
Predicate Invention
in Inductive Data Engineering

Peter A. Flach

IlK
Institute for Language Technology and Artificial Intelligence

Tilburg University, PObox 90153, 5000 LE Tilburg, the Netherlands
~ + 3 1 13 663119, fax +31 13 663069

flach@kub, nl

Abstract. By inductive data engineering we mean the (interactive) process of
restructuring a knowledge base by means of induction. In this paper we describe
INDEX, a system that constructs decompositions of database relations by inducing
attribute dependencies. The system employs heuristics to locate exceptions to
dependencies satisfied by most of the data, and to avoid the generation of
dependencies for which the data don't provide enough support. The system is
implemented in a deductive database framework, and can be viewed as an Inductive
Logic Programming system with predicate invention capabilities.

1. M o t i v a t i o n a n d S c o p e

The application of Machine Learning techniques to databases is a subject that is receiving jr

increasing amounts of attention (Piatetsky-Shapiro & Frawley, 1991). Databases typically

contain large quantities of extensional data, while for applications like query answering and

data modeling intensional data is needed. Machine Learning techniques such as Inductive

Logic Programming or ILP (Muggleton, 1992) can generate intensional predicate

definitions from extensional data.

In this paper, we are describing inductive techniques to obtain predicate definitions

that can be used to restructure a knowledge base in a more meaningful way. What is

meaningful and what is not can be partly determined by means of heuristics, but some user

interaction is typically required. We use the term inductive data engineering to denote the

interactive process of restructuring a knowledge base by means of induction.

We will introduce the main ideas by means of an example. Fig. 1 shows a fragment

of a train schedule, listing the direction, departure time, and first stop of the trains leaving

between 8:00 and 10:00. While such a schedule is useful from a traveler's point of view, a

database designer would object to storing the schedule in a database as is: the schedule

appears to be unstructured, yet contains a lot of redundancy. Instead, she would decompose

Part of this work was carried out under Esprit Basic Research Action 6020 (Inductive Logic Programming). Many
thanks to Luc I~ Raedi, Nada Lavrac and Saso Dzeroski for stimulating discussions and helpful comments on an
earlier drafL Sas 0 also conducted the experiment with mFOIL.

84

% train (Direction, Hour, Minutes, FirstStop) .

train (utrecht, 8, 8, den-bos ch) .

train (tilburg, 8, i0, tilburg) .

train (maastricht, 8, i0, weert) .

t rain (utrecht, 8,13, eindhoven-bkln) .

train (tilburg, 8,17, eindhoven-bkln) .

train (utrecht, 8,25, den-bosch) .

train (utrecht, 8,31, utrecht} .

train (utrecht, 8, 43, eindhoven-bkln).

train (tilburg, 8, 47, eindhoven-bkln) .

train (utrecht, 9, 8, den-bosch) .

train (tilburg, 9, 10, tilburg) .

train (maastricht, 9, lO,weert} .

train (utrecht, 9, 13, eindhoven-bkln) .

train (t ilburg, 9, 17, eindhoven-bkln) .

train (utrecht, 9,25, den-bosch) .

train (utrecht, 9,43, eindhoven-bkln) .

train (tilburg, 9,47, eindhoven-bkln) .

Fig. 1. A train schedule.

the data into more primitive relations, and define the complete schedule as a view or

intensional relation. The reader is encouraged to try to find a meaningful decomposition for

herself before reading on.

Usually, the design of a database schema is based on a conceptual model of the

universe of discourse, and precedes the creation of the database. Central to the research

reported on in this paper is the idea, that part of a database schema can be derived from the

data itself, by analysing the regularities displayed by the data. This process is inherently

inductive, since we are deriving general rules (predicate definitions, integrity constraints)

from specific data (instances of a database relation). We have implemented a system called

INDEX that is able, with some help of the user, to construct the knowledge base in fig. 2.

The restructured knowledge base contains predicates not present in the data. Thus,

INDEX is capable of predicate invention. This is achieved by inducing integrity constraints
that indicate that introducing a new predicate could be meaningful. E.g., the distinction

between fast and slow trains is made on the basis of a functional dependency from direction

to first stop, which holds for fast and slow trains separately. Also, the introduction of the

predicates fast stopl and slow_stopl is justified by this dependency.

The plan of the paper is as follows. In the next section, we introduce some

terminology and notation. In the two sections that follow, the main steps of our algorithm

are described: the search for specific integrity constraints (section 3), and the construction

85

train (A,B, C, D) :-

regulartrain (A, B, C, D)

regulartrain (A,B,C,D) :-

hour (B) ,

regulartrainl (A, C, D) .

regulartrainl (A, B, C) :-

fasttrain (A,B,C) ;

fasttrain (A,B,C) :-

fasttrainl (A, B),

fast_stopl (A, C) .

slowtrain (A, B, C) :-

slowtrainl (A, B),

slow_stopl (A, C) .

% hour (Hour) .

hour (8) .

hour (9) .

% fast_stopl (Dir, Stopl) .

fast_stop1 (tilburg,tilburg) .

fast_stopl (maastricht, weert) .

fast_stopl (utrecht, den-bosch) .

% fasttrainl (Dir,Mins) .

fasttrainl (maastricht, 10) .

fasttrainl (tilburg, 10) .

fa sttrainl (utrecht, 8) .

fasttrainl (utrecht, 25) .

; irregulartrain (A, B, C, D) .

slowtrain (A, B, C) .

% irregulartrain(Dir, Hour, Mins,Stopl}.

irregulartrain(utrecht, 8,31,utrecht).

% slow_stopl(Dir, Stopl).

slow_stopl(tilburg, eindhoven-bkln).

slow_stopl(utrecht,eindhoven-bkln).

% slowtrainl(Dir, Mins).

slowtrain1(tilburg, 17).

slowtrain1(tilburg, 47).

slowtrainl(utrecht, 13).

slowtrainl(utrecht, 43).

Fig. 2. The restructured knowledge base for train schedules.

of decompositions that are justified by the induced constraints (s tion 4). In ~ t i o n 5, we

describe the heuristics employed by INDEX to bc able to deal with constraints with a

limited number of exceptions, and to avoid the generation of constraints that are too

specific. In section 6, we relate INDEX to other ILP systems. The concluding section

contains some ideas for future work.

2. Preliminaries

Our terminology and notation will be mainly drawn from the fields of Logic Programming

(Lloyd, 1987) and Deductive Databases (Minker, 1988). If r is an n-ary predicate, then an

extensional relation is a set of ground facts r (a 1, ..., an) �9 An intensional relation or

predicate definition of a predicate p is a set of definite clauses with p in the head. A

86

(deductive) database is a collection of intensional and extensional relations. In addition, it

will be convenient to denote argument positions of predicates by attributes, as customary in

the theory of relational databases (Maier, 1983).

Our aim is to reformulate an extensional relation as an intensional relation, defined

in terms of newly introduced, more compact extensional relations. This process is referred

to as decomposition, and it is done on the basis of integrity constraints. In general, an

integrity constraint is a logical formula expressing knowledge about the database, without

being part of any predicate definition. In this paper, we will only consider constraints on a

single extensional relation, and we will use the following, more' restricted definition. IfR is

an extensional relation, an integrity constraint on R is a logical formula containing only the

predicate of R, and possibly directly evaluable predicates like ffi and <. An integrity

constraint on R is satisfied by R ifR constitutes a Herbrand model of the constraint. For

instance, C<60 : - t r a i n (A, B, C, D) is a constraint satisfied by the relation in fig. 1.

Attribute dependencies constitute a class of integrity constraints of particular

interest, because they signal that the relation can be decomposed into smaller relations

containing less redundancy. In this paper, we consider two types of attribute dependencies,

namely functional and multivalued dependencies. A functional dependency (fd) is an

integrity consWint like DI=D2 : -train (A, B1, C, D1), train (A, B2, C, D2). stating

that if two trains have the same direction and leave at the same number of minutes after the

hour, they will have the same first stop. Given the attributes d i r e c t i o n , m i n u t e s and

stopl, this fd will be written a s [direction, minutes] --> [stopl]. I t states that

the value of the attribute s t o p l can be derived from the values of the attributes

d i r e c t i o n and m i n u t e . The attributes found on the lefthand side are called antecedent

attributes, those on the righthand side consequent attributes.

Multivalued dependencies (mvds) generalise functional dependencies by associating

a set of possible values of the consequent attribute to each combination of possible values

for the antecedent attributes. For instance, if a relation describes describes events that occur

weekly, the mvd [day] - > - > [d a t e] holds: given the day of week, we can determine the

set of dates on which the event occurs. E.g., if the Computer Science course occurs on

Monday, October 5, and the AI course occurs on Monday, September 28, then the AI

course also occurs on Monday, October 5 (and, by symmetry, the Computer Science course

also occurs on Monday, September 28). Logically, this can be expressed as

event (Day, Datel, E2) : -event (Day, Datel, El), event (Day, Date2, E2)

Pds and mvds both describe the same phenomenon: that the consequent attribute(s)

can be removed from the relation, and stored in a separate relation containing only the

attributes in the dependency. The only difference is, that in the case of fds the antecedent

attributes form a key in the second relation. We call this a decomposition of the relation; it

87

will be the subject of section 4. In the next section, we describe how attribute dependencies

can be induced from an extensional relation.

3. Induction of A t t r i b u t e D e p e n d e n c i e s

In (Flach, 1990) we adressed the following problem: given an extensional relation, find all

fds and mvds satisfied by it. Briefly, the approach is to order the set of dependencies by

generality (implication) and to search this set in a top-down fashion, much in the spirit of

Shapiro's Model Inference System (1981). To illustrate, for the train relation a most

general fd would be [] - - > [d i r e c t i o n] (all trains go i n the same direction). This fd is

contradicted by many pairs of facts, e.g. t r a i n (u t r e c h t , 8, 8, d e n - b o s c h) and

t r a i n (t i l b u r g , 8 , 1 0 , t i l b u r g) . It can be specialised by adding attributes to the

antecedent. Note that the fd [hour] - - > [d i r e c t i o n] is contradicted by the same pair

of facts: by analysing the contradicting facts, we can avoid constructing this specialisation.

By disabling the heuristics employed by INDEX, the system will find the most

general dependencies satisfied by a relation. For the train schedule in fig. 1, these are

[minutes] ->-> [hour]

[stopl] ->-> [hour]

[stopl, minutes] --> [direction]

[minutes, direction] --> [stopl]

The first two mvds are specialisations of the mvd [] - > - > [hour] , expressing that trains

run every hour. There is only one fact that causes contradiction of this mvd, and that is

t r a i n (u t r e c h t , 8 , 3 1 , u t r e c h t). In other words, had this fact not been in the

relation, then the mvd would have been satisfied. As we will see later, INDEX is able to

recognise that a dependency is 'almost' satisfied, and to locate the exception(s).

The fourth fd is a specialisation of [d i r e c t i o n] - - > [s t o p l] . This dependency

is contradicted by many pairs of facts, but the relation can be divided into two subrelations

of approximately equal size, which both satisfy the fd (fast trains and slow trains). Since

several such divisions are possible, some user interaction is required to choose a

meaningful one, but INDEX is able to discover that the fd is interesting in this respect.

The heuristics used by INDEX to decide whether a dependency is almost satisfied,

or whether it can lead to a useful partition of the relation, are described in section 5. In the

next section, we show how dependencies can be used to decompose a relation, thereby

introducing new predicates.

4. I n t r o d u c i n g N e w P r e d i c a t e s b y D e c o m p o s i t i o n

A decomposition of a relation R is a set of relations, such that R can be reconstructed from

88

% trainl(Dir,Mins,Stopl).

trainl(maastricht, 10,weert).

trainl

trainl

trainl

trainl

trainl

trainl

trainl

trainl

(tilburg, 10,tilburg).

(tilburg, 17,eindhoven-bkln).

(tilburg, 47,eindhoven-bkln).

(utrecht,8,den-bosch).

(utrecht,13,eindhoven-bkln).

(utrecht,25,den-bosch).

(utrecht,31,utrecht).

(utrecht,43, eindhoven-bkln).

% stoplhour (Stopl, Hour) .

stoplhour (weert, 8) .
stoplhour (weert, 9) .
stoplhour (tilburg, 8) .
stoplhour (tilburg, 9) .
stoplhour (eindhoven-bkln, 8) .

stoplhou r (eindhoven,bkln, 9} .

stoplhour (den-bosch, 8) .
stopl hour (den-bosch, 9) .
stoplhour (utrecht, 8) .

Fig. 3. A horizontal decomposition.

this set by a composition function. If the composition function is the join operation, the

decomposition is called horizontal Every attribute dependency induces a unique horizontal

decomposition. A vertical decomposition is a partition of R into subsets, with set-

theoretical union as composition function. An attribute dependency induces a vertical

decomposition if the dependency is satisfied by every subrelation. In general, a dependency

induces many vertical decompositions, even if we are interested in minimal decompositions

(that are not freer partitions than other decompositions induced by the same dependency).

Choosing a meaningful vertical decomposition requires domain knowledge, and is done in
INDEX with the help of an oracle.

Both horizontal and vertical decompositions introduce new extensional relations,
with new predicates. The composition function then serves as an intensional definition of

the original relation. Thus, decompositions 'intensionalise' existing relations in terms of

new, extensional relations. This will be illustrated below.

We will first consider horizontal decompositions, induced by non-violated

dependencies. E.g., the mvd [s t o p l] - > - > [h o u r] says that we can remove the

attribute h o u r from the train relation, and store it in a separate relation with the s t o p l

attribute. This results in the decomposition in fig. 3. The composition function is a join

over the attribute s t o p 1 . This can be expressed as a logical formula:

train (A, B, C, D) :-trainl (A, C,D), stoplhour (D, B)

Given an extensional relation and a dependency satisfied by it, INDEX automatically

constructs the horizontal decomposition and the clause expressing the join (querying the
user to name the new predicates).

A vertical decomposition is induced if the dependency is violated by the relation.
Formally, given a relation R and a logical formula F representing a dependency, a pair of

facts <fl,f2> is called F-conflicting if it satisfies the body of F by means of a substitution 0,

while H0 is false, where H denotes the head ofF. F-conflicting tuples are separated in the

89

regulartrainl

regulartrainl

regulartrainl

regulartrainl

regulartrainl

regulartrainl

regulartrainl

regulartrainl

(maastricht,10,weert).

(utrecht,13, eindhoven-bkln).

(utrecht,43,eindhoven-bkln).

(utrecht,8,den-bosch).

(utrecht,25,den-bosch).

(tilburg, 17,eindhoven-bkln).

(tilburg,47,eindhoven-bkln).

(tilburg, 10,tilburg).

Fig. 4. A non-minimal decomposition.

09

(s)

(F)

(S)

(F)

first two steps of the following procedure. In the third step, blocks are combined to form a

minimal decomposition.

1. Partition R into subsets with equal values for the antecedent attributes; call this

the antecedent partition.
2. In each block B, define fl=B f2 if < f l f 2 > is not F-conflicting; '~B is an

equivalence relation. Refine each block of the antecedent partition into ~B-

equivalence classes. Let m be the maximum number of equivalence classes

constructed for a class.

3. We have now constructed a non-minimal vertical decomposition. To obtain a

minimal decomposition, we combine as many blocks with different antecedent

values as possible. This can be done in many ways, and we assume an oracle to

guide this process. Note that this minimal decomposition consists of m relations.

We will illustrate this procedure by two examples. First, we consider the mvd

[l - > - > [h e u r] , that is almost satisfied by the train relation. Since this dependency

doesn't have antecedent atl~ibutes, the first step of the procedure is superfluous. The second

step of the algorithm will result in two blocks (m=2), one containing the exceptional fact

t r a i n (u t r e c h t , 8 , 3 1 , u t r e c h t) , and the other containing the rest. This is the

unique minimal decomposition, and no user interaction is required (apart from naming the

new relations). The composition rule is the disjunctive clause

train (A,B,C,D) :-regulartrain (A,B,C,D) ; irregulartrain (A,B,C,D)

which can be written as two separate clauses, if preferred. Since regulartrain n o w

satisfies the constraint [] - > - > [h o u r] , we can horizontally decompose it and obtain the

rule regulartrain (A, B, C, D) : -hour (B) , regulartrainl (A, C, D) (note

90

that both composition rules and new predicates are fully determined by the decomposition).

We now consider a more elaborate example of vertical decomposition of

regulartrainl. Consider the fd [direction] --> [stopl], which is not ~tisfied

by regulartrainl. INDEX will now construct the non-minimal decomposition in fig.

4. In this figure, double lines represent the antecedent partition, while single lines represent

the division into non-conflicting subsets, constructed in the second step. Again, we have

m=2, and any minimal decomposition will consist of two subrelations.

Currently, INDEX does not provide any help in putting blocks together in a

meaningful way. In general, this seems something that can't be done without user

interaction. It might be possible hewer to formulate some useful heuristics. For instance, in

fig. 4 all slow trains (marked (S)) have the value e i n d h o v e n - b k l n for the consequent

aUribute, while fast trains have different values.

We end this section with a brief analysis of the complexity of the decomposition

algorithm. Step 1 is accomplished by sorting the facts on the values of the antecedent

attributes, requiring O(aflogJ) comparisons (a is the number of antecedent attributes, f is

the number of facts in the relation). Likewise, step 2 is of complexity OffB logfB), where3~

is the number of facts in block B. Finally, the number of queries to the user is nB*m in the

worst case (nB is the number of blocks in the antecedent partition).

5. He ur i s t i c s

Satisfied dependencies induce horizontal decompositions, while dependencies that are not

satisfied induce vertical decompositions. Many dependencies however induce uninteresting

decompositions. Thus, we need heuristics for predicting whether a dependency induces a

meaningful decomposition.

In INDEX, two heuristics are used: satisfaction and confirmation. Satisfaction

estimates the extent to which a dependency is satisfied (1 means no contradiction). It is

abstractly calculated as follows:

Sat = 1 ~ weighted fraction of deviating facts (1)

In order to estimate the fraction of deviating facts, the two-step partitioning procedure of

the previous section is executed. For each block of the antecedent partition, the largest

block resulting from the second step is taken to represent non-deviating facts. If the sum of

the sizes of these largest blocks is Nn, then the fraction of deviating facts is (NR----Nn)/NR,
where N R is the total number of facts. This fraction is weighted with m--1 (recall that m is

the maximum number of blocks constructed in the second step for a block of the antecedent

partition; if re=l, the dependency is satisfied). This weight is added because minimal

decompositions consist of m blocks, and decompositions with fewer blocks are preferred.

91

This gives the following formula:

Sat = 1 - - (m--l) * NR DNn
NR (2)

For instance, for the dependency [] - > - > [h o u r] on the relation t r a i n , we have

NR=17, Nn=16, and m=2, which gives Sat=0.94. This value indicates that the dependency is

almost satisfied. The fd [direction] --> [stopl] on the relation regulartrainl

gets the value 0.63 (NR=8, N.=5, m=2). This indicates a vertical decomposition into two

subrelations of similar size. Thus, Sat can be used in two ways: with a lower bound (e.g.

0.8), one selects dependencies that are almost satisfied. With an interval around 0.5, one

selects dependencies that are likely to result in an evenly-sized decomposition.

In order to avoid generating very specific dependencies (with many antecedent

attributes), a confirmation measure is used. If a dependency is very specific, then the blocks

in the antecedent partition will be small. Confirmation is defined as the average block size

in the antecedent partition:

Cony: (3)
nB

where nB is the number of blocks in the antecedent partition. Putting a lower bound on

Conf (typically 2.5) avoids too specific dependencies.

In practice, putting Sat'zO.8 for tracing exceptions, 0.3.~Sa~0.7 for vertical

decompositions, and Confz2.5 worked well in the train example. For the t r a i n relations,

the following dependencies were found:

[] - - > [h o u r] Sat=0.53 Con~-8.5
[] - > - > [hour] Sat=0.94 Conf=8.5

For the r e g u X a r t r a i n l relation, the dependencies found by INDEX were

[direct ion] --> [stopl] S a t = 0 . 6 3 Conf=2.7
[d i r e c t i o n] - > - > [s t o p l] S a t = 0 . 6 3 Conf=2.7

As was to be expected, user interaction is still required to choose the preferred dependency

for vertical decomposition. For instance, choosing [] - - > [h o u r] means splitting the

relation according to the hour (an even partition), while choosing the mvd

[] - > - > [he u r] means splitting the relation into general cases and exceptions. In the

second case, there is not a real choice involved since both the fd and the mvd lead to the

same decomposition (as is already suggested by the equal Sat values).

It should be noted that these heuristics are computationaily expensive, since they

require almost the same amount of work involved in constructing a vertical decomposition.

Currently, the applicability of static data analysis (for instance, correlation between

attribute values) is investigated.

92

6. R e l a t e d W o r k

We presented INDEX as a tool for inductive data engineering. However, since INDEX

operates in the framework of Deductive Databases, it can also be viewed as an ILP system.

If we use E to denote the ground facts of the initial relation, B to denote the ground facts in

the new relations obtained by decomposition, and H to denote the corresponding

composition rules, then we have B M / ~ E. ILP systems typically aim at constructing H

from B and E. INDEX extends this by constructing B and H from E 1.

To illustrate the relation between INDEX and other ILP systems, we reformulated

the train problem as an ILP problem, using the ground facts in fig. 2 as background

knowledge B, and the ground facts in fig. 1 as examples E. We then applied mFOIL

(Dzeroski & Bratko, 1992), a descendant of FOIL (Quinlan, 1990), to the problem 2.

mFOIL induced the following set of rules:

train (g, B, C, D) :-fast_stopl (g, D) , fasttrainl (g, C) .

train (A, B, C, D) : -slow_stopl (A, D), slowtrainl (A, C) .

train (A,B,C,D) :-irregulartrain (D,B,C,A) .

There are two minor differences with the rules induced by INDEX. Firstly, the h o u r literal

is missing in the body of the first two clauses. Since mFOIL requires variables to be typed,

and 8 and 9 are the known hours, this literal is redundant. Secondly, the first and fourth

argument of i r r e g u l a r e r a i n are swapped in the third clause, which is explained by

the fact that the only example for this clause has the same value for these arguments.

The most salient feature of INDEX as an ILP system is the invention of new

predicates, a capability shared with CIGOL (Muggleton & Buntine, 1988), LF/'2 (Wirth,

1989) and BLIP (Wrobel, 1989). The main difference with these systems is that in INDEX

introduces new predicates indirectly, as a result of constructing integrity constraints.

INDEX is able to identify exceptions to dependencies that are 'almost' satisfied.

Thus, it is related to the Closed World Specialisation technique of (Bain & Muggleton,

1991). This is demonstrated clearly by the composition rule that distinguishes between

regular and irregular trains. Given the extensional definitions of t r a i n ,

regulartrain and irregulartrain, the implication in this rule is in fact an

equivalence, and we may also write

regulartrain (A, B, C, D) : -train (A, B, C, D) , -~irregulartrain (A, B, C, D)

Interpreting --, as negation as failure, this represents a default rule with exceptions.

INDEX is also related to De Raedt's Clausal Discovery Engine (De Raedt 1992),

1This change of perspective prohibits a more extensive evaluation of INDEX relative to other ILP systems.
2We also applied GOLEM (Muggleton & Feng, 1990) to the problem, but the result was a set of specific rules that
didn't cover all the examples.

93

which induces a clausal integrity theory from a Datalog database. Both systems apply

refinement operators to search the space of possible integrity constraints in a top-down

fashion, However, in De Raedt's system inducing constraints (such as 'nobody can be both

a father and a mother') is an end in itself, while in our framework, it is a means to achieve

knowledge base reformulation. Another method to induce functional dependencies is

described in (Ziarko, 1991). Ziarko's method does not extend to multivalued dependencies.

Finally, we note that there is a strong relation between attribute dependencies and

determinations (Russell, 1989).

The increased power of INDEX as an ILP system comes at a price. First of all, some

user interaction is required to choose the most meaningful dependencies used for

decomposition. In the present context, we think this is inevitable: invented predicates

require semantic and pragmatic justification, which seems beyond the capabilities of an

inductive system. Secondly, the language for composition rules employed by INDEX is

limited in expressive power: it disallows existentially quantified variables in the body of

clauses.

7. C o n c l u s i o n

Inductive data engineering aims at automating part of the database design process by means

of inductive methods. INDEX is a system for inductive data engineering, that achieves

relation decomposition through the induction of attribute dependencies. As such, it is

related to other approaches to the induction of integrity constraints (Ziarko, 1991; De

Raedt, 1992), and to the general problem of knowledge discovery in databases (Piatetsky-

Shapiro & Frawley, 1991). The search for meaningful decompositions is guided by

heuristics, that are able to locate exceptions to dependencies and to find decompositions

into two subrelations of approximately equal size, while avoiding the generation of

dependencies that are too specific. Since INDEX operates in the framework of Deductive

Databases, it can be seen as an ILP system with predicate invention capabilities.

INDEX is a research prototype, implemented in some 1000 lines of Quintus Prolog

code. We are currently working on a reimplementation that can handle more substantial

decomposition problems. Also, we are working on heuristics that are easier to compute, by

employing static analysis of the attribute values occurring in the given tuples. Future work

includes methods for constraining the search by domain knowledge, thereby alleviating the

amount of user interaction needed. Furthermore, the restriction that composition rules

exclude existentially quantified variables should be relaxed. A possible approach is to

search for dependencies between attributes of different relations. Another approach would
be the introduction of derived attributes.

94

References

M. BAIN & S. MUGGLETON (1991), 'Non-monotonic learning'. In Machine Intelligence
12, J.E. Hayes, D, Michie & E. Tyugu (eds.), pp. 105-119, Oxford University Press,
Oxford.

L. DE RAEDT (1992), 'A clausal discovery engine'. In Prec. ECAJ Workshop on Logical
approaches to Machine Learning, C. Rouveirol (ed.).

S. DZEROSKI & I. BRATKO (1992), 'Handling noise in inductive logic programming'. In
Prec. Second International Workshop on Inductive Logic Programming, ICOT TM-
1182, Tokyo.

P.A. FLACH (1990), 'Inductive characterisation of database relations'. In Prec.
International Symposium on MethodOlogies for Intelligent Systems, Z.W. Ras, M.
Zemankowa & M.L. Emrich (eds.), pp. 371-378, North-Holland, Amsterdam. Full
version appeared as ITK Research Report no. 23.

J.W. LLOYD (1987), Foundations of Logic Programming, second edition, Springex-Verlag,
Berlin.

D. MAIER (1983), The theory of relational databases, Computer Science Press, Rockville.
J. MINKER (1988), Foundations of Deductive Databases and Logic Programming, Morgan

Kaufmann, Los Altos.
S. MUGGLETON & W. BUNTINE (1988), 'Machine invention of first-order predicates by

inverting resolution'. In Proc. Fifth International Conference on Machine Learning, J.
Laird (ed.), pp. 339-352, Morgan Kanfmann, San Mateo.

S. MUGGLETON & C. FENG (1990), 'Efficient induction of logic programs'. In Proc. First
Conference on Algorithmic Learning Theory, Ohmsha, Tokyo.

S. MUGGLETON, ed. (1992), Inductive Logic Programming, Academic Press.
G. PIATETSKY-SHAPIRO & W.J. FRAWLEY, eds. (1991), Knowledge discovery in

databases, MIT Press.
J.R. QUINLAN (1990), 'Learning logical definitions from relations', Machine Learning 5:3,

239-266.
S. RUSSELL (1989), The use of knowledge in analogy and induction, Pitman, London.
E.Y. SHAPIRO (1981), Inductive inference of theories from facts, Techn. rep. 192, Comp.

So. Dep., Yale University.
R. WIRTH (1989), 'Completing logic programs by inverse resolution'. In Proc. Fourth

European Working Session on Learning, K. Morik (ed.), pp. 239-250, Pitman, London.
S. WROBEL (1989), 'Demand-driven concept formation'. In Knowledge representation and

organization in Machine Learning, K. Morik (ed.), pp. 289-319, LNAI 347, Springer-
Verlag, Bedim

W. ZIARKO (1991), 'The discovery, analysis, and representation of data dependencies in
databases'. In (Piatetsky-Shapiro & Frawley, 1991).

