strategy profile.

	 4.	 Compute the agent rankings, which correspond to the ordered masses of the stationary distribution π. The 
stationary distribution mass for each agent constitutes a ‘score’ for it (as might be shown, e.g., on a 
leaderboard).

α-Rank and MCCs as a solution concept: A paradigm shift.  In this section, we elaborate on the differences 
between the Nash and MCC solution concepts. Our notion of a ‘solution concept’, informally, corresponds to 
a description of how agents will play a game. The MCC solution concept is not based on the idea of individual 
rationality, such as in Nash, but is rather biologically-conditioned, such as considered in evolutionary game the-
ory11,13. As such, our solution concept of MCCs can be seen as a descriptive approach (in the sense of  58) or predic-
tive approach (in the sense of10), providing an understanding of the underlying dynamic behaviors as well as an 
understanding of what these behaviors converge to in the long-term. This is also where traditional game theory 
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differs from evolutionary game theory, in the sense that the former is normative and tells players how to play, while 
the latter is descriptive and relaxes some of the strong assumptions underpinning the Nash equilibrium concept.

We note that Nash has done double duty in game theory and remains a very important concept in multi-agent 
systems research. However, besides classical game theory making strong assumptions regarding the rationality 
of players involved in the interaction, there exist many fundamental limitations with the concept of a Nash equi-
librium: intractability (computing a Nash is PPAD-complete), equilibrium selection, and the incompatibility of 
this static concept with the dynamic behaviors of agents in interacting systems. To compound these issues, even 
methods that aim to compute an approximate Nash are problematic: a typical approach is to use exploitability to 
measure deviation from Nash and as such use it as a method to closely approximate one; the problem with this is 
that it is also intractable for large games (typically the ones we are interested in), and there even still remain issues 
with using exploitability as a measure of strategy strength (e.g., see59). Overall, there seems little hope of deploying 
the Nash equilibrium as a solution concept for the evaluation of agents in general large-scale (empirical) games.

The concept of an MCC, by contrast, embraces the dynamical systems perspective, in a manner similar to evo-
lutionary game theory. Rather than trying to capture the strategic behavior of players in an equilibrium, we deploy 
a dynamical system based on the evolutionary interactions of agents that captures and describes the long-term 
behavior of the players involved in the interaction. As such, our approach is descriptive rather than prescriptive, 
in the sense that it is not prescribing the strategies that one should play; rather, our approach provides useful 
information regarding the strategies that are evolutionarily non-transient (i.e., resistant to mutants), and high-
lights the remaining strategies that one might play in practice. To understand MCCs requires a shift away from 
the classical models described above for games and multi-agent interactions. Our new paradigm is to allow the 
dynamics to roll out and enable strong (i.e., non-transient) agents to emerge and weak (i.e., transient) agents to 
vanish naturally through their long-term interactions. The resulting solution concept not only permits an auto-
matic ranking of agents’ evolutionary strengths, but is powerful both in terms of computability and usability: our 
rankings are guaranteed to exist, can be computed tractably for any game, and involve no equilibrium selection 
issues as the evolutionary process converges to a unique stationary distribution. Nash tries to identify static sin-
gle points in the simplex that capture simultaneous best response behaviors of agents, but comes with the range 
of complications mentioned above. On the other hand, the support of our stationary distribution captures the 
strongest non-transient agents, which may be interchangeably played by interacting populations and therefore 
constitute a dynamic output of our approach.

Given that both Nash and MCCs share a common foundation in the notion of a best response (i.e., simultane-
ous best responses for Nash, and the sink components of a best response graph for MCCs), it is interesting to 
consider the circumstances under which the two concepts coincide. There do, indeed, exist such exceptional cir-
cumstances: for example, for a potential game, every better response sequence converges to a (pure) Nash equi-
librium, which coincides with an MCC. However, even in relatively simple games, differences between the two 
solution concepts are expected to occur in general due to the inherently dynamic nature of MCCs (as opposed to 
Nash). For example, in the Biased Rock-Paper-Scissors game detailed in Section 3.2.2, the Nash equilibrium and 
stationary distribution are not equivalent due to the cyclical nature of the game; each player’s symmetric Nash is 
( ), ,1

16
5
8

5
16

, whereas the stationary distribution is ( ), ,1
3

1
3

1
3

. The key difference here is that whereas Nash is pre-
scriptive and tells players which strategy mixture to use, namely ( ), ,1

16
5
8

5
16

 assuming rational opponents, α-Rank 
is descriptive in the sense that it filters out evolutionary transient strategies and yields a ranking of the remaining 
strategies in terms of their long-term survival. In the Biased Rock-Paper-Scissors example, α-Rank reveals that all 
three strategies are equally likely to persist in the long-term as they are part of the same sink strongly connected 
component of the response graph. In other words, the stationary distribution mass (i.e., the α-Rank score) on a 
particular strategy is indicative of its resistance to being invaded by any other strategy, including those in the 
distribution support. In the case of the Biased Rock-Paper-Scissors game, this means that the three strategies are 
equally likely to be invaded by a mutant, in the sense that their outgoing fixation probabilities are equivalent. In 
contrast to our evolutionary ranking, Nash comes without any such stability properties (e.g., consider the interior 
mixed Nash in Fig. 4b). Even computing Evolutionary Stable Strategies (ESS)13, a refinement of Nash equilibria, 
is intractable60,61. In larger games (e.g., AlphaZero in Section 3.4.2), the reduction in the number of agents that are 
resistant to mutations is more dramatic (in the sense of the stationary distribution support size being much 
smaller than the total number of agents) and less obvious (in the sense that more-resistant agents are not always 
the ones that have been trained for longer). In summary, the strategies chosen by our approach are those favored 
by evolutionary selection, as opposed to the Nash strategies, which are simultaneous best-responses.

Conceptual examples.  We revisit the earlier conceptual examples of Rock-Paper-Scissors and Battle of the 
Sexes from Section 2.2 to illustrate the rankings provided by the α-Rank methodology. We use a population size 
of =m 50 in our evaluations.

Rock-Paper-Scissors.  In the Rock-Paper-Scissors game, recall the cyclical nature of the discrete-time Markov 
chain (shown in Fig. 6a) for a fixed value of ranking-intensity parameter, α. We first investigate the impact of the 
ranking-intensity on overall strategy rankings, by plotting the stationary distribution as a function of α in Fig. 6b. 
The result is that the population spends 1

3
 of its time playing each strategy regardless of the value of α, which is in 

line with intuition due to the cyclical best-response structure of the game’s payoffs. The Nash equilibrium, for 
comparison, is also ( ), ,1

3
1
3

1
3

. The α-Rank output Fig. 6c, which corresponds to a high value of α, thus indicates a 
tied ranking for all three strategies, also in line with intuition.
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Biased Rock-Paper-Scissors.  Consider now the game of Rock-Paper-Scissors, but with biased payoffs (shown in 
Fig. 7a). The introduction of the bias moves the Nash from the center of the simplex towards one of the corners, 
specifically ( ), ,1

16
5
8

5
16

 in this case. It is worthwhile to investigate the corresponding variation of the stationary 
distribution masses as a function of the ranking-intensity α (Fig. 7c) in this case. As evident from the fixation 
probabilities (13) of the generalized discrete-time model, very small values of α cause the raw values of payoff to 
have a very low impact on the dynamics captured by discrete-time Markov chain; in this case, any mutant strategy 
has the same probability of taking over the population, regardless of the current strategy played by the population. 
This corresponds well to Fig. 7c, where small α values yield stationary distributions close to π = ( ), ,1

3
1
3

1
3

.
As α increases, payoff values play a correspondingly more critical role in dictating the long-term population 

state; in Fig. 7c, the population tends to play Paper most often within this intermediate range of α. Most interesting 
to us, however, is the case where α increases to the point that our discrete-time model bears a close correspondence 
to the MCC solution concept (per Theorem 2.5.1). In this limit of large α, the striking outcome is that the station-
ary distribution once again converges to ( ), ,1

3
1
3

1
3

. Thus, α-Rank yields the high-level conclusion that in the long 
term, a monomorphic population playing any of the 3 given strategies can be completely and repeatedly displaced 
by a rare mutant, and as such assigns the same ranking to all strategies (Fig. 7d). This simple example illustrates 
perhaps the most important trait of the MCC solution concept and resulting α-Rank methodology: they capture 
the fundamental dynamical structure of games and long-term intransitivities that exist therein, with the rankings 
produced corresponding to the dynamical strategy space consumption or basins of attraction of strategies.

Battle of the sexes.  We consider next an example of α-Rank applied to an asymmetric game – the Battle of the 
Sexes. Figure 8b plots the stationary distribution against ranking-intensity α, where we again observe a uniform 
stationary distribution corresponding to very low values of α. As α increases, we observe the emergence of two 
sink chain components corresponding to strategy profiles O O( , ) and M M( , ), which thus attain the top α-Rank 
scores in Fig. 8c. Note the distinct convergence behaviors of strategy profiles O M( , ) and M O( , ) in Fig. 8b, where 
the stationary distribution mass on the M O( , ) converges to 0 faster than that of O M( , ) for an increasing value of 
α. This is directly due to the structure of the underlying payoffs and the resulting differences in fixation probabil-
ities. Namely, starting from profile M O( , ), if either player deviates, that player increases their local payoff from 0 
to 3. Likewise, if either player deviates starting from profile O M( , ), that player’s payoff increases from 0 to 2. 
Correspondingly, the fixation probabilities out of M O( , ) are higher than those out of O M( , ) (Fig. 8a), and thus 
the stationary distribution mass on M O( , ) converges to 0 faster than that of O M( , ) as α increases. We note that 
these low-α behaviors, while interesting, have no impact on the final rankings computed in the limit of large α 
(Fig. 8c). We refer the interested reader to62 for a detailed analysis of the non-coordination components of the 
stationary distribution in mutualistic interactions, such as the Battle of the Sexes.

We conclude this discussion by noting that despite the asymmetric nature of the payoffs in this example, the 
computational techniques used by α-Rank to conduct the evaluation are essentially identical to the simpler (sym-
metric) Rock-Paper-Scissors game. This key advantage is especially evident in contrast to recent evaluation 
approaches that involve decomposition of a asymmetric game into multiple counterpart symmetric games, which 
must then be concurrently analyzed7.

Theoretical properties of α-Rank.  This section presents key properties related to the structure of the 
underlying discrete-time model used in α-Rank, and computational complexity of the ranking analysis.

Property 3.3.1 (Structure of C). Given strategy profile si corresponding to row i of C, the number of valid profiles it 
can transition to is + ∑ | | −S1 ( 1)k

k  (i.e., either si self-transitions, or one of the populations k switches to a differ-
ent monomorphic strategy). The sparsity of C is then,

−
| | + ∑ | | −

| |
.

S S
S

1
(1 ( 1))

(18)
k

k

2

Therefore, for games involving many players and strategies, transition matrix C is large (in the sense that there 
exist | |S  states), but extremely sparse (in the sense that there exist only + ∑ | | −S1 ( 1)k

k  outgoing edges from each 
state). For example, in a 6-wise interaction game where agents in each population have a choice over 4 strategies, 
C is 99.53% sparse.

Property 3.3.2 (Computational complexity of solving for π). The sparse structure of the Markov transition matrix 
C (as identified in Property 3.3.1) can be exploited to solve for the stationary distribution π efficiently; specifically, 
computing the stationary distribution can be formulated as an eigenvalue problem, which can be computed in 
cubic-time in the number of total pure strategy profiles. The α-Rank method is, therefore, tractable, in the sense 
that it runs in polynomial time with respect to the total number of pure strategies. This yields a major computa-
tional advantage, in stark contrast to conducting rankings by solving for Nash (which is PPAD-complete for 
general-sum games21, which our meta-games may be).
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Experimental validation.  In this section we provide a series of experimental illustrations of α-Rank in a 
varied set of domains, including AlphaGo, AlphaZero Chess, MuJoCo Soccer, and both Kuhn and Leduc Poker. As 
evident in Table 1, the analysis conducted is extensive across multiple axes of complexity, as the domains consid-
ered include symmetric and asymmetric games with different numbers of populations and ranges of strategies.

AlphaGo.  In this example we conduct an evolutionary ranking of AlphaGo agents based on the data reported 
in1. The meta-game considered here corresponds to a 2-player symmetric NFG with 7 AlphaGo agents: AG r( ), 
AG p( ), AG v( ), AG rv( ), AG rp( ), AG vp( ), and AG rvp( ), where r, v, and p respectively denote the combination of 
rollouts, value networks, and/or policy networks used by each variant. The corresponding payoffs are the win rates 
for each pair of agent match-ups, as reported in Table 9 of1.

In Fig. 9c we summarize the rankings of these agents using the α-Rank method. α-Rank is quite conclusive in 
the sense that the top agent, AG rvp( ), attains all of the stationary distribution mass, dominating all other agents. 
Further insights into the pairwise agent interactions are revealed by visualizing the underlying Markov chain, 
shown in Fig. 9a. Here the population flows (corresponding to the graph edges) indicate which agents are more 
evolutionarily viable than others. For example, the edge indicating flow from AG r( ) to AG rv( ) indicates that the 
latter agent is stronger in the short-term of evolutionary interactions. Moreover, the stationary distribution (cor-
responding to high α values in Fig. 9b) reveals that all agents but AG rvp( ) are transient in terms of the long-term 
dynamics, as a monomorphic population starting from any other agent node eventually reaches AG rvp( ). In this 
sense, node AG rvp( ) constitutes an evolutionary stable strategy. We also see in Fig. 9a that no cyclic behaviors 
occur in these interactions. Finally, we remark that the recent work of6 also conducted a meta-game analysis on 
these particular AlphaGo agents and drew similar conclusions to ours. The key limitation of their approach is that 
it can only directly analyze interactions between triplets of agents, as they rely on visualization of the 
continuous-time evolutionary dynamics on a 2-simplex. Thus, to draw conclusive results regarding the interac-
tions of the full set of agents, they must concurrently conduct visual analysis of all possible 2-simplices (35 total 
in this case). This highlights a key benefit of α-Rank as it can succinctly summarize agent evaluations with mini-
mal intermediate human-in-the-loop analysis.

AlphaZero.  AlphaZero is a generalized algorithm that has been demonstrated to master the games of Go, Chess, 
and Shogi without reliance on human data3. Here we demonstrate the applicability of the α-Rank evaluation 
method to large-scale domains by considering the interactions of a large number of AlphaZero agents playing the 
game of chess. In AlphaZero, training commences by randomly initializing the parameters of a neural network 
used to play the game in conjunction with a general-purpose tree search algorithm. To synthesize the correspond-
ing meta-game, we take a ‘snapshot’ of the network at various stages of training, each of which becomes an agent 
in our meta-game. For example, agent .AZ(27 5) corresponds to a snapshot taken at approximately 27.5% of the 
total number of training iterations, while .AZ(98 7) corresponds to one taken approximately at the conclusion of 
training. We take 56 of these snapshots in total. The meta-game considered here is then a symmetric 2-player 
NFG involving 56 agents, with payoffs again corresponding to the win-rates of every pair of agent match-ups. We 
note that there exist 27720 total simplex 2-faces in this dataset, substantially larger than those investigated in6, 
which quantifiably justifies the computational feasibility of our evaluation scheme.

We first analyze the evolutionary strengths of agents over a sweep of ranking-intensity α (Fig. 10b). While the 
overall rankings are quite invariant to the value of α, we note again that a large value of α dictates the final α-Rank 
evaluations attained in Fig. 10c. To gain further insight into the inter-agent interactions, we consider the corre-
sponding discrete-time evolutionary dynamics shown in Fig. 10a. Note that these interactions are evaluated using 
the entire 56-agent dataset, though visualized only for the top-ranked agents for readability. The majority of 
top-ranked agents indeed correspond to snapshots taken near the end of AlphaZero training (i.e., the strongest 
agents in terms of training time). Specifically, .AZ(99 4), which is the final snapshot in our dataset and thus the 
most-trained agent, attains the top rank with a score of 0.39, in contrast to the second-ranked .AZ(93 9) agent’s 
score of 0.22. This analysis does reveal some interesting outcomes, however: agent .AZ(86 4) is not only ranked 5-th 
overall, but also higher than several agents with longer training time, including .AZ(88 8), .AZ(90 3), and .AZ(93 3).

We also investigate here the relationship between the α-Rank scores and Nash equilibria. A key point to recall 
is the equilibrium selection problem associated with Nash, as multiple equilibria can exist even in the case of 
two-player zero-sum meta-games. In the case of zero-sum meta-games, Balduzzi et al. show that there exists a 
unique maximum entropy (maxent) Nash equilibrium63, which constitutes a natural choice that we also use in the 
below comparisons. For general games, unfortunately, this selection issue persists for Nash, whereas it does not 
for α-Rank due to the uniqueness of the associated ranking (see Theorem 2.1.2).

We compare the α-Rank scores and maxent Nash by plotting each throughout AlphaZero training in 
Fig. 11a,b, respectively; we also plot their difference in Fig. 11c. At a given training iteration, the corresponding 
horizontal slice in each plot visualizes the associated evaluation metric (i.e., α-Rank, maxent Nash, or difference 
of the two) computed for all agent snapshots up to that iteration. We first note that both evaluation methods reach 
a consensus that the strengths of AlphaZero agents generally increase with training, in the sense that only the 
latest agent snapshots (i.e., the ones closest to the diagonal) appear in the support of both α-Rank scores and 
Nash. An interesting observation is that less-trained agents sometimes reappear in the support of the distribu-
tions as training progresses; this behavior may even occur multiple times for a particular agent.

We consider also the quantitative similarity of α-Rank and Nash in this domain. Figure 11c illustrates that 
differences do exist in the sense that certain agents are ranked higher via one method compared to the other. More 
fundamentally, however, we note a relationship exists between α-Rank and Nash in the sense that they share a 
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common rooting in the concept of best-response: by definition, each player’s strategy in a Nash equilibrium is a 
best response to the other players’ strategies; in addition, α-Rank corresponds to the MCC solution concept, 
which itself is derived from the sink strongly-connected components of the game’s response graph. Despite the 
similarities, α-Rank is a more refined solution concept than Nash in the sense that it is both rooted in dynamical 
systems and a best-response approach, which not only yields rankings, but also the associated dynamics graph 
(Fig. 10a) that gives insights into the long-term evolutionary strengths of agents. Beyond this, the critical advan-
tage of α-Rank is its tractability for general-sum games (per Property 3.3.2), as well as lack of underlying equilib-
rium selection issues; in combination, these features yield a powerful empirical methodology with little room for 
user confusion or interpretability issues. This analysis reveals fundamental insights not only in terms of the ben-
efits of using α-Rank to evaluate agents in a particular domain, but also an avenue of future work in terms of 
embedding the evaluation methodology into the training pipeline of agents involved in large and general games.

MuJoCo soccer.  We consider here a dataset consisting of complex agent interactions in the continuous-action 
domain of MuJoCo soccer5. Specifically, this domain involves a multi-agent soccer physics-simulator environ-
ment with teams of 2 vs. 2 agents in the MuJoCo physics engine64. Each agent, specifically, uses a distinct variation 
of algorithmic and/or policy parameterization component (see5 for agent specifications). The underlying 
meta-game is a 2-player NFG consisting of 10 agents, with payoffs corresponding to Fig. 2 of5.

We consider again the variation of the stationary distribution as a function of ranking-intensity α (Fig. 12b). 
Under the large α limit, only 6 agent survive, with the remaining 4 agents considered transient in the long-term. 
Moreoever, the top 3 α-Ranked agents (C, A, and B, as shown in Fig. 12c) correspond to the strongest agents 
highlighted in5, though α-Rank highlights 3 additional agents (G, J , and F) that are not in the top-rank set out-
lined in their work. An additional key benefit of our approach is that it can immediately highlight the presence of 
intransitive behaviors (cycles) in general games. Worthy of remark in this dataset is the presence of a large num-
ber of cycles, several of which are identified in Fig. 13. Not only can we identify these cycles visually, these intran-
sitive behaviors are automatically taken into account in our rankings due to the fundamental role that recurrence 
plays in our underlying solution concept. This is in contrast to the Elo rating (which is incapable of dealing with 
intransitivities), the replicator dynamics (which are limited in terms of visualizing such intransitive behaviors for 
large games), and Nash (which is a static solution concept that does not capture dynamic behavior).

Kuhn poker.  We next consider games wherein the inherent complexity is due to the number of players involved. 
Specifically, we consider Kuhn poker with 3 and 4 players, extending beyond the reach of prior meta-game evalu-
ation approaches that are limited to pairwise asymmetric interactions6. Kuhn poker is a small poker game in 
which every player starts with 2 chips, antes 1 chip to play, and receives a single card face down from a deck of size 
n + 1 (one card remains hidden). Then the players can bet (raise/call) by adding their remaining chip to the pot, 
or can pass (check/fold) until all players are either in (contributed to the pot) or out (folded, passed after a raise). 
The player with the highest-ranked card that has not folded wins the pot. The two-player game is known to have 
a continuum of strategies, which could have fairly high support, that depends on a single parameter: the probabil-
ity that the first player raises with the highest card65. The three-player game has a significantly more complex 
landscape66. The specific rules used for the three and four player variants can be found in67, [Section 4.1].

Here, our meta-game dataset consists of several (fixed) rounds of extensive-form fictitious play (specifically, 
XFP from68): in round 0, the payoff corresponding to strategy profile (0, 0, 0) in each meta-game of 3-player 
Kuhn corresponds to the estimated payoff of each player using uniform random strategies; in fictitious play round 
1, the payoff entry (1, 1, 1) corresponds to each player playing an approximate best response to the other players’ 
uniform strategies; in fictitious play round 2, entry (2, 2, 2) corresponds to each playing an approximate best 
response to the other players’ uniform mixtures over their round 0 strategies (uniform random) and round 1 
oracle strategy (best response to random); and so on. Note, especially, that oracles at round 0 are likely to be dom-
inated (as they are uniform random). In our dataset, we consider two asymmetric meta-games, each involving 3 
rounds of fictitious play with 3 and 4 players (Figs 14 and 15, respectively).

Of particular note are the total number of strategy profiles involved in these meta-games, 64 and 256 respec-
tively for the 3 and 4 player games – the highest considered in any of our datasets. Conducting the evaluation 
using the replicator-dynamics based analysis of6 can be quite tedious as all possible 2-face simplices must be 
considered for each player. Instead, here the α-Rankings follow the same methodology used for all other domains, 
and are summarized succinctly in Figs 14c and 15c. In both meta-games, the 3-round fictitious play strategies 
((3, 3, 3) and (3, 3, 3, 3), respectively) are ranked amongst the top-5 strategies.

Leduc poker.  The meta-game we consider next involves agents generated using the Policy Space Response 
Oracles (PSRO) algorithm30. Specifically, PSRO can be viewed as a generalization of fictitious play, which com-
putes approximate responses (“oracles”) using deep reinforcement learning, along with arbitrary meta-strategy 
solvers; here, PSRO is applied to the game of Leduc poker. Leduc poker involves a deck of 6 cards (jack, queen, 
and king in two suits). Players have a limitless number of chips. Each player antes 1 chip to play and receives an 
initial private card; in the first round players can bet a fixed amount of 2 chips, in the second round can bet 4 
chips, with a maximum of two raises in each round. Before the second round starts, a public card is revealed. The 
corresponding meta-game involves 2 players with 3 strategies each, which correspond to the first three epochs 
of the PSRO algorithm. Leduc poker is a commonly used benchmark in the computer poker literature69: our 
implementation contains 936 information states (approximately 50 times larger then 2-player Kuhn poker), and 
is non-zero sum due to penalties imposed by selecting of illegal moves, see [30, Appendix D.1] for details.
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We consider in Fig. 16a the Markov chain corresponding to the PSRO dataset, with the corresponding α-Rank 
yielding profile (0, 0) as the top-ranked strategy, which receives 1.0 of the stationary distribution mass and essen-
tially consumes the entire strategy space in the long-term of the evolutionary dynamics. This corresponds well to 
the result of6, which also concluded that this strategy profile consumes the entire strategy space under the repli-
cator dynamics; in their approach, however, an equilibrium selection problem had to be dealt with using 
human-in-the-loop intervention due to the population-wise dynamics decomposition their approach relies on. 
Here, we need no such intervention as α-Rank directly yields the overall ranking of all strategy profiles.

Discussion
We introduced a general descriptive multi-agent evaluation method, called α-Rank, which is practical and general 
in the sense that it is easily applicable in complex game-theoretic settings, including K-player asymmetric games 
that existing meta-game evaluation methods such as6,7 cannot feasibly be applied to. The techniques underlying α
-Rank were motivated due to the fundamental incompatibility identified between the dynamical processes typi-
cally used to model interactions of agents in meta-games, and the Nash solution concept typically used to draw 
conclusions about these interactions. Using the Nash equilibrium as a solution concept for meta-game evaluation 
in these dynamical models is in many ways problematic: computing a Nash equilibrium is not only computation-
ally difficult21,22, and there are also intractable equilibrium selection issues even if Nash equilibria can be com-
puted23–25. α-Rank, instead, is theoretically-grounded in a novel solution concept called Markov-Conley chains 
(MCCs), which are inherently dynamical in nature. A key feature of α-Rank is that it relies on only a single hyper-
parameter, its ranking-intensity value α, with sufficiently high values of α (as determined via a parameter sweep) 
yielding closest correspondence to MCCs.

The combination of MCCs and α-Rank yields a principled methodology with a strong evolutionary interpre-
tation of agent rankings, as outlined in Fig. 17; this overarching perspective considers a spectrum of evolutionary 
models of increasing complexity. On one end of the spectrum, the continuous-time dynamics micro-model pro-
vides detailed insights into the simplex, illustrating flows, attractors, and equilibria of agent interactions. On the 
other end, the discrete-time dynamics macro-model provides high-level insights of the time limit behavior of the 
system as modeled by a Markov chain over interacting agents. The unifying link between these models is the 
MCC solution concept, which builds on the dynamical theory foundations of Conley29 and the topological con-
cept of chain components. We provided both scalability properties and theoretical guarantees for our ranking 
method. Finally, we evaluated the approach on an extensive range of meta-game domains including AlphaGo1, 
AlphaZero3, MuJoCo Soccer5, and Poker30, which exhibit a range of complexities in terms of payoff asymmetries, 
number of players, and number of agents involved. We strongly believe that the generality of α-Rank will enable 
it to play an important role in evaluation of AI agents, e.g., on leaderboards. More critically, we believe that the 
computational feasibility of the approach, even when many agents are involved (e.g., AlphaZero), makes its inte-
gration into the agent training pipeline a natural avenue for future work.
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