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ABSTRACT
Natural brains effectively integrate multiple sensory modali-
ties and act upon the world through multiple effector types.
As researchers strive to evolve more sophisticated neural
controllers, confronting the challenge of multimodality is
becoming increasingly important. As a solution, this paper
presents a principled new approach to exploiting indirect
encoding to incorporate multimodality based on the Hy-
perNEAT generative neuroevolution algorithm called the
multi-spatial substrate (MSS). The main idea is to place each
input and output modality on its own independent plane.
That way, the spatial separation of such groupings provides
HyperNEAT an a priori hint on which neurons are asso-
ciated with which that can be exploited from the start of
evolution. To validate this approach, the MSS is compared
with more conventional approaches to HyperNEAT substrate
design in a multiagent domain featuring three input and two
output modalities. The new approach both significantly out-
performs conventional approaches and reduces the creative
burden on the user to design the layout of the substrate,
thereby opening formerly prohibitive multimodal problems
to neuroevolution.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—connectionism
and neural nets

General Terms
Algorithms, Performance, Experimentation

Keywords
HyperNEAT, Multimodal Input, Multiagent Learning, Gen-
erative and Developmental Systems, Neuroevolution

1. INTRODUCTION
Among the long-term goals of the field of neuroevolution is

to evolve artificial neural networks (ANNs) with capabilities
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similar to the human brain. Although current methods of
evolving ANNs cannot approach the complexity of the brain,
recent work focusing on indirect encoding has enabled the
evolution of ANNs with thousands to millions of connections
from genotypes with far fewer components (on the order of
20 to 30) [8, 24]. However, one aspect of the human brain
that has not yet attracted significant attention in the neu-
roevolution literature is the diversity of senses. The human
brain receives input from millions of receptors representing
a wide array of sensory modalities (e.g. sight, touch, taste,
smell, hearing, pain, temperature, balance, proprioception,
etc.) [12]. This sensory richness provides the human brain
with complementary representations of its environment that
are critical to effective function.

As researchers continue to seek more advanced behaviors
from evolved neural controllers, it will become increasingly
important also to equip such controllers with multiple modal-
ities that can potentially each support its own high resolution.
However, successfully integrating different kinds of sensory
information in an ANN is challenging because there is no
explicit way to denote to the network which sensors are
grouped with which. Even outside of the evolutionary com-
munity, there has been interest in recent years in multimodal
integration. For example, Loyola and Coldewey-Egbers [13]
developed a stacked neural network architecture that merges
sensor data for long-term climate research. Interestingly,
the field of generative and developmental systems (GDS)
[1, 2, 10, 14, 18, 21] may be able to help with multimodal
integration in evolved ANNs by grouping different types of
sensors in different parts of the generated phenotype. Fur-
thermore, the processing of different sensory modalities may
share some principles, enabling information reuse. For exam-
ple, in a foraging domain, an agent should act in a similar
manner when seeing a food source as when smelling a food
source. Inspired by this possibility, this paper presents an
elaboration of the conventional HyperNEAT GDS approach
for evolving large-scale ANNs [8, 24] called the multi-spatial
substrate (MSS), which enables a principled integration of
several sensory modalities.

While it has long been unclear how or where to place
different types of sensors or outputs on the same HyperNEAT
substrate, the key new idea is to place different sensory
modalities on sheets encoded in HyperNEAT as entirely
disconnected geometric spaces. That way there is no risk of
confusing or conflating one modality with another. Thus a
solution is offered to the longstanding dilemma about how
to configure complex HyperNEAT substrates that at the
same time yields a principled approach to the problem of



representing and learning from multiple modalities in general.
This approach is demonstrated in a multiagent coordination
domain that requires agents to perceive three modalities
at once: walls, targets, and communications from other
agents. The MSS approach significantly outperforms more
conventional configurations in which all modalities are placed
on the same plane and is also simpler to set up. This new
principled ability to train in multimodal domains thereby
opens up many such tasks to research that were perhaps
prohibitive in the past.

2. BACKGROUND
This section reviews research foundational to the MSS

approach.

2.1 Neuroevolution of Augmenting Topologies
The HyperNEAT approach extended in this paper is itself

an extension of the original NEAT (Neuroevolution of Aug-
menting Topologies) algorithm that evolves increasingly large
ANNs [20, 22]. NEAT starts with a population of simple
networks that then increase in complexity over generations
by adding new nodes and connections through mutations.
By evolving ANNs in this way, the topology of the network
does not need to be known a priori; NEAT searches through
increasingly complex networks to find a suitable level of
complexity. Because it starts simply and gradually adds
complexity, it tends to find a solution network close to the
minimal necessary size. However, as explained in the next
section, the direct representation of nodes and connections
in the NEAT genome cannot scale up to large brain-like
networks. For a complete overview of NEAT, see Stanley
and Miikkulainen [20] or Stanley and Miikkulainen [22].

2.2 HyperNEAT
Neuroevolution methods like NEAT are directly encoded,

which means each component of the phenotype is encoded
by a single gene, making the discovery of repeating mo-
tifs expensive and improbable. Therefore, indirect encod-
ings [1, 2, 10, 14, 21], which are a key instrument of GDS,
have become a growing area of interest in evolutionary com-
putation.

One such indirect encoding designed explicitly for neural
networks is in Hypercube-based NEAT (HyperNEAT) [8, 24],
which is itself an indirect extension of the directly-encoded
NEAT approach [20, 22] reviewed in the previous section.
The geometric principles behind HyperNEAT lay the foun-
dation for the multi-spatial approach introduced later. This
section briefly reviews HyperNEAT; a complete introduction
can be found in Stanley et al. [24] and Gauci and Stanley [8].
Rather than expressing connection weights as independent
parameters in the genome, HyperNEAT allows them to vary
across the phenotype in a regular pattern through an indirect
encoding called a compositional pattern producing network
(CPPN; [18]), which is like an ANN, but with specially-chosen
activation functions.

CPPNs in HyperNEAT encode the connectivity patterns
of ANNs as a function of geometry. That is, if an ANN’s
nodes are embedded in a geometry, i.e. assigned coordinates
within a space, then it is possible to represent its connectivity
as a single evolved function of such coordinates. In effect
the CPPN paints a pattern of weights across the geometry
of a neural network. Because the CPPN encoding is itself
a network, it is evolved in HyperNEAT by the NEAT algo-
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Figure 1: HyperNEAT example. An example substrate
(left) for a simple ANN contains ten neurons that have been
assigned (x, y) coordinates. The weight of every connection
specified in the substrate is determined by the evolved CPPN
(right): (1) The coordinates of the source (x1, y1) and target
(x2, y2) neurons are input into the CPPN, (2) the CPPN
is activated, and (3) the weight w of the connection being
queried is set to the CPPN’s output. CPPN activation
functions in this paper can be sigmoid (Sig), Gaussian (G),
linear (L), or sine (Sin).

rithm, which is designed to evolve networks of increasing
complexity. To understand why this approach is promising,
consider that a natural organism’s brain is physically embed-
ded within a three-dimensional geometric space, and that
such embedding heavily constrains and influences the brain’s
connectivity. Topographic maps (i.e. ordered projections of
sensory or effector systems such as the retina or musculature)
in natural brains preserve geometric relationships between
high-dimensional sensor and effector fields [11, 25]. In other
words, there is important information implicit in geometry
that can only be exploited by an encoding informed by such
geometry.

In particular, geometric regularities such as symmetry or
repetition are pervasive throughout the connectivity of nat-
ural brains. To similarly achieve such regularities, CPPNs
exploit activation functions that induce regularities in Hyper-
NEAT networks. The general idea is that a CPPN takes as
input the geometric coordinates of two nodes embedded in
the substrate, i.e. an ANN situated in a particular geometry,
and outputs the weight of the connection between those two
nodes (figure 1). In this way, a Gaussian activation function
by virtue of its symmetry can induce symmetric connectivity
and a sine function can induce networks with repeated ele-
ments. Note that because the size of the CPPN is decoupled
from the size of the substrate, HyperNEAT can compactly
encode the connectivity of an arbitrarily large substrate with
a single CPPN.

Additionally, HyperNEAT can evolve controllers for teams
of agents. This multiagent HyperNEAT algorithm is de-
scribed by D’Ambrosio et al. [5]. It can be used to evolve
both homogeneous and heterogeneous teams; however, the
experiments in this paper only necessitate the homogeneous
case (without loss of generality). Controllers for homoge-
neous teams are created by evolving a single controller that
is duplicated for each agent on the team.

2.3 Sensory Input in Neuroevolved Agents
Researchers have evolved neural-controlled agents for di-

verse domains ranging in complexity from single-agent maze
navigation [7] to multiagent video game warfare [23]. Early



work centered on behaviors that could be realized on available
robot hardware, such as the Khepera. For example, Floreano
and Mondada [7] evolve controllers for the Khepera robot
that can navigate a simple maze without colliding with walls.
These controllers feature only a single sensory modality: a
set of infrared proximity sensors that surround the Khepera
robot. In similar work, Nolfi [15] evolves controllers for a
Khepera robot equipped with a “gripper” module capable of
grabbing and releasing objects. Successful integration of the
gripper module requires the addition of an additional sensory
modality: a single input neuron that is activated when an
object is present inside the gripper claw.

Some neural controllers are evolved in simulation without
the intention of physical implementation. For example, video
game non-player characters (NPCs) often must process a
relatively diverse set of sensory inputs. Stanley et al. [23]
present such a video game called NERO in which human
players attempt to evolve a team of ANN-controlled agents
for a combat simulation against other teams of such agents.
Agents in NERO have sensory inputs encompassing at least
four distinct modalities: enemies, walls, hostile line-of-fire,
and a boolean sensor that detects whether the agent’s gun
is currently aimed at an enemy target. Schrum and Miikku-
lainen [17] demonstrate video game NPC controllers evolved
for a variety of multitask combat-related domains that have
thirteen distinct sensory modalities. While researchers such
as Clune et al. [4] and Verbancsics and Stanley [26] have
studied the potential for the learning algorithm to discover
modular divisions on its own, the opportunity raised in this
paper is to provide some kind of a priori hint to the algorithm
about the ideal groupings of neurons (such as when they be-
long to different modalities). No such hint was possible to
provide in the past because there is no existing technique for
providing one.

Neuroevolution methods based on an indirect encoding,
such as HyperNEAT, offer a potential benefit to learning a
large diversity of sensory input because geometric arrange-
ments such as in HyperNEAT could in principle help to
convey belonging to one modality or another. Furthermore,
some modalities may share certain properties and thus ben-
efit from information reuse. For example, in some cases
modalities that consist of a single boolean value should be
treated in a similar way that is different from the way that
continuous rangefinder arrays should be treated. However,
current applications of HyperNEAT feature relatively few
sensory modalities [3, 5, 6, 8, 16, 24]. For example, Stanley et
al. [24] evolve agents with HyperNEAT for a food gathering
task. In this application, agents only have a single array of
eight rangefinders (corresponding to a single sensory modal-
ity). Similarly, the agents featured in Risi and Stanley [16]
have only two sensory modalities: wall sensors and target
sensors. Although multiagent domains often necessitate the
addition of extra sensory information to facilitate communi-
cation and the detection of friendly agent locations or status,
multiagent HyperNEAT has so far only been used to evolve
agents with one [5] or two [6] sensory modalities. The appli-
cation of HyperNEAT that features the most diverse array
of sensory information to date is Clune et al. [3]. In this
application, HyperNEAT networks tasked with controlling
the locomotion of a quadrupedal walker receive input from
several modalities: the angles of the three joints in each of the
legs, boolean values that are active when their correspond-
ing leg is touching the ground, the rotation of the walker’s

body, and a sine input used to generate oscillations. With
no known principle or precedent to follow, the arrangement
of all these on a single substrate posed a difficult challenge
to Clune et al. [3].

Perhaps the reason that HyperNEAT-evolved neural con-
trollers often have few sensory modalities is that as more
types of input are added, it becomes increasingly unclear how
to organize the neurons on the substrate. The conventional
approach to substrate design is to arrange the different modal-
ities arbitrarily along one or two spatial dimensions, such
as in Clune et al. [3]. The order and spacing of modalities
along these dimensions can significantly impact the results.
By convention, the best ordering is generally determined
experimentally. However, this approach is computationally
expensive and impractical. This paper instead offers a prin-
cipled solution that places each sensory modality in its own
space, similarly to (though much expanded from) how the
input, hidden, and output layers are divided in past work
such as Gauci and Stanley [8]. This approach is explained in
detail in the next section.

3. APPROACH: MULTI-SPATIAL
SUBSTRATE

The primary challenge in designing a HyperNEAT sub-
strate is deciding how to spatially arrange several sets of
geometrically unrelated neurons. This section begins by
explaining the main idea for addressing this problem with
simple substrates, and then turns to more complex multi-
modal arrangements.

3.1 Simple Multi-Spatial Substrates
The most common example that appears in nearly every

substrate design problem is deciding how the input, hidden,
and output sets of neurons should appear in the substrate
space relative to each other. Imagine a simple agent that
has a set of five rangefinder sensors equally spaced along the
front 180 degrees of the agent and three effectors to perform
the actions of turning left, moving forward, and turning
right. Each sensor corresponds to a single input neuron and
each effector corresponds to a single output neuron. This
neural controller also has a set of five hidden neurons to
which the input neurons are fully connected and that are
fully connected to the output neurons. A common design
for such a substrate is shown in figure 2a. Because there
exists a clear geometric relationship among the inputs, a good
practice is to arrange them in a line along one dimension
of the substrate (such as parallel to the x-axis in figure 2a)
in the same order that the corresponding sensors appear on
the agent. A similar geometric relationship exists among
the outputs, which are therefore often arranged in a line as
well. Arranging the inputs and outputs in this way allows
HyperNEAT to discover the concept of left-right symmetry
along the inputs and outputs in a single step. The hidden
nodes are often arranged in a line in the same way as the
inputs and outputs to convey an identical left-right symmetry
along the hidden nodes.

Overall, the substrate designer is left to situate three
distinct sets of neurons, each arranged in a line parallel to
the x-axis. However, it is unclear how to place these sets in
the final substrate relative to each other because there is no
clear geometric relationship among them. A common practice
is to arrange them arbitrarily along another, orthogonal axis
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Figure 2: Example: Converting a crowded substrate to a multi-spatial substrate. Two substrate designs are
depicted for a simple neural controller with one set of inputs, one hidden layer, and one set of outputs. The first substrate (a)
follows the crowded substrate approach, which is typical for designing substrates: Neuron groups that are not geometrically
related are arranged arbitrarily along an “extra” spatial dimension (in this case, the y-axis) that is otherwise not used to
convey geometric information. The second substrate (c) follows the multi-spatial substrate approach, wherein geometrically
independent neuron groups are placed in separate spaces (i.e. planes). Also shown are the corresponding CPPNs for both
substrates (b, d). Note that the addition of extra planes in the multi-spatial substrate necessitates extra CPPN outputs (d).
WAB is queried when determining the weight of connections from plane A to plane B and WBC is queried in the same way for
connections from plane B to plane C. BB and BC are queried when determining the implicit bias for neurons on plane B and
plane C, respectively (there is no BA because input neurons do not have an implicit bias). In this example, the conversion to
a multi-spatial substrate removes the need for the y-axis entirely; thus, the Y1 and Y2 inputs in (d) could be removed (not
shown). However, the y-axis may also be repurposed (for example, to expand the hidden layer to a grid of neurons).

(such as the y-axis in figure 2a). This arbitrary placement of
geometrically unrelated neuron groups is referred to in this
paper as the crowded substrate because it involves squeezing
several different types of neurons into the same space. To
understand why it is a single shared space, notice that the
CPPN in figure 2b that encodes the crowded substrate has
a single weight output W (and similarly a single bias output
B). In effect, that means mathematically that all weights
and biases are projected onto the same plane.

The main contribution of this paper is to introduce an
approach to designing HyperNEAT substrates that avoids
the arbitrary placement of geometrically unrelated neurons
by first grouping neurons that are logically related. That is,
each input and output modality forms a separate group, and
hidden neurons can be grouped according to their connectiv-
ity to other neuron groups in the network. Then each group
is placed in a separate space according to the principle: Two
groups of neurons with no obvious geometric relationship
between them should not be placed in the same space.

In the case of the example in figure 2, each “space” can
be conceived as a separate plane and there are three logical
groupings of neurons. Thus the resulting substrate contains
three separate planes (figure 2c). Substrates organized in
this way are called multi-spatial substrates (MSS) because
geometrically unrelated sets of neurons are placed in different
spaces. In practice, adding spaces to the substrate accord-
ingly requires extra CPPN outputs to differentiate among
the spaces being connected. While the crowded (single-
spatial) substrate requires two CPPN outputs (one that is
read when querying connection weights and one that is read
when querying the implicit bias1 on every non-input neuron),

1The implicit bias is a convention in HyperNEAT that simu-
lates a single bias neuron that is fully connected to all other
neurons except the inputs [19]. The CPPN is queried for
the bias of a neuron by setting the X1 and Y1 inputs to the

the multi-spatial substrate requires N + M CPPN outputs
where N is the number of unique space-space pairings (i.e.
where there exist neurons from one space that are connected
to neurons on the other space) and M is the number of planes
that contain non-input neurons. It should be noted that a
space with internal connections counts as a separate pairing
(i.e. a space paired with itself) for the purposes of calculating
N . Figure 2d shows the MSS encoding that is an alternative
to the crowded encoding in figure 2b.

In addition to being more challenging to design, crowded
substrates impose an evolutionary burden on HyperNEAT.
If geometrically unrelated neuron groups are arranged along
the y-axis, the HyperNEAT CPPN must learn a function of
y that expresses the differences among these logical groups of
neurons. This function becomes more complicated and thus
more difficult to discover during evolution as more groups of
neurons are added to the substrate (e.g. when the number
of input or output modalities increases, or when more layers
of hidden neurons are added to the network). By providing
a separate CPPN output for each logically separate set of
connections, multi-spatial substrates do not need to learn a
potentially complex function to differentiate among these sets.
Rather, the separation of each set into its own CPPN output
conveys this information a priori, thereby providing the hint
that has heretofore been missing. While CPPNs such as the
one in figure 2d have appeared before with little commentary,
such as in Gauci and Stanley [8], the novel insight here is that
the separation provided by the multiple outputs is actually a
solution to the problem of configuring and training networks
of many modalities. In particular, the hypothesis of this
paper is that this additional information provided to the
HyperNEAT CPPN will improve evolutionary performance,

neuron’s coordinates and setting X2 and Y2 to zero. Imple-
menting the bias in this way effectively places the bias at the
center of a separate plane.



particularly in cases where there are many logically separate
neuron groups, as described next.

3.2 Multi-Spatial Substrates for Multimodal
Controllers

Substrates for multimodal controllers tend to have more
logically separate neuron groups than substrates for uni-
modal controllers such as the example in figure 2. A class
of domains that naturally requires multimodality is multia-
gent learning. Consider a team of robots with three input
modalities, (1) target sensing, (2) communication sensing,
and (3) wall sensing, as well as two output modalities: (1)
steering and (2) a “voice box” for sending communication
signals. Target sensors consist of five pie slice sensors across
the front 180 degrees of the robot. Wall sensors are similarly
arranged except rangefinders are used instead of pie slices.
Communication sensors consist of ten pie slice sensors that
surround the robot. Steering is determined by three outputs:
turn left, move straight, and turn right. The “voice box”
output activates other robots’ communication sensors that
point in the direction of the vocalizing robot. A controller for
such a robot may require a more complex system of hidden
layers than a single layer of five neurons to successfully pro-
cess its variety of sensory modalities. Due to the additional
modalities and hidden layers, the resulting network architec-
ture would have significantly more logically separate neuron
groups than the simple controller discussed earlier. Figure 3
depicts a possible logical architecture for the connectivity
of such a controller. From a design perspective, actually
realizing this logical configuration is difficult with a single-
plane crowded substrate and there are many possibilities;
several such alternative crowded substrate designs are shown
in figure 4. However, the multi-spatial substrate (figure 5) is
simple to configure because different modalities are simply
placed on different planes.

The next section presents an experiment comparing the
performance of a multi-spatial substrate to that of substrates
designed with the crowded substrate approach.

4. EXPERIMENT
The multiagent example domain just described in sec-

tion 3.2 is well-suited to illustrating the evolutionary advan-
tage of the MSS approach because it relies on multimodal
input. For this purpose, five agents matching the description
in Section 3.2 are evolved with multiagent HyperNEAT2 for
a maze exploration and group coordination task.

The agents are placed in a maze containing one target
point that is initially out of vision range of all agents. The
goal of the task is that the agents navigate their way to the
target point and remain there. The best performance requires
one agent to call the others over after discovering the target.
Fitness is accumulated as follows: Each agent earns one
point per tick of the clock that it is within a small distance
(slightly larger than collision range) of the target point. The
duration of the simulation is 1,000 ticks, which corresponds to
a maximum fitness of 5,000 for the five agents. However, due
to the time taken for the initial discovery of the target point
and for all agents to move to it3, the maximum achievable

2Teams are composed of homogeneous agents in this paper;
all agents on a team have identical ANNs.
3Agents move at a maximum rate of 5 units per tick and
have a maximum turn rate of 36 degrees per tick. The width
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Hidden: Level 1 (Target) Hidden: Level 1 (Comm.) Hidden: Level 1 (Wall)

Input: Comm. SensorsInput: Target Sensors Input: Wall Sensors

Outputs: Steering & Voice

Figure 3: Substrate logical connectivity. The logical
connectivity for all the substrates compared experimentally
in this paper is shown. Neuron groups shown as connected
are potentially fully connected (i.e. all neurons in the first
group are queried for connections to all in the second group).
Each input modality is connected in turn to a dedicated
“level 1” hidden layer. All level 1 hidden layers are connected
to a “level 2” hidden layer. Finally, all hidden layers are
connected to the two output layers. Steering outputs and
voice outputs are logically separated in this paper, although
they are merged in this diagram to reduce clutter.

fitness is lower. Nearly perfect solutions wherein agents
explore efficiently and move directly to the target point once
it is found achieve a fitness of about 4,200. Agents’ sensors
for seeing walls and the target points have limited range4

and are occluded by walls. However, agent communication
sensors have unlimited range and are not occluded. The
primary purpose of communication therefore is to share the
location of the target point with other agents when it is too
far away or occluded by a wall.

Teams are trained on a total of seven environments, shown
in figure 6. Environments are designed to encompass a
diversity of situations, including initial isolation from team
members. During evolution, fitness is averaged over all seven.

The experiment consists of a comparison between the evo-
lutionary performance of HyperNEAT with each of the three
crowded substrates in figure 4 as well as the two multi-spatial
substrates described in figure 5. The crowded substrates test
several possible ways of arranging neuron groups that have
no obvious geometric relationship. In the first crowded sub-
strate, CS1 (figure 4a), neuron groups are arranged such that
front sensors appear in the positive y-axis and rear sensors
appear in the negative y-axis. Additionally, the outputs are
spaced reasonably far apart to prevent a correlation between
the activations of the forward steering and voice box out-
puts from emerging early in evolution. CS2 (figure 4b) is
designed such that all connections flow from neuron groups
located at lower values of y to neuron groups located at
higher values of y. In CS3 (figure 4c), horizontal neuron
groups are compressed to make room for the hidden layers
to be positioned vertically along the left and right edges of
the substrate. The first multi-spatial substrate, MSS1, is
shown in figure 5. Here, the level 2 hidden layer (shown at
upper-left) is converted from a horizontal line of neurons to
a grid of neurons (made possible because of the MSS), which

of each environment’s bounding walls is 900 units. Thus it
takes 180 ticks for an agent to move across the world; extra
time is required to navigate around obstacles.
4Target and wall sensor range is 150 units.
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Figure 4: Alternate crowded substrates. In each crowded substrate, the input, hidden, and output neurons are all placed
together on a single plane, organized geometrically into groups of related neurons. Input neurons (denoted by I ) are colored
white, hidden neurons (denoted by H ) are colored light gray (level 1) and dark gray (level 2), and output neurons (denoted by
the letter O) are colored black. The communication (Comm) inputs are divided into two groups, corresponding to the front
sensors (F ) and the rear sensors (R). Connections are omitted for clarity (see figure 3 for connectivity).

makes more complex functionality possible to express. MSS2
(not pictured) is identical to MSS1 except that its level 2
hidden layer consists of a single horizontal line of 5 neurons.
This variation helps to validate that any advantage for the
MSS is not only from having a grid of neurons at level 2.

Evolution was allowed 500 generations, after which point
fitness improvements stagnate, even for runs that do not
find a good solution. Because HyperNEAT differs from orig-
inal NEAT only in its set of activation functions, it uses
the same parameters [20]. The experiment was run with a
modified version of the public domain SharpNEAT package
[9]. The size of the population was 500 with 20% elitism.
Sexual offspring (50%) did not undergo mutation. Asexual
offspring (50%) had 0.96 probability of link weight muta-
tion, 0.03 chance of link addition, and 0.01 chance of node
addition. The coefficients for determining species similarity
were 1.0 for nodes and connections and 0.1 for weights. The
available CPPN activation functions were sigmoid, Gaussian,
linear, and sine, all with equal probability of being added
to the CPPN. Parameter settings are based on standard
SharpNEAT defaults and prior reported settings for NEAT
[20, 22]. They were found to be robust to moderate variation
through preliminary experimentation.

5. RESULTS
Evolutionary performance of each substrate design, de-

termined by the best fitness achieved at each generation,
is averaged across 30 runs and presented in figure 7. The
differences between MSS1 and MSS2 are not statistically
significant.5 Both MSS1 and MSS2 significantly outperform
all three crowded substrates (p < 0.001), as determined by
the final fitness achieved at generation 500. CS2 outperforms
the other two crowded substrate designs (p < 0.05).

To provide further perspective on the disparity between
CS and MSS, a good solution is defined as a fitness greater
than 3,333, corresponding to all agents spending two-thirds
of the total available time at the target point. This threshold
allows agents to cross the world twice before finding the
target point and excludes nearly all cases in which one or

5Statistical significance is determined by an unpaired two-
tailed Student’s t-test in all reported cases.

more agents never find it. The proportion of runs that find
a good solution for each approach is presented in figure 8.
Both MSS designs find a good solution almost every time,
whereas even the best crowded substrate designs find a good
solution only half the time. The worst crowded substrate,
CS3, finds a good solution in only two out of 30 runs.

The agents on the best solution teams for MSS1 and MSS2
explore the map individually and only activate their voice box
output after finding the target point. The other agents move
towards the signal, navigating around walls, until the entire
team has reached the target. Thus agents effectively share
information about the location of the target point with team
members, expediting the exploratory process. Many of the
best performing CS solution teams behave in the same way.
However, some of the CS2 teams solve the problem without
communication because the agents keep their voice box out-
put activated at all times. These teams achieve slightly lower
scores than communicating teams, but nonetheless exceed
the success threshold.

6. DISCUSSION
The crowded substrate faces the problem that the CPPN

tends to assign similar weights (especially early in evolution)
to connections that are near each other, such as those con-
necting to the voice box and forward movement neurons on
the CS2 substrate (figure 4b). Such a correlation can become
entrenched during the course of evolution if the candidate
solution learns to rely on it, which explains why several of
the best CS2 teams exhibit a correlation between forward
movement and communication at generation 500 even though
a higher score is possible without such correlation.

As more neurons are added to a crowded substrate to
solve more complex problems, it is ultimately inevitable that
some unrelated neurons will have to be placed close enough
together to cause unintended correlations in early generations.
In contrast, neurons in a multi-spatial substrate easily avoid
unintended correlations because each modality exists in an
entirely separate space. In a MSS, logical separation is not
conveyed by spatial distance on the substrate but by separate
CPPN outputs, which is a cleaner distinction that is easily
followed by HyperNEAT.
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Figure 5: MSS1 and MSS2 (not shown). Each input
and output modality and each hidden layer is placed on its
own plane. The level 2 hidden layer (upper left) is expanded
to a grid of neurons to allow the expression of more complex
functionality. Front sensors are located at y = 0.5 and
rear sensors are located at y = −0.5 in their input plane.
Neural connections are omitted for clarity. Instead, arrows
indicate the existence of neural connections between two
planes. Planes shown as connected are potentially fully
connected (all neurons on the first plane are queried for
connections to all neurons on the second plane). The CPPN
for this substrate has a total of 20 outputs (connections exist
between 14 unique plane-plane pairs and there are 6 planes
that have neurons with an implicit bias). MSS2 (not shown)
is identical to MSS1 except its level 2 hidden layer (H:Lv2)
only has a single line of five neurons at y = 0.

Figure 7 shows that the way crowded substrates are ar-
ranged can significantly impact their performance. Indeed,
some CS substrate designs even prevent solving the problem
(e.g. CS3, figure 8). More complicated domains that necessi-
tate additional modalities and hidden layer structure present
an even greater challenge to the substrate designer because
the degree of neuron crowding is greatly increased. In effect,
as the number of modalities and associated modality-specific
hidden layers increases, the burden on the user to design
an effective crowded substrate increases until eventually the
problem becomes intractable. While it is conceivable that the
dimensionality of the crowded substrate could be expanded
to reduce crowding (e.g. more CPPN inputs), this would only
perpetuate the problem of deciding where to place unrelated
modalities within the substrate.

On the other hand, the MSS approach eliminates the need
to make such difficult design decisions even while potentially
performing better. This result opens the door for future re-
search evolving ANN controllers capable of processing a rich
diversity of sensory information that was not previously pos-
sible, which can impact domains ranging from biped walking
to multiagent control. Furthermore, the MSS technique may

Figure 6: Training environments. Team performance
is averaged over seven environments, depicted here. Agent
starting positions are represented by triangles and target
points are represented by circles. The ends of walls are thick
to ensure agents can see them.
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Figure 7: Evolutionary performance by generation.
The best fitness achieved at each generation by each of
the five substrate designs is shown, averaged over 30 runs
each. The MSS variants reach significantly higher fitnesses
by generation 500 (p < 0.001).

be useful whenever there are several a priori logical group-
ings of neurons within a substrate, which is not restricted to
multimodal controllers. In the future it will be important to
study the scalability of this approach, as well as how well
it may complement more organic approaches to modularity
such as the Link Expression Output [26] or optimizing for
connection costs [4].

7. CONCLUSIONS
This paper introduced a principled new approach to sub-

strate design for the HyperNEAT algorithm called the multi-
spatial substrate, which provides a priori information to
HyperNEAT about the distinctions among neuron groups,
both improving evolutionary performance and reducing the
creative burden on the user. The approach was validated
through a comparison with conventional methods of sub-
strate design on a multiagent domain wherein agents have
three input and two output modalities; the multi-spatial sub-
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Figure 8: Proportion of runs that find a good solu-
tion. Proportions are taken out of 30 runs. A good solution
is defined by a fitness threshold of 3,333. MSS finds such
solutions 80% more often than the best CS.

strate found a solution 80% more often than even the best
conventional substrate design in the tested domain. This
new approach brings within the reach of neuroevolution a
new tier of domains by providing a solution to the problem
of multimodality that was not previously available.
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