
M. Endler and D. Schmidt (Eds.): Middleware 2003, LNCS 2672, pp. 143–161, 2003.
© IFIP International Federation for Information Processing 2003

A Middleware for Context-Aware Agents
in Ubiquitous Computing Environments*

Anand Ranganathan and Roy H. Campbell

Department of Computer Science
University of Illinois at Urbana-Champaign, USA

{ranganat,rhc}@uiuc.edu

Abstract. Ubiquitous Computing advocates the construction of massively dis-
tributed systems that help transform physical spaces into computationally active
and intelligent environments. The design of systems and applications in these
environments needs to take account of heterogeneous devices, mobile users and
rapidly changing contexts. Most importantly, agents in ubiquitous and mobile
environments need to be context-aware so that they can adapt themselves to dif-
ferent situations. In this paper, we argue that ubiquitous computing environ-
ments must provide middleware support for context-awareness. We also pro-
pose a middleware that facilitates the development of context-aware agents. The
middleware allows agents to acquire contextual information easily, reason
about it using different logics and then adapt themselves to changing contexts.
Another key issue in these environments is allowing autonomous, heterogene-
ous agents to have a common semantic understanding of contextual informa-
tion. Our middleware tackles this problem by using ontologies to define differ-
ent types of contextual information. This middleware is part of Gaia, our
infrastructure for enabling Smart Spaces.

1 Introduction

Ubiquitous Computing Environments consist of a large number of autonomous agents
that work together to transform physical spaces into smart and interactive environ-
ments. In order for an agent to function effectively in these environments, they need
to perform two kinds of tasks – they need to sense and reason about the current con-
text of the environment; and they need to interact smoothly with other agents. In this
paper, we propose a middleware for Ubiquitous Computing Environments that meets
these two needs of agents in the environment.

The role of context has recently gained great importance in the field of ubiquitous
computing. “Context” is any information about the circumstances, objects, or condi-
tions by which a user is surrounded that is considered relevant to the interaction be-
tween the user and the ubiquitous computing environment [1]. A lot of work has been
done in trying to make applications in ubiquitous computing environments context
aware so that they can adapt to different situations and be more receptive to users’
needs[1][2][3][8][13].

Humans behave differently in different contexts. They are able to sense what their
context is and they adapt their behavior to their current context. The way humans

* This research is supported by a grant from the National Science Foundation, NSF CCR

0086094 ITR and NSF 99-72884 EQ

144 Anand Ranganathan and Roy H. Campbell

adapt themselves is based on rules that they learn over the course of their experiences.
Humans are, thus, able to follow socially and politically correct behavior that is
conditioned by their past experiences and their current context.

Automated agents (which may be applications, services and devices) too, can fol-
low contextually-appropriate behavior, if they are able to sense and reason about the
context in which they are operating. Ubiquitous computing environments are charac-
terized by many sensors that can sense a variety of different contexts. The types of
contexts include physical contexts (like location, time), environmental contexts
(weather, light and sound levels), informational contexts (stock quotes, sports scores),
personal contexts (health, mood, schedule, activity), social contexts (group activity,
social relationships, other people in a room), application contexts (email received,
websites visited) and system contexts (network traffic, status of printers)[9]. Agents in
these environments should be able to acquire and reason about these contexts to adapt
the way they behave.

In this paper, we argue that ubiquitous computing environments must provide mid-
dleware support for context awareness. A middleware for context awareness would
provide support for most of the tasks involved in dealing with context. Context-aware
agents can be developed very easily with such a middleware. A middleware for con-
text-awareness would also place different mechanisms at the disposal of agents for
dealing with context. These mechanisms include reasoning mechanisms like rules
written in different types of logic (first order logic, temporal logic, fuzzy logic, etc.)
as well as learning mechanisms (like Bayesian networks, neural networks or rein-
forcement learning). Developers of context-aware agents would not have to worry
about the intricate details of getting contextual information from different sensors or
developing reasoning or learning mechanisms to reason about context.

Another important requirement of middleware in ubiquitous computing environ-
ments is that they allow autonomous, heterogeneous agents to seamlessly interact
with one another. While a number of protocols and middlewares (like TCP/IP,
CORBA, Jini, SOAP, etc.) have been developed to enable distributed agents to talk to
one another, they do not address the issues of syntactic and semantic interoperability
among agents. They do not provide a common terminology and shared set of concepts
that agents can use when they interact with each other. This problem is especially
acute in the realm of contextual information since different agents could have differ-
ent understandings of the current context. They might use different terms to describe
context, and even if they use the same terms, they might attach different semantics to
these terms. A middleware for context-awareness must address this problem by ensur-
ing that there is no semantic gap between different agents when they exchange con-
textual information.

We have identified several requirements for a middleware for context-awareness in
ubiquitous computing environments. These are:

1. Support for gathering of context information from different sensors and delivery of
appropriate context information to different agents.

2. Support for inferring higher level contexts from low level sensed contexts
3. Enable agents use different kinds of reasoning and learning mechanisms
4. Facilities for allowing agents to specify different behaviors in different contexts

easily.
5. Enable syntactic and semantic interoperability between different agents (through

the use of ontologies)

A Middleware for Context-Aware Agents in Ubiquitous Computing Environments 145

In this paper, we propose a middleware for promoting context-awareness among
agents in ubiquitous computing environments. This middleware is based on a predi-
cate model of context. The model of context and the middleware also supports the use
of different reasoning mechanisms like first order logic and temporal logic by agents
to reason about context and decide how to behave in different contexts. Agents can
alternatively employ learning mechanisms like Bayesian learning and reinforcement
learning to learn different behaviors in different contexts. Different logics have differ-
ent power, expressiveness and decidability properties. Agents can choose the appro-
priate logic that best meets their reasoning requirements.

The middleware uses ontologies to define the semantics of various contexts. The
ontologies define the structure and the properties of different types of contextual in-
formation. They allow different agents in the environment to have a common seman-
tic understanding of different contexts.

Ontologies have been used extensively in the Semantic Web[14] to allow semantic
interoperability among different web-based agents. DAML+OIL[20] has emerged as
one of the premier languages for describing ontologies in the Semantic Web. Our
ontologies are also written in DAML+OIL. The use of standard technologies for se-
mantics allows semantic interoperability between agents in our environment and other
external agents (in other environments or on the web). The use of ontologies, thus,
dramatically increases the scalability of the environment.

Our middleware allows rapid prototyping of context-aware agents in ubiquitous
computing environments. It also allows agents the use of powerful reasoning mecha-
nisms to handle contextual information and ensures syntactic as well as semantic
interoperability between different agents through the use of ontologies. The middle-
ware has made it very easy for us to develop a variety of context-aware applications
and services.

In the rest of the paper, we describe how our middleware achieves context aware-
ness in and semantic interoperability between agents in ubiquitous computing envi-
ronments. In Section 2, we provide motivation for middleware support for context-
awareness. In Section 3, we describe our predicate model for context, which forms the
basis of the various reasoning and learning mechanisms that we use. Section 4 intro-
duces Gaia, our infrastructure for Smart Spaces, into which our middleware for con-
text awareness and semantic interoperability has been integrated. Section 5 describes
how context awareness has been achieved among agents. Section 6 describes the use
of ontologies in the middleware. Section 7 describes our current implementation
status; Section 8 has related work; Section 9 has future work and Section 10 con-
cludes the paper.

2 Why a Middleware for Context-Awareness?

Different approaches have been suggested for promoting context-awareness among
agents. Anind Dey et al[1] have proposed the Toolkit approach, which provides a
framework for the development and execution of sensor-based context-aware applica-
tions and provides a number of reusable components. The toolkit supports rapid
prototyping of certain types of context-aware applications.

The other approach is developing an infrastructure or a middleware for context-
awareness. A middleware would greatly simplify the tasks of creating and maintain-

146 Anand Ranganathan and Roy H. Campbell

ing context-aware systems[2]. A middleware would provide uniform abstractions and
reliable services for common operations. It would, thus, simplify the development of
context-aware applications. It would also make it easy to incrementally deploy new
sensors and context-aware agents in the environment. A middleware would be inde-
pendent of hardware, operating system and programming language. Finally, a mid-
dleware would also allow us to compose complex systems based on the interactions
between a number of distributed context-aware agents.

While traditional middleware like CORBA and Jini do provide the basic mecha-
nisms for different objects (or agents) to communicate with each other, they fall short
in providing ways for agents to be context aware. Context-awareness involves acqui-
sition of contextual information, reasoning about context and modifying one’s behav-
ior based on the current context. A middleware for context-awareness would provide
support for each of these tasks. It would also define a common model of context,
which all agents can use in dealing with context. It would also ensure that different
agents in the environment have a common semantic understanding of contextual in-
formation.

Our middleware for context-awareness does use CORBA to enable distributed
agents to find and communicate with one another. It, however, provides extra func-
tionality to enable context-awareness. It is based on a predicate model of context and
uses ontologies to describe different types of contexts. It also provides various ser-
vices and libraries to enable agents acquire and reason about contextual information
easily.

3 Context Model

In order to allow applications to be context-aware, we first need a model for context.
We have developed a context model that is based on predicates. We use ontologies to
describe the properties and structure of different context predicates. This context
model provides the basis for reasoning about contexts using various mechanisms.

3.1 The Context Predicate

We represent a context as a predicate. We follow a convention where the name of the
predicate is the type of context that is being described (like location, temperature or
time). This convention allows us to have a simple, uniform representation for differ-
ent kinds of contexts. Besides, it also allows us to easily describe the different con-
texts in an ontology, as we shall see later. It is also possible to have relational opera-
tors like “=” and “<” as arguments of a predicate.

Example context predicates are:

• Location (chris , entering , room 3231)
• Temperature (room 3231 , “=” , 98 F)
• Sister(venus , serena)
• StockQuote(msft , “>” , $60)
• PrinterStatus(srgalw1 printer queue , is , empty)
• Time(New York , “<” , 12:00 01/01/01)

A Middleware for Context-Aware Agents in Ubiquitous Computing Environments 147

The values that the arguments of a predicate can take are actually constrained by
the type of context. For example, if the type of context is “location”, the first argu-
ment has to be a person or object, the second argument has to be a preposition or a
verb like “entering,” “leaving,” or “in” and the third argument must be a location. We
perform type-checking of context predicates to make sure that the predicate does
make sense.

3.2 Ontologies to Describe Context Predicates

The structures of different context predicates are specified in an ontology[15]. Each
context type corresponds to a class in the ontology. This ontology defines various
context types as well as the arguments that the predicates must have. The ontology is
written in DAML+OIL[20], which is fast becoming the de-facto language of the se-
mantic web[14].

For example, many context predicates are defined to have arguments in an SVO
(Subject Verb Object) format. Thus, the structure of these predicates is Con-
textType(<Subject>,<Verb>,<Object>). For instance, the ontology declares that the
Location predicate must have a subject which belongs to the set of persons or things,
a verb or preposition like “inside” or “entering” and a location, which may be a room
or a building.

The ontology is used to check the validity of context predicates. It also makes it
easier to write different context predicates since we know what the structure of the
predicate is and what kinds of values different arguments can take. It also allows
different ubiquitous computing environments to inter-operate since it is possible to
define translations between the terms used in the ontologies of these environments.
Section 6 has more details about the use of ontologies.

This logical model for context is quite powerful. It allows us to describe the con-
text of a system in a generic way, which is independent of programming language,
operating system or middleware. Since the structure and the semantics of context
predicates are specified in an ontology, it allows different components in the system
to have a common understanding of the semantics of different contexts.

The predicate model of context is also generic enough to allow different reasoning
mechanisms. For example, it is possible to write rules using these context predicates
that describe application behavior using different logics like first order logic or tem-
poral logic. It is also possible to perform other kinds of inferencing based on these
predicates using Bayesian networks, neural networks or other approaches.

4 Gaia

Our middleware for context awareness and semantic interoperability has been inte-
grated into Gaia[16][17]. Gaia is our infrastructure for Smart Spaces, which are ubiq-
uitous computing environments that encompass physical spaces. The main aim of
Gaia is to make physical spaces like rooms, homes, buildings and airports intelligent,
and aid humans in these spaces. Gaia converts physical spaces and the ubiquitous
computing devices they contain into a programmable computing system. It offers
services to manage and program a space and its associated state. Gaia is similar to

148 Anand Ranganathan and Roy H. Campbell

traditional operating systems in that it manages the tasks common to all applications
built for physical spaces. Each space is self contained, but may interact with other
spaces. Gaia provides core services, including events, entity presence (devices, users
and services), discovery and naming. By specifying well defined interfaces to ser-
vices, applications may be built in a generic way so that they are able to run in arbi-
trary active spaces. The core services are started through a bootstrap protocol that
starts the Gaia infrastructure. Gaia uses CORBA to enable distributed computing.

Gaia consists of a number of different types of agents performing different tasks.
There are agents that perform various core services required for the functioning of the
environment like discovery, context-sensing, event distribution, etc. There are agents
associated with devices that enable them be a part of the environment. Each user also
has an agent that keeps personal information and acts as his proxy in a variety of set-
tings. Finally there are application agents that help users perform various kinds of
tasks in the environment. Examples of application agents include PowerPoint applica-
tions, music playing applications and drawing applications.

5 Enabling Context-Awareness

The Gaia middleware provides different ways for agents to acquire various types of
contextual information and then reason about it. A diagram of our infrastructure for
context-awareness is shown in Fig 1.

5.1 Overview of Context Infrastructure

There are different kinds of agents that are involved in the Context Infrastructure
within Gaia (Fig. 1). These are:

• Context Providers. Context Providers are sensors or other data sources of context
information. They allow other agents (or Context Consumers) to query them for
context information. Some Context Providers also have an event channel where
they keep sending context events. Thus, other agents can either query a Provider or
listen on the event channel to get context information.

• Context Synthesizers. Context Synthesizers get sensed contexts from various Con-
text Providers, deduce higher-level or abstract contexts from these simple sensed
contexts and then provide these deduced contexts to other agents. For example, we
have a Context Synthesizer which infers the activity going in a room based on the
number of people in the room and the applications that are running.

• Context Consumers. Context Consumers (or Context-Aware Applications) are
agents that get different types of contexts from Context Providers or Context Syn-
thesizers. They then reason about the current context and adapt the way they be-
have according to the current context.

• Context Provider Lookup Service. Context Providers advertise the context they
provide with the Context Provider Lookup Service. This service allows agents to
find appropriate Context Providers. There is one such service in a single ubiquitous
computing environment.

A Middleware for Context-Aware Agents in Ubiquitous Computing Environments 149

• Context History Service. Past contexts are logged in a database. The Context His-
tory Service allows other agents to query for past contexts. There is one such ser-
vice in a single ubiquitous computing environment.

• Ontology Server. The Ontology Server maintains ontologies that describe different
types of contextual information. There is one Ontology Server per ubiquitous com-
puting environment.

These different kinds of agents are described in further detail in the following sec-
tions.

5.2 Use of Different Reasoning Mechanisms by Different Agents

A key feature of our middleware is that it endows agents with a variety of reasoning
and/or learning mechanisms to help them reason about context appropriately. Using
these reasoning or learning mechanisms, agents can infer various properties about the
current context, answer logic queries about context or adapt the way they behave in
different contexts.

Agents can reason about context using rules written in different types of logic like
first order logic, temporal logic, description logic, higher order logic, fuzzy logic, etc.
Different agents have different logic requirements. Agents that are concerned with the
temporal sequence in which various events occur would need to use some form of
temporal logic to express the rules. Agents that need to express generic conditions
using existential or universal quantifiers would need to use some form of first order
logic. Agents that need more expressive power (like characterizing the transitive clo-
sure of relations) would need higher order logics. Agents that deal with specifying
terminological hierarchies may need description logic. Agents that need to handle
uncertainties may require some form of fuzzy logic.

Context
History

Context Consumer

Context
Provider

Context
Provider

Context
Provider

Context
Synthesizer

Context
Provider
Lookup
Service

Context Consumer

Ontology
Server

Fig. 1. Gaia Context Infrastructure

150 Anand Ranganathan and Roy H. Campbell

Instead of using rules written in some form of logic to reason about context, agents
can also use various machine learning techniques to deal with context. Learning tech-
niques that can be used include Bayesian learning, neural networks, reinforcement
learning, etc. Depending on the kind of concept to be learned, different learning
mechanisms can be used. If an agent wants to learn the appropriate action to perform
in different states in an online, interactive manner, it could use reinforcement learning
or neural networks. If an agent wants to learn the conditional probabilities of different
events, Bayesian learning is appropriate. The decision on what kind of logic or learn-
ing mechanism to use depends not only on the power and expressivity of the logic,
but also on other issues like performance, tractability and decidability.

Our middleware provides agents a choice of reasoning and learning mechanisms
that they can use to understand and react to context. Our current implementation al-
lows reasoning based on many-sorted first order logic, propositional linear-time tem-
poral logic or probabilistic propositional logic. It also allows agents to learn using
Bayesian methods or through reinforcement learning. These mechanisms are provided
in the form of libraries that the agent can use. We discuss the power, expressivity and
decidability of these logics in the implementation section. In the following sections,
we describe how Context Providers, Context Synthesizers and Context Consumers
use various reasoning mechanisms to perform their tasks.

5.3 Context Providers

Context Providers sense various types of contexts and allow these contexts to be ac-
cessed by other agents. We have a number of Context Providers in our infrastructure
providing various types of contexts like location, weather, stock price, calendar and
schedule information, etc.

Different Context Providers use different reasoning or learning mechanisms for
reasoning about the contexts they sense and for answering queries. For example, Con-
text Providers that deal with uncertain contexts could use fuzzy logic, while those that
require the ability to quantify over variables could use first order logic. Our Location
Context Provider, for instance, uses first order logic so that it can quantify over peo-
ple or over locations. It can thus answer queries concerning all the people in a room,
or all the locations in a building. Our Weather Forecast Context Provider uses a form
of fuzzy logic to attach probabilities with different contexts. For instance, it says that
precipitation could occur with a certain probability the next day.

Context Providers provide a query interface for other agents to get the current con-
text. Depending on the type of logic or learning mechanism used, Context Providers
have different ways of evaluating queries. However, all reasoning and learning
mechanisms are based on the predicate model of context, which is defined in the on-
tology. So, in spite of different Providers using different logics, their common
grounding on the predicate model makes it easy for Context Consumers to query them
in a uniform way.

The query interface is similar to that of Prolog. If the query is a predicate with no
variables, then the result is expected to be the truth value of that predicate. The result
is, thus, either a “yes” or a “no” (or a probability of the context predicate being true).
If the query is a predicate with variables, then the result must include any unifications
of the variable with constants that make the predicate true (if there are any). The re-

A Middleware for Context-Aware Agents in Ubiquitous Computing Environments 151

sulting unified context predicates that are returned may have additional attributes like
time or probability depending on the type of logic used.

Some Context Providers (like those that provide dynamic contexts and are associ-
ated with sensors) also send events about their context on an event channel. Consum-
ers can listen on this channel. For example, our room-based location service sends an
event like “Location(Bob, Entering, Room 3231)” when Bob enters Room 3231.
Exactly when a Context Provider generates an event is set by a policy for the Context
Provider. In some cases, the provider keeps sending events periodically. For example,
our weather service keeps sending temperature updates every 5 minutes. In other
cases, the provider sends an event whenever a change in context is detected.

All Context Providers support a similar interface for getting contexts and listening
to context events. So, consumers don’t have to worry about the actual type of Context
Provider they are querying. This greatly aids development of context-aware applica-
tions.

5.4 Context Synthesizers

Context Synthesizers are agents that provide higher-level contexts based on simpler
sensed contexts. A Context Synthesizer gets source contexts from various Context
Providers, applies some sort of logic to them and generates a new type of context. A
Context Synthesizer is both a Context Provider and a Context Consumer. Just like
Context Providers, Context Synthesizers also support a Prolog-like query interface
which other agents can use to get the current context. They may also send events in an
event channel.

We follow two basic approaches for inferring new contexts from existing contexts.
The first uses static rules to deduce higher-level contexts and the other uses machine
learning techniques.

Rule Based Synthesizers. Rule-based synthesizers use pre-defined rules written in
some form of logic to infer different contexts. For example, we have a Room Activity
Context Provider that based on the number of people in the room and the applications
running in the room deduces what kind of activity is going on in the room. It uses
rules written in first order logic to perform the deduction. Some of the rules that this
Room Activity Context Provider employs are:

1. #People(Room 2401, “>=” , 3) AND Application(PowerPoint, Running) =>
RoomActivity(2401, Presentation)

2. #People(Room 2401, “>=” , 1) AND Application(MPEG Player, Running) =>
RoomActivity(2401, Movie Screening)

3. #People(Room 2401, “>=” , 3) AND NOT ∃Entertainment-Application x Application(x, Run-
ning) => RoomActivity(2401, Meeting)

4. #People(Room 2401, “=” , 1) AND Application(Visual Studio, Running) =>
RoomActivity(2401, Individual Development)

5. #People(Room 2401, “=” , 2) AND Application(Visual Studio, Running) =>
RoomActivity(2401, Extreme Programming)

6. #People(Room 2401, “=” , 0) => RoomActivity(2401, Idle)

152 Anand Ranganathan and Roy H. Campbell

Each of the rules also has a priority associated with it – so if more than one rule is
true at the same time, exactly what the activity in the room is determined using the
priorities of the rules. If two rules are true at the same time and they have the same
priority, then one of them is picked at random.

Even the context concerning the number of people in the room is an inferred con-
text. So, the Room Activity Context Provider has to keep track of these entered and
exited context events and infer the number of people in the room based on these
events. Whenever the Room Activity Context Provider deduces a change in the activ-
ity in the room, it sends an event with the new activity.

We found that a fairly small set of rules are sufficient for deducing the activity in a
room in most circumstances. The Room Activity Context Provider did accurately
deduce the activity in the room most of the times. This proves, at least empirically,
that rule-based synthesizers are fairly useful in deducing some types of contexts.

The middleware provides mechanisms for developers to specify the rules of infer-
ence for these Synthesizers very easily. The developer can browse the ontology to get
the terminology used in the environments. He can then make use of this terminology
to frame the rules. The middleware also abstracts away many tasks like getting refer-
ences to appropriate Context Providers, querying them or listening to their event
channels and sending context events at appropriate times. The developer is thus free
to concentrate on the task of writing the rules.

Synthesizers that Learn. Rule based synthesizers have the disadvantage that they
require explicit definition of rules by humans. They are also not flexible and can’t
adapt to changing circumstances. Making use of machine learning techniques to
deduce the higher-level context enables us to get around this problem.

One type of context that is extremely difficult to sense is the mood of a user. It is
difficult to write rules for predicting user mood since each user is different. There are
such a large number of factors that can influence a user’s mood. We attempted to use
a learning mechanism that took some possible factors into account like his location,
the time of day, which other people are in the room with him, the weather outside and
how his stock portfolio is faring.. Our User Mood Context Provider uses the Naïve
Bayes algorithm for predicting user mood. We make use of past contexts to train the
learner. During the training phase, we ask the user for his mood periodically. We
construct a training example by finding the values of the features (ie. location,
weather, etc.) for each time the user entered his mood. We train the learner for a
week. Once the training phase is over, the learner can predict the mood of the user
given the values of the feature contexts (which are represented as predicates). The
result of a Naïve Bayes algorithm is probabilistic. It would be possible to retain the
probabilities associated with different user moods and thus some form of fuzzy logic
or probabilistic reasoning in handling these contexts. However, we just consider the
mood with the highest probability and assume that to be true.

We found that this user mood predictor did predict the moods of user fairly well in
different situations after some training. Humans are fairly repetitive creatures –their
moods in different contexts follow certain predictable patterns. Of course, the predic-
tions are not always perfect – we can only make good guesses based on the informa-
tion we have available. It is quite difficult to take into account all possible factors that
can influence the mood of a user.

A Middleware for Context-Aware Agents in Ubiquitous Computing Environments 153

The middleware aids the training and the actual operation of the agent. It provides
support for many tasks like getting references to appropriate Context Providers, que-
rying them or listening to their event channels and sending context events at appropri-
ate times. The developer is thus free to concentrate on the task of learning.

5.5 Context Consumers (or Context-Aware Applications)

Context Consumers are agents that consume various types of contexts and adapt their
behavior depending on the current context. As mentioned earlier, consumers can ob-
tain contexts by either querying a Context Provider or by listening for events that are
sent by Context Providers. Our middleware makes it very easy to develop and deploy
context aware applications. It is easy for applications to get the contexts they require
to make decisions. In our infrastructure, Context Consumers get references to Context
Providers using the Context Provider Lookup Service.

Specifying Context-Sensitive Behavior. One common way in which applications
can be made context sensitive is to specify actions to be performed whenever the
context of the environment changes. Thus, whenever the context of the environment
changes, the application reconfigures itself to meet the requirements of the new
context. For example, a jukebox application in a smart room may reconfigure itself
whenever a person enters or leaves the room by changing the song it is playing, the
volume of the song or the speakers it uses to play the music. This application model is
based on the ECA (event-condition-action) execution model[24].

Our context framework provides a number of ways for developers to specify dif-
ferent behaviors in different contexts. Just as in the case of Context Synthesizers,
there are two broad ways in which these behaviors can be described. The first is to
allow application developers to write rules that indicate what actions are to be per-
formed in different contexts. The second is to use machine learning approaches that
learn what actions to perform in different contexts.

Rule-Based Approaches. Using rules to specify application behavior is a very simple
way to make applications context-sensitive. These rules consist of conditions and
actions. Whenever the context of the environment changes, the conditions in all the
rules are evaluated. If any of the conditions become true, then the actions correspond-
ing to these rules are evaluated. Each rule is also associated with a certain priority,
which is used in case there is a conflict in the actions.

The conditions in the rules are expressions in some form of logic like first order
logic, temporal logic, description logic, higher order logic, fuzzy logic, etc. Our
framework for context awareness is flexible enough to allow the use of any form of
logic for writing rules. Depending on the kind of logic used to express the condition,
different evaluation engines are used to decide whether a condition is true or false.

The middleware makes it very easy to develop rule-based Context Consumers.
These agents have a configuration file that lists all the rules. Actions are specified as
methods in the agent that are invoked when the context becomes true. The middle-
ware provides support for getting references to appropriate Context Providers, getting
context information from them, evaluating the rules and invoking appropriate meth-
ods in different contexts. It also makes available different evaluation engines in the

154 Anand Ranganathan and Roy H. Campbell

form of libraries, which aid in the reasoning process. The job of the agent developer
is, thus, very simple. He can concentrate on writing the rules that govern agent behav-
ior without worrying about other things.

A sample configuration file for a jukebox application agent is shown in Table 1.
This agent plays appropriate music in a room depending on who is in the room, what
the weather is outside and how the stock portfolio of the user is faring. The rules of
this agent are written in first order logic.

In our current implementation, developers of context-aware applications need to
write such a configuration file (using the appropriate kind of logic) for describing
behavior in different contexts. However, we are also working on a graphical interface,
which simplifies the developer’s task. This graphical interface would show the vari-
ous types of contexts available (as defined in the ontology), allow the developer to
construct complex rules involving these contexts in different types of logics and also
present him with a list of possible behaviors of the application for these different
contexts.

Another example, which uses temporal logic, is a slideshow agent. One of its rules
is that it starts playing a particular ppt file on a large plasma screen when Chris enters
the room and continues playing until the Activity in the room is Meeting. This rule is
written as:

Condition: Location(Chris, Entered, 2401) AND (TRUE UNTIL Ac-
tivity(2401, Meeting))

Action: PlayOnPlasmaScreen(“scenery.ppt”)

Priority: 2

Machine Learning Approaches. The disadvantage of using rule-based approaches for
developing context sensitive applications is that they are not flexible and cannot adapt
themselves to changing circumstances. Use of machine learning techniques helps us
get around this problem. Developers need not specify the behavior of applications in
different scenarios; the application can learn the most appropriate behavior in differ-
ent contexts.

A variety of machine learning techniques can be employed for learning appropriate
behavior. These include Bayesian approaches, neural networks, Support Vector Ma-
chines, various clustering algorithms, reinforcement learning, etc.

Learning can take place either in a batch-processing or in an online fashion. Batch-
processsing approaches (like Naïve Bayes, etc.) require a number of training exam-
ples. Gaia stores all events that are sent in the environment in a database. These in-
clude events with context information, events that describe user and application ac-
tions, etc. The stored past events act as training examples for our learner. This
approach is especially useful for learning user behavior by studying his actions over a
period of time. If user behavior is learned well, applications can take proactive actions
on behalf of the user depending on the context and thus save the user’s valuable time.

Online learning mechanisms (like reinforcement learning) can learn their concepts
while operating in the environment. These mechanisms involve trying out different
actions, observing the user’s reaction to these actions and learning which actions are
better in different situations. For example, we have developed an intelligent Notifica-
tion Service that tries to learn the most appropriate times to send different types of
notifications. It can send different types of notifications like stock prices, weather

A Middleware for Context-Aware Agents in Ubiquitous Computing Environments 155

information, news headlines and error messages on different kinds of media like on
tickertape, by speech or by email. The Notification Service learns by sending a notifi-
cation in some situation and observing the user’s reaction to the notification. The user
can give feedback about the notification by rating its usefulness (or even by stopping
the notification midway). Depending on the feedback of the user, the Notification
Service either increases or decreases the probability that it would send the same type
of notification in a similar situation again.

As in the case of rules, the middleware provides support for getting references to
appropriate Context Providers, getting context information from them, evaluating the
concept learned and invoking appropriate actions in different contexts. It also pro-
vides libraries and utilities that aid the learning process.

5.6 Context Provider Lookup Service

The Context Provider Lookup Service allows searches for different context providers.
Providers advertise the set of contexts they provide with the Context Provider Lookup
Service. This advertisement is in the form of a first order expression. Agents can
query the Lookup Service for a context provider that provides contextual information
it needs. The Lookup Service checks if any of the context providers can provide what
the agent needs and returns the results to the application.

Table 1. First Order Rules for deducing activity in a room

ThereExists(Person) x Location(x, Entered, 2401).
PlayWelcomeMessage().
Priority:1.

Location(Manuel, Entered, 2401) OR Location(Chris, Entered,
2401).
ShowInterface().
Priority:1.

Location(Manuel,In, 2401).
PlayRockMusic().
Priority:1.

Location(Manuel,In,2401)AND Temperature(Champaign,>,50)
PlaySoftMusic()
Priority:2

Location(Bhaskar,In, 2401) AND Location(Chris,In, 2401)
PlayPopMusic()
Priority:2

Location(Bhaskar,In, 2401) AND Location(Chris,In, 2401) AND
Temperature(Champaign,>,50)
PlayHiphopMusic()
Priority:4

Location(Bhaskar,In, 2401) AND
StockPrice(MSFT,>,50)
PlayHappyMusic()
Priority:2

156 Anand Ranganathan and Roy H. Campbell

For example, a location context provider that tracks Bob’s location around the
building advertises itself as ∀Location y Location(Bob, In, y). An application that wants
to know when Bob enters room 3231, would send the query Location(Bob, In, Room
3231)to the Lookup Service. The Lookup Service sees that the context provider does
provide the context that the application is interested in (the advertisement is a superset
of the query) and returns a reference to the context provider to the application.

5.7 Context History

Applications can make use of not just the current context, but also past contexts to
adapt their behavior for better interacting with users. We thus store contexts continu-
ously, as they occur, in a database. The Gaia event service allows event channels to be
“persistent”, ie. all events sent on these channels are stored in a database along with a
timestamp indicating when the event was sent.

It is thus possible to store all context events (or a certain subset of them) in a data-
base. Since all context events have a well-determined structure (as given by the ontol-
ogy), it is relatively simple to automatically develop schemas for storing them into a
database. Storing past contexts enables the use of data mining to learn and discover
patterns in user behavior, room activities and other contexts. This sort of data mining
can, for example, be used in security applications like intrusion detection, where any
observed behavior way outside the ordinary can be construed as an intrusion.

6 Ontologies for Semantic Interoperability

Ubiquitous Computing Environments feature a large number of autonomous agents.
Various types of middleware (based on CORBA, Java RMI, SOAP, etc.) have been
developed that enable communication between different entities. However, existing
middleware have no facilities to ensure semantic interoperability between the differ-
ent entities. Since agents are autonomous, it is infeasible to expect all of them to at-
tach the same semantics to different concepts on their own. This is especially true for
context information, since different agents could have a different understanding of the
current context and can use different terms and concepts to describe context.

In order to enable semantic interoperability between different agents, we take re-
course to methods used in the Semantic Web[14]. Ontologies establish a joint termi-
nology between members of a community of interest. These members can be humans
or automated agents. Each agent in our environment uses the vocabulary and concepts
defined in one or more ontologies. When two different agents talk to each other, they
know which ontology the other agent uses and can thus understand the semantics of
what the other agent is saying.

Another advantage of using standard technologies employed in the Semantic Web
for describing semantics is scalability. Since agents in our environment use ontologies
described in the same language (DAML+OIL) as those on the web, we enable seman-
tic interoperability between our agents and other external agents (in other environ-
ments or on the web).External agents can refer to ontologies used in our environment
while interacting with our agents. They can, thus, find out what terms and concepts
are used by our agents and communicate meaningfully with them. Similarly, agents in
our environment can refer to the ontologies used by external agents while communi-

A Middleware for Context-Aware Agents in Ubiquitous Computing Environments 157

cating with them. The use of ontologies, thus, enables agents in different ubiquitous
computing environments to have a common vocabulary and a common set of con-
cepts while interacting with one another.

6.1 Ontologies in Gaia

We have developed ontologies for describing various concepts in a Ubiquitous Com-
puting Environment. We have ontologies that describe the different kinds of agents
and their properties. These ontologies define different kinds of applications, services,
devices, users, data sources and other agents. They also define all terms used in the
environment and the relationships between different terms. They establish axioms on
the properties of these agents and terms (written in Description Logic) that must al-
ways be satisfied.

We also have ontologies that define the structure of contextual information. These
are useful for checking the validity of context information. They also makes it easier
to specify the behavior of context-aware applications since we know the types of
contexts that are available and their structure. They ensure that all agents in the sys-
tem have the same semantic understanding of different pieces of contextual informa-
tion.

6.2 The Ontology Server

All the ontologies in Gaia are maintained by an Ontology Server. Other agents in Gaia
contact the Ontology Server to get descriptions of agents in the environment, meta-
information about context or definitions of various terms used in Gaia. It is also pos-
sible to support semantic queries (for instance, classification of individuals or sub-
sumption of concepts). Such semantic queries require the use of a reasoning engine
that uses description logics like the FaCT reasoning engine[21]. We plan on providing
support for such queries in the near future.

The Ontology Server also provides an interface for adding new concepts to existing
ontologies. This allows new types of contexts to be introduced and used in the envi-
ronment at any time. The Ontology Server ensures that any new definitions are logi-
cally consistent with existing definitions.

The use of ontologies also makes it possible for agents in different environments to
inter-operate. To support such an inter-operation, mappings need to be developed
between concepts defined in the ontologies of the two environments. We plan on
developing a framework for supporting such inter-operation very soon.

6.3 Ontologies for Smoother Interaction between Agents

Since the ontologies clearly define the structure of contextual information, different
agents can exchange different types of context information easily. Context Consumer
agents can get the structure of contexts they are interested in from the Ontology
Server. They can then frame appropriate queries to Context Providers to get the con-
texts they need.

Context Providers and Context Synthesizers can also get the structure of contexts
that they provide from the Ontology Server. So, they know the kinds of queries they

158 Anand Ranganathan and Roy H. Campbell

can expect. They also know the structure of events that they need to send on event
channels.

Finally, ontologies also help the developer when he is writing rules or developing
learning mechanisms for context aware agents. The developer has access to the set of
terms and concepts that describe contextual information. He can thus use the most
appropriate terms and concepts while developing context aware agents.

7 Implementation

All agents in the Context Infrastructure are implemented on top of CORBA and are a
part of Gaia. This means they can be instantiated in any machine in the system, can
access event channels, can be moved from one machine to another and can be discov-
ered using standard mechanisms like the CORBA Naming Service and the CORBA
Trading Service. The Context History Service uses the MySQL database for storing
past contexts.

We currently support a number of reasoning mechanisms including many sorted
first order logic and linear time propositional temporal logic. For reasoning in first
order logic, we use XSB[19] as the reasoning engine. XSB is a more powerful form of
Prolog which uses tabling and indexing to improve performance and also allows lim-
ited higher order logic reasoning. We use the many-sorted logic model where quanti-
fication is performed only over a specific domain of values. The ontology defines
various sets of values (like Person, Location, Stock Symbol, etc). Thus, the Person set
consists of the names of all people in our system. The Location set consists of all
valid locations in our system (like room numbers and hallways). Stock Symbol con-
sists of all stock symbols that the system is interested in (e.g. IBM, MSFT, SUNW,
etc.). Each of these sets is finite. Quantification of variables is done over the values of
one of these sets. Since quantification is performed only over finite sets, evaluations
of expressions with quantifications will always terminate. More discussion on the
issues of decidability and expressiveness can be found in [10][11][12].

For temporal logic, we have developed our own reasoning engine that is based on
Templog[23]. Templog is a logic programming language, similar to Prolog, which
allows the use of temporal operators. We restrict the power of this logic to proposi-
tional logic, which makes it decidable and also simpler to evaluate.

We also currently support some machine learning mechanisms, viz. Naïve Bayes
learning and reinforcement learning. The Naïve Bayes approach involves learning
conditional probabilities between different events from a large number of training
examples. Thus given a certain context, it gives the conditional probability that some
action should be performed or some other context should be true. The reinforcement
learning approach involves trying to learn appropriate actions based on user feedback.

An ontology of all terms used in the context infrastructure has been developed in
DAML+OIL. The Ontology Server uses the FaCT reasoning engine[21] for checking
the validity of context expressions.

We have implemented a number of Context Providers in our system such as pro-
viders of location, weather, stock price, calendar contexts and authentication contexts.
We also have some context synthesizers as described earlier. Some examples are a
Synthesizer which deduces the mood of a user using Naïve Bayes learning; and an-
other which deduces the activity in the room using rules. The middleware has allowed
us to develop a number of context aware applications very easily. Some context-

A Middleware for Context-Aware Agents in Ubiquitous Computing Environments 159

aware applications we have developed are a context-sensitive jukebox, a context-
sensitive chat application[18] and a context-sensitive notification service.

One of the main features of our middleware is that it greatly helps in the develop-
ment of context-aware applications. The benefits of using the middleware include
reduced development times of context-aware applications and great ease in specifying
complex behaviors of these applications. Developers do not have to worry about the
details of getting contextual information from different sources or the mechanics of
triggering different actions in different situations. This helps in rapid development
and prototyping of applications.

The middleware also makes it pretty simple to insert new sensors and new Context
Synthesizers, which infer different contexts, into the system. Since all the terms used
in the environment are defined in the ontology, it is easy to frame rules for inferring
contexts based on these terms. The developer does not have to worry about not using
inappropriate terms or concepts, since he can refer to the definitions in the ontology
when in doubt.

8 Related Work

A lot of work has been done in the area of context-aware computing in the past few
years. Seminal work has been done by Anind Dey, et al. in defining context-aware
computing, identifying what kind of support was required for building context aware
applications and developing a toolkit that enabled rapid prototyping of context-aware
applications[1]. While the Context Toolkit does provide a starting point for applica-
tions to make use of contextual information, it does not provide much help on how to
reason about contexts. It does not provide any generic mechanism for writing rules
about contexts, inferring higher-level contexts or organizing the wide range of possi-
ble contexts in a structured format.

In [2], Jason Hong, et. al., make the distinction between a toolkit and an infrastruc-
ture. An infrastructure, according to Hong, is a well-established, pervasive, reliable
set of technologies providing a foundation for other systems. Our middleware for
context-awareness builds on Hong’s notion of an infrastructure and provides a foun-
dation for developing context-aware applications easily.

Bouquet, et al. [4] address the problem of contexts in autonomous, heterogeneous
distributed applications, where ach entity has its own notion of context depending on
its viewpoint. To interact with other entities, an entity should know the relationship
between its viewpoint and other entities’ viewpoint. Our middleware uses ontologies
to achieve this inter-operability in a more generic fashion. Paul Castro and his col-
leagues [5] have worked on developing “fusion services” which extract and infer
useful context information from sensor data using Bayesian networks. Our middle-
ware provides a more generic framework where such learning approaches can be
used.

Terry Winograd compares different architectures for context[6] and proposes one
that uses a centralized Event Heap[7]. Our system, however, provides a framework
where distributed reasoning can take place. In [3], Brumitt, et al describe their experi-
ences with multi-modal interactions in context-aware environments and how such an
environment can respond automatically to different contexts. Our middleware pro-
vides an easy way for developers to specify how an environment should automatically
respond to different contexts.

160 Anand Ranganathan and Roy H. Campbell

Reconfigurable Context-Sensitive Middleware [22] provides context-sensitive ap-
plications with adaptive object containers (ADCs) for runtime context data acquisi-
tion, monitoring and detection. Applications can specify behavior using a context-
aware IDL. Our middleware provides a more generic way of specifying the behavior
of context-aware applications using different reasoning and learning mechanisms.

9 Future Work

There are a number of possible enhancements to our middleware. A new approach to
developing context-sensitive applications is by modeling them as state machines. This
allows their behavior to be determined by specific sequences of context changes. State
machine approaches to modeling applications are useful especially when a sequence
of changes in context needs to trigger a sequence of actions by the application.

We have not yet tackled the issues of privacy and security. Some context informa-
tion may be private and hence, all agents may not have access to them. The ontology
can potentially encode such privacy and security constraints. It can thus be used to
ensure that the rules developed for applications do not violate security restrictions.

We are also working on better user interfaces for developing context-aware appli-
cations, so that any ordinary user can program his or her own context-aware agent.
These interfaces can make use of the ontologies to get the structures of different types
of contexts and thus allow the user to develop rules with context information.

One aspect which we haven’t studied as yet is the usability of context-aware appli-
cations. How will ordinary users deal with applications that try to learn their behav-
iors and their preferences? Will users take the time to write rules for specifying con-
text-sensitive behavior of applications? Will users respond positively to the fact that
the behavior of applications can change according to the context, and is hence not as
predictable as current applications?

10 Conclusion

In this paper, we have described our middleware for developing context-aware appli-
cations. The middleware is based on a predicate model of context. This model enables
agents to be developed that either use rules or machine learning approaches to decide
their behavior in different contexts. The middleware uses ontologies to ensure that
different agents in the environment have the same semantic understanding of different
context information. This allows better semantic interoperability between different
agents, as well as between different ubiquitous computing environments. Our mid-
dleware allows rapid prototyping of context-sensitive applications. We have devel-
oped a number of context-sensitive agents on our middleware very easily.

References

1. Dey, A.K., et al. "A Conceptual Framework and a Toolkit for Supporting the Rapid Proto-
typing of Context-Aware Applications", anchor article of a special issue on Context-Aware
Computing, Human-Computer Interaction (HCI) Journal, Vol. 16, 2001.

2. Hong, J. I., et al. “An Infrastructure Approach to Context-Aware Computing”. HCI Journal,
‘01, Vol. 16

A Middleware for Context-Aware Agents in Ubiquitous Computing Environments 161

3. Shafer, S.A.N., et al. "Interaction Issues in Context-Aware Interactive Environments." Spe-
cial issue on Context-Aware Computing, Human-Computer Interaction (HCI) Journal, Vol.
16, 2001.

4. Bouquet, P., et al. "Context-Aware Distributed Applications" IRST Technical Report 0101-
04, Instituto Trentino di Cultura, January 2001

5. Castro, P., et al. "Managing Context for Internet Video Conferences: The Multimedia Inter-
net Recorder and Archive". Multimedia and Computer Networks 2000, San Jose, CA, Janu-
ary 2000

6. Winograd T. "Architectures for Context" In Human-Computer Interaction (HCI) Journal,
’01, Vol. 16.

7. Johanson, B., et al. "The Event Heap: An Enabling Infrastructure for Interactive Work-
spaces" https://graphics.stanford.edu/papers/eheap/

8. Pascoe, J., et al. "Issues in Developing Context-Aware Computing" Proceedings of the In-
ternational Symposium on Handheld and Ubiquitous Computing, Sept. 1999, Springer-
Verlag, pp. 208-221.

9. Korkea-aho, M. "Context-Aware Applications Survey",
http://www.hut.fi/~mkorkeaa/doc/context-aware.html

10. Shmueli O., "Decidability and expressiveness aspects of logic queries", Proceedings of the
sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of database systems,
March 23 - 25, 1987, San Diego, CA USA , pp 237 - 24

11. Chandra, A.K., et al. "Horn Clauses Queries and Generalization", J Logic Programming
1985

12. Jarke, M., et al. "An Optimizing PROLOG Front-End to a Relational Query System", in
Proceedings of ACM SIGMOD ’84 Conference, pp296-306, Boston, MA, June 1984

13. Schilit, W. N., "A Context-Aware System Architecture for Mobile Distributed Computing",
PhD Thesis, Columbia University, May 1995.

14. Berners-Lee T., et al. "A new form of Web content that is meaningful to computers will
unleash a revolution of new possibilities"
http://www.scientificamerican.com/2001/0501issue/0501berners-lee.html

15. Guarino N. "Formal Ontology in Information Systems" Proc. of FOIS’98, Trento, Italy
16. Román, M., et al, “Gaia: A Middleware Infrastructure to Enable Active Spaces”. In IEEE

Pervasive Computing, pp. 74-83, Oct-Dec 2002..
17. Hess, C.K.,et al, “Building Applications for Ubiquitous Computing Environments” In In-

ternational Conference on Pervasive Computing (Pervasive 2002), pp. 16-29, Zurich, Swit-
zerland, August 26-28, 2002.

18. Ranganathan, A., et al, “ConChat: A Context-Aware Chat Program” . In IEEE Pervasive
Computing, pp. 52-58, July-Sept 2002.

19. XSB – http://xsb.sourceforge.net
20. Harmelon, F., et al “ Reference Description of the DAML+OIL ontology markup lan-

guage”, http://www.daml.org/2001/03/reference.html
21. Horrocks, I., “The FaCT System”, Automated Reasoning with Analytic Tableaux and Re-

lated Methods, 1998
22. Yau, S., et al, “Reconfigurable Context-Sensitive Middleware for Pervasive Computing”.

In IEEE Pervasive Computing, pp. 33-40, July-Sept 2002.
23. Abadi, M. et al. “Temporal Logic Programming” Journal of Symbolic Computation, 8:277-

295, 1989
24. Dayal, U., et al. “The Architecture of an Active Database Management System”. ACM

SIGMOD Conference 1989, pp 215-224

	1 Introduction
	2 Why a Middleware for Context-Awareness?
	3 Context Model
	3.1 The Context Predicate
	3.2 Ontologies to Describe Context Predicates

	4 Gaia
	5 Enabling Context-Awareness
	5.1 Overview of Context Infrastructure
	5.2 Use of Different Reasoning Mechanisms by Different Agents
	5.3 Context Providers
	5.4 Context Synthesizers
	5.5 Context Consumers (or Context-Aware Applications)
	5.6 Context Provider Lookup Service
	5.7 Context History

	6 Ontologies for Semantic Interoperability
	6.1 Ontologies in Gaia
	6.2 The Ontology Server
	6.3 Ontologies for Smoother Interaction between Agents

	7 Implementation
	8 Related Work
	9 Future Work
	10 Conclusion
	References

