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The electronic ground state of a periodic system is usually described in terms of ex-
tended Bloch orbitals, but an alternative representation in terms of localized “Wannier
functions” was introduced by Gregory Wannier in 1937. The connection between the
Bloch and Wannier representations is realized by families of transformations in a con-
tinuous space of unitary matrices, carrying a large degree of arbitrariness. Since 1997,
methods have been developed that allow one to iteratively transform the extended Bloch
orbitals of a first-principles calculation into a unique set of mazimally localized Wannier
functions, accomplishing the solid-state equivalent of constructing localized molecular
orbitals, or “Boys orbitals” as previously known from the chemistry literature. These
developments are reviewed here, and a survey of the applications of these methods is pre-
sented. This latter includes a description of their use in analyzing the nature of chemical
bonding, or as a local probe of phenomena related to electric polarization and orbital
magnetization. Wannier interpolation schemes are also reviewed, by which quantities
computed on a coarse reciprocal-space mesh can be used to interpolate onto much finer
meshes at low cost, and applications in which Wannier functions are used as efficient
basis functions are discussed. Finally the construction and use of Wannier functions
outside the context of electronic-structure theory is presented, for cases that include
phonon excitations, photonic crystals, and cold-atom optical lattices.
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I. INTRODUCTION

In the independent-particle approximation, the elec-
tronic ground state of a system is determined by spec-
ifying a set of one-particle orbitals and their occupa-
tions. For the case of periodic system, these one-particle
orbitals are normally taken to be the Bloch functions
Ynxk(r) that are labeled, according to Bloch’s theorem, by
a crystal momentum k lying inside the Brillouin zone and
a band index n. Although this choice is by far the most
widely used in electronic-structure calculations, alterna-
tive representations are possible. In particular, to ar-
rive at the Wannier representation (des Cloizeaux, 1963;
\Kohn, 1959; Wannier, 1937), one carries out a unitary
transformation from the Bloch functions to a set of local-
ized “Wannier functions” (WFs) labeled by a cell index
R and a band-like index n, such that in a crystal the
WFs at different R are translational images of one an-
other. Unlike Bloch functions, WF's are not eigenstates
of the Hamiltonian; in selecting them, one trades off lo-
calization in energy for localization in space.

In the earlier solid-state theory literature, WFs were
typically introduced in order to carry out some formal
derivation — for example, of the effective-mass treatment
of electron dynamics, or of an effective spin Hamiltonian
— but actual calculations of the WFs were rarely per-
formed. The history is rather different in the chemistry
literature, where “localized molecular orbitals” (LMO’s)
(Boys, 1960, 1966; [Edmiston and Ruedenberg), [1963; [Fos-|
ter and Boys, [1960a/b) have played a significant role in
computational chemistry since its early days. Chemists
have emphasized that such a representation can provide
an insightful picture of the nature of the chemical bond
in a material — otherwise missing from the picture of
extended eigenstates — or can serve as a compact basis
set for high-accuracy calculations.

The actual implementation of Wannier’s vision in
the context of first-principles electronic-structure calcu-
lations, such as those carried out in the Kohn-Sham
framework of density-functional theory
, has instead been slower to unfold. A major rea-
son for this is that WFs are strongly non-unique. This
is a consequence of the phase indeterminacy that Bloch
orbitals 1, have at every wavevector k — or, more gener-
ally, the “gauge” indeterminacy associated with the free-
dom to apply any arbitrary unitary transformation to the
occupied Bloch states at each k. This second indetermi-
nacy is all the more troublesome in the common case
of degeneracy for the occupied bands at certain high-
symmetry points in the Brillouin zone, making a par-




tition into separate “bands”, that could separately be
transformed in Wannier functions, problematic. There-
fore, even before one could attempt to compute the WFs
for a given material, one had first to resolve the question
of which states to use to compute WFs.

An important development in this regard was the intro-
duction by Marzari and Vanderbilt| (1997) of a “maximal
localization” criterion for identifying a unique set of WFs
for a given crystalline insulator. The approach is simi-
lar in spirit to the construction of LMOQO’s in chemistry,
but its implementation in the solid-state context required
significant developments, due to the ill-conditioned na-
ture of the position operator in periodic systems (Nen-
ciul [1991)), that was clarified in the context of the “mod-
ern theory” of polarization (King-Smith and Vanderbilt
1993} Resta, [1994]). Marzari and Vanderbilt showed that
the minimization of a localization functional correspond-
ing to the sum of the second-moment spread of each Wan-
nier charge density about its own center of charge was
both formally attractive and computationally tractable.
In a related development, |Souza et al.|(2001) generalized
the method to handle the case in which one wants to
construct a set of WF's that spans a subspace containing,
e.g., the partially occupied bands of a metal.

These developments touched off a transformational
shift in which the computational electronic-structure
community started constructing maximally-localized
WFs (MLWFs) explicitly and using these for different
purposes. The reasons are manifold: First, WFs, akin
to LMO’s in molecules, provide an insightful chemical
analysis of the nature of bonding, and its evolution dur-
ing, say, a chemical reaction. As such, they have become
an established tool in the post-processing of electronic-
structure calculations. More interestingly, there are for-
mal connections between the centers of charge of the
WFs and the Berry phases of the Bloch functions as
they are carried around the Brillouin zone. This con-
nection is embodied in the microscopic modern theory
of polarization, alluded to above, and has led to impor-
tant advances in the characterization and understand-
ing of dielectric response and polarization in materials.
Of broader interest to the entire condensed matter com-
munity is the use of WFs in the construction of model
Hamiltonians for, e.g., correlated-electron and magnetic
systems. An alternative use of WF's as localized, transfer-
able building blocks has taken place in the theory of bal-
listic (Landauer) transport, where Green’s functions and
self-energies can be constructed effectively in a Wannier
basis, or that of first-principles tight-binding Hamilto-
nians, where chemically-accurate Hamiltonians are con-
structed directly on the Wannier basis, rather than fitted
or inferred from macroscopic considerations. Finally, the
ideas that were developed for electronic WFs have also
seen application in very different contexts. For example,
MLWE’s have been used in the theoretical analysis of
phonons, photonic crystals, cold atom lattices, and the

local dielectric responses of insulators.

Here we review these developments. We first intro-
duce the transformation from Bloch functions to WFs in
Sec. [T} discussing their gauge freedom and the methods
developed for constructing WFs through projection or
maximal localization. A “disentangling procedure” for
constructing WFs for a non-isolated set of bands (e.g.,
in metals) is also described. In Sec. we discuss vari-
ants of these procedures in which different localization
criteria or different algorithms are used, and discuss the
relationship to “downfolding” and linear-scaling meth-
ods. Sec. [V] describes how the calculation of WFs has
proved to be a useful tool for analyzing the nature of the
chemical bonding in crystalline, amorphous, and defec-
tive systems. Of particular importance is the ability to
use WFs as a local probe of electric polarization, as de-
scribed in Sec. [Vl There we also discuss how the Wannier
representation has been useful in describing orbital mag-
netization, NMR chemical shifts, orbital magnetoelectric
responses, and topological insulators. Sec. [V describes
Wannier interpolation schemes, by which quantities com-
puted on a relatively coarse k-space mesh can be used
to interpolate faithfully onto an arbitrarily fine k-space
mesh at relatively low cost. In Sec. [VII]we discuss appli-
cations in which the WFs are used as an efficient basis
for the calculations of quantum transport properties, the
derivation of semiempirical potentials, and for describing
strongly-correlated systems. Sec. [VII]] contains a brief
discussion of the construction and use of WFs in con-
texts other than electronic-structure theory, including for
phonons in ordinary crystals, photonic crystals, and cold
atoms in optical lattices. Finally, Sec.[[X]provides a short
summary and conclusions.

Il. REVIEW OF BASIC THEORY

A. Bloch functions and Wannier functions

Electronic structure calculations are often carried out
using periodic boundary conditions. This is the most
natural choice for the study of perfect crystals, and also
applies to the common use of periodic supercells for the
study of non-periodic systems such as liquids, interfaces,
and defects. The one-particle effective Hamiltonian H
then commutes with the lattice-translation operator Tg,
allowing one to choose as common eigenstates the Bloch
orbitals | ¥ ):

[H,Tr] = 0 = ¥u(r) = un(r)e™™ (1)

where wu,k(r) has the periodicity of the Hamiltonian.
Several Bloch functions are sketched on the left-hand
side of Fig. [I] for a toy model in which the band of inter-
est is composed of p-like orbitals centered on each atom.
For the moment, we suppose that this band is an iso-
lated band, i.e., it remains separated by a gap from the
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FIG. 1 (Color online) Left: Bloch functions associated with
a single band in 1D, at three different values of wavevector k.
Right: WF's associated with the same band, forming periodic
images of one another. Blue dots indicate atoms; green curves
indicate envelopes e*® of the Bloch functions. Bloch and WF's
span the same Hilbert space.

bands below and above at all k. Since Bloch functions
at different k have different envelope functions e’**, one
can expect to be able to build a localized “wave packet”
by superposing Bloch functions of different k. To get a
very localized wave packet in real space, we need to use
a very broad superposition in k space. But k lives in the
periodic Brillouin zone, so the best we can do is to choose
equal amplitudes all across the Brillouin zone. Thus, we
can construct

1%
’wo(l‘) = W/Bz dk '(/Jnk(r) ) (2)

where V' is the real-space primitive cell volume and the
integral is carried over the Brillouin zone (BZ). (See
Sec. for normalization conventions.) Equation
can be interpreted as the WF located in the home unit
cell, as sketched in the top-right panel of Fig.

More generally, we can insert a phase factor e~ ® into
the integrand of Eq. , where R is a real-space lattice
vector; this has the effect of translating the real-space
WF by R, generating additional WFs such as w; and
wy sketched in Fig. Switching to the Dirac bra-ket
notation and introducing the notation that Rn refers to
the WF w,gr in cell R associated with band n, WFs can
be constructed according to (Wannier, [1937)

— L e—ik~R

It is easily shown that the |Rn) form an orthonormal
set (see Sec. [II.A.3)) and that two WFs |Rn) and |R'n)
transform into each other under translation by the lattice
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vector R — R/ (Blount,, [1962)). Eq. takes the form of

a Fourier transform, and its inverse transform is
[uk) = Y ¢ “F|Rn) (4)
R

(see Sec. . Any of the Bloch functions on the left
side of Fig. [I| can thus be built up by linearly superposing
the WFs shown on the right side, when the appropriate
phases e’*® are used.

The transformations of Egs. and constitute
a unitary transformation between Bloch and Wannier
states. Thus, both sets of states provide an equally valid
description of the band subspace, even if the WFs are
not Hamiltonian eigenstates. For example, the charge
density obtained by summing the squares of the Bloch
functions |nx) or the WFs |Rn) is identical; a similar
reasoning applies to the trace of any one-particle opera-
tor. The equivalence between the Bloch and the Wannier
representations can also be made manifest by expressing
the band projection operator P in both representations,
ie., as

;
P= G / )i = S IR Rl (5

WFs thus provide an attractive option for represent-
ing the space spanned by a Bloch band in a crystal, being
localized while still carrying the same information con-
tained in the Bloch functions.

1. Gauge freedom

However, the theory of WFs is made more complex
by the presence of a “gauge freedom” that exists in the
definition of the 1,x. In fact, we can replace

| Q;nk > = ei¢n(k) | Ynk > ’ (6)
or equivalently,
| ﬁnk > — ei‘Pn(k) | Unk > , (7)

without changing the physical description of the system,
with ¢, (k) being any real function that is periodic in
reciprocal spaceE| A smooth gauge could, e.g., be defined
such that Vi|u,xk) is well defined at all k. Henceforth
we shall assume that the Bloch functions on the right-
hand side of Eq. belong to a smooth gauge, since

L More precisely, the condition is that ¢, (k+G) = ¢n (k) +G-AR
for any reciprocal-lattice translation G, where AR is a real-space
lattice vector. This allows for the possibility that ¢, may shift
by 27 times an integer upon translation by G; the vector AR
expresses the corresponding shift in the position of the resulting
WF.



we would not get well-localized WFs on the left-hand
side otherwise. This is typical of Fourier transforms: the
smoother the reciprocal-space object, the more localized
the resulting real-space object, and vice versa.

One way to see this explicitly is to consider the R =0
home-cell wy,o(r) evaluated at a distant point r; using
Eq. in Eq. , this is given by [5, tnk(r)e™* dk,
which will be small due to cancellations arising from the
rapid variation of the exponential factor, provided that
Upk 18 a smooth function of k .

It is important to realize that the gauge freedom of
Egs. @ and (@ propagates into the WFs. That is,
different choices of smooth gauge correspond to differ-
ent sets of WFs having in general different shapes and
spreads. In this sense, the WFs are “more non-unique”
than the Bloch functions, which only acquire a phase
change. We also emphasize that there is no “preferred
gauge” assigned by the Schrodinger equation to the Bloch
orbitals. Thus, the non-uniqueness of the WF's resulting
from Eq. is unavoidable.

2. Multiband case

Before discussing how this non-uniqueness might be
resolved, we first relax the condition that band n be a
single isolated band, and consider instead a manifold of
J bands that remain separated with respect to any lower
or higher bands outside the manifold. Internal degen-
eracies and crossings among the J bands may occur in
general. In the simplest case this manifold corresponds
to the occupied bands of an insulator, but more generally
it consists of any set of bands that is separated by a gap
from both lower and higher bands everywhere in the Bril-
louin zone. Traces over this band manifold are invariant
with respect to any unitary transformation among the J
occupied Bloch orbitals at a given wavevector, so it is
natural to generalize the notion of a “gauge transforma-
tion” to

J
‘&nk>:ZU£}2|wmk> . (8)
m=1

Here Uﬁ% is a unitary matrix of dimension J that is
periodic in k, with Eq. @ corresponding to the special
case of a diagonal U matrix. It follows that the projection
operator onto this band manifold at wavevector k,

J J
Pie =Y [ (il = D [thnae) (Vo] (9)

n=1

is invariant, even though the [, resulting from Eq.
are no longer generally eigenstates of H, and n is no
longer a band index in the usual sense.

Our goal is again to construct WFs out of these trans-
formed Bloch functions using Eq. (3). Figs. [2[(a) and (b)

FIG. 2 (Color online) MLWFs constructed from the four va-
lence bands of Si (left) and GaAs (right; Ga at upper right,
As at lower left), having the character of o-bonded combina-
tions of sp® hybrids. The red and blue isosurfaces correspond
to two opposite values for the amplitudes of the real-valued
MLWFs.

show, for example, what the result might eventually look
like for the case of the four occupied valence bands of Si
or GaAs, respectively. From these four bands, one ob-
tains four equivalent WFs per unit cell, each localized on
one of the four nearest-neighbor Si-Si or Ga-As bonds.
The presence of a bond-centered inversion symmetry for
Si, but not GaAs, is clearly reflected in the shapes of the
WFs.

Once again, we emphasize that the gauge freedom ex-
pressed in Eq. implies that the WFs are strongly non-
unique. This is illustrated in Fig. |3] which shows an al-
ternative construction of WF's for GaAs. The WF on the
left was constructed from the lowest valence band n=1,
while the one on the right is one of three constructed from
bands n=2-4. The former has primarily As s character
and the latter has primarily As p character, although
both (and especially the latter) contain some Ga s and
p character as well. The WFs of Figs. [J(b) and Fig.
are related to each other by a certain manifold of 4x4
unitary matrices U,(lﬁ relating their Bloch transforms in
the manner of Eq. .

However, before we can arrive at well-localized WF's
like those shown in Figs. [2land [3] we again have to address
questions of smoothness of the gauge choice expressed in
Eq. . This issue is even more profound in the present
multiband case, since this smoothness criterion is gen-
erally incompatible with the usual construction of Bloch
functions. That is, if we simply insert the usual Bloch
functions |¢,k), defined to be eigenstates of H, into the
right-hand side of Eq. , it is generally not possible to

QAN
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FIG. 3 (Color online) MLWFs constructed from the s band
(left) or from the three p bands (right) of GaAs.



produce well-localized WFs. The problem arises when
there are degeneracies among the bands in question at
certain locations in the Brillouin zone. Consider, for ex-
ample, what happens if we try to construct a single WF
from the highest occupied band n = 4 in GaAs. This
would be doomed to failure, since this band becomes de-
generate with bands two and three at the zone center,
I', as shown in Fig. As a result, band four is non-
analytic in k in the vicinity of I'. The Fourier transform
of Eq. would then result in a poorly localized object
having power-law tails in real space.

In such cases, therefore, the extra unitary mixing ex-
pressed in Eq. is mandatory, even if it may be op-
tional in the case of a set of discrete bands that do not
touch anywhere in the BZ. So, generally speaking, our
procedure must be that we start from a set of Hamilto-
nian eigenstates |t,x) that are not per se smooth in k,
and introduce unitary rotations Uy(,i(y)b that “cancel out”
the discontinuities in such a way that smoothness is re-
stored, i.e., that the resulting [¢,x) of Eq. obey the
smoothness condition that Vk|1/)nk> remains regular at
all k. Then, when these |, are inserted into Eq.
in place of the |1,k), well-localized WFs should result.
Explicitly, this results in WFs constructed according to

Vv

[Rn) = W/ dke R Z US| i) - (10)

The question remains how to choose the unitary rota-
tions Uf,ﬁz so as to accomplish this task. We will see that
one way to do this is to use a projection technique, as
outlined in the next section. Ideally, however, we would
like the construction to result in WFs that are “maxi-
mally localized” according to some criterion. Methods
for accomplishing this are discussed in Sec. [[I.C|

3. Normalization conventions

In the above equations, formulated for continuous k,
we have adopted the convention that Bloch functions are
normalized to one unit cell, [, dr[¢ni(r)]> = 1, even
though they extend over the entire crystal. We also de-
fine (f|g) as the integral of f*g over all space. With
this notation, (¢,x|¢nk) is not unity; instead, it diverges
according to the rule
(27)3

<wnk|wmk/> - %
With these conventions it is easy to check that the WFs
in Eqgs. are properly normalized, i.e., (Rn|R'm) =
5RR/ 5nm

It is often more convenient to work on a discrete uni-
form k mesh instead of continuous k spaceﬂ Letting N

Sm 05 (k — k') . (11)

2 The discretization of k-space amounts to imposing periodic

be the number of unit cells in the periodic supercell, or
equivalently, the number of mesh points in the BZ, it is
possible to keep the conventions close to the continuous
case by defining the Fourier transform pair as

[Yni) = Y €% |Rn)

R
i (12)
Ry = = 30 e K )

k

with (¥nk|Vmix) = Npm Sk, so that Eq. becomes,
after generalizing to the multiband case,

P =3 W = Y[R} (Rn| . (13)
nk

nR

Another commonly used convention is to write

|wnk \/72 62kR|Rn
) (14)
|R’fl \/> Z - |wnk>

with <wnk|wmk/> = 0pm Ok and Eq. replaced by

> Rn)(Rn|. (15)

nR

P = Z |wnk><wnk| =
nk

In either case, it is convenient to keep the |u,x) functions
normalized to the unit cell, with inner products involving
them, such as (upk|unk), understood as integrals over
one unit cell. In the case of Eq. ( ., this means that

Unk(r) = VNe T (r).

B. Wannier functions via projection

A simple yet often effective approach for constructing
a smooth gauge in k, and a corresponding set of well-
localized WFs, is by projection - an approach that finds
its roots in the analysis of |des Cloizeaux| (1964a)). Here,
as discussed, e.g., in Sec. IV.G.1 of Marzari and Van-
derbilt| (1997, one starts from a set of J localized trial
orbitals g, (r) corresponding to some rough guess for the

boundary conditions on the Bloch wavefunctions over a super-
cell in real space. Thus, it should be kept in mind that the WFs
given by Egs. and are not truly localized, as they also
display the supercell periodicity (and are normalized to a super-
cell volume). Under these circumstances the notion of “Wannier
localization” refers to localization within one supercell, which is
meaningful for supercells chosen large enough to ensure negligible
overlap between a WF and its periodic images.



WF's in the home unit cell. Returning to the continuous-
k formulation, these g,(r) are projected onto the Bloch
manifold at wavevector k to obtain

J
|¢nk> = Z |wmk><wmk|gn> ) (16)

m=1

which are typically smooth in k-space, albeit not or-
thonormal. (The integral in (¥,,x|g,) is over all space as
usual.) We note that in actual practice such projection
is achieved by first computing a matrix of inner products
(Ax)mn = (Y¥mxl|grn) and then using these in Eq. .
The overlap matrix (Sk)mn = (Dmk|dnk)v = (ALAk)mn
(where subscript V' denotes an integral over one cell)
is then computed and used to construct the Lowdin-
orthonormalized Bloch-like states

J
D) = > Gmie) (S - (17)

These |¢i) have now a smooth gauge in k, are related
to the original |¢,x) by a unitary transformationﬂ and
when substituted into Eq. in place of the |1,x) re-
sult in a set of well-localized WFs. We note in passing
that the |1),x) are uniquely defined by the trial orbitals
gn(r) and the chosen (isolated) manifold, since any arbi-
trary unitary rotation among the |¢,x) orbitals cancels
out exactly and does not affect the outcome of Eq.
eliminating thus any gauge freedom.

We emphasize that the trial functions do not need to
resemble the target WF's closely; it is often sufficient to
choose simple analytic functions (e.g., spherical harmon-
ics times Gaussians) provided they are roughly located
on sites where WF's are expected to be centered and have
appropriate angular character. The method is successful
as long as the inner-product matrix Ay does not become
singular (or nearly so) for any k, which can be ensured by
checking that the ratio of maximum and minimum val-
ues of det Sk in the Brillouin zone does not become too
large. For example, spherical (s-like) Gaussians located
at the bond centers will suffice for the construction of
well-localized WFs, akin to those shown in Fig. 2] span-
ning the four occupied valence bands of semiconductors
such as Si and GaAs.

C. Maximally localized Wannier functions

The projection method described in the previous sub-
section has been used by many authors (Ku et al., 2002}

3 One can prove that this transformation is unitary by performing
the singular value decomposition A = ZDWT, with Z and W
unitary and D real and diagonal. It follows that A(ATA)=1/2 is
equal to ZWT, and thus unitary.

Lu et all [2004; Qian et al., |2008; [Stephan et al., 2000,
as has a related method involving downfolding of the
band structure onto a minimal basis (Andersen and Saha-
Dasguptal, 2000; [Zurek et al., 2005)); some of these ap-
proaches will also be discussed in Sec. [[ILB] Other au-
thors have made use of symmetry considerations, analyt-
icity requirements, and variational procedures (Smirnov
and Usvyat, 2001} Sporkmann and Bross, (1994, {1997)).
A very general and now widely used approach, how-
ever, has been that developed by Marzari and Vanderbilt
(1997) in which localization is enforced by introducing a
well-defined localization criterion, and then refining the
U in order to satisfy that criterion. We first give an
overview of this approach, and then provide details in the
following subsections.

First, the localization functional
0= Z [(On|r*|On) — (On|r|On)?]
n

=) [(r*)n —17] (18)

is defined, measuring of the sum of the quadratic spreads
of the J WFs in the home unit cell around their cen-
ters. This turns out to be the solid-state equivalent of the
Foster-Boys criterion of quantum chemistry (Boys, 1960,
1966} [Foster and Boys, [1960alb)). The next step is to
express () in terms of the Bloch functions. This requires
some care, since expectation values of the position opera-
tor are not well defined in the Bloch representation. The
needed formalism will be discussed briefly in Sec.
and more extensively in Sec.[V:A ] with much of the con-
ceptual work stemming from the earlier development the
modern theory of polarization (Blount, 1962} King-Smith
and Vanderbilt, 1993} |[Restal, |1992, |1994; Vanderbilt and
King-Smithl, (1993)).

Once a k-space expression for {2 has been derived, max-
imally localized WF's are obtained by minimizing it with
respect to the Ufylf,z appearing in Eq. . This is done
as a post-processing step after a conventional electronic-
structure calculation has been self-consistently converged
and a set of ground-state Bloch orbitals | ¢,k ) has been
chosen once and for all. The U},i‘,l are then iteratively re-
fined in a direct minimization procedure of the localiza-
tion functional that is outlined in Sec. below. This
procedure also provides the expectation values (r?),, and
r,; the latter, in particular, are the primary quantities
needed to compute many of the properties, such as the
electronic polarization, discussed in Sec.[V] If desired, the
resulting U%) can also be used to construct explicitly the
maximally localized WF's via Eq. . This step is typ-
ically only necessary, however, if one wants to visualize
the resulting WF's or to use them as basis functions for
some subsequent analysis.



1. Real-space representation

An interesting consequence stemming from the choice
of as the localization functional is that it allows
a natural decomposition of the functional into gauge-
invariant and gauge-dependent parts. That is, we can
write

Q=01 +Q (19)

where

QI:Z (on|r*|on)

n

~ S [(Rmlrlon)[*|  (20)
Rm

and

a=>" > [ |(Rm]r|on) | (21)

n Rm#0n

It can be shown that not only Q but also Q1 is pos-
itive definite, and moreover that Q1 is gauge-invariant,
i.e., invariant under any arbitrary unitary transformation
(10) of the Bloch orbitals (Marzari and Vanderbilt}, 1997)).
This follows straightforwardly from recasting Eq. in
terms of the band-group projection operator P, as de-
fined in Eq. , and its complement Q =1 — P:

Q= Z(On\raQramn}

no

= Z Tre [ProQra] - (22)

The subscript ‘c’ indicates trace per unit cell. Clearly
)1 is gauge invariant, since it is expressed in terms of
projection operators that are unaffected by any gauge
transformation. It can also be seen to be positive definite
by using the idempotency of P and @ to write Q; =
5 Tre [(PraQ)(Pra@)T] = 32, 1PraQl2.

The minimization procedure of € thus actually cor-
responds to the minimization of the non-invariant part
Q only. At the minimum, the off-diagonal elements
|(Rm|r|0n)|* are as small as possible, realizing the best
compromise in the simultaneous diagonalization, within
the subspace of the Bloch bands considered, of the three
position operators z, y and z, which do not in general
commute when projected onto this space.

2. Reciprocal-space representation

As shown by [Blount| (1962)), matrix elements of the
position operator between WFs take the form

(Rn|r|om) =i R | Vi) (23)

and

(Rn|r?|0m) = —%/dkeik'fiwnk\vla\umk} . (24)

These expressions provide the needed connection with
our underlying Bloch formalism, since they allow to ex-
press the localization functional € in terms of the ma-
trix elements of Vi and Vi. In addition, they allow to
calculate the effects on the localization of any unitary
transformation of the |u,x) without having to recalcu-
late expensive (especially when plane-wave basis sets are
used) scalar products. We thus determine the Bloch or-
bitals |umk) on a regular mesh of k-points, and use finite
differences to evaluate the above derivatives. In particu-
lar, we make the assumption that the BZ has been dis-
cretized into a uniform Monkhorst-Pack mesh, and the
Bloch orbitals have been determined on that mesh[]

For any f(k) that is a smooth function of k, it can
be shown that its gradient can be expressed by finite
differences as

k)= wb[f(k+b) - fk)]+O(°)  (25)
b

calculated on stars (“shells”) of near-neighbor k-points;
here b is a vector connecting a k-point to one of its neigh-
bors, wy is an appropriate geometric factor that depends
on the number of points in the star and its geometry
(see Appendix B in [Marzari and Vanderbilt| (1997) and
Mostofi et al.| (2008) for a detailed description). In a
similar way,

VAP =Y w,

b

[f(k+b) = fF&)]*+O@°) . (26)

It now becomes straightforward to calculate the ma-
trix elements in Egs. and . All the information
needed for the reciprocal-space derivatives is encoded in
the overlaps between Bloch orbitals at neighboring k-
points

MEP) = (upic|un kb)) - (27)

These overlaps play a central role in the formalism, since

all contributions to the localization functional can be

expressed in terms of them. Thus, once the M,fﬁb)

have been calculated, no further interaction with the
electronic-structure code that calculated the ground state
wavefunctions is necessary - making the entire Wannier-
ization procedure a code-independent post-processing
step ﬂ There is no unique form for the localization func-
tional in terms of the overlap elements, as it is possible

4 Even the case of I'-sampling — where the Brillouin zone is sampled
with a single k-point — is encompassed by the above formulation.
In this case the neighboring k-points are given by reciprocal lat-
tice vectors G and the Bloch orbitals differ only by phase factors
exp(i¢G - r) from their counterparts at I'. The algebra does be-
come simpler, though, as will be discussed in Sec.

In particular, see |Ferretti et al.| (2007)) for the extension to
ultrasoft pseudopotentials and the projector-augmented wave
method, and [Freimuth et al.| (2008); [Kunes et al.| (2010); and
Posternak et al| (2002) for the full-potential linearized aug-
mented planewave method.

o



to write down many alternative finite-difference expres-
sions for ¥, and (r?),, which agree numerically to leading
order in the mesh spacing b (first and second order for r,,
and (r?),, respectively). We give here the expressions of
Marzari and Vanderbilt| (1997)), which have the desirable
property of transforming correctly under gauge transfor-
mations that shift |On) by a lattice vector. They are

1
Ty = > wy bIm In M%) (28)
k,b

(where we use, as outlined in Sec. [[T1.A.3] the convention
of Eq. ), and

1 2
7‘2>n = g wy {[1 - \Mélflb \ ] + [Im lnMT(llﬁb’b)] }

(29)
The corresponding expressions for the gauge-invariant
and gauge-dependent parts of the spread functional are

o= > (7= RAEE) G0

and

0= L3 w3 KPP (31)

k,b m#n
1 2
— — (k7b) —_ T
+ kgb wy En ( Im In M, b rn>

As mentioned, it is possible to write down alterna-
tive discretized expressions which agree numerically with
Egs. f up to the orders indicated in the mesh
spacing b; at the same time, one needs to be careful in
realizing that certain quantities, such as the spreads, will
display slow convergence with respect to the BZ sampling
(see for a discussion), or that some exact results
(e.g., that the sum of the centers of the Wannier func-
tions is invariant with respect to unitary transformations)
might acquire some numerical noise. In particular, |Sten-
gel and Spaldin| (2006al) showed how to modify the above
expressions in a way that renders the spread functional
strictly invariant under BZ folding.

D. Localization procedure

In order to minimize the localization functional, we
consider the first-order change of the spread functional
Q arising from an infinitesimal gauge transformation
Uéﬁ = Omn + dW,‘,f,Q, where dW is an infinitesimal
anti-Hermitian matrix, dWT = —dW, so that |u,,) —

i) + 3, AW i)

ds) ds)
(dW)nm = (32)

. We use the convention

(note the reversal of indices) and introduce A and S as

the superoperators A[B] = (B — BY)/2 and S[B] = (B +
BT)/2i. Defining
g = Tm In M&E® +b-F,, (33)
RGP = MESP M (34)
M(kvb)
kb) _ Mmn kb
T = —fm o (35)

Mnn

and referring to [Marzari and Vanderbilt| (1997) for the
details, we arrive at the explicit expression for the gradi-
ent G = dQ/dW ) of the spread functional Q as

_4Zwb< [RD)] S[T(k’b)]) . (36)

This gradient is used to drive the evolution of the Ur(,ﬁz
(and, implicitly, of the |Rn) of Eq. (I0)) towards the
minimum of . A simple steepest-descent implementa-
tion, for example, takes small finite steps in the direction
opposite to the gradient G until a minimum is reached.

For details of the minimization strategies and the en-
forcement of unitarity during the search, the reader is
referred to Mostofi et al.|(2008). We should like to point
out here, however, that most of the operations can be
performed using inexpensive matrix algebra on small ma-
trices. The most computationally demanding parts of
the procedure are typically the calculation of the self-
consistent Bloch orbitals \ufﬁi) in the first place, and then
the computation of a set of overlap matrices

MOQEP) = (4O 1) ) (37)

that are constructed once and for all from the |u ) Af-
ter every update of the unitary matrices U, the overlap
matrices are updated with inexpensive matrix algebra

M&b) — 7t g 0)(k,b) r7(k+b) (38)

without any need to access the Bloch wavefunctions
themselves. This not only makes the algorithm compu-
tationally fast and efficient, but also makes it indepen-
dent of the basis used to represent the Bloch functions.
That is, any electronic-structure code package capable
of providing the set of overlap matrices M P) can easily
be interfaced to a common Wannier maximal-localization
code.

E. Local minima

It should be noted that the localization functional can
display, in addition to the desired global minimum, mul-
tiple local minima that do not lead to the construction



of meaningful localized orbitals. Heuristically, it is also
found that the WFs corresponding to these local min-
ima are intrinsically complex, while they are found to be
real, a part from a single complex phase, at the desired
global minimum (provided of course that the calculations
do not include spin-orbit coupling). Such observation in
itself provides a useful diagnostic tool to weed out unde-
sired solutions.

These false minima either correspond to the forma-
tion of topological defects (e.g., “vortices”) in an oth-
erwise smooth gauge field in discrete k space, or they
can arise when the branch cuts for the complex loga-
rithms in Eq. and Eq. are inconsistent, i.e.,
when at any given k-point the contributions from dif-
ferent b-vectors differ by random amounts of 27 in the
logarithm. Since a locally appropriate choice of branch
cuts can always be performed, this problem is less severe
than the topological problem. The most straightforward
way to avoid local minima altogether is to initialize the
minimization procedure with a gauge choice that is al-
ready fairly smooth. For this purpose, the projection
method already described in Sec. has been found to
be extremely effective. Therefore, minimization is usu-
ally preceded by a projection step, to generate a set of
analytic Bloch orbitals to be further optimized, as dis-
cussed more fully in |Marzari and Vanderbilt| (1997) and
Mostofi et al.| (2008).

F. The limit of isolated systems or large supercells

The formulation introduced above can be significantly
simplified in two important and related cases, which
merit a separate discussion. The first is the case of open
boundary conditions: this is the most appropriate choice
for treating finite, isolated systems (e.g., molecules and
clusters) using localized basis sets, and is a common ap-
proach in quantum chemistry. The localization proce-
dure can then be entirely recast in real space, and corre-
sponds exactly to determining Foster-Boys localized or-
bitals. The second is the case of systems that can be
described using very large periodic supercells. This is
the most appropriate strategy for non-periodic bulk sys-
tems, such as amorphous solids or liquids (see Fig. |4| for
a paradigmatic example), but obviously includes also pe-
riodic systems with large unit cells. In this approach, the
Brillouin zone is considered to be sufficiently small that
integrations over k-vectors can be approximated with a
single k-point (usually at the I" point, i.e., the origin in re-
ciprocal space). The localization procedure in this second
case is based on the procedure for periodic boundary con-
ditions described above, but with some notable simplifi-
cations. Isolated systems can also be artificially repeated
and treated using the supercell approach, although care
may be needed in dealing with the long-range electrostat-
ics if the isolated entities are charged or have significant
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FIG. 4 (Color online) MLWFs in amorphous Si, either
around distorted but fourfold coordinated atoms, or in the
presence of a fivefold defect. Adapted from |[Fornari et al.
(2001)).

dipole or multipolar character (Dabo et al., 2008; Makov
and Payne, [1995]).

1. Real-space formulation for isolated systems

For an isolated system, described with open bound-
ary conditions, all orbitals are localized to begin with,
and further localization is achieved via unitary trans-
formations within this set. We adopt a simplified no-
tation |Rn) — |w;) to refer to the localized orbitals of
the isolated system that will become maximally local-
ized. We decompose again the localization functional
Q = > .[(r*); — 7] into a term Q; = Y tr[ProQra]
(where P = )", |w;){w;|, @ =1 — P, and ‘tr’ refers to a
sum over all the states w;) that is invariant under unitary
rotations, and a remainder = Do Dt |(wilre|w;)|?
that needs to be minimized. Defining the matrices
Xij = (wi\x|wj>, XD,ij ~: Xij 6ij7 X =X - XD (and
similarly for Y and Z), Q can be rewritten as

Q=tr[X'24+Y'24+2? . (39)

If X, Y, and Z could be simultaneously diagonalized,
then © would be minimized to zero (leaving only the in-
variant part). This is straightforward in one dimension,
but is not generally possible in higher dimensions. The
general solution to the three-dimensional problem con-
sists instead in the optimal, but approximate, simulta-
neous co-diagonalization of the three Hermitian matrices
X, Y, and Z by a single unitary transformation that
minimizes the numerical value of the localization func-
tional. Although a formal solution to this problem is
missing, implementing a numerical procedure (e.g., by
steepest-descent or conjugate-gradients minimization) is
fairly straightforward. It should be noted that the prob-
lem of simultaneous co-diagonalization arises also in the
context of multivariate analysis (Flury and Gautschi,
1986) and signal processing (Cardoso and Soulomiac,
1996)), and has been recently revisited in relation with
the present localization approach (Gygi et al.l|2003)) (see
also Sec. IITA in Berghold et al| (2000)).



To proceed further, we write
dQY=2tr [ X'dX +Y'dY + Z'dZ] , (40)

exploiting the fact that tr[X'Xp] = 0, and similarly
for Y and Z. We then consider an infinitesimal uni-
tary transformation |w;) — |w;) + 32; dWji|w;) (where
dW is antihermitian), from which dX = [X,dW], and
similarly for Y, Z. Inserting in Eq. and using
tr[A[B,C]] = tr[C[A4, B]] and [X', X] = [X', Xp]|, we
obtain dQ) = tr [dWW G] where the gradient of the spread
functional G = dQ)/dW is given by

G = 2{[X’,XD] + Y, Yo] + [Z', Zp) dw} . (41)

The minimization can then be carried out using a proce-
dure similar to that outlined above for periodic boundary
conditions. Last, we note that minimizing € is equiva-
lent to maximizing tr [X2 + Y3 + Z3], since tr [X'Xp] =
tr [Y'Yp] =tr [Y'Yp] = 0.

2. I'-point formulation for large supercells

A similar formulation applies in reciprocal space when
dealing with isolated or very large systems in periodic
boundary conditions, i.e., whenever it becomes appro-
priate to sample the wavefunctions only at the I'-point
of the Brillouin zone. For simplicity, we start with the
case of a simple cubic lattice of spacing L, and define the
matrices X, ), and Z as

Xnn = (W, \6_2“””/]: |wn ) (42)

and its periodic permutations (the extension to supercells
of arbitrary symmetry has been derived by |Silvestrelli
(1999))E| The coordinate z, of the n-th WF center
(WFC) can then be obtained from

Ty = L Im ln(wn|e_i2fﬂm|wn> = L Im In X, ,
27 27

(43)
and similarly for y, and z,. Equation has been
shown by [Resta) (1998]) to be the correct definition of
the expectation value of the position operator for a sys-
tem with periodic boundary conditions, and had been
introduced several years ago to deal with the problem
of determining the average position of a single electronic
orbital in a periodic supercell (Selloni et al.l [1987)) (the

6 We point out that the definition of the X,)), Z matrices for ex-
tended systems, now common in the literature, is different from
the one used in the previous subsection for the X,Y, Z matri-
ces for isolated system. We preserved these two notations for
the sake of consistency with published work, at the cost of mak-
ing less evident the close similarities that exist between the two
minimization algorithms.
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above definition becomes self-evident in the limit where
wy, tends to a Dirac delta function).

Following the derivation of the previous subsection,
or of [Silvestrelli et al.|(1998), it can be shown that the
maximum-localization criterion is equivalent to maximiz-
ing the functional

J
n=1

The first term of the gradient d=/dA,,, is given by
(X (X, — X5 — Xk (X — Xnn)], and similarly
for the second and third terms. Again, once the gradi-
ent is determined, minimization can be performed using
a steepest-descent or conjugate-gradients algorithm; as
always, the computational cost of the localization proce-
dure is small, given that it involves only small matrices
of dimension J x J, once the scalar products needed to
construct the initial X(O), YO and Z© have been cal-
culated, which takes an effort of order J? s Npasis. We
note that in the limit of a single k point the distinc-
tion between Bloch orbitals and WFs becomes irrelevant,
since no Fourier transform from k to R is involved in the
transformation Eq. ; rather, we want to find the op-
timal unitary matrix that rotates the ground-state self-
consistent orbitals into their maximally localized repre-
sentation, making this problem exactly equivalent to the
one of isolated systems. Interestingly, it should also be
mentioned that the local minima alluded to in the pre-
vious subsection are typically not found when using I’
sampling in large supercells.

Before concluding, we note that care should be taken
when comparing the spreads of MLWFs calculated in su-
percells of different sizes. The Wannier centers and the
general shape of the MLWFs often converge rapidly as
the cell size is increased, but even for the ideal case of an
isolated molecule, the total spread €2 often displays much
slower convergence. This behavior derives from the finite-
difference representation of the invariant part Q1 of the
localization functional (essentially, a second derivative);
while €21 does not enter into the localization procedure, it
does contribute to the spread, and in fact usually repre-
sents the largest term. This slow convergence was noted
by [Marzari and Vanderbilt| (1997) when commenting on
the convergence properties of 2 with respect to the spac-
ing of the Monkhorst-Pack mesh, and has been studied in
detail by others (Stengel and Spaldin} [2006a} [Umari and
Pasquarellol [2003). For isolated systems in a supercell,
this problem can be avoided simply by using a very large
L in Eq. , since in practice the integrals only need to
be calculated in the small region where the orbitals are
non-zero (Wu, |2004). For extended bulk systems, this
convergence problem can be ameliorated significantly by
calculating the position operator using real-space inte-
grals (Lee, 2006; [Lee et all |2005; [Stengel and Spaldin
20064).



G. Exponential localization

The existence of exponentially localized WFs — i.e.,
WFs whose tails decay exponentially fast — is a famous
problem in the band theory of solids, with close ties to the
general properties of the insulating state (Kohn) [1964]).
While the asymptotic decay of a Fourier transform can be
related to the analyticity of the function and its deriva-
tives (see, e.g., Duffin| (1953) and Duffin and Shaffer
(1960) and references therein), proofs of exponential lo-
calization for the Wannier transform were obtained over
the years only for limited cases, starting with the work of
Kohn| (1959), who considered a one-dimensional crystal
with inversion symmetry. Other milestones include the
work of |[des Cloizeaux| (1964bl), who established the expo-
nential localization in 1D crystals without inversion sym-
metry and in the centrosymmetric 3D case, and the sub-
sequent removal of the requirement of inversion symme-
try in the latter case by [Nenciu (1983). The asymptotic
behavior of WFs was further clarified by |He and Vander-
bilt| (2001), who found that the exponential decay is mod-
ulated by a power law. In dimensions d > 1 the problem
is further complicated by the possible existence of band
degeneracies, while the proofs of des Cloizeaux and Nen-
ciu were restricted to isolated bands. The early work on
composite bands in 3D only established the exponential
localization of the projection operator P, Eq. , not
of the WFs themselves ((des Cloizeaux, [1964a).

The question of exponential decay in 2D and 3D was
finally settled by [Brouder et al.| (2007) who showed, as a
corollary to a theorem by [Panati (2007)), that a necessary
and sufficient condition for the existence of exponentially
localized WFs in 2D and 3D is that the so-called “Chern
invariants” for the composite set of bands vanish iden-
tically. |Panati (2007) had demonstrated that this con-
dition ensures the possibility of carrying out the gauge
transformation of Eq. in such a way that the result-
ing cell-periodic states |@,x) are analytic functions of k
across the entire BZE this in turn implies the exponential
falloff of the WF's given by Eq. .

It is natural to ask whether the MLWFs obtained by
minimizing the quadratic spread functional ) are also
exponentially localized. Marzari and Vanderbilt| (1997
established this in 1D, by simply noting that the MLWF
construction then reduces to finding the eigenstates of
the projected position operator Pz P, a case for which
exponential localization had already been proven (Niu,
1991). The more complex problem of exponential local-
ization of MLWFs for composite bands in 2D and 3D was
finally proven by [Panati and Pisante, (2011)).

7 Conversely, nonzero Chern numbers pose an obstruction to find-
ing a globally smooth gauge in k-space. The mathematical defi-
nition of a Chern number is given in Sec. @
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H. Hybrid Wannier functions

It is sometimes useful to carry out the Wannier trans-
form in one spatial dimension only, leaving wavefunc-
tions that are still delocalized and Bloch-periodic in the
remaining directions (Sgiarovello et al., 2001). Such or-
bitals are usually denoted as “hermaphrodite” or “hy-
brid” WFs. Explicitly, Eq. is replaced by the hybrid
WF definition

27 /c
c .
|,k ) = o /0 |k ) e e dk (45)

where kj is the wavevector in the plane (delocalized di-
rections) and & , [, and ¢ are the wavevector, cell index,
and cell dimension in the direction of localization. The
1D Wannier construction can be done independently for
each k| using direct (i.e., non-iterative) methods as de-
scribed in Sec. IV C1 of [Marzari and Vanderbilt| (1997)).

Such a construction has proved useful for a variety of
purposes, from verifying numerically exponential local-
ization in 1 dimension, to treating electric polarization
or applied electric fields along a specific spatial direc-
tion (Giustino and Pasquarello, [2005; |Giustino et al.,
2003} [Murray and Vanderbilt} |2009; |Stengel and Spaldin),
2006a; [Wu et all, [2006) or for analyzing aspects of topo-
logical insulators (Coh and Vanderbilt, 2009} [Soluyanov
and Vanderbilt, 2011alb). Examples will be discussed in
Secs. [V.B.2] and VLA 4l

I. Entangled bands

The methods described in the previous sections were
designed with solated groups of bands in mind, separated
from all other bands by finite gaps throughout the entire
Brillouin zone. However, in many applications the bands
of interest are not isolated. This can happen, for exam-
ple, when studying electron transport, which is governed
by the partially filled bands close to the Fermi level, or
when dealing with empty bands, such as the four low-
lying antibonding bands of tetrahedral semiconductors,
which are attached to higher conduction bands. Another
case of interest is when a partially filled manifold is to
be downfolded into a basis of WFs - e.g., to construct
model Hamiltonians. In all these examples the desired
bands lie within a limited energy range but overlap and
hybridize with other bands which extend further out in
energy. We will refer to them as entangled bands.

The difficulty in treating entangled bands stems from
the fact that it is unclear exactly which states to choose
to form J WFs, particularly in those regions of k-space
where the bands of interest are hybridized with other
unwanted bands. Before a Wannier localization proce-
dure can be applied, some prescription is needed for con-
structing J states per k-point from a linear combination



of the states in this larger manifold. Once a suitable J-
dimensional Bloch manifold has been identified at each
k, the same procedure described earlier for an isolated
group of bands can be used to generate localized WF's
spanning that manifold.

The problem of computing well localized WF's starting
from entangled bands is thus broken down into two dis-
tinct steps, subspace selection and gauge selection. As we
will see, the same guiding principle can be used for both
steps, namely, to achieve “smoothness” in k-space. In the
subspace selection step a J-dimensional Bloch manifold
which varies smoothly as function of k is constructed.
In the gauge-selection step that subspace is represented
using a set of J Bloch functions which are themselves
smooth functions of k, such that the corresponding WFs
are well localized.

1. Subspace selection via projection

The projection technique discussed in Section [[L.B]
can be easily adapted to produce J smoothly-varying
Bloch-like states starting from a larger set of Bloch
bands (Souza et al.|2001). The latter can be chosen, for
example, as the bands lying within a given energy win-
dow, or within a specified range of band indices. Their
number Jyx > J is not required to be constant throughout
the BZ.

We start from a set of J localized trial orbitals g, (r)
and project each of them onto the space spanned by the
chosen eigenstates at each k,

Jk
|¢nk> = Z |wmk> <wmk|gn> : (46)

m=1

This is identical to Eq. , except for the fact that the
overlap matrix (Ax)mn = (¥mx|gn) has become rectan-
gular with dimensions Jyx x J. We then orthonormalize
the resulting J orbitals using Eq. , to produce a set
of J smoothly-varying Bloch-like states across the BZ,

J
i) = > 16mi) (S - (47)

As in Eq. (17, (Si)mn = (dmilnidv = (AL A ) mn, but
with rectangular Ay matrices.

The above procedure achieves simultaneously the two
goals of subspace selection and gauge selection, although
neither of them is performed optimally. The gauge se-
lection can be further refined by minimizing 2 within
the projected subspace. It is also possible to refine iter-
atively the subspace selection itself, as will be described
in the next section. However, for many applications this
one-shot procedure is perfectly adequate, and in some
cases it may even be preferable to more sophisticated it-
erative approaches (see also Sec. ) For example, it
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Band Energy (eV)

Frozen Window

FIG. 5 (Color online) Solid black lines: band structure of
bulk crystalline Si. Blue triangles: band structure for the
subspace selected by projection onto atomic sp® orbitals. Red
circles: band structure for the subspace selected by projection
onto atomic sp® orbitals and forcing the valence manifold to
be reproduced exactly using the frozen window indicated.

often results in “symmetry-adapted” WFs which inherit
the symmetry properties of the trial orbitals (Ku et al.,
2002)).

As an example, we plot in Fig. [f| the eight disentangled
bands obtained by projecting the band structure of sili-
con, taken within an energy window that coincides with
the entire energy axis shown, onto eight atomic-like sp3
hybrids. The disentangled bands, generated using Wan-
nier interpolation (Sec. [VLA), are shown as blue trian-
gles, along with the original first-principles bands (solid
lines). While the overall agreement is quite good, sig-
nificant deviations can be seen wherever higher unoccu-
pied and unwanted states possessing some significant sp3
character are admixed into the projected manifold. This
behavior can be avoided by forcing certain Bloch states
to be preserved identically in the projected manifold - we
refer to those as belonging to a frozen “inner” window,
since this is often the simplest procedure for selecting
them. The placement and range of this inner window
will depend on the problem at hand. For example, in or-
der to describe the low-energy physics for, e.g., transport
calculations, the inner window would typically include all
states in a desired range around the Fermi level.

We show as red circles in Fig. [5] the results obtained
by forcing the entire valence manifold to be preserved,
leading to a set of eight projected bands that reproduce
exactly the four valence bands, and follow quite closely
the four low-lying conduction bands. For the modifica-
tions to the projection algorithm required to enforce this
frozen inner window, we refer to Sec. II1.G of [Souza et al.
(2001).

Projection techniques can work very well, and an ap-
plication of this approach to graphene is shown in Fig. [6]
where the 7/7* manifold is disentangled with great accu-
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FIG. 6 (Color online) Solid black lines: band structure of
graphene. Blue triangles: band structure for the subspace
selected by projection onto atomic p. orbitals. Red circles:
band structure for the subspace selected by projection onto
atomic p. orbitals on each site and sp? orbitals on alternate
sites, and using the frozen window indicated. The lower pan-
els show the MLWF's obtained from the standard localization
procedure applied to these two projected manifolds.

racy by a simple projection onto atomic p, orbitals, or the
entire occupied manifold together with 7 /7* manifold is
obtained by projection onto atomic p, and sp? orbitals
(one every other atom, for the case of the sp? orbitals -
albeit bond-centered s orbitals would work equally well).

Projection methods have been extensively used to
study strongly-correlated systems (Anisimov et al., 2005}
Berlijn et al.l 2011; [Ku et al.}|2002)), in particular to iden-
tify a “correlated subspace” for LDA+U or DMFT cal-
culations, as will be discussed in more detail in Sec. [VII}
It has also been argued (Ku et al., 2010)) that projected
WFs provide a more appropriate basis for the study of
defects, as the pursuit of better localization in a MLWF
scheme risks defining the gauge differently for the defect
WF as compared to the bulk. Instead, a straightforward
projection approach ensures the similarity between the
WF in the defect (supercell) and in the pristine (prim-
itive cell) calculations, and this has been exploited to
develop a scheme to unfold the band-structure of disor-
dered supercells into the Brillouin zone of the underlying
primitive cell, allowing a direct comparison with angu-
lar resolved photoemission spectroscopy experiments (Ku
et al.,|2010]).

2. Subspace selection via optimal smoothness

The projection onto trial orbitals provides a simple
and effective way of extracting a smooth Bloch subspace
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starting from a larger set of entangled bands. The rea-
son for its success is easily understood: the localization
of the trial orbitals in real space leads to smoothness in
k-space. In order to further refine the subspace selection
procedure, it is useful to introduce a precise measure of
the smoothness in k-space of a manifold of Bloch states.
The search for an optimally-smooth subspace can then
be formulated as a minimization problem, similar to the
search for an optimally-smooth gauge.

As it turns out, smoothness in k of a Bloch space
is precisely what is measured by the functional € in-
troduced in Sec. We know from Eq. that
the quadratic spread 2 of the WFs spanning a Bloch
space of dimension .J comprises two positive-definite con-
tributions, one gauge-invariant (€)7), the other gauge-
dependent (). Given such a Bloch space (e.g., an iso-
lated group of bands, or a group of bands previously dis-
entangled via projection), we have seen that the opti-
mally smooth gauge can be found by minimizing Q with
respect to the unitary mixing of states within that space.

From this perspective, the gauge-invariance of )
means that this quantity is insensitive to the smoothness
of the individual Bloch states |,x) chosen to represent
the Hilbert space. But considering that 21 is a part of the
spread functional, it must describe smoothness in some
other sense. What )} manages to capture is the intrinsic
smoothness of the underlying Hilbert space. This can be
seen starting from the discretized k-space expression for
Q, Eq. , and noting that it can be written as

U= ;Ikz; wy T b (48)
with

Ticb = Tr[Pc Qb (49)
where P, = Z;]Lzl |tini) (Tnxk| is the gauge-invariant pro-

jector onto the Bloch subspace at k, Qx = 1 — Py, and
“Tr” denotes the electronic trace over the full Hilbert
space. It is now evident that Tk , measures the degree of
mismatch (or “spillage”) between the neighboring Bloch
subspaces at k and k + b, vanishing when they are iden-
tical, and that Q; provides a BZ average of the local
subspace mismatch.

The optimized subspace selection procedure can now
be formulated as follows (Souza et al., [2001). A set
of Jx > J Bloch states is identified at each point on
a uniform BZ grid, using, for example, an energy win-
dow. An iterative procedure is then used to extract self-
consistently across the BZ the J-dimensional subspaces
having collectively the smallest possible value of Q (typ-
ically the minimization starts from an initial guess for
the target subspaces given, e.g., by projection onto trial
orbitals). Viewed as function of k, the Bloch subspace
obtained at the end of the minimization is “optimally



smooth” in that it changes as little as possible with k.
The minimization algorithm can be easily modified in or-
der to preserve identically the Bloch eigenstates within
an inner energy window.

As in the case of the one-shot projection, the outcome
of this iterative procedure is a set of J Bloch-like states
at each k which are linear combinations of the initial Jix
eigenstates. One important difference is that the result-
ing states are not guaranteed to be individually smooth,
and the minimization of 1 must therefore be followed
by a gauge-selection step, which is in every way iden-
tical to the one described earlier for isolated groups of
bands. Alternatively, it is possible to combine the two
steps, and minimize 2 = Qy + €2 simultaneously with re-
spect to the choice of Hilbert subspace and the choice
of gauge (Thygesen et al., 2005alb)); this should lead to
the most-localized set of J WFs that can be constructed
from the initial Jix Bloch states. In all three cases, the
entire process amounts to a linear transformation taking
from J initial eigenstates to J smooth Bloch-like states,

Jx

|7;nk> = Z ‘wmk>vk,mn~ (50)

m=1

In the case of the projection procedure, the explicit ex-
pression for the Jx x J matrix Vi can be surmised from
Eqgs. and .

Let us compare the one-shot projection and iterative
procedures for subspace selection, using crystalline cop-
per as an example. Suppose we want to disentangle the
five narrow d bands from the wide s band that crosses and
hybridizes with them, to construct a set of well-localized
d-like WFs. The bands that result from projecting onto
five d-type atomic orbitals are shown as blue triangles in
Fig.[7] They follow very closely the first-principles bands
away from the s-d hybridization regions, where the inter-
polated bands remain narrow.

The red circles show the results obtained using the
iterative scheme to extract an optimally-smooth five-
dimensional manifold. The maximal “global smoothness
of connection” is achieved by keeping the five d-like states
and excluding the s-like state. This happens because the
smoothness criterion embodied by Eqs. and im-
plies that the orbital character is preserved as much as
possible while traversing the BZ. Inspection of the re-
sulting MLWFs confirms their atomic d-like character.
They are also significantly more localized than the ones
obtained by projection and the corresponding disentan-
gled bands are somewhat better behaved, displaying less
spurious oscillations in the hybridization regions.

In addition, there are cases where the flexibility of the
minimization algorithm leads to surprising optimal states
whose symmetries would not have been self-evident in
advance. One case is shown in Fig. Here we wish to
construct a minimal Wannier basis for copper, describing
both the narrow d-like bands and the wide free-electron-
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FIG. 7 (Color online) Solid black lines: band structure of
bulk crystalline Cu. Blue triangles: band structure for the
subspace selected by projection onto atomic 3d orbitals. Red
circles: band structure for the subspace derived from the pre-
vious one, once the criterion of optimal smoothness has been
applied.

like band with which they hybridize. By choosing dif-
ferent dimensions for the disentangled subspace, it was
found that the composite set of bands is faithfully repre-
sented by seven MLWFs, of which five are the standard
d-like orbitals, and the remaining two are s-like orbitals
centered at the tetrahedral interstitial sites of the fcc
structure. The latter arise from the constructive interfer-
ence between sp> orbitals that would be part of the ideal
sp3d® basis set; in this case, bands up to 20 eV above
the Fermi energy can be meaningfully described with a
minimal basis set of seven orbitals, that would have been
difficult to identify using only educated guesses for the
projections.

The concept of a natural dimension for the disentan-
gled manifold has been explored further by Thygesen
et al] (2005a)b). As illustrated in Fig. [9] they showed
that by minimizing Q = Qp + Q for different choices
of J, one can find an optimal J such that the result-
ing “partially-occupied” Wannier functions are most lo-
calized (provided enough bands are used to capture the
bonding and anti-bonding combinations of those atomic-
like WF's).

3. Iterative minimization of )

The minimization of € inside an energy window is
conveniently done using an algebraic algorithm (Souza
et al.,2001)). The stationarity condition 6Q;({tnk}) = 0,
subject to orthonormality constraints, is equivalent to
solving the set of eigenvalue equations

{Z Wy Pk+b} |ank> = /\nk |'11nk> . (51)
b

Clearly these equations, one for each k-point, are
coupled, so that the problem has to be solved self-



FIG. 8 (Color online) Solid black lines: band structure of
bulk crystalline Cu. Colored lines: band structure for the
subspace selected by optimal smoothness, and a target di-
mensionality of 7, giving rise to 5 atom-centered d-like ML-
WFs and two s-like MLWF's in the tetrahedral interstitials,
shown below. The color coding represents the projection of
the disentangled bands onto these MLWFs, smoothly vary-
ing from red (representing s-like interstitial MLWF's) to blue
(atom-centered d-like MLWF's).
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FIG. 9 Plots of average = per Wannier function vs. size of the
Wannier space for several molecules. E is defined in Eq. ;
larger value indicates greater localization. Nocc is the number
of occupied states, J is the size of the Wannier space, and N
is the total number of states included in the DFT calculation.
Adapted from [Thygesen et al. (2005a)).

consistently throughout the Brillouin zone. This can be
done using an iterative procedure: on the i-th iteration
go through all the k-points in the grid, and for each of
them find J orthonormal states ‘ﬂsl){>, defining a sub-
space whose spillage over the neighboring subspaces from
the previous iteration is as small as possible. At each step
the set of equations

(5 0] [a2) = A%
b

is solved, and the J eigenvectors with largest eigenvalues
are selected. That choice ensures that at self-consistency

W) 62
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the stationary point corresponds to the absolute mini-
mum of Q.

In practice Eq. is solved in the basis of the origi-
nal Ji Bloch eigenstates |u,x) inside the energy window.
Each iteration then amounts to diagonalizing the follow-
ing Jx X Jx Hermitian matrix at every k:

26,00) = (umid 3w [PEP]
b

unk>. (53)

Since these are small matrices, each step of the iterative
procedure is computationally inexpensive.

As a final comment, we mention that in the case of de-
generacies or quasi degeneracies in the spreads of orbitals
centered on the same site, the localization algorithm will
perform rather arbitrary mixing of these (as can be the
case, e.g., for the d or f electrons of a transition-metal
ion, or for its taq or e, groups). A solution to this problem
is to diagonalize an operator with the desired symmetry
in the basis of the Wannier functions that have been ob-
tained (see|[Posternak et al|(2002) for the example of the
d orbitals in MnO).

4. Localization and local minima

Empirical evidence and experience suggests that local-
ized Wannier functions can be readily constructed also
in the case of an entangled manifold of bands: Even
for metals, smooth manifolds can be disentangled and
“wannierized” to give MLWFs. Such disentangled ML-
WFs, e.g., the p, MLWFs describing the 7/7* manifold
of graphene shown in Fig. [f] are found to be strongly
localized. While exponential localization has not been
proven, both numerical evidence and the analogy with
the isolated composite case suggest this might be the
case.

Problems associated with reaching local minima of the
spread functional, and with obtaining Wannier functions
that are not real-valued, are more pronounced in the case
of entangled bands. They are usually alleviated by care-
ful reconsideration of the energy windows used, in or-
der to include higher energy states of the appropriate
symmetry, and/or by using a better initial guess for the
projections. We infer, therefore, that such problems are
associated not with the wannierization part of the proce-
dure, but rather with the initial selection of the smooth
subspace from the full manifold of entangled bands.

It is worth noting that the I'-point formulation
(Sec. appears to be less affected by these prob-
lems. In cases where it is not intuitive or obvious what
the MLWF's should be, therefore, it can often be a fruitful
strategy to use the I'-point formulation to obtain approx-
imate MLWFs that may then be used to inform the ini-
tial guess for a subsequent calculation with a full k-point
mesh.



J. Many-body generalizations

The concept of WFs is closely tied to the framework
of single-particle Hamiltonians. Only in this case can we
define J occupied single-particle Bloch functions at each
wavevector k and treat all J of them on an equal foot-
ing, allowing for invariance with respect to unitary mix-
ing among them. Once the two-particle electron-electron
interaction is formally included in the Hamiltonian, the
many-body wavefunction cannot be reduced to any sim-
ple form allowing for the construction of WFs in the usual
sense.

One approach is to consider the reduced one-particle
density matrix

n(r,r") :/\II*(r,rg...)\I/(r’,rg,...)drg drs... (54)

for a many-body insulator. Since n(r,r’) is periodic in
the sense of n(r+R,r' +R) = n(r,r’), its eigenvectors —
the so-called “natural orbitals” — have the form of Bloch
functions carrying a label n,k. If the insulator is essen-
tially a correlated version of a band insulator having J
bands, then at each k there will typically be J occupation
eigenvalues vy, that are close to unity, as well as some
small ones that correspond to the quantum fluctuations
into conduction-band states. If one focuses just on the
subspace of one-particle states spanned by the J valence-
like natural orbitals, one can use them to construct one-
particle WFs following the methods described earlier,
as suggested by [Koch and Goedecker| (2001)). However,
while such an approach may provide useful qualitative
information, it cannot provide the basis for any exact
theory. For example, the charge density, or expecta-
tion value of any other one-particle operator, obtained
by tracing over these WFs will not match their exact
many-body counterparts.

A somewhat related approach, adopted by [Hamann
and Vanderbilt| (2009)), is to construct WFs out of the
quasiparticle states that appear in the GW approxima-
tion (Aryasetiawan and Gunnarsson, [1998]). Such an ap-
proach will be described more fully in Sec. [VI.AZ3] Here
again, this approach may give useful physical and chem-
ical intuition, but the one-electron quasiparticle wave-
functions do not have the physical interpretation of occu-
pied states, and charge densities and other ground-state
properties cannot be computed quantitatively from them.

Finally, a more fundamentally exact framework for a
many-body generalization of the WF concept, introduced
in|Souza et al.|(2000), is to consider a many-body system
with twisted boundary conditions applied to the many-
body wavefunction in a supercell. For example, consider
M electrons in a supercell consisting of M7 x My x Ms
primitive cells, and impose the periodic boundary condi-
tion

Ug(onr; + R, ) = 9RO (g, (55)

17

for 5 = 1,..., M, where R is a lattice vector of the su-
perlattice. One can then construct a single “many-body
WEF” in a manner similar to Eq. , but with k — q and
[thnk) — |¥,) on the right side. The resulting many-body
WF is a complex function of 3M electron coordinates,
and as such it is unwieldy to use in practice. However, it
is closely related to Kohn’s theory of the insulating state
(Kohnl [1964), and in principle it can be used to formu-
late many-body versions of the theory of electric polar-
ization and related quantities, as shall be mentioned in

Sec. VA4

I1l. RELATION TO OTHER LOCALIZED ORBITALS

A. Alternative localization criteria

As we have seen, WF's are inherently non-unique and,
in practice, some strategy is needed to determine the
gauge. Two possible approaches were already discussed
in Sec. [ namely, projection and maximal localization.
The latter approach is conceptually more satisfactory, as
it does not depend on a particular choice of trial orbitals.
However, it still does not uniquely solve the problem of
choosing a gauge, as different localization criteria are pos-
sible and there is, a priori, no reason to choose one over
another.

While MLWFs for extended systems have been gen-
erated for the most part by minimizing the sum of
quadratic spreads, Eq. (17), a variety of other localiza-
tion criteria have been used over the years for molecular
systems. We will briefly survey and compare some of
the best known schemes below. What they all have in
common is that the resulting localized molecular orbitals
(LMOs) ¢i(r) can be expressed as linear combinations
of a set of molecular eigenstates v;(r) (the “canonical”
MOs), typically chosen to be the occupied ones,

J
¢i(r) = Z Ujih;(r). (56)

The choice of gauge then arises from minimizing or max-
imizing some appropriate functional of the LMOs with
respect to the coeflicients U;;, under the constraint that
the transformation is unitary, which ensures the or-
thonormality of the resulting LMOs.

The Foster-Boys criterion (FB) (Boys|, 1960} 1966} [Fos-
ter and Boys, [1960a). This is essentially the same as the
Marzari-Vanderbilt criterion of minimizing the sum of
the quadratic spreads, except that the sum runs over the
orbitals in the molecule, rather than in one crystal cell,

J

Qes = Y [(dlr®|6:) — (dilr]6:)’). (57)

i=1

Interestingly, this criterion is equivalent to minimizing



the “self-extension” of the orbitals 1966)),
J
> [ drides st P - waPleP 68)
i=1

and also to maximizing the sum of the squares of the
distance between the charge centers of the orbitals

J

> Kilrlgs) — (d5lrles) [, (59)

4,j=1

which is closely related to Eq. of Sec. The re-
lation between Eqs. 7 is discussed in (1966)).

The Edmiston-Ruedenberg criterion (ER). Here local-
ization is achieved by maximizing the Coulomb self-
interaction of the orbitals (Edmiston and Ruedenberg)

1963))

J
Qgr = Z/dl‘1dr2 |i(r1)|?(r1 — r2) i (r2)[?. (60)
i=1

From a computational point of view, the ER approach
is more demanding (it scales as J* versus J? for FB),
but recently more efficient implementations have been
developed (Subotnik et all [2007).

The von Niessen criterion (VN). The goal here is to
maximize the density overlap of the orbitals (von Niessen!

1972)

J
Qyn = Z_/drldm |¢i(1‘1)|25(r1 - r2)|¢i(r2)|2. (61)
i=1

The Pipek-Mezey criterion (Pipek and Mezey) 1989)
(PM). This approach differs from the ones above in that it
makes reference to some extrinsic objects. The idea is to
maximize the sum of the squares of the Mulliken atomic
charges . These are obtained with re-
spect to a set of atomic orbitals x, centered on atomic
sites A. We define

PA = Z ZDHVSMV (62)

pHEA v

where the sum over p involves all of the atomic states
on atom site A, D,,, is the density matrix in the atomic
basis, and S, = (xu|x») is the overlap operator. The
functional to be maximized is given by

J Na

Qene =D > [{il Palea)]*. (63)

i=1 A=1

This is somewhat similar in spirit to the projection
scheme discussed in Sec. [[I.B] except that it is not a one-
shot procedure.

Asindicated in Eq. , all of these schemes amount to
unitary transformations among the canonical MOs and,
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FIG. 10 (Color online) (a) One of the two “banana” or T
orbitals in ethene (b) Centers of the MLWF in ethene (c) 7
MLWF in CO2 (d) Centers of the MLWF in CO;. Atoms
colors are: hydrogen (white), carbon (yellow), oxygen (red).
MLWF centers are shown in black. MLWF are computed

using the scheme of Marzari and Vanderbilt (Marzari and
Vanderbilt, |1997) with a large vacuum supercell and a I'-point

sampling of the BZ.

as such, they give rise to representations of the electronic
structure of the system that are equivalent to that pro-
vided by the original set of eigenstates. For the purpose
of providing chemical intuition, the usefulness of a given
scheme depends on how well it matches a particular view-
point of bonding. There have been few studies of the VN
scheme, but the FB, ER, and PM schemes have been ex-
tensively compared. In many cases all three approaches
lead to similar localized orbitals which agree with the
simple Lewis picture of bonding. A notable exception is
for systems that exhibit both ¢ and 7 bonding. For a
double bond, both the FB and ER schemes mix the o
and 7 orbitals, giving rise to two bent “banana bond”
(or 7) orbitals as shown in Fig[10] When
applied to benzene, both schemes give alternating ¢ and
7 orbitals. Trivially, there are two equivalent sets of these
orbitals, reminiscent of the two Kekulé structures for ben-
zene. In contrast to the FB and ER schemes, PM pro-
vides a clear separation of o and 7 orbitals. For example,
in benzene PM gives a framework of six ¢ orbitals and
three m orbitals around the ring.

In some situations the FB and ER orbitals have been
found to be quite different. This has been observed when
the bonding in a molecule can be represented as two dis-
tinct resonant structures. The ER scheme generally gives
orbitals corresponding to one of the possible structures,
whilst the FB orbitals correspond a hybrid of the struc-
tures. An extreme example is COy (Brown et al., [1977).
In agreement with the O=C=0 Lewis picture, ER gives
two lone pairs on each oxygen and two 7 orbitals between
each carbon and oxygen. In contrast, the FB scheme
gives a single lone pair on each oxygen and three highly
polarized 7 orbitals between the carbon and each oxygen,
as shown in Fig.

MLWFs, which may be thought of as the solid-state
equivalent of FB orbitals, have been widely used to ex-




amine chemical bonding, as will be discussed in detail in
Sec. [V} The ER scheme has not been extensively exam-
ined, an isolated exception being the work of [Miyake and
Aryasetiawan (2008) who proposed a method to maxi-
mize the Coulomb self-interaction of the orbitals in pe-
riodic systems (see also Sec. . They examined a
range of bulk transition metals and SrVOgs and in each
case found that the resulting WFs were essentially iden-
tical to MLWFs.

B. Minimal-basis orbitals

In the same way as was described for the Marzari-
Vanderbilt scheme of Sec. [[I.C] the alternative localiza-
tion criteria described above can be applied in a solid-
state context to isolated groups of bands. One is often
interested in the more general situation where the bands
of interest are not isolated. The challenge then is to gen-
erate a “disentangled” set of J localized WF's starting
from some larger set of bands. Two procedures for doing
so were discussed in Sec. [[I.]] namely, projection and it-
erative minimization of the spread functional 2, not only
with respect to the choice of gauge, but also with respect
to the choice of Hilbert space.

Here we discuss two further procedures which achieve
the same goal by different means. They have in common
the fact that the resulting orbitals constitute a minimal
basis of atomic-like orbitals.

1. Quasiatomic orbitals

The quasiatomic orbitals (QOs) scheme (Chan et al.,
2007 [Lu et al., 2004} |Qian et all [2008) is a projection-
based approach that has the aim of extracting a minimal
tight-binding basis from an initial first-principles calcu-
lation. In this regard it is similar in spirit to the Wan-
nier interpolation techniques discussion in Sec. [VI} Un-
like WFs, however, the quasiatomic orbitals form a non-
orthogonal basis of atom-centered functions, each with
specified angular character. Their radial part, and hence
their detailed local shape, depends on the bonding envi-
ronment.

As in the Wannier scheme, the first step is to construct
a suitable J-dimensional subspace {¢,} starting from a
larger set of J Bloch eigenstates {t¢,}. For simplicity
we consider a I'-point only sampling of the BZ and hence
omit the k index. The goal is to identify a disentangled
subspace with the desired atomic-orbital character, as
specified by a given set of J atomic orbitals (AOs) |4;),
where 7 is a composite site and angular-character index.
One possible strategy would be to employ the one-shot
projection approach of Sec. using the AOs as trial
orbitals. [Lu et al.|[(2004) proposed a more optimized pro-
cedure, based on maximizing the sum-over-square simi-
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larity measurd®]

J

D |n) (dn] A)

n=1

(64)

J
=y
i=1

with respect to the orthonormal set {¢,}, expressed as
linear combinations of the original set {1, }. It is usually
required that a subset of N < J of the original eigenstates
are identically preserved (“frozen in”) in the disentangled
subspace, in which case the optimization is performed
with respect to the remaining J — NN states ¢,,. J must
be of sufficient size to capture all of the antibonding char-
acter of the AOs.

In later work it was realized (Qian et al| 2008) that
the QOs can be constructed without explicit calculation
of the eigenstates outside the frozen window. The key
insight is to realize that the QOs will only have a contri-
bution from the finite subset of this basis spanned by the
AOs (see Eq. below). The component of the AOs
projected onto the N states within the frozen window
|Ay> is given by

AN = 57 wn) (| As). (65)

The component of |A;) projected onto the states outside
the frozen window can hence constructed directly using
only the AOs and the states within the frozen window,
as

1AF) = |A;) — Al (66)

Using |A}) as a basis, the set of {¢,,} which maximize £
can be obtained using linear algebra as reported in |Qian
et al.| (2008)).

Once a subspace with the correct orbital character has
been identified, a basis of quasiatomic orbitals can be
obtained by retaining the portion of the original AOs
that “lives” on that subspace,

J

Qi) = |6n) (6l As). (67)

n=1

In general the angular dependence of the resulting QOs
will no longer that of pure spherical harmonics, but only
approximately so. In |Qian et al| (2008]), QOs were ob-
tained for simple metals and semiconductors. Later ap-
plications have used the orbitals for the study of quantum
transport in nano-structures (Qian et al., 2010]).

8 This is similar in spirit to the Pipek-Mazey procedure, Eq. (62)),
but applied to subspace selection rather than gauge selection.



2. NMTO and Downfolding

An alternative scheme for obtaining a minimal basis
representation is the perturbation approach introduced
by |[Lowdin| (1951)). Here the general strategy is to parti-
tion a set of orbitals into an “active” set that is intended
to describe the states of interest, and a “passive” set that
will be integrated out. Let us write the Hamiltonian for
the system in a block representation,

- HO() 0 0 Vbl
H‘(o H11>+(V10 0 ) (68)
where Hgo (Hp1) is the projection onto the active (pas-
sive) subspace, and Vp; is the coupling between the two
subspaces. An eigenfunction can be written as the sum of

its projections onto the two subspaces |1) = [1o) + |1)1).
This leads to

(Hoo — €)|vo) + Vorlir) = 0, (69)

Violtpo) + (Hi1 — €)[¢h1) =0, (70)

where ¢ is the eigenvalue corresponding to |¢). Elimina-
tion of |¢1) gives an effective Hamiltonian for the system
which acts only on the active subspace:

HSSF(E) = Hoo — Vor (H11 — 5)_1V10. (71)

This apparent simplification has introduced an energy de-
pendence into the Hamiltonian. One practical way for-
ward is to approximate this as an energy-independent
Hamiltonian HSH (¢), choosing the reference energy &g
to be the average energy of the states of interest.
This approach has been used to construct tight-binding
Hamiltonians from full electronic structure calculations
(Solovyev, [2004]).

A form of Lowdin partitioning has been widely used
in connection with the linear-muffin-tin-orbital (LMTO)
method, particularly in its most recent formulation, the
Nt order muffin-tin-orbital (NMTO) approach (Ander-
sen and Saha-Dasguptay, [2000; [Zurek et all [2005). In
this context it is usually referred to as “downfolding”, al-
though we note that some authors use this term to refer
to any scheme to produce a minimal basis-set represen-
tation.

In studies of complex materials there may be a sig-
nificant number of MTOs, typically one for each an-
gular momentum state (s, p, d) on every atomic site.
One may wish to construct a minimal basis to describe
states within a particular energy region, e.g., the occu-
pied states, or those crossing the Fermi level. Let us
assume we have of basis orbitals (MTOs in this case)
which we wish to partition into “active” and “passive”
sets. Using the notation of Eq. , Lowdin partitioning
gives a set of energy-dependent orbitals ¢g(e,r) for the
active space according to (Zurek et al.l [2005)

do(e,r) = do(r) — ¢1(r)(Hir — &) "Vao.  (72)
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Taking into account the energy dependence, this reduced
set of orbitals spans the same space as the original full set
of orbitals, and can be seen to be the original orbitals of
the active set dressed by an energy-dependent linear com-
bination of orbitals from the passive set. In the NMTO
scheme, the next step is to form an energy-independent
set of orbitals through an nth-order polynomial fit to the
energy dependence.

To give a specific example, accurate calculations on
tetrahedral semiconductors will require the inclusion of
d states in the MTO basis, i.e., nine states (s, p, d) per
site. However, it would be desirable to construct a min-
imal basis to describe the valence and lower conduction
states with only four states (s, p) on each site (Lambrecht
and Andersen), (1986). We therefore designate s and p as
“active” channels and d as “passive”. Downfolding will
result in an MTO with either s or p character on a given
site, with inclusion of d character on neighboring sites.
In other words, the tail of the MTO is modified to “fold
in” the character of the passive orbitals.

In Fig. the band structure of graphite calculated
using a full s, p, and d basis on each carbon atom is
shown in black (Zurek et al) [2005). The red bands are
obtained by choosing s, p,., and p, states on every second
carbon atom as the active channels and downfolding all
other states. The energy mesh spans the energy range of
the sp? bonding states (shown on the right-hand-side of
the band-structure plot in Fig. . For these bands the
agreement with the full calculation is perfect to within
the resolution of the figure. Symmetric orthonormaliza-
tion of the three NMTOs gives the familiar set of three
symmetry related o-bonding orbitals (compare with the
MLWF of graphene in Fig. [f]). [Lechermann et al] (2006)
have compared MLWFs and NMTO orbitals for a set
of ty, states located around the Fermi level SrVOs. It
was found that both schemes gave essentially identical
orbitals.

C. Comparative discussion

At this point it is worth commenting briefly on some
of the advantages and disadvantages of various choices of
WFs. We emphasize once again that no choice of WFs,
whether according to maximal localization or other cri-
teria, can be regarded as “more correct” than another.
Because WFs are intrinsically gauge-dependent, it is im-
possible, even in principle, to determine the WF's experi-
mentally. By the same token, certain properties obtained
from the WFs, such as the dipole moments of molecules
in condensed phases (see Sec.[V.B.3), must be interpreted
with caution. The measure of a WF construction proce-
dure is, instead, its usefulness in connection with theo-
retical or computational manipulations.

Where the WFs are to be used as basis functions
for Wannier interpolation (Sec. or other purposes
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FIG. 11 (Color online) The band structure of graphite calcu-
lated with a full NMTO spd basis is given in black. The red
bands have been calculated with an s, p,, and p, orbital on
every second carbon atom (shown above the band structure).
Also shown is one of the sp®> bond orbitals which arise by
symmetrical orthonormalization of the s, p., abd p, orbitals.
The energy meshes used for each calculation are given to the
right of the band structure. From [Zurek et al.| (2005).

(Sec. , some variety of maximally localized WF's are
probably most natural both because the real-space ma-
trix elements can be restricted to relatively near neigh-
bors, and because Fourier-transformed quantities become
relatively smooth in k space. However, in cases in which
the set of MLWF's does not preserve the space-group sym-
metry, it may be better to insist on symmetry-preserving
WFs even at the expense of some delocalization (see also
the discussion in Sec. . In this way, properties
computed from the WFs, such as interpolated bandstruc-
tures, will have the correct symmetry properties. When
using WF's to interpret the nature of chemical bonds, as
in Sec. [[V] the results may depend to some degree on
the choice of WF construction method, and the optimal
choice may in the end be a matter of taste.

D. Non-orthogonal orbitals and linear scaling

In recent years there has been much progress in the
development of practical linear-scaling methods for elec-
tronic structure calculations, that is, methods in which
the computational cost of the calculation grows only
linearly with the size of the system. The fundamen-
tal principle behind such approaches is the fact that
electronic structure is inherently local 11980, or
‘nearsighted’ . This manifests itself in the
exponential localization of the WFs in insulators (dis-
cussed in Sec. and, more generally, in the localiza-
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tion properties of the single-particle density matrix

Gt [ @S facac)bide)
) (73)

where, following (1978)), the projection operator
P of Eq. has been generalized to the case of frac-

tional eigenstate occupancies f,x. The quantity p(r,r’)
has been shown to decay exponentially as exp(—y|r —r'|)
in insulators and semiconductors, where the exponent y
can be heuristically related to the direct band gap of
the system (des Cloizeaux, 1964a; Ismail-Beigi and Arias,
11999; Taraskin et al., [2002). It has also been shown to
take the same form in metals at finite temperature[’] but
with v determined by the ratio between the thermal en-
ergy kpT and the Fermi velocity (Goedecker} [1998)).
Exponential localization may seem a surprising result
given that the Bloch eigenstates extend across the entire
system. Expressing the density matrix in terms of WFs

using Eq. , we find

=2 w()

17 RR/

p(r,x') = (x|P|r') =

Kij(R' = R)wjg, (r'),  (74)

where we have defined the density kerne["]
zn fnk (k)]nj )

14 —1
s, e
(75)

which reduces to 6;;0ro in the case of a set of fully occu-
pied bands. We now see that the spatial localization of
the density matrix is closely linked to that of the Wannier
functions themselves. This locality is exploited in linear-
scaling methods by retaining an amount of information in
the density matrix that scales only linearly with system
size.

Many different linear-scaling DFT approaches exist;
for comprehensive reviews the reader is referred to [Galli
1996), [Goedecker| (1999)), and [Bowler and Miyazaki
2012). Many of them are based on the variational mini-
mization of an energy functional expressed either in terms
of localized Wannier-like orbitals or the density opera-
tor itself. The common point between these variational
methods is that the idempotency of the density opera-
tor or the orthogonality of the Wannier orbitals is not
imposed explicitly during the minimization procedure.
Instead, the energy functionals are constructed such that
these properties are satisfied automatically at the mini-
mum, which coincides with the true ground state of the
system.

Kij(R) =

9 For metals at zero temperature, the discontinuity in occupancies
as a function of k results in the well-known algebraic decay of
the density matrix.

10 This term was, to the best of our knowledge, first used by
McWeeny| (1960).



Many of these methods also make use of non-
orthogonal localized orbitals, referred to as “sup-
port functions” (Herndndez and Gillan, [1995) or
“non-orthogonal generalized Wannier functions” (NG-
WFs) (Skylaris et al. 2002), in contrast to canonical
WFs, which are orthogonal. The density matrix in
Eq. can be generalized so as to be represented
in terms of a set of non-orthogonal localized orbitals
{¢ar(r)} and a corresponding non-unitary (and, in gen-
eral, non-square) transformation matrix M (%) which
take the place of {w;r(r)} and UX) | respectively. Two
main benefits arise from allowing non-orthogonality.
First, it is no longer necessary to enforce explicit or-
thogonality constraints on the orbitals during the en-
ergy minimization procedure (Galli and Parrinello| 1992;
Hernandez et ol [1996; Hierse and Stechel, [1994; Mauri|
et al) [1993; |Ordején et al) [1993). Second, a non-
orthogonal representation can be more localized than an
essentially equivalent orthogonal one
He and Vanderbilt, 2001). In practice, linear-scaling
methods target large systems, which means that I'-point
only sampling of the BZ is usually sufficient. In this case,
the separable form for the density matrix simplifies to

p(r,r) = da(r) KP5(x'), (76)
apf
where the density kernel iEIEl
K= M5 fa M} (77)

n

Minimization of an appropriate energy functional with
respect to the degrees of freedom present in the den-
sity matrix leads to ground-state non-orthogonal orbitals
that are very similar in appearance to (orthogonal) ML-
WFs. Fig. [12|shows, for example, NGWF's on a Ni atom
in bulk NiO, obtained using the ONETEP linear-scaling
DFT code (Skylaris et all 2005). A recent comparison
of static polarizabilities for molecules, calculated using
Eq. with both MLWFs and NGWFs, demonstrates

remarkable agreement between the two (O’Regan et al.
2012).

E. Other local representations

Over the years, a number of other computational
schemes have been devised to provide a local analysis
of the electronic structure in molecules and solids. Here

11 It is worth noting that the non-orthogonality of the orbitals re-
sults in an important distinction between covariant and con-
travariant quantities, as denoted by raised and lowered Greek
indices (Artacho and Mildns del Boschl [1991; |O’Regan et al.

2011)).
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FIG. 12 (Color online) Isosurfaces of the set of nine non-
orthogonal generalized Wannier functions (NGWFs) on a
nickel atom in NiO (shown centered on different, symmet-
rically equivalent, Ni atoms in the lattice). The isosurface is
set to half of the maximum for the s and p-like NGWFs and
1073 times the maximum for the d-like NGWFs. Adapted
from |O’Regan et al.| (2011)).

we briefly mention those most commonly used in solid-
state studies. The first choice is whether to work with
the electronic wavefunction or with the charge density.

One of the earliest and still most widely used wavefunc-
tion based schemes is the “Mulliken population analysis”
[1955). This starts from a representation of the
density operator in an LCAO basis. If an extended basis,
such as planewaves, has been used, this can be obtained
after first performing a projection onto a suitable set of
atomic orbitals (Sanchez-Portal et all, [1995). Using the
quantity P4 introduced in Eq. the Mulliken charge
on an atomic site A is given by

J

Qa =Y (¢i|Palos).

i=1

(78)

The Mulliken scheme also provides a projection into local
angular-momentum eigenstates and an overlap (or bond)
population between atom pairs. The major disadvantage
of the scheme is the fact that the absolute values obtained
have a marked dependence on the LCAO basis. In fact,
the results tend to become less meaningful as the basis
is expanded, as orbitals on one atomic site contribute to
the wavefunction on neighboring atoms. However, it is
generally accepted that so long as calculations using the
same set of local orbitals are compared, trends in the
values can provide some chemical intuition (Segall et al.
. An early application was to the study of bonding
at grain boundaries of TiO, (Dawson et al., [1996).

An alternative approach is to work directly with the
charge density. The scheme of attempts
to partition the charge density by first defining a so-called
prodensity for the system, typically a superposition of
free atom charge densities p’(r). The ground-state charge
density is then partitioned between atoms according to




the proportions of the procharge at each point in space.
This can easily be integrated to give, for example, a total
charge

p'(r)
it (r)
for each atomic site. Hirschfield charges have recently
been used to parametrize dispersion corrections to local
density functionals (Tkatchenko and Scheffler} 2009)).

Partitioning schemes generally make reference to some
arbitrary auxiliary system; in the case of Hirschfield
charges, this is the free-atom charge density, which must
be obtained within some approximation. In contrast,
the “atoms in molecules” (AIM) approach developed by
Bader| (1991)) provides a uniquely defined way to partition
the charge density. It uses the vector field corresponding
to the gradient of the charge density. In many cases the
only maxima in the charge density occur at the atomic
sites. As all field lines must terminate on one of these
atomic “attractors”, each point in space can be assigned
to a particular atom according to the basin of attraction
that is reached by following the density gradient. Atomic
regions are now separated by zero-flux surfaces S(ry) de-
fined by the set of points (rs) at which

Qi = [ drotr) (79)

Vp(rs) -n(rs) =0, (80)

where n(rg) is the unit normal to S(r;). Having made
such a division it is straightforward to obtain values for
the atomic charges (and also dipoles, quadrupoles, and
higher moments). The AIM scheme has been widely used
to analyze bonding in both molecular and solid-state sys-
tems, as well as to give a localized description of response
properties such as infra-red absorption intensities (Matta,
et al.l [2007).

A rather different scheme is the “electron localization
function” (ELF) introduced by Becke and Edgecombe
(1990) as a simple measure of electron localization in
physical systems. Their original definition is based on the
same-spin pair probability density P(r,r’), i.e., the prob-
ability to find two like-spin electrons at positions r and
r’. [Savin et alf(1992)) introduced a form for the ELF €(r)
which can be applied to an independent-particle model:

1
= 1
) = T BB (81)
J
1 1|Vpl?
D=_) |V - = , 82
5 ;| vl -5 (82)
3 J
Dy, = E(3772)2/3P5/3,P = Z |il?, (83)
i=1
where the sum is over all occupied orbitals. D repre-

sents the difference between the non-interacting kinetic
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energy and the kinetic energy of an ideal Bose gas. Dy
is the kinetic energy of a homogeneous electron gas with
a density equal to the local density. As defined, €(r)
is a scalar function which ranges from 0 to 1. Regions
of large kinetic energy (i.e., electron delocalization) have
ELF values close to zero while larger values correspond
to paired electrons in a shared covalent bond or in a lone
pair. In a uniform electron gas of any density, e(r) will
take the value of 1/2. Early application of the ELF in
condensed phases provided insight into the nature of the
bonding at surfaces of Al (Santis and Restaj, 2000) and
Al;O3 (Jarvis and Carter} 2001, and a large number of
other applications have appeared since.

IV. ANALYSIS OF CHEMICAL BONDING

As discussed in Sec. [IL.A] there is a long tradition
in the chemistry literature of using localized molecular
orbitals (Boys, (1960, 1966} [Edmiston and Ruedenberg
1963}, [Foster and Boys, [1960a.b)) as an appealing and in-
tuitive avenue for investigating the nature of chemical
bonding in molecular systems. The maximally-localized
Wannier functions (MLWFs) provide the natural gener-
alization of this concept to the case of extended or solid-
state systems. Since MLWF's are uniquely defined for the
case of insulators and semiconductors, they are particu-
larly suited to discuss hybridization, covalency, and ion-
icity both in crystalline and disordered systems. In addi-
tion, in the supercell approximation they can be used to
describe any disordered bulk, amorphous, or liquid sys-
tem (Payne et al., [1992)), providing a compact descrip-
tion of electronic states in terms of their Wannier cen-
ters, their coordination with other atoms, and the spa-
tial distribution and symmetry of the MLWFs. As such,
they are often very useful for extracting chemical trends
and for allowing for statistics to be gathered on the na-
ture of bonds (e.g covalent bonds vs. lone pairs), be it
in the presence of structural complexity, as is the case
of an amorphous solid, or following the intrinsic dynam-
ics of a liquid or an unfolding chemical reaction. They
also share the same strengths and weaknesses alluded
to in section [[IL.A] whereby different localization crite-
ria can provide qualitatively different representations of
chemical bonds. This arbitrariness seems less common
in extended system, and often some of the most chemi-
cally meaningful information comes from the statistics of
bonds as obtained in large-scale simulations, or in long
first-principles molecular dynamics runs. Finally, local-
ized orbitals can embody the chemical concept of trans-
ferable functional groups, and thus be used to construct a
good approximation for the electronic-structure of com-
plex systems starting from the orbitals for the different
fragments (Benoit et al., [2001} Hierse and Stechell [1994;
Lee et al.l 2005)), as will be discussed in Section



A. Crystalline solids

One of the most notable, albeit qualitative, character-
istics of MLWFs is their ability to highlight the chemical
signatures of different band manifolds. This was real-
ized early on, as is apparent from Fig. showing the
isosurfaces for one of the 4 MLWF's in crystalline silicon
and gallium arsenide, respectively. These are obtained
from the closed manifold of four valence bands, yield-
ing four equivalent MLWF's that map into one another
under the space-group symmetry operations of the crys-
tallEl It is clearly apparent that these MLWF's represent
the intuitive chemical concept of a covalent bond, with
each MLWF representing the bonding orbital created by
the constructive interference of two atomic sp® orbitals
centered on neighboring atoms. In addition, it can be
seen that in gallium arsenide this covalent bond and its
WEFC are shifted towards the more electronegative ar-
senic atom. This has been explored further by
[Farsakh and Qteishl (2007), to introduce a formal defi-
nition of electronegativity, or rather of a bond-ionicity
scale, based on the deviation of WFCs from their geo-
metrical bond centers. It is worth mentioning that these
qualitative features of Wannier functions tend to be ro-
bust, and often independent of the details of the method
used to obtained them - maximally localized or not. For
example, similar results are obtained for covalent con-
ductors whether one makes use of symmetry consider-
ations (Satpathy and Pawlowska), 1988} [Smirnov et al.,
[2002} |Smirnov and Usvyat, [2001} [Usvyat et al., 2004),
finite-support regions in linear scaling methods (Fernan-
ldez et all [1997; Skylaris et al. [2002)), or projection ap-
proaches (Stephan et al., [2000), or even if the MLWF al-

gorithm is applied within Hartree-Fock (Zicovich-Wilson
2001)) rather than density-functional theory.

Once conduction bands are included via the disen-
tanglement procedure, results depend on both the tar-
get dimensions of the disentangled manifold and on the
states considered in the procedure (e.g., the “outer win-
dow”). In this case, it becomes riskier to draw conclu-
sions from the qualitative features of the MLWFs. Still,
it is easy to see how MLWFs can make the connection
between atomic constituents and solid-state bands, repre-
senting a formal derivation of “atoms in solids.” That is,
it can reveal the atomic-like orbitals that conceptually
lie behind any tight-binding formulation, but that can
now be obtained directly from first principles according
to a well-defined procedure. For crystalline silicon, the

12 It should be noted that the construction procedure does not
necessarily lead to MLWF's that respect the space-group sym-
metry. If desired, symmetries can be enforced by imposing co-
diagonalization of appropriate operators (Posternak et al.,[2002))
or by using projection methods (Ku et all [2002; |Qian et al.
2008).
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FIG. 13 (Color online) Four-dimensional manifold (blue cir-
cles) disentangled from the full band manifold (black lines) for
Si, together with one of the four antibonding MLWF's that are
obtained after wannierization of this four-dimensional mani-
fold. (The other three are equivalent under space-group sym-
metry operations.) The frozen inner window is also indicated.

T

four-dimensional manifold disentangled from the lowest
part of the conduction bands gives rise to four identical
antibonding orbitals (see Fig. originating from the
destructive interference of two atomic sp® orbitals cen-
tered on neighboring atoms, to be contrasted with the
constructive interference shown in Fig. 2] for the valence
WFs. In addition, an eight-dimensional manifold disen-
tangled from an energy window including both the va-
lence bands and the lowest part of the conduction bands
gives rise to the atomic sp? tight-binding orbitals of crys-
talline silicon (see Fig. [L4). These can form the basis of
the construction of Hamiltonians for model systems (e.g.,
strongly-correlated) or large-scale nanostructures, as will
be discussed in Chap. [VII}

These considerations also extend to more complex sys-
tems. The case of ferroelectric perovskites was studied
relatively early, as by [Baranek et al| (2001); [Evarestov|
let al| (2003); and Marzari and Vanderbilt| (1998)), thanks
to the presence of well-separated manifolds of bands
(King-Smith and Vanderbilt, |1994)). A classic example is
shown in Fig. showing for BaTiO3 the three MLWFs
per oxygen derived from the nine oxygen 2p bands. While
in the classical ionic picture of perovskites the B-cation
(here Ti) is completely ionized in a 4+ state, the covalent
nature of the bond becomes clearly apparent here, with
the MLWFs showing a clear hybridization in the form of
mixed p — d orbitals. Such hybridization is at the origin

of the ferroelectric instability, as argued by
(1994)). The analysis of the MLWF building blocks

can also extend to quite different crystal types. For ex-
ample, Cangiani et al.| (2004) discussed the case of TiO,
polytypes, where bonding MLWF's associated with the O




2s/2p valence manifold are seen to be similar in the rutile
and anatase form, with the third polytype (brookite) an
average between the two (Posternak et al., [2006). Ap-
plications to other complex systems can be found, e.g.,
for antiferromagnetic MnO (Posternak et al.,[2002) or for
silver halides (Evarestov et al., [2004)).

B. Complex and amorphous phases

Once the electronic ground state has been decom-
posed into well-localized orbitals, it becomes possible and
meaningful to study their spatial distribution or the dis-
tribution of their centers of charge (the WFCs). [Sil-
vestrelli et al.| (1998) were the first to argue that the
WFCs can be a powerful tool for understanding bonding
in low-symmetry cases, representing an insightful and an
economical mapping of the continuous electronic degrees
of freedom into a set of classical descriptors, i.e., the cen-
ter positions and spreads of the WFs.

The benefits of this approach become apparent when
studying the properties of disordered systems. In amor-
phous solids the analysis of the microscopic properties is
usually based on the coordination number, i.e., on the
number of atoms lying inside a sphere of a chosen radius
r. centered on the selected atom (r. is typically inferred
from the first minimum in the pair correlation function).
This purely geometrical analysis is completely blind to
the actual electronic charge distribution, which ought to
be important in any description of chemical bonding. An
analysis of the full charge distribution and bonding in
terms of the Wannier functions, as for example in Fig.
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FIG. 14 (Color online) Eight-dimensional manifold (blue cir-
cles) disentangled from the full band manifold (black lines) for
Si, together with two of the eight atom-centered sp®> MLWFs
that are obtained after wannierization of this manifold. (The
other six are equivalent under space-group symmetry opera-
tions.) The frozen inner window is also indicated.
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FIG. 15 (Color online) The three maximally-localized Wan-
nier functions derived from the O 2p bands of BaTiOg, show-
ing the hybridization with the nominally empty Ti 3d or-
bitals. The left panel shows the O[2p.]-Ti[3d,2] MLWF, the
central panel adds the O[2p,]-Ti[3dy.] MLWF, and the right
panel adds to these the O[2p,]-Ti[3d,.] MLWF. Adapted
from |[Marzari and Vanderbilt| (1998).

for the distorted tetrahedral network of amorphous sili-
con, would be rather complex, albeit useful to character-
ize the most common defects (Fornari et al., 2001)).
Instead, just the knowledge of the positions of the
WEFCs and their spreads can capture most of the chem-
istry in the system and can identify the defects present.
In this approach, the WFCs are treated as a second
species of “classical particles” (representing electrons),
and the amorphous solid is treated as a statistical assem-
bly of the two kinds of particles (ions and WFCs). Pair-
correlation functions can thus be constructed for ions and
classical electrons, leading to the definition of novel bond-
ing criteria based on the locations of the WFCs. For the
case of amorphous silicon, for example, the existence of a
bond between two ions can be defined by their sharing a
common WFC within a distance that is smaller than the
first minimum of the silicon-WFC pair correlation func-
tion. Following this definition, one can provide a more
meaningful definition of atomic coordination number, ar-
gue for the presence (or absence) of bonds in defective
configurations, and propose specific electronic signatures
for identifying different defects (Silvestrelli et al., [1998).
The ability of Wannier functions to capture the elec-
tronic structure of complex materials has also been
demonstrated in the study of boron allotropes. Boron
is almost unique among the elements in having at least
four major crystalline phases — all stable or metastable at
room temperature and with complex unit cells of up to
320 atoms — together with an amorphous phase. In their
study of S-rhombohedral boron, |Ogitsu et al.| (2009) were
able to identify and study the relation between two-center
and three-center bonds and boron vacancies, identifying
the most electron-deficient bonds as the most chemically
active. Examples are shown in Fig. Tang and Ismail-
Beigi| (2009) were also able to study the evolution of 2D
boron sheets as they were made more compact (from
hexagonal to triangular), and showed that the in-plane



FIG. 16 (Color online) Charge densities for the MLWFs in -
rhombohedral boron. Red isosurfaces correspond to electron-
deficient bonds; blue correspond to fully occupied bonds.
From |Ogitsu et al.| (2009).
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FIG. 17 (Color online) Collapse and amorphization of a Si
cluster under pressure: increasing to 25 GPa (a) and then to
35 GPa (b), and then back to 5 GPa (c). Small red “atoms”
are the Wannier centers. From [Martonak et al.| (2001)).

bonding pattern of the hexagonal system was preserved,
with only minor changes in the shape and position of the
MLWFs.

Besides its application to the study of disordered net-
works (Fitzhenry et all [2003; [Lim et al [2002; Mere-|
jgalli and Parrinello, 2001), the above analysis can also
be effectively employed to elucidate the chemical and
electronic properties accompanying structural transfor-
mations. In work on silicon nanoclusters under pressure
(Martonak et al.l 2000l 2001} [Molteni et all [2001)), the
location of the WFCs was monitored during compressive
loading (up to 35 GPa) and unloading. Some resulting
configurations are shown in Fig. The analysis of the
“bond angles” formed by two WFCs and their common Si
atom shows considerable departure from the tetrahedral
rule at the transition pressure. The MLWFs also become
significantly more delocalized at that pressure, hinting at
a metallization transition similar to the one that occurs
in Si in going from the diamond to the S-tin structure.
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C. Defects

Interestingly, the MLWF's analysis can also point to
structural defects that do not otherwise exhibit any sig-
nificant electronic signature. |Goedecker et al.| (2002)
have predicted — entirely from first-principles — the exis-
tence of a new fourfold-coordinated defect that is stable
inside the Si lattice (see Fig. . This defect had not
been considered before, but displays by far the lowest
formation energy — at the DFT level — among all native
defects in silicon. Inspection of the relevant “defective”
MLWFs reveals that their spreads actually remain very
close to those typical of crystalline silicon, and that the
WFCs remain equally shared between the atoms in a typ-
ical covalent arrangement. These considerations suggest
that the electronic configuration is locally almost indis-
tinguishable from that of the perfect lattice, making this
defect difficult to detect with standard electronic probes.
Moreover, a low activation energy is required for the self-
annihilation of this defect; this consideration, in combi-
nation with the “stealth” electronic signature, hints at
the reason why such a defect could have eluded exper-
imental discovery despite the fact that Si is one of the
best studied materials in the history of technology.

For the case of the silicon vacancy, MLWF's have been
studied for all the charge states by (Corsetti and Mostofi,
2011)), validating the canonical Watkins model (Watkins

and Messmer] |1974). This work also demonstrated the

importance of including the occupied defect levels in
the gap when constructing the relevant WFs, which are
shown in the first two panels of Fig. For the doubly
charged split-vacancy configuration, the ionic relaxation
is such that one of the nearest neighbors of the vacancy
site moves halfway towards the vacancy, relocating to the
center of an octahedral cage of silicon atoms. This gives
rise to six defect WF's, each corresponding to a bond be-
tween sp3d? hybrids on the central atom and dangling
sp> orbitals on the neighbors, as shown in the last panel

of Fig.

FIG. 18 (Color online) The fourfold coordinated defect in Si.
Si atoms are in green, vacancies in black, and the centers of
the MLWF's in blue. Adapted from |Goedecker et al.|(2002).
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FIG. 19 (Color online) Contour-surface plots of the MLWF's
most strongly associated with a silicon vacancy in bulk sil-
icon, for different charge states of the vacancy (from left to
right: neutral unrelaxed, neutral relaxed, and doubly negative
relaxed). Adapted from Corsetti and Mostofi| (2011)).

D. Chemical interpretation

It should be stressed that a “chemical” interpretation
of the MLWF's is most appropriate when they are formed
from a unitary transformation of the occupied subspace.
Whenever unoccupied states are included, MLWFs are
more properly understood as forming a minimal tight-
binding basis, and not necessarily as descriptors of the
bonding. Nevertheless, these tight-binding states some-
times conform to our chemical intuition. For example,
referring back to Fig. @ we recall that the band struc-
ture of graphene can be described accurately by disentan-
gling the partially occupied 7 manifold from the higher
free-electron parabolic bands and the antibonding sp?
bands. One can then construct either a minimal basis of
one p, MLWF per carbon, if interested only in the w/7*
manifold around the Fermi energy, or a slightly larger
set with an additional MLWF per covalent bond, if in-
terested in describing both the partially occupied 7 /7*
and the fully occupied ¢ manifolds. In this latter case,
the bond-centered MLWFs come from the constructive
superposition of two sp? orbitals pointing towards each

other from adjacent carbons .

On the contrary, as discussed in Sec. and shown
in Fig. a very good tight-binding basis for 3d met-
als such as Cu can be constructed (Souza et all [2001)
with 5 atom-centered d-like orbitals and two s-like or-
bitals in the interstitial positions. Rather than reflecting
a “true” chemical entity, these represent linear combi-
nations of sp® orbitals that interfere constructively at
the interstitial sites, thus providing the additional vari-
ational freedom needed to describe the entire occupied
space. Somewhere in between, it is worth pointing out
that the atom-centered sp* orbitals typical of group-IV
or III-V semiconductors, that can be obtained in the dia-
mond/zincblende structure by disentangling the lowest 4
conduction bands, can have a major lobe pointing either
to the center of the bond or in the opposite direction
[2006}; [Wahn and Neugebauer], [2006). For a given spatial
cutoff on the tight-binding Hamiltonian constructed from
these MLWFs, it is found that the former give a quali-
tatively much better description of the DFT band struc-
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ture than the latter, despite the counter-intuitive result
that the “off-bond” MLWFs are slightly more localized.
The reason is that the “on-bond” MLWFs have a sin-
gle dominant nearest neighbor interaction along a bond,
whereas for the “off-bond” MLWFs there are a larger
number of weaker nearest-neighbor interactions that are

not directed along the bonds (Corsetti, |2012).

E. MLWEFs in first-principles molecular dynamics

The use of MLWFs to characterize electronic bonding
in complex system has been greatly aided by the imple-
mentation of efficient and robust algorithms for maximal
localization of the orbitals in the case of large, and often
disordered, supercells in which the Brillouin zone can be
sampled at a single point, usually the zone-center I" point
(Berghold et al.| [2000; Bernasconi and Madden), 2001}
wvestrelli, 1999; Silvestrelli et al., [1998). Such efforts and
the implementation in widely-available computer codes
have given rise to an extensive literature dedicated to
understanding and monitoring the nature of bonding in
complex and realistic systems under varying thermody-
namical conditions or during a chemical reaction. Such
approaches are particularly useful when combined with
molecular-dynamics simulations, and most applications
have taken place within the framework first proposed by
Car and Parrinello (Car and Parrinello, 1985)). In fact,
specialized algorithms have been developed to perform
on-the-fly Car-Parrinello molecular dynamics in a Wan-
nier representation (Iftimie et al), 2004; Sharma et al.,
12003; [Wu et al., 2009).

First applications were to systems as diverse as high-
pressure ice (Bernasconi et al., [1998), doped fullerenes
(Billas et al., |1999), adsorbed organic molecules
vestrelli et al.l[2000)), ionic solids (Bernasconi et al [2002;
Posternak et al}2002) and the Ziegler-Natta polymeriza-
tion (Boero et al.,2000b)). This latter case is a paradig-
matic example of the chemical insight that can be gleaned
by following the WFCs in the course of an first-principles
simulation. In the Ziegler-Natta reaction we have an in-
terconversion of a double carbon bond into a single bond,
and a characteristic agostic interaction between the C-H
bond and the activated metal center. Both become im-
mediately visible once the WFCs are monitored, greatly
aiding the interpretation of the complex chemical path-
ways.

Car-Parrinello molecular dynamics is particularly
suited to the study of liquid systems, and applica-
tions have been numerous in all areas of physical chem-
istry. Examples include the work of |Bako et al.| (2002));
Bernasconi et al.| (2004); Blumberger et al.| (2004); Boero
et al| (2000alb)); Bucher and Kuyucak| (2008); |Costanzo
and Della Valle (2008); D’Auria et al| (2008)); van Erp
and Meijer| (2003); [Faralli et al.| (2006); [Heuft and Meijer
(2005); Tkeda et al.| (2005); Jungwirth and Tobias| (2002));




FIG. 20 (Color online) Snapshots of a rapid water-molecule
dissociation under high-temperature (1390 K) and high-
pressure (27 GPa) conditions; one of the MLWFs in the
proton-donor molecule is highlighted in blue, and one of the
MLWFs in the proton-acceptor molecule is highlighted in
green. From Schwegler et al.| (2001Db)).

Kirchner and Hutter| (2004)); [Kreitmeir et al.| (2003));
Krekeler et al.| (2006); Leung and Rempe, (2004); [Light-
stone et al.| (2005, 2001)); |Odelius et al.| (2004)); Raugei
et al|(1999); Raugei and Klein| (2002); |Saharay and Bal-
asubramanian| (2004); Salanne et al.| (2008]); [Schwegler
et al| (2001al); Sullivan et al.| (1999); |Suzuki (2008); [To-
bias et al.| (2001)); Todorova et al.| (2008)); and |Vuilleumier
and Sprik (2001)).

Water in particular has been studied extensively, both
at normal conditions (Grossman et all [2004; [Sit et al.)
2007) and in high- and low-pressure phases at high tem-
perature (Boero et al., |2000c,d, |2001; [Romero et al.,
2001} |Schwegler et al.l 2001b; [Silvestrelli and Parrinellol
1999a.b)) (a fast dissociation event from one of these sim-
ulations is shown in Fig. . Behavior in the presence of
solvated ions (Bako et al.l 2002; [Lightstone et al.l 2001}
Raugei and Klein|, 2002} |Schwegler et al.l |2001a} [Tobias
et all 2001) or a hydrated electron (Boero, [2007; Boero
et all 2003), or at surfaces and interfaces (Kudin and
Carl, [2008; Kuo and Mundy| 2004} |Kuo et al., 2006}, |2008;
Mundy and Kuol |2006; [Salvador et al., [2003]), has also
been studied. Moreover, MLWF's have been used to cal-
culate the electronic momentum density that can be mea-
sured in Compton scattering (Romero et al.,2000). This
work elucidated the relation between the anisotropy of
the Compton profiles for water and the nature of hydro-
gen bonding (Romero et al.,2001)), and led to the sugges-
tion that the number of hydrogen bonds present can be
directly extracted from the Compton profiles (Sit et al.),
2007).  The population of covalent bond pairs in lig-
uid silicon and the Compton signature of covalent bond-
ing has also recently been studied using MLWFs (Okada,
et al.l |2012]).

Even more complex biochemical systems have been in-
vestigated, including wet DNA (Gervasio et al.l 2002)),
HIV-1 protease (Piana et al., 2001)), reverse transcrip-
tase (Sulpizi and Carloni, 2000), phosphate groups (ATP,
GTP and ribosomal units) in different environments (Al-
ber et al., [1999; Minehardt et al., |2002; [Spiegel and Car-
loni, 2003), drug-DNA complexes (Spiegel and Magis-
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trato, 2006]), and caspases and kinases (Sulpizi et al.,
2003}, 2001)). Extensive reviews of first-principles quan-
tum simulations and molecular dynamics, with discus-
sions of MLWFs in these contexts, have appeared reviews
by [Dovesi et al.| (2005); Kirchner| (2007)); Tse| (2002]);
Tuckerman/ (2002); [Tuckerman and Martynal (2000); and
Vuilleumier| (2006, with Marx and Hutter| (2009) provid-
ing a very comprehensive methodological overview.

Further applications of first-principles molecular dy-
namics oriented specifically to extracting information
about dipolar properties and dielectric responses are dis-
cussed later in Sec. V.B.3l

V. ELECTRIC POLARIZATION AND ORBITAL
MAGNETIZATION

First-principles calculations of electric dipoles and
orbital magnetic moments of molecular systems are
straightforward. The electric dipole is

d=—e) (¥lrle) (84)

and the orbital moment is

m=-_ ;Wr x Vi), (85)

where the sum is over occupied Hamiltonian eigenstates
|1;), r is the position operator, v = (i/h)[H,r] is the
velocity operator, and Gaussian units are used. However,
these formulas cannot easily be generalized to the case of
crystalline systems, because the Hamiltonian eigenstates
take the form of Bloch functions |¢,k) that extend over
all space. The problem is that matrix elements such as
(Vnk|r|nk) and (WVpx|r X v]ink) are ill-defined for such
extended states (Nenciu, [1991]).

To deal with this problem, the so-called “modern the-
ory of polarization” (King-Smith and Vanderbilt), 1993}
Restay, [1992,|1994; Vanderbilt and King-Smith, |1993)) was
developed in the 1990’s, and a corresponding “modern
theory of magnetization” in the 2000’s (Ceresoli et al.,
2006} [Shi et al.| 2007 |Souza and Vanderbilt], 2008} [Thon-
hauser et al, [2005; | Xiao et all [2005). Useful reviews of
these topics have appeared (Resta, 2000} 2010; [Resta and
Vanderbilt, [2007; Vanderbilt and Resta), [2006]).

These theories can be formulated either in terms of
Berry phases and curvatures, or equivalently, by working
in the Wannier representation. The basic idea of the
latter is to consider a large but finite sample surrounded
by vacuum and carry out a unitary transformation from
the set of delocalized Hamiltonian eigenstates ; to a
set of Wannier-like localized molecular orbitals ¢;. Then
one can use Eq. or Eq. , with the v); replaced by
the ¢;, to evaluate the electric or orbital magnetic dipole
moment per unit volume in the thermodynamic limit. In



doing so, care must be taken to consider whether any
surface contributions survive in this limit.

In this section, we briefly review the modern theories
of electric polarization and orbital magnetization and re-
lated topics. The results given in this section are valid
for any set of localized WFs; maximally localized ones
do not play any special role. Nevertheless, the close con-
nection to the theory of polarization has been one of the
major factors behind the resurgence of interest in WFs.
Furthermore, we shall see that the use of MLWFs can
provide a very useful, if heuristic, local decomposition
of polar properties in a an extended system. For these
reasons, it is appropriate to review the subject here.

A. Wannier functions, electric polarization, and localization
1. Relation to Berry-phase theory of polarization

Here we briefly review the connection between the
Wannier representation and the Berry-phase theory of
polarization (King-Smith and Vanderbilt} (1993} [Restal
1994; |Vanderbilt and King—Smith 1993). Suppose that
we have constructed via Eq. (8) a set of Bloch-like func-
tions |t that are smooth functlonb of k. Inserting
these in place of |[¢,x) on the right side of Eq. , the
WFs in the home unit cell R=0 are simply

)
o) = 5 [,

To find their centers of charge, we note that

v
(2m)?

Performing an integration by parts and applying (On| on
the left, the center of charge is given by

dk i) - (86)

r|on) =

/ dk (—iVe™ ) ) - (87)
BZ

v = (OnfrlOn) = / d (il iViclinid) . (88)
(27m)3 Jpz

which is a special case of Eq. . Then, in the home
unit cell, in addition to the ionic charges +eZ, located
at positions r,, we can imagine electronic charges —e
located at positions rnE Taking the dipole moment of
this imaginary cell and dividing by the cell volume, we
obtain, heuristically

e
= V(ZZTrT - Zrn) (89)
T n
for the polarization.
13 In these formulas, the sum over n includes a sum over spin. Al-

ternatively a factor of 2 can be inserted to account explicitly for
spin.
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FIG. 21 Mlustration of mapping from physical crystal onto
equivalent point-charge system with correct dipolar proper-
ties. (a) True system composed of point ions (+) and charge
cloud (contours). (b) Mapped system in which charge cloud
is replaced by quantized electronic charges (—). In the illus-
trated model there are two occupied bands, i.e., two Wannier
functions per cell.
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This argument can be put on somewhat firmer ground
by imagining a large but finite crystallite cut from the
insulator of interest, surrounded by vacuum. The crys-
tallite is divided into an “interior” bulk-like region and
a “skin” whose volume fraction vanishes in the thermo-
dynamic limit. The dipole moment is computed from
Eq. (84), but using LMOs ¢; in place of the Hamilto-
nian eigenfunctions ; on the right-hand side. Arguing
that the contribution of the skin to d is negligible in the
thermodynamic limit and that the interior LM Os become
bulk WFs, one can construct an argument that arrives
again at Eq. (89).

If these arguments still seem sketchy, Eq. can be
rigorously justified by noting that its second term

e
Po=——"v :/ Ak (U |1V ic| Unic) 90
(2m)3 “ Jpg Vsl Vet )

is precisely the expression for the electronic contribu-
tion to the polarization in the Berry-phase theory (King-
Smith and Vanderbilt] 1993} [Restal, [1994; Vanderbilt and
King-Smith, [1993), which was derived by considering the
flow of charge during an arbitrary adiabatic change of
the crystalline Hamiltonian.

The Berry-phase theory can be regarded as provid-
ing a mapping of the distributed quantum-mechanical
electronic charge density onto a lattice of negative point
charges of charge —e, as illustrated in Fig. Then,
the change of polarization resulting from any physical
change, such as the displacement of one atomic sublat-
tice or the application of an electric field, can be related
in a simple way to the displacements of the Wannier cen-
ters r,, occurring as a result of this change.

A well-known feature of the Berry-phase theory is that
the polarization is only well-defined modulo a quantum
eR/V, where R is a real-space lattice vector. Such an in-
determinacy is immediately obvious from Eq. , since
the choice of which WFs are assigned to the home unit
cell (R=0) — or, for that matter, which ions are assigned



to it — is arbitrary. Shifting one of these objects by a
lattice vector R merely changes P by the quantum. Cor-
respondingly, it can be shown that an arbitrary change
of gauge can shift individual Wannier centers r,, in ar-
bitrary ways, except that the sum ) r, is guaranteed
to remain invariant (modulo a lattice vector). The same
eR/V describes the quantization of charge transport un-
der an adiabatic cycle (Thouless, |1983), and indeed the
shifts of Wannier charge centers under such a cycle were
recently proposed as a signature of formal oxidation state
in crystalline solids (Jiang et al., 2012).

2. Insulators in finite electric field

The theory of crystalline insulators in finite electric
field &€ is a subtle one; the electric potential —&€ - r does
not obey the conditions of Bloch’s theorem, and moreover
is unbounded from below, so that there is no well-defined
ground state. In practice one wants to solve for a long-
lived resonance in which the charge density and other
properties of the insulator remain periodic, correspond-
ing to what is meant experimentally by an insulator in a
finite field. This is done by searching for local minima of
the electric enthalpy per cell

F=FExs—VE-P (91)

with respect to both the electronic and the ionic degrees
of freedom. Fxg is the ordinary Kohn-Sham energy as it
would be calculated at zero field, and the second term is
the coupling of the field to the polarization as given in
Eq. (Nunes and Vanderbilt, |1994) or via the equiv-
alent Berry-phase expression (Nunes and Gonze, |2001;
Souza et al., 2002; [Umari and Pasquarellol [2002). This
approach is now standard for treating periodic insulators
in finite electric fields in density-functional theory.

3. Wannier spread and localization in insulators

We touch briefly here on another interesting connec-
tion to the theory of polarization. Resta and cowork-
ers have defined a measure of localization (Resta, 2002,
2006; [Resta and Sorellal (1999; [Sgiarovello et al., [2001)
that distinguishes insulators from metals quite generally,
and have shown that this localization measure reduces,
in the absence of two-particle interactions or disorder, to
the invariant part of the spread functional Q; given in
Eq. (20). Moreover, [Souza et al|(2000) have shown that
this same quantity characterizes the root-mean-square
quantum fluctuations of the macroscopic polarization.
Thus, while the Wannier charge centers are related to the
mean value of P under quantum fluctuations, their invari-
ant quadratic spread €2 is related to the corresponding
variance of P.
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4. Many-body generalizations

In the same spirit as for the many-body WF's discussed
at the end of Sec.[[L.]] it is possible to generalize the for-
mulation of electric polarization and electron localization
to the many-body context. One again considers N elec-
trons in a supercell; for the present discussion we work
in 1D and let the supercell have size L. The many-
body theory of electric polarization was formulated in
this context by |Ortiz and Martin| (1994)), and later re-
formulated by |Restal (1998)), who introduced a “many-
body position operator” X = exp(i2ni/L) defined in
terms of the ordinary position operator & = Zfil ;.
While (U|2|¥) is ill-defined in the extended many-body
ground state |¥), the matrix element (¥|X|®) is well-
defined and can be used to obtain the electric polar-
ization, up to the usual quantum. These considerations
were extended to the localization functional, and the re-
lation between localization and polarization fluctuations,
by [Souza et al.| (2000). The variation of the many-body
localization length near an insulator-to-metal transition
in 1D and 2D model systems was studied using quan-
tum Monte Carlo methods by Hine and Foulkes| (2007]).
Finally, the concept of electric enthalpy was generalized
to the many-body case by [Umari et al.| (2005), allow-
ing to calculate for the first time dielectric properties
with quantum Monte Carlo, and applied to the case of
the polarizabilities (Umari et al.l|2005) and hyperpolariz-
abilities (Umari and Marzari, [2009) of periodic hydrogen
chains.

B. Local polar properties and dielectric response

Is Sec[V-A ] we emphasized the equivalence of the k-
space Berry-phase expression for the electric polarization,
Eq. , and the expression written in terms of the lo-
cations of the Wannier centers r,,, Eq. . The lat-
ter has the advantage of being a real-space expression,
thereby opening up opportunities for localized descrip-
tions and decompositions of polar properties and dielec-
tric responses. We emphasize again that MLWFs have
no privileged role in Eq. ; the expression remains
correct for any WFs that are sufficiently well localized
that the centers r,, are well defined. Nevertheless, one
may argue heuristically that MLWFs provide the most
natural local real-space description of dipolar properties
in crystals and other condensed phases.

1. Polar properties and dynamical charges of crystals

Many dielectric properties of crystalline solids are most
easily computed directly in the k-space Bloch representa-
tion. Even before it was understood how to compute the
polarization P via the Berry-phase theory of Eq. , it



was well known how to compute derivatives of P using
linear-response methods (Baroni et al.,2001};|de Gironcoli|
let all [1989; Resta), [1992)). Useful derivatives include the
electric susceptibility x;; = dP;/d€; and the Born (or
dynamical) effective charges Z; ; = VdP;/dR;;, where i
and j are Cartesian labels and R,; is the displacement of
sublattice 7 in direction j. With the development of the
Berry-phase theory, it also became possible to compute
effective charges by finite differences. Similarly, with the
electric-enthalpy approach of Eq. it became possible
to compute electric susceptibilities by finite differences as
well (Souza et al. [2002; [Umari and Pasquarellol [2002]).
The Wannier representation provides an alternative
method for computing such dielectric quantities by fi-
nite differences. One computes the derivatives dry, ;/dE;
or dry, ;/dR;; of the Wannier centers by finite differences,
then sums these to get the desired x;; or Z7 ;. An exam-
ple of such a calculation for Z* in GaAs was presented
already in Sec. VII of Marzari and Vanderbilt| (1997),
and an application of the Wannier approach of Nunes
[and Vanderbilt| (1994) in the density-functional context
was used to compute x by finite differences for Si and
GaAs (Fernandez et al,[1998). Dynamical charges were
computed for several TiOy phases by
(2004) and Posternak et al| (2006), and, as mentioned
in Sec. [[V-A] observed differences between polymorphs
were correlated with changes in the chemical nature of
the WFs associated with OTis structural units. Piezo-
electric coefficients, which are derivatives of P with re-
spect to strain, have also been carried out in the Wannier
representation for ZnO and BeO by Noel et al| (2002).
Some of the most extensive applications of this kind
have been to ferroelectric perovskites, for which the
dynamical charges have been computed in density-
functional and/or Hartree-Fock contexts for BaTiOs,
KNbOj3, SrTiO3, and PbTiO3 (Baranek et al) {2001
Evarestov et all [2003; [Marzari and Vanderbilt, [1998
Usvyat et al}[2004)). In these materials, partially covalent
bonding associated with hybridization between O 2p and
Ti 3d states plays a crucial role in stabilizing the ferro-
electric state and generating anomalous dynamical effec-
tive charges (Posternak et al. [1994; Zhong et all|1994).
Recall that the dynamical, or Born, effective charge Z* is
defined as Z;_; = VdP;/dR;; and carries units of charge.
Naively, one might expect values around +4e for Ti ions
and —2e for oxygen ions in BaTiO3 based on nominal ox-
idation states, but instead one finds “anomalous” values
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FIG. 22 (Color online) Amplitude isosurface plots of the
maximally-localized O[2p.]-Ti[3d.2] Wannier functions in
BaTiOs. O is at center, surrounded by a plaquette of four Ba
atoms (green); Ti atoms (yellow, almost hidden) are above
and below. (a) Centrosymmetric structure. (b) Ferroelectric
structure in which central O is displace upward relative to
neighboring Ti atoms.

the changes in the MLWFs induced by the atomic dis-
placements. Fig. 22(a) shows an O[2p.]-Ti[3d,2] MLWF
in centrosymmetric BaTiOz (Marzari and Vanderbilt,
1998). The hybridization to Ti 3d,2 states appears in
the form of the “donuts” surrounding the neighboring
Ti atoms. When the O atom moves upward relative to
the geometric center of the two neighboring Ti atoms as
shown in Fig. b), as it does in ferroelectrically dis-
torted BaTiOjs, the hybridization strengthens for the up-
per O-Ti bond and weakens for the lower one, endowing
the WF with more Ti 3d character on the top than on the
bottom. As a result, the center of charge of the WF shifts
upward, and since electrons carry negative charge, this
results in a negative anomalous contribution to the Z*
of the oxygen atom. The figure illustrates this process
for o-oriented oxygen WF's, but a similar effect occurs
for the m-oriented oxygen WF's, and the total anomalous
dynamical charge can be accounted for quantitatively on
the basis of the distortion-induced changes of each kind
of WF in the crystal (Marzari and Vanderbilt), [1998).

The above illustrates the utility of the MLWFs in pro-
viding a local description of dielectric and polar responses
in crystals. This strategy can be carried further in many
ways. For example, it is possible to decompose the Z*
value for a given atom in a crystal into contributions
coming from various different neighboring WFs, as was

done for GaAs in Sec. VII of [Marzari and Vanderbilt

that are much larger. For example, |Zhong et al.| (1994)

(1997) and for BaTiO3 by Marzari and Vanderbilt| (1998).

reported values of 4+7.2¢ for Ti displacements, and —5.7¢
for O displacements along the Ti-O-Ti chains.

Some chemical intuition is already gained by carrying out
a band-by-band decomposition of the Z* contributions

This behavior can be understood (Posternak et all

(Ghosez and Gonze, [2000; |Ghosez et al., [1995]), but the

(1994} |Zhong et al.,[1994) as arising from hybridization be-
tween neighboring O 2p and Ti 3d orbitals that dominate
the valence and conduction bands, respectively. This
hybridization, and the manner in which it contributes
to an anomalous Z*, can be visualized by inspecting

WF analysis allows a further spatial decomposition into
individual WF contributions within a band. A deeper
analysis that also involves the decomposition of the WF's
into atomic orbitals has been shown to provide further in-
sight into the anomalous Z* values in perovskites (Bhat-



FIG. 23 (Color online) MLWFs for 8-PVDF polymer chain.
(a) MLWF charge centers, indicated by diamonds. (b)-(d)
MLWFs localized on C-C, C-F, and C-H bonds, respectively.
From |Nakhmanson et al.| (2005]).

tacharjee and Waghmare, |2010)).

Some insightful studies of the polar properties of poly-
mer systems in terms of MLWF's have also been carried
out. Figure for example, shows the WF centers and
characters for the 8 conformation of polyvinylidene flu-
oride (8-PVDF) (Nakhmanson et al., [2005)), one of the
more promising ferroelectric polymer systems. An in-
spection of WF centers has also been invoked to explain
the polar properties of so-call “push-pull” polymers by
Kudin et al.| (2007)) and of HyO ice by [Lu et al. (2008)).
Finally, we note an interesting recent study in which
changes in polarization induced by corrugations in BN
sheets were analyzed in terms of WFs (Naumov et al.,
2009)).

2. Local dielectric response in layered systems

In a similar way, the theoretical study of dielectric
properties of ultrathin films and superlattices can also
be enriched by a local analysis. Two approaches have
been introduced in the literature. In one, the local x-y-
averaged electric field £, (2) is calculated along the stack-
ing direction z, and then the local dielectric permittiv-
ity profile e(z) = &£,(2)/D, or inverse permittivity pro-
file e71(2) = D,/E.(2) is plotted, where D, is the z-y-
averaged electric displacement field (constant along z in
the absence of free charge) determined via a Berry-phase
calculation of P, or by inspection of &, in a vacuum re-
gion. Such an approach has been applied to study di-
electric materials such as SiO, and HfOs interfaced to
Si (Giustino and Pasquarello, |2005; |Giustino et al., [2003}
Shi and Ramprasad}, 2006, [2007) and perovskite films and
superlattices (Stengel and Spaldin, [2006alb)).

The second approach is to use a Wannier analysis to as-
sign a dipole moment to each layer. This approach, based
on the concept of hybrid WFs discussed in Sec.
was pioneered by |Giustino and Pasquarello| (2005) and
Giustino et al.|(2003) and used by them to study Si/SiOs
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FIG. 24 (Color online) Dispersion of WF center positions
along z as a function of (k., ky) for a superlattice composed
of alternating layers of SrTiOs (sublayers 1A and 1B) and
BaTiOs (sublayers 2A and 2B). From |Wu et al.| (20006).

interfaces and related systems. Later applications to per-
ovskite oxide films and superlattices have been fairly ex-
tensive. The essential observation is that, when studying
a system that is layered or stacked along the z direction,
one can still work with Bloch functions labeled by k, and
k, while carrying out a Wannier construction or analysis
only along z. Since the extraction of Wannier centers in
1D is rather trivial, even in the multiband case (Bhat-
tacharjee and Waghmare) 2005; |Marzari and Vanderbilt],
1997; |Sgiarovello et all |2001)), it is not difficult to con-
struct a “Wannier center band structure” z(k,, k), and
use the planar-averaged values to assign dipole moments
to layers. This approach was demonstrated by Wu et al.
(2006)), as shown in Fig. and has since been used to
study perovskite superlattices and artificial nanostruc-
tures (Murray and Vanderbilt, 2009; Wu et al 2008]).
In a related development, |Stengel and Spaldin| (2006a)
introduced a Wannier-based method for computing po-
larizations along z and studying electric fields along z
that work even in the case that the stacking includes
metallic layers, as long as the system is effectively insu-
lating along z (Stengel and Spaldin, 2007). This allows
for first-principles calculations of the nonlinear dielectric
response of ultrathin capacitors and related structures
under finite bias, providing an insightful avenue to the
study of finite-size and dead-layer effects in such systems
(Stengel et al., [2009alblc).

3. Condensed molecular phases and solvation

Wannier-function methods have also played a promi-
nent role in the analysis of polar and dielectric proper-
ties of dipolar liquids, mainly HoO and other H-bonded
liquids. While the dipole moment of an isolated HoO
molecule is obviously well defined, a corresponding defi-
nition is not easy to arrive at in the liquid phase where



molecules are in close contact with each other. An influ-
ential development was the proposal made by [Silvestrellj
land Parrinello| (1999alb) that the dipole moment of a
solvated molecule could be defined in terms of positive
charges on ionic cores and negative charges located at the
centers of the MLWFs. Using this definition, these au-
thors found that the water molecule dipole is somewhat
broadly distributed, but has an average value of about
3.0D, about 60% higher than in the gas phase. These
features were shown to be in conflict with the behavior
of widely-used empirical models.

Of course, such a definition in terms of the dipole of the
molecular WF-center configuration remains heuristic at
some level. For example, this local measure of the dipole
does not appear to be experimentally measurable even
in principle, and clearly the use of one of the alternative
measures of maximal localization discussed in Sec. [TTA]
would give rise to slightly different values. Nevertheless,
the approach has been widely adopted. For example,
subsequent work elaborated (Dyer and Cummings|, [2006}
[Sagui et al 2004) and extended this analysis to water
in supercritical conditions (Boero et al [2000c]d), con-
fined geometries (Coudert et al.l2006; Dellago and Naor!
2005)), and with solvated ions present (Scipioni et al.
2009), and compared the results obtained with different
exchange-correlation functionals (Todorova et all [2006]).

It should be noted that the decomposition into Wan-
nier dipoles is closer to the decomposition of the charge
density into static (Szigeti) charges than to a decom-
position into dynamical (Born) charges. The first one
corresponds to a spatial decomposition of the total elec-
tronic charge density, while the second is connected with
the force that appears on an atom in response to an ap-
plied electric field. As a counterpoint to the WF-based
definition, therefore, [Pasquarello and Restal (2003) have
argued the a definition based on these forces provides a
more fundamental basis for inspecting molecular dipoles
in liquids. In particular, they define a second-rank ten-
sor as the derivative of the torque on the molecule with
respect to an applied electric field, and finding that this
is typically dominated by its antisymmetric part, they
identify the latter (rewritten as an axial vector) as the
molecular dipole. Surprisingly, they find that the mag-
nitude of this dipole vector is typically only about 2.1 D
in liquid water, much less than the value obtained from
the WF analysis.

Clearly the WF-based and force-based approaches to
defining molecular dipoles provide complementary per-
spectives, and a more complete reconciliation of these
viewpoints is the subject of ongoing work.

Finally, we note that there is an extensive literature
in which Car-Parrinello molecular-dynamics simulations
are carried out for HoO and other liquids, as already
mentioned in Sec. and surveyed in several reviews
(Kirchner}, 2007} 12002; | Tuckerman), 2002; Tuckerman|
land Martyna), 2000). Using such approaches, it is possi-
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ble to compute the dynamical dipole-dipole correlations
of polar liquids and compare the results with experimen-
tal infrared absorption spectra. While it is possible to
extract the needed information from the time-time corre-
lation function of the total polarization P(t) of the entire
supercell as calculated using the Berry-phase approach,
methods which follow the time-evolution of local dipoles,
as defined via WF-based methods, provide additional in-
sight and efficiency (Bernasconi et al. [1998; Chen et al.
2008 [McGrath et al, [2007; [Pasquarello and Resta), [2003
Sharma et al., [2005} 2007) and can easily be extended to
other kinds of molecular systems (Gaigeot et all [2007}
Gaigeot and Sprikl, 2003} [Gaigeot et all, 2005} [Pagliail
et al},2008)). The applicability of this kind of approach
has benefited greatly from the development of methods
for computing WF's and their centers “on the fly” during
Car-Parrinello molecular dynamics simulations
let all |2004} |[Sharma et al., [2003; [Wu et al, 2009).

C. Magnetism and orbital currents

1. Magnetic insulators

Just as an analysis in terms of WFs can help clarify
the chemical nature of the occupied states in an ordi-
nary insulator, they can also help describe the orbital
and magnetic ordering in a magnetic insulator.

In the magnetic case, the maximal localization pro-
ceeds in the same way as outlined in Sec. [, with trivial
extensions needed to handle the magnetic degrees of free-
dom. In the case of the local (or gradient-corrected) spin-
density approximation, in which spin-up and spin-down
electrons are treated independently, one simply carries
out the maximal localization procedure independently
for each manifold. In the case of a spinor calculation
in the presence of spin-orbit interaction, one instead im-
plements the formalism of Sec. [[] treating all wavefunc-
tions as spinors. For example, each matrix element on
the right-hand side of Eq. is computed as an inner
product between spinors, and the dimension of the re-
sulting matrix is the number of occupied spin bands in
the insulator.

Several examples of such an analysis have appeared
in the literature. For example, applications to simple
antiferromagnets such as MnO (Posternak et al., [2002),
novel insulating ferromagnets and antiferromagnets (Kul
let all 2002 2003), and complex magnetic ordering in
rare-earth manganates (Picozzi et al) [2008; [Yamauchil

2008|) have proven to be illuminating.

2. Orbital magnetization and NMR

In a ferromagnetic (or ferrimagnetic) material, the to-
tal magnetization has two components. One arises from
electron spin and is proportional to the excess population



of spin-up over spin-down electrons; a second corresponds
to circulating orbital currents. The spin contribution is
typically dominant over the orbital one (e.g., by a factor
of 10 or more in simple ferromagnets such as Fe, Ni and
Co (Ceresoli et al., 2010a))), but the orbital component
is also of interest, especially in unusual cases in which it
can dominate, or in the context of experimental probes,
such as the anomalous Hall conductivity, that depend on
orbital effects. Note that inclusion of the spin-orbit inter-
action is essential for any description of orbital magnetic
effects.

Naively one might imagine computing the orbital mag-
netization Mgy, as the thermodynamic limit of Eq.
per unit volume for a large crystallite. However, as we
discussed at the beginning of Sec. [V] Bloch matrix ele-
ments of the position operator r and the circulation oper-
ator r x v are ill-defined. Therefore, such an approach is
not suitable. Unlike for the case of electric polarization,
however, there is a simple and fairly accurate approxi-
mation that has long been used to compute Mgy,,: one
divides space into muffin-tin spheres and interstitial re-
gions, computes the orbital circulation inside each sphere
as a spatial integral of r x J, and sums these contribu-
tions. Since most magnetic moments are fairly local, such
an approach is generally expected to be reasonably accu-
rate.

Nevertheless, it is clearly of interest to have available
an exact expression for M, that can be used to test
the approximate muffin-tin approach and to treat cases
in which itinerant contributions are not small. The solu-
tion to this problem has been developed recently, leading
to a closed-form expression for M,,1, as a bulk Brillouin-
zone integral. Derivations of this formula via a semi-
classical (Xiao et al. 2005 or long-wave quantum (Shi
et all, [2007) approach are possible, but here we empha-
size the derivation carried out in the Wannier represen-
tation (Ceresoli et al.,|2006; |[Souza and Vanderbilt], 2008;
Thonhauser et al., 2005). For this purpose, we restrict
our interest to insulating ferromagnets. For the case of
electric polarization, the solution to the problem of r ma-
trix elements was sketched in Sec. and a heuristic
derivation of Eq. was given in the paragraph follow-
ing that equation. A similar analysis was given in the
above references for the case of orbital magnetization, as
follows.

Briefly, one again considers a large but finite crystallite
cut from the insulator of interest, divides it into “inte-
rior” and “skin” regions, and transforms from extended
eigenstates to LMOs ¢;. For simplicity we consider the
case of a two-dimensional insulator with a single occupied
band. The interior gives a rather intuitive “local circula-
tion” (LC) contribution to the orbital magnetization of
the form

(&
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where Ag is the unit cell area, since in the interior the
LMOs ¢; are really just bulk WFs. This time, however,
the skin contribution does not vanish. The problem is
that (¢;|v|¢,) is nonzero for LMOs in the skin region, and
the pattern of these velocity vectors is such as to describe
a current circulating around the boundary of the sample,
giving a second “itinerant circulation” contribution that
can, after some manipulations, be written in terms of
bulk WFs as

€

Mic = = 1oy LR (RI0) — Ry(Riafo)].  (93)

When these contributions are converted back to the
Bloch representation and added together, one finally ob-
tains

e d*k
M, = - Tm [ 25 Hy + E :
orb = 5 m/ 2n)? (Onux| x (Hy + Fx)|Oxux)

(94)
which is the desired k-space bulk expression for the or-
bital magnetization (Thonhauser et al.| 2005)@ The
corresponding argument for multiple occupied bands in
three dimensions follows similar lines (Ceresoli et al.,
2006}, |Souza and Vanderbilt}, [2008), and the resulting for-
mula has recently been implemented in the context of
pseudopotential plane-wave calculations (Ceresoli et al.,
2010a). Interestingly, it was found that the interstitial
contribution — defined as the difference between the to-
tal orbital magnetization, Eq. , and the muffin-tin
result — is not always negligible. In bee Fe, for example,
it amounts to more than 30% of the spontaneous orbital
magnetization, and its inclusion improves the agreement
with gyromagnetic measurements.

The ability to compute the orbital magnetization is
also of use in obtaining the magnetic shielding of nu-
clei. This is responsible for the chemical shift effect
observed in nuclear magnetic resonance (NMR) exper-
iments. A first principles theory for magnetic shielding
in solids was established by examining the perturbative
response to a periodic magnetic field in the long wave-
length limit (Mauri et al), [1996a; [Pickard and Mauri,
2001). An alternative perturbative approach used a WF
representation of the electronic structure together with a
periodic position operator (Sebastiani, [2003; [Sebastiani
et al., |2002; [Sebastiani and Parrinello) [2001)). However,
magnetic shieldings can also be computed using a “con-
verse” approach in which one uses Eq. to compute
the orbital magnetization induced by a fictitious point
magnetic dipole on the nucleus of interest (Ceresoli et al.,

4 In the case of metals Eq. must be modified by adding a
—2p term inside the parenthesis, with p the chemical potential
(Ceresoli et all |2006; |Xiao et al.l|2005). Furthermore, the inte-
gration is now restricted to the occupied portions of the Brillouin
zone.



2010b; [Thonhauser et al., 2009). The advantage of such
approach is that it does not require linear-response the-
ory, and so it is amenable to large-scale calculations or
complex exchange-correlation functionals (e.g., including
Hubbard U corrections, or Hartree-Fock exchange), al-
beit at the cost of typically one self-consistent iteration
for every nucleus considered. Such converse approach has
then been extended also to the calculation of the EPR
g-tensor by |Ceresoli et al.| (2010a)).

3. Berry connection and curvature

Some of the concepts touched on in the previous sec-
tion can be expressed in terms of the k-space Berry con-
nection

Ak = (Unk|iVi|tnk) (95)
and Berry curvature
Tnk = Vk X Ank (96)

of band n. In particular, the contribution of this band
to the electric polarization of Eq. , and to the second
term in the orbital magnetization expression of Eq. ,
are proportional to the Brillouin-zone integrals of A,k
and E,xF .k, respectively. These quantities will also play
a role in the next subsection and in the discussion of
the anomalous Hall conductivity and related issues in

Sec. [VI.Cl

4. Topological insulators and orbital magnetoelectric response

There has recently been a blossoming of interest in so-
called topological insulators, i.e., insulators that cannot
be adiabatically connected to ordinary insulators with-
out a gap closure. |Hasan and Kane| (2010) and Hasan
and Moore| (2011 provide excellent reviews of the back-
ground, current status of this field, and provide references
into the literature.

One can distinguish two kinds of topological insula-
tors. First, insulators having broken time-reversal (T)
symmetry (e.g., insulating ferromagnets and ferrimag-
nets) can be classified by an integer “Chern invariant”
that is proportional to the Brillouin-zone integral of the
Berry curvature F,x summed over occupied bands n.
Ordinary insulators are characterized by a zero value of
the invariant. An insulator with a non-zero value would
behave like an integer quantum Hall system, but without
the need for an external magnetic field; such systems are
usually denoted as “quantum anomalous Hall” (QAH)
insulators. While no examples are known to occur in na-
ture, tight-binding models exhibiting such a behavior are
not hard to construct (Haldane, |1988]). It can be shown
that a Wannier representation is not possible for a QAH
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insulator, and [Thonhauser and Vanderbilt| (2006) have
explored the way in which the usual Wannier construc-
tion breaks down for model systems.

Second, depending on how their Bloch functions wrap
the Brillouin zone, nonmagnetic (T-invariant) insulators
can be sorted into two classes denoted as “Zs-even” and
“Zy-0dd” (after the name Z5 of the group {0,1} un-
der addition modulo 2). Most (i.e., “normal”) insulators
are Zs-even, but strong spin-orbit effects can lead to the
Z5-odd state, for which the surface-state dispersions are
topologically required to display characteristic features
that are amenable to experimental verification. Several
materials realizations of Z;-odd insulators have now been
confirmed both theoretically and experimentally (Hasan
and Kane| 2010; Hasan and Moore, 2011)).

In a related development, the orbital magnetoelectric
coefficient a;; = OMoy, j/0E; was found to contain an
isotropic contribution having a topological character (the
“axion” contribution, corresponding to an € - B term in
the effective Lagrangian). This term can be written as a
Brillouin-zone integral of the Chern-Simons 3-form, de-
fined in terms of multiband generalizations of the Berry
connection Ay and curvature Fy introduced in the pre-
vious subsection (Essin et al.,|2009; Qi et al.[2008). The
Chern-Simons magnetoelectric coupling has been evalu-
ated from first-principles with the help of WFs for both
topological and ordinary insulators (Coh et al.l 2011]).

A careful generalization of Eq. to the case in
which a finite electric field is present has been carried out
by Malashevich et al.|(2010) in the Wannier representa-
tion using arguments similar to those in Secs. and
[V.C2] and used to derive a complete expression for the
orbital magnetoelectric response, of which the topolog-
ical Chern-Simons term is only one contribution (Essin
et al.l |2010; Malashevich et al., [2010).

VI. WANNIER INTERPOLATION

Localized Wannier functions are often introduced in
textbooks as a formally exact localized basis spanning a
band, or a group of bands, and their existence provides
a rigorous justification for the tight-binding (TB) inter-
polation method (Ashcroft and Merminl, [1976; [Harrison),
1980).

In this section we explore the ways in which WF's can
be used as an exact or very accurate TB basis, allowing
to perform, very efficiently and accurately, a number of
operations on top of a conventional first-principles calcu-
lation. The applications of this “Wannier interpolation”
technique range from simple band-structure plots to the
evaluation of various physical quantities as BZ integrals.
The method is particularly useful in situations where a
very fine sampling of the BZ is required to converge the
quantity of interest. This is often the case for metals, as
the presence of a Fermi surface introduces sharp discon-



36

D
e s » o s o o o o
R R T e L
® & o o o o o o o
e s o o s s e o 0
K* e e o s o @
T 8 o e o e o o
* e s e o s s .

27r/a

FIG. 25 (Color online) Schematic overview of the Wannier interpolation procedure. The left panel shows the BZ mesh q
used in the first-principles calculation, where the quantity of interest f(q) is explicitly calculated. The Wannier-transformed
quantity F'(R) is strongly localized near the origin of the equivalent supercell, shown in the middle panel with WFs at the
lattice points. The right panel shows a dense mesh of interpolation points k in the BZ, where the quantity f(k) is evaluated

at low cost starting from F(R).

tinuities in k-space.

The Wannier interpolation procedure is depicted
schematically in Fig. The actual first-principles cal-
culation is carried out on a relatively coarse uniform
reciprocal-space mesh q (left panel), where the quan-
tity of interest f(q) is calculated from the Bloch eigen-
states. The states in the selected bands are then trans-
formed into WFs, and f(q) is transformed accordingly
into F'(R) in the Wannier representation (middle panel).
By virtue of the spatial localization of the WFs, F(R)
decays rapidly with |R|. Starting from this short-range
real-space representation, the quantity f can now be ac-
curately interpolated onto an arbitrary point k in recipro-
cal space by carrying out an inverse transformation (right
panel). This procedure will succeed in capturing varia-
tions in f(k) over reciprocal lengths smaller than the
first-principles mesh spacing Agq, provided that the lin-
ear dimensions L = 27w /Aq of the equivalent supercell are
large compared to the decay length of the WFs.

A. Band-structure interpolation

The simplest application of Wannier interpolation is
to generate band-structure plots. We shall describe the
procedure in some detail, as the same concepts and no-
tations will reappear in the more advanced applications
to follow.

From the WF's spanning a group of J bands, a set of
Bloch-like states can be constructed using Eq. 7 which
we repeat here with a slightly different notation,

) = > ™R Rn) (n=1,....J), (97)
R

where the conventions of Eqgs. (12413]) have been adopted.
This has the same form as the Bloch-sum formula in
tight-binding theory, with the WFs playing the role of

the atomic orbitals. The superscript W serves as a re-
minder that the states |’l/JXY(> are generally not eigenstates

of the HamiltonianE We shall say that they belong to
the Wannier gauge.

At a given k, the Hamiltonian matrix elements in the
space of the J bands is represented in the Wannier gauge
by the matrix

HY, = (L H [, =Y e™ R (0n|H[Rm).  (98)
R

In general this is a non-diagonal matrix in the band-like
indices, and the interpolated eigenenergies are obtained
by diagonalization,

= 5n,m€nk- (99)

HYo = (VLY U]
nm

In the following, it will be useful to view the uni-
tary matrices Uy as transforming between the Wannier
gauge on the one hand, and the Hamiltonian (H) gauge
(in which the projected Hamiltonian is diagonal) on the
otherE From this point forward we adopt a condensed
notation in which band indices are no longer written ex-
plicitly, so that, for example, Hgnm = (YL |H|pil ) is
now written as HY' = (pl|H|¢fl), and matrix multi-
plications are implicit. Then Eq. implies that the
transformation law for the Bloch states is

i) = | ) Uk.

If we insert into Eqs. and a wavevector be-
longing to the first-principles grid, we simply recover the

(100)

15 In Ch. he rotated Bloch states [1¥y ) were denoted by [Dric),
see Eq. (8)

16 The unitary matrices Uy are related to, but not the same as,
the matrices UX) introduced in Eq. . The latter are obtained
as described in Secs. @ and m In the present terminology,
they transform from the Hamiltonian to the Wannier gauge on
the mesh used in the first-principles calculation. Instead, Uy
transforms from the Wannier to the Hamiltonian gauge on the
interpolation mesh. That is, the matrix Uy is essentially an

interpolation of the matrix [U(k)] T.



first-principles eigenvalues €,), while for arbitrary k the
resulting €, interpolate smoothly between the values on
the grid. (This is strictly true only for an isolated group
of bands. When using disentanglement, the interpolated
bands can deviate from the first-principles ones outside
the inner energy window, as discussed in Sec. [[I.]]in con-
nection with Fig. [5])

Once the matrices (0|H|R) have been tabulated, the
band structure can be calculated very inexpensively
by Fourier transforming [Eq. ] and diagonalizing
[Eq. (99)] matrices of rank J. Note that J, the num-
ber of WF's per cell, is typically much smaller than the
number of basis functions (e.g., plane waves) used in the
first-principles calculation.

In practice the required matrix elements are obtained
by inverting Eq. over the first-principles grid,

1 e

(OHIR) = + > e RV H gy )

) T (101)

= > e RYVIE V.
q

Here N is the number of grid points, Eq is the diagonal
matrix of first-principles eigenenergies, and V is the ma-
trix defined in Eq. , which converts the Jq ab initio
eigenstates into the J < Jy; Wannier-gauge Bloch states,

Wc\f/) = |¢q>vq' (102>

The strategy outlined above (Souza et al.| [2001)) is es-
sentially the Slater-Koster interpolation method. How-
ever, while the Hamiltonian matrix elements in the local-
ized basis are treated as adjustable parameters in empir-
ical TB, they are calculated from first-principles here.
A similar interpolation strategy is widely used to ob-
tain phonon dispersions starting from the interatomic
force constants calculated with density-functional per-
turbation theory (Baroni et all [2001). We shall return
to this analogy between phonons and tight-binding elec-
trons (Martin, [2004)) when describing the interpolation
of the electron-phonon matrix elements in Sec. [VI.D}

Wannier band-structure interpolation is extremely ac-
curate. By virtue of the exponential localization of the
WFs within the periodic supercell (see Footnote , the
magnitude of the matrix elements (O|H|R) decreases
rapidly with |R|, and this exponential localization is pre-
served even in the case of metals, provided a smooth
subspace has been disentangled. As the number of lat-
tice vectors included in the summation in Eq. equals
the number of first-principles mesh points, beyond a cer-
tain mesh density the error incurred decreases exponen-
tially (Yates et all 2007). In the following we will il-
lustrate the method with a few representative examples
selected from the literature.
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FIG. 26 Band structure of bce Fe with spin-orbit coupling
included. Solid lines: original band structure from a con-
ventional first-principles calculation. Dotted lines: Wannier-
interpolated band structure. The zero of energy is the Fermi
level. From |Wang et al.| (2006).

1. Spin-orbit-coupled bands of bcc Fe

As a first application, we consider the relativistic band
structure of bee Fe. Because of the spin-orbit interaction,
the spin density is not perfectly collinear, and the Bloch
eigenstates are spinors. As mentioned in Sec.
spinor WF's can be constructed via a trivial extension of
the procedure described in Sec. [[I] for the non-magnetic
(spinless) case. It is also possible to further modify the
wannierization procedure so as to produce two separate
subsets of spinor WF's: one with a predominantly spin-up
character, and the other with a predominantly spin-down
character (Wang et al., |20006).

Using this modified procedure, a set of nine disentan-
gled WFs per spin channel was obtained for bce Fe by
Wang et al.| (2006), consisting of three ¢y, d-like atom-
centered WFs and six sp3d?-like hybrids pointing along
the cubic directions. An inner energy window was cho-
sen as indicated in Fig. [20] so that these 18 WF's describe
exactly all the the occupied valence states, as well as the
empty states up to Fyin, which was set at approximately
18 eV above the Fermi level.

The interpolated bands obtained using an 8 x 8 x 8 g-
grid in the full BZ are shown as dashed lines in Fig.
The comparison with the first-principles bands (solid
lines), reveals essentially perfect agreement within the in-
ner window. This is even more evident in Fig. where
we zoom in on the interpolated band structure near the
Fermi level along I'-H, and color-code it according to the
spin-projection along the quantization axis. The vertical
dotted lines indicate points on the g-mesh. For compar-
ison, we show as open circles the eigenvalues calculated
directly from first-principles around a weak spin-orbit-
induced avoided crossing between two bands of opposite
spin. It is apparent that the interpolation procedure suc-
ceeds in resolving details of the true band structure on a
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FIG. 27 (Color online) Wannier-interpolated relativistic band
structure of ferromagnetic bee Fe along I'-H. The bands are
color-coded according to the expectation value of S: red for
spin up and blue for spin down. The energies in eV are re-
ferred to the Fermi level. The vertical dashed lines indicate
k-points on the mesh used in the first-principles calculation
for constructing the WFs. From |Yates et al.| (2007).

-

scale much smaller than the spacing between g-points.

2. Band structure of a metallic carbon nanotube

As a second example, we consider Wannier interpola-
tion in large systems (such as nanostructures), that are
often sampled only at the zone center. We consider here
a (5,5) carbon nanotube, studied in a 100-atom super-
cell (i.e. five times the primitive unit cell) and with I'-
point sampling. The system is metallic, and the disen-
tanglement procedure is used to generate well-localized
WFs, resulting in either bond-centered combinations of
sp? atomic orbitals, or atom-centered p, orbitals. The
energy bands at any other k-points are calculated by di-
agonalizing Eq. , noting that the size of the supercell
has been chosen so that the Hamiltonian matrix elements
on the right-hand-side of this equation are non negligible
only for WFs up to neighboring supercells R(*) on either
side of R = 0. Fig. [28 shows as solid lines the interpo-
lated bands, unfolded onto the 20-atom primitive cell.
Even if with this sampling the system has a pseudogap
of 2eV, the metallic character of the bands is perfectly
reproduced, and these are in excellent agreement with
the bands calculated directly on the primitive cell by di-
rect diagonalization of the Kohn-Sham Hamiltonian in
the full plane-wave basis set (open circles). The vertical
dashed lines indicate the equivalent first-principles mesh
obtained by unfolding the I'-point E

17 When I' sampling is used, special care should be used in calculat-
ing matrix elements between WFs, since the center of a periodic
image of, e.g., the ket could be closer to the bra that the actual
state considered. Similar considerations apply for transport cal-
culations, and might require calculation of the matrix elements
in real-space(Lee, [2006]).
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FIG. 28 Left panel: band structure of a (5,5) carbon nan-
otube, calculated by Wannier interpolation (solid lines), or
from a full diagonalization in a planewave basis set (circles).
The five vertical dashed lines indicate the five k-points corre-
sponding to the I' point in a 100-atom supercell. The middle
and right panels show the Wannier-based calculation of the
quantum conductance and the density of states (see Sec. VII),
with a perfect match of steps and peaks with respect to the
exact band structure. From [Lee et al.| (2005]).

3. GW quasiparticle bands

In the two examples above the WFs were generated
from Kohn-Sham Bloch functions, and the eigenvalues
used in Eq. were the corresponding Kohn-Sham
eigenvalues. Many of the deficiencies of the Kohn-Sham
energy bands, such as the underestimation of the energy
gaps of insulators and semiconductors, can be corrected
using many-body perturbation theory in the form of the
GW approximation (for a review, see |Aryasetiawan and
Gunnarsson| (1998))).

One practical difficulty in generating GW band struc-
ture plots is that the evaluation of the quasiparticle (QP)
corrections to the eigenenergies along different symmetry
lines in the BZ is computationally very demanding. At
variance with the DFT formalism, where the eigenener-
gies at an arbitrary k can be found starting from the
self-consistent charge density, the evaluation of the QP
corrections at a given k requires a knowledge of the
Kohn-Sham eigenenergies and wavefunctions on a ho-
mogeneous grid of points containing the wavevector of
interest. What is often done instead is to perform the
GW calculation at selected k-points only, and then de-
duce a “scissors correction,” i.e., a constant shift to be
applied to the conduction-band Kohn-Sham eigenvalues
elsewhere in the Brillouin zone.

As already mentioned briefly in Sec. [I.J] [Hamann
and Vanderbilt| (2009) proposed using Wannier interpo-
lation to determine the GW QP bands very efficiently
and accurately at arbitrary points in the BZ. The wan-
nierization and interpolation procedures are identical to
the DFT case. The only difference is that the start-
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FIG. 29 (Color online) Wannier-interpolated upper valence
and lower conduction bands of SrTiOs from LDA (solid red)
and GW (dashed blue) calculations. The open circles at the
symmetry points denote the exact GW results taken directly
from the first-principles calculation. From |Hamann and Van-|

bt (2009).

ing eigenenergies and overlaps matrices over the uniform
first-principles mesh are now calculated at the GW level.
(In the simplest GoW, approximation, where only the
eigenenergies, not the eigenfunctions, are corrected, the
wannierization is done at the DFT level, and the resulting
transformation matrices are then applied to the corrected
QP eigenenergies.)

Figure29shows a comparison between the interpolated
GW (dashed lines) and DFT-LDA (solid lines) bands of
SrTiO3 (Hamann and Vanderbilt, [2009). Note that the
dashed lines pass through the open circles at the symme-
try points, which denote exact (non-interpolated) GW
results.

Among the recent applications of the GW-+Wannier
method, we mention the study of the energy bands of zir-
con and hafnon (Shaltaf et al.,2009), and a detailed com-
parative study between the DFT-LDA, scissors-shifted,
and QP GoWy bands of Si and Ge nanowires
. In the latter study the authors found that
the simple scissors correction to the DFT-LDA bands
is accurate near the I' point only, and only for bands
close to the highest valence and lowest conduction band.
[Kioupakis et al| (2010) used the method to elucidate
the mechanisms responsible for free-carrier absorption in
GaN and in the Ing 25Gag 75N alloy. [Yazyev et al. (2012)
investigated the quasiparticle effects on the band struc-
ture of the topological insulators BisSes and BisTes, and
|Aberg et al. (2012) studied in detail the electronic struc-
ture of LaBrs.

4. Surface bands of topological insulators

Topological insulators (TIs) were briefly discussed in
Sec. [V.C4] (see [Hasan and Kane| (2010) and [Hasan and|
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non-magnetic variety, the Z;-odd TIs. The recent flurry
of activity on this class of materials has been sustained
in part by the experimental confirmation of the Zs-odd
character of certain quantum-well structures and of a
rapidly increasing number of bulk crystals.

In the case of 3D TTs, the clearest experimental sig-
nature of the Zs-odd character is at present provided
by ARPES measurements of the surface electron bands.
If time-reversal symmetry is preserved at the surface,
Z5-0odd materials possess topologically-protected surface
states which straddle the bulk gap, crossing the Fermi
level an odd number of times. These surface states
are doubly-degenerate at the time-reversal-invariant mo-
menta of the surface BZ, and in the vicinity thereof they
disperse linearly, forming Dirac cones.

First-principles calculations of the surface states for
known and candidate TI materials are obviously of
great interest for comparing with ARPES measurements.
While it is possible to carry out a direct first-principles
calculation for a thick slab in order to study the topolog-
ically protected surface states, as done by
(2010)), such an approach is computationally expensive.
[Zhang et al.| (2010) used a simplified Wannier-based ap-
proach which succeeds in capturing the essential features
of the topological surface states at a greatly reduced com-
putational cost. Their procedure is as follows. First, an
inexpensive calculation is done for the bulk crystal with-
out spin-orbit interaction. Next, disentangled WFs span-
ning the upper valence and low-lying conduction bands
are generated, and the corresponding TB Hamiltonian
matrix is constructed. The TB Hamiltonian is then aug-
mented with spin-orbit couplings AL -S, where ) is taken
from atomic data; this is possible because the WFs have
been constructed so as to have specified p-like charac-
ters. The augmented TB parameters are then used to
construct sufficiently thick free-standing “tight-binding
slabs” by a simple truncation of the effective TB model,
and the dispersion relation is efficiently calculated by in-
terpolation as a function of the wavevector k| in the sur-
face BZ.

It should be noted that this approach contains no
surface-specific information, being based exclusively on
the bulk WFs. Even if its accuracy is questionable, how-
ever, this method is useful for illustrating the “topolog-
ically protected” surface states that arise as a manifes-
tation of the bulk electronic structure (Hasan and Kane,
2010)

Instead of applying the naive truncation, it is possible
to refine the procedure so as to incorporate the changes
to the TB parameters near the surface. To do so, the
bulk calculation must now be complemented by a calcu-
lation on a thin slab, again followed by wannierization.
Upon aligning the on-site energies in the interior of this
slab to the bulk values, the changes to the TB param-
eters near the surface can be inferred. However,

Moore (2011)) for useful reviews). Here we focus on the

et al.| (2011b)) found that the topological surface states



FIG. 30 Wannier-interpolated energy bands of a free-standing
111) slab containing 25 quintuple layers of BisSes
, plotted along the I'-K line in the surface BZ.
A pair of topologically-protected surface bands can be seen
emerging from the dense set of projected valence and con-
duction bulk-like bands and crossing at the time-reversal-
invariant point T'. Adapted from Zhang et al.| (2010)).

are essentially the same with and without this surface
correction.

The truncated-slab approach was applied by
to the stoichiometric three-dimensional TIs
SboTes, BizSes, and BisTes. The calculations on BisSes
revealed the existence of a single Dirac cone at the T'
point as shown in Fig. in agreement with ARPES

measurements (Xia et al.l [2009)).

An alternative strategy for calculating the surface
bands was used earlier by the same authors
. Instead of explicitly diagonalizing the Wannier-
based Hamiltonian H (k) of a thick slab, the Green’s
function for the semi-infinite crystal as a function of
atomic plane is obtained via iterative methods (Lopez-
Sancho et all, [1984] [1985), using the approach of [Lee
et al.| (2005). Here the localized Wannier representa-
tion is used to break down the semi-infinite crystal into
a stack of “principal layers” consisting of a number of
atomic planes, such that only nearest-neighbor interac-
tions between principal layers exist (see Ch. for more
details).

Within each principal layer one forms, starting from
the fully-localized WFs, a set of hybrid WFs which are
extended (Bloch-like) along the surface but remain local-
ized (Wannier-like) in the surface-normal direction (see

Secs. and [V.B.2). This is achieved by carrying out

a partial Bloch sum over the in-plane lattice vectors,

k) = > e™I'RiRn), (103)

Ry

where [ labels the principal layer, k| is the in-plane
wavevector, and R is the in-plane component of R. The
matrix elements of the Green’s function in this basis are
1
e— H

Gﬁﬁ,(k“,e) = (k”ln| |k”l’n'>. (104)
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FIG. 31 (Color online) Surface density-of-states (SDOS) of
a semi-infinite crystal of SboTes terminated with a [111] sur-
face (Zhang et al [2009a). Warmer colors represent a higher
SDOS. The surface states can be clearly seen around I as red
lines dispersing in the bulk gap. From Zhang et al (2009a)).

The nearest-neighbor coupling between principal layers
means that for each k| the Hamiltonian has a block tri-
diagonal form (the dependence of the Hamiltonian ma-
trix on k| is given by the usual Fourier sum expression).
This feature can be exploited to calculate the diagonal el-
ements of the Green’s function matrix very efficiently us-
ing iterative schemes (Lopez-Sancho et al.l|1984 |1985[)|E|
From these, the density of states (DOS) projected onto
a given atomic plane P can be obtained(Grosso and Par-|

Favicind, 2000) as

1 o .
NP (kj,€) = ——Im > Gtk e+ in), (105)

neP

where the sum over n is restricted to the orbitals ascribed
to the chosen plane and 7 is a positive infinitesimal.
The projection of the DOS onto the outermost atomic
plane is shown in Fig. as a function of energy e and
momentum kj for the (111) surface of SbyTes. The same
method has been used to find the dispersion of the surface
bands in the TT alloy Biy_,Sb, (Zhang et al. [2009b) and
in ternary compounds with a honeycomb lattice (Zhang

2011D).

B. Band derivatives

The first and second derivatives of the energy eigenval-
ues with respect to k (band velocities and inverse effective
masses) appear in a variety of contexts, such as the cal-
culation of transport coefficients (Ashcroft and Mermin|

18 A pedagogical discussion, where a continued-fractions expansion
is used to evaluate the Green’s function of a semi-infinite linear

chain with nearest-neighbor interactions, is given by [Grosso and|
| Parravicini| (2000).




1976; |Grosso and Parravicini, 2000). There is therefore
considerable interest in developing simple and accurate
procedures for extracting these parameters from a first-
principles band structure calculation.

A direct numerical differentiation of the eigenenergies
calculated on a grid is cumbersome and becomes unre-
liable near band crossings. It is also very expensive if
a Brillouin zone integration is to be carried out, as in
transport calculations. A number of efficient interpola-
tion schemes, such as the method implemented in the
BoLTzTRAP package (Madsen and Singhl [2006), have
been developed for this purpose, but they are still prone
to numerical instabilities near band degeneracies (Uehara,
and T'sel[2000). Such instabilities can be avoided by using
a tight-binding parametrization to fit the first-principles
band structure (Mazin et al., 2000; |Schulz et all [1992]).
As shown by |Graf and Vogl| (1992)) and Boykin| (1995,
both the first and the second derivatives are easily com-
puted within tight-binding methods, even in the presence
of band degeneracies, and the same can be done in a first-
principles context using WFs.

Let us illustrate the procedure by calculating the band
gradient away from points of degeneracy; the treatment
of degeneracies and second derivatives is given in |Yates
et al| (2007). The first step is to take analytically the
derivative 9, = 0/0k,, of Eq. ,

HY, = 0.HY =Y ¢*®iR,(0|H[R). (106)
R

The actual band gradients are given by the diagonal ele-
ments of the rotated matrix,
Dofric = [UﬁHﬁYaUk} (107)
nn
where Uy is the same unitary matrix as in Eq. .

It is instructive to view the columns of Uy as or-
thonormal state vectors in the J-dimensional “tight-
binding space” defined by the WFs. According to
Eq. the n-th column vector, which we shall denote
by [|énk), satisfies the eigenvalue equation HY||¢ni) =

EnkllPnk). Armed with this insight, we now recognize
in Eq. (107) the Hellmann-Feynman result 0,€,x =

<<¢nk||60¢H ||¢nk>>

==

T4

1. Application to transport coefficients

Within the semiclassical theory of transport, the elec-
trical and thermal conductivities of metals and doped
semiconductors can be calculated from a knowledge of
the band derivatives and relaxation times 7, on the
Fermi surface. An example is the low-field Hall conduc-
tivity o4, of non-magnetic cubic metals, which in the con-
stant relaxation-time approximation is independent of 7
and takes the form of a Fermi-surface integral containing
the first and second band derivatives (Hurd\ [1972]).
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Previous first-principles calculations of ¢, using vari-
ous interpolation schemes encountered difficulties for ma-
terials such as Pd, where band crossings occur at the
Fermi level (Uehara and Tse| [2000). A Wannier-based
calculation free from such numerical instabilities was car-
ried out by [Yates et al| (2007), who obtained carefully-
converged values for 0., in Pd and other cubic metals.

A more general formalism to calculate the electrical
conductivity tensor in the presence of a uniform mag-
netic field involves integrating the equations of motion of
a wavepacket under the field to find its trajectory on the
Fermi surface (Ashcroft and Mermin| [1976]). A numer-
ical implementation of this approach starting from the
Wannier-interpolated first-principles bands was carried
out by |[Liu et alf(2009)). This formalism is not restricted
to cubic crystals, and the authors used it to calculate the
Hall conductivity of hep Mg (Liu et all 2009) and the
magnetoconductivity of MgBs (Yang et al.l 2008]).

Wannier interpolation has also been used to deter-
mine the Seebeck coefficient in hole-doped LaRhOg3
and CuRhOs (Usui et all [2009), in electron-doped
SrTiOs (Usui et al), 2010)), in SiGe nanowires (Shelley
and Mostofi, |2011)), and in ternary skutterudites (Volja
et al., |2011]).

C. Berry curvature and anomalous Hall conductivity

The velocity matrix elements between Bloch eigen-
states take the form (Blount) [1962)

<wnk‘hva|wmk> = 6nmaa6nk - i(emk - 6’rLk) [Ak,oc]nm P
(108)

where

[Ak,alpm = 1{tnk|Oatimi) (109)

is the matrix generalization of the Berry connection of
Eq. .

In the examples discussed in the previous section the
static transport coefficients could be calculated from the
first term in Eq. , the intraband velocity. The sec-
ond term describes vertical interband transitions, which
dominate the optical spectrum of crystals over a wide
frequency range. Interestingly, under certain conditions,
virtual interband transitions also contribute to the dc
Hall conductivity. This so-called anomalous Hall effect
occurs in ferromagnets from the combination of exchange
splitting and spin-orbit interaction. For a recent review,
see [Nagaosa et al.| (2010).

In the same way that WFs proved helpful for evaluat-
ing Okenk, they can be useful for calculating quantities
containing k-derivatives of the cell-periodic Bloch states,
such as the Berry connection of Eq. (L09). A number of
properties are naturally expressed in this form. In addi-
tion to the interband optical conductivity and the anoma-
lous Hall conductivity (AHC), other examples include the



electric polarization (Sec. as well as the orbital mag-
netization and magnetoelectric coupling (Sec. [V.C|).

Let us focus on the Berry curvature F,x [E]
quantity with profound effects on the dynamics of elec-
trons in crystals (Xiao et al.,2010). F,x can be nonzero
if either spatial inversion or time-reversal symmetries are
broken in the crystal, and when present acts as a kind
of “magnetic field” in k-space, with the Berry connec-
tion A,k playing the role of the vector potential. This
effective field gives rise to a Hall effect in ferromagnets
even in the absence of an actual applied B-field (hence
the name “anomalous”). The AHC is given by@

AH _i dk tot
2 @) e

ozB - h
where QtOtﬁ = > . fakQkap (fox is the Fermi-Dirac
distribution function), and we have rewritten the pseu-
dovector F,x as an antisymmetric tensor.

The interband character of the intrinsic AHC can be
seen by using k - p perturbation theory to write the k-
derivatives in Eq. (96]), leading to the “sum-over-states”
formula

(110)

Qtot — Z (fn Fn ) <¢n|hva|¢m><¢m‘hvﬁ|¢n>

op (Em - en)

. (111)

n,m

The AHC of bce Fe and SrRuOs was evaluated from
the previous two equations by |Yao et al. (2004) and
Fang et al.| (2003)) respectively. These pioneering first-
principles calculations revealed that in ferromagnetic
metals the Berry curvature displays strong and rapid
variations in k-space (Fig. . As a result, an ultra-
dense BZ mesh containing millions of k-points is often
needed in order to converge the calculation. This is the
kind of situation where the use of Wannier interpolation
can be most beneficial.

The strategy for interpolating the Berry curvature is
similar to that used in Sec. [VL.B] for the band gradient.
One first evaluates certain objects in the Wannier gauge
using Bloch sums, and then transform to the Hamilto-
nian gauge. Because the gauge transformation mixes the
bands, it is convenient to introduce a generalization of
Eq. having two band indices instead of one. To this
end we start from Eq. and define the matrices

Qag = 8QA5 — 85Aa = i<8au|8ﬁu> - i<85u|8au>7 (112)

where every object in this expression should consistently
carry either an H or W label. Provided that the cho-
sen WFs correctly span all occupied states, the inte-
grand of Eq. (110) can now be expressed as Qi) =

J H
Zn:l anaﬂ,nn'

19 BEquation gives the so-called “intrinsic” contribution to the
AHC, while the measured effect also contains “extrinsic” con-
tributions associated with scattering from impurities (Nagaosa
et al., [2010).

42

0.80

=1 \V\ g

L. Hﬂ

r H P N T H N T P N

=
[ —]
— |
—_—
™

Energy (Ry)

~
|~

2000 7

-Q)(K) (atomic units)
o

FIG. 32 Upper panel: band structure near the Fermi level of
bce Fe with the spontaneous magnetization along z. Lower
panel the Berry curvature summed over the occupied bands
[Eq. (ITI)], plotted along the same symmetry lines. The sharp
spikes occur when two spin-orbit-coupled bands are separated
by a small energy across the Fermi level, producing a reso-
nance enhancement. Adapted from |[Yao et al.| (2004]).

A useful expression for Qgﬁ can be obtained with the
help of the gauge-transformation law for the Bloch states,
lull) = |uV)Ux [Eq. (100)]. Differentiating both sides
with respect to k, and then inserting into Eq.
yields, after a few manipulations,

QSB = ﬁaﬂ - [DOHZ/@] + [DZ%ZQ} —1 [DOHDﬁ] ) (113)
where D, = U'9,U, and A, ﬁa[g are related to the
connection and curvature matrices in the Wannier gauge
through the definition 61( = U TOWUk Using the band-
diagonal elements of Eq. in the expression for Q{%
eventually leads to

fxoﬁt_z.fn aﬁnn+z

- Dﬁ,nmAa,mn + ZDa,anﬁ,mn) .

a nmAB,mn

(114)

This is the desired expression, which in the Wannier in-
terpolation scheme takes the place of the sum-over-states
formula. In contrast to Eq. , note that the summa-
tions over bands now run over the small set of Wannier-
projected bands. (Alternatively, it is possible to recast
Eq. in a manifestly gauge-invariant form such that
the trace can be carried out directly in the Wannier
gauge; this formulation was used by [Lopez et al.| (2012)
to compute both the AHC and the orbital magnetization
of ferromagnets.)

The basic ingredients going into Eq. are the Wan-
nier matrix elements of the Hamiltonian and of the posi-
tion operator. From a knowledge of (0|H|R) the energy



TABLE I Anomalous Hall conductivity in S/cm of the fer-
romagnetic transition metals, calculated from first-principles
with the magnetization along the respective easy axes. The
first two rows show values obtained using the Wannier in-
terpolation scheme to either integrate the Berry curvature
over the Fermi sea (see main text), or to evaluate the Berry
phases of planar loops around the Fermi surface (Wang et al.,
2007). Results obtained using the sum-over-states formula,
Eq. (111)), are included for comparison, as well as representa-
tive experimental values. Adapted from Wang et al.| (2007).

bce Fe fcc Ni hep Co
Berry curvature 753 —2203 477
Berry phase 750 —2275 478
Sum-over-states 751E| —207ﬂ 49ﬂ
Experiment 1032 —646 480

21Yao et al.| (2004).
b ¥ Yao, private communication.

eigenvalues and occupation factors, as well as the ma-
trices U and D,, can be found using band-structure in-
terpolation (Sec. . The information about AY and
QZ‘% is instead encoded in the matrix elements (O|r|R),
as can be seen by inverting Eq. ,

AY =" e R(0fra|R). (115)
R

As for 9%7 according to Eq. it is given by the curl
of this expression, which can be taken analytically.

The strategy outlined above was demonstrated by
Wang et al| (2006) in calculating the AHC of bcc Fe,
using the spinor WFs of Sec. Both the k-space
distribution of the Berry curvature and the integrated
AHC were found to be in excellent agreement with the
sum-over-states calculation of [Yao et al.| (2004).

Table [[ lists the AHC of the ferromagnetic transition
metal elements, calculated with the magnetization along
the respective easy axes. The magnetic anisotropy of the
AHC was investigated by Roman et al| (2009). While
the AHC of the cubic metals Fe and Ni is fairly isotropic,
that of hep Co was found to decrease by a factor of four as
the magnetization is rotated from the c-axis to the basal
plane. The Wannier method has also been used to calcu-
late the AHC in FePt and FePd ordered alloys (Seeman
et al.l [2009; Zhang et all 2011a), and the spin-Hall con-
ductivity in a number of metals (Freimuth et al., |2010]).

As already mentioned, for certain applications the
Berry connection matrix [Eq. ] is the object of direct
interest. The interpolation procedure described above
can be directly applied to the off-diagonal elements de-
scribing vertical interband transitions, and the magnetic
circular dichroism spectrum of bce Fe has been deter-
mined in this way (Yates et al.l 2007)).

The treatment of the diagonal elements of the Berry
connection matrix is more subtle, as they are locally
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gauge-dependent. Nevertheless, the Berry phase ob-
tained by integrating over a closed loop in k-space,
on = $ Api-dl, is gauge-invariant (Xiao et al.,[2010). Re-
calling that F,x = Vi x A,k [Eq. } and using Stokes’
theorem, Eq. for the AHC can be recast in terms
of the Berry phases of Fermi loops on planar slices of
the Fermi surface. This approach has been implemented
by |Wang et al.| (2007), using Wannier interpolation to
sample efficiently the orbits with the very high density
required near band-crossings. Table [[]lists values for the
AHC calculated using both the Berry curvature (“Fermi
sea”) and Berry-phase (“Fermi surface”) approaches.

It should be possible to devise similar Wannier inter-
polation strategies for other properties requiring dense
BZ sampling, such as the magnetic shielding tensors of
metals (d’Avezac et al.| 2007). In the following we dis-
cuss electron-phonon coupling, for which Wannier-based
methods have already proven to be of great utility.

D. Electron-phonon coupling

The electron-phonon interaction (Grimvall, |1981)
plays a key role in a number of phenomena, from su-
perconductivity to the resistivity of metals and the tem-
perature dependence of the optical spectra of semicon-
ductors. The matrix element for scattering an electron
from state 1k to state ¥, k+q While absorbing a phonon
qV is proportional to the electron-phonon vertex

gu,mn(ka q) = <'l/)m,k+q‘aquv|wnk>~

Here Oq, V is the derivative of the self-consistent potential
with respect to the amplitude of the phonon with branch
index v and momentum q. Evaluating this vertex is a key
task for a first-principles treatment of electron-phonon
couplings.

State-of-the-art calculations wusing first-principles
linear-response techniques (Baroni et al., 2001) have
been successfully applied to a number of problems,
starting with the works of [Savrasov et al| (1994]) and
Mauri et al.| (1996b), who used respectively the LMTO
and planewave pseudopotential methods. The cost of
evaluating Eq. from first-principles over a large
number of (k,q)-points is quite high, however, and this
has placed a serious limitation on the scope and accu-
racy of first-principles techniques for electron-phonon
problems.

The similarity between the Wannier interpolation of
energy bands and the Fourier interpolation of phonon
dispersions was already noted. It suggests the possibil-
ity of interpolating the electron-phonon vertex in both
the electron and the phonon momenta, once Eq.
has been calculated on a relatively coarse uniform (k, q)-
mesh. Different electron-phonon interpolation schemes
have been put forth in the literature (Calandra et al.l
2010} |[Eiguren and Ambrosch-Draxl, 2008} |Giustino et al.,

(116)



2007b)) In the following we describe the approach first
developed by |Giustino et al. (2007al) and implemented
in the software package EPW (Noffsinger et al., 2010).
To begin, let us set the notation for lattice dynam-
ics (Maradudin and Vosko, |1968). We write the instanta-
neous nuclear positions as R+7+ugs(t), where R is the
lattice vector, 75 is the equilibrium intracell coordinate
ofion s =1,...,p, and ugr,(¢) denotes the instantaneous
displacement. The normal modes of vibration take the
form

qv (t) _ ugyei(quwq,,t).

ul (117)

The eigenfrequencies wg, and mode amplitudes ug”
are obtained by diagonalizing the dynamical matrix
[Dph] , where o and 3 denote spatial directions. It is
expedlent to introduce composite indices p = (s, «) and

= (t,/), and write DB = for the dynamical matrix.

Qv
With this notation, the eigenvalue equation becomes

[eLDgheq] = 5#1,0.231,, (118)
where eq is a 3p x 3p unitary matrix. In analogy with
the tight-binding eigenvectors ||¢,x ) of Sec. we can
view the columns of eq,,,, as orthonormal phonon eigen-
vectors ed”. They are related to the complex phonon
amplitudes by u®” = (mg/m,)'/?e (my is a reference
mass), which we write in matrix form as U} ph
Returning to the electron-phonon vertex, Eq . we
can now write explicitly the quantity O,V therein as

0
an "

_ Z PSS 6R;

where Or,,V (r) is the derivative of the self-consistent po-
tential with respect to umso. As will be discussed in
Sec. [VIIT] it is possible to view these single-atom dis-
placements as maximally-localized “lattice Wannier func-
tions.” With this interpretation in mind we define the
Wannier-gauge counterpart of 0q, V (r) as

qu Z ¢ OR,,V (r),
related to the “eigenmode-gauge” quantity dq, V (r) by

=2 OV (UG

Next we introduce the Wannier-gauge vertex g,‘jv(k, q) =

(P, +q|8 V|V), which can be readily interpolated onto
an arbltrary point (k/,q’) using Eqgs. and ((120)),

gl (K q)= Y R0, |9p, VIR,
R.,R,

gV (r) = r; {R+ 7, +nug.})

119
Ut (119)

(120)

(121)

(122)
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FIG. 33 (Color online) Real-space representation of
(0¢|0r, . V|Re), the electron-phonon vertex in the Wannier
basis. The black squares denote the crystal lattice, the blue
lines the electron Wannier functions |0.) and |R)e, and the
red line the phonon perturbation in the lattice Wannier rep-
resentation, Or,V(r). Whenever two of these functions are
centered on distant unit cells, the vertex becomes vanishingly
small. From |Giustino et al.| (2007a).

The object (0.|0r,.V|Re), the electron-phonon vertex
in the Wannier representation, is depicted schematically
in Fig. Its localization in real-space ensures that
Eq. moothly interpolates gV in the electron and
phonon momenta. Finally, we transform the interpolated
vertex back to the Hamiltonian/eigenmode gauge,

Q:Iz{(k/7ql) = <¢E’+q’|aq’vvwllj’>
h 123
k'+q [Zgu (k',q Ué) m/] Uw, (123)

where we used Egs. and .

Once the matrix elements (0c|0r, . V|Re) are known,
the electron-phonon vertex can be evaluated at arbitrary
(k’,q’) from the previous two equations. The procedure
for evaluating those matrix elements is similar to that
leading up to Eq. for (0|H|R): invert Eq. (122))
over the first-principles mesh, and then use Eqs. (102))
and .

The above interpolation scheme has been applied to
a number of problems, including the estimation of T,
in superconductors (Giustino et all [2007b; Noffsinger
et all [2008] |2009); the phonon renormalization of en-
ergy bands near the Fermi level in graphene (Park et al.,
2007) and copper oxide superconductors (Giustino et al.,
2008); the phonon renormalization of the band gap of
diamond (Giustino et al) [2010); the vibrational life-
times (Park et al) 2008) and electron linewidths (Park
et al.,|2009) arising from electron-phonon interactions in
graphene; and the phonon-assisted optical absorption in
silicon (Noffsinger et al.l [2012) (in this last application
both the velocity and the electron-phonon matrix ele-
ments were treated by Wannier interpolation).

We mention in closing the work of |Calandra et al.



(2010), where the linear-response calculation of the de-
formation potential Oq, V is carried out taking into ac-
count nonadiabatic effects (that is, going beyond the
usual approximation of static ionic displacements). Us-
ing the electron-phonon interpolation scheme of |Giustino
et al.|(2007a) to perform the BZ integrations, and a Wan-
nier interpolation of the dynamical matrix to capture
Kohn anomalies, the authors found significant nonadia-
batic corrections to the phonon frequencies and electron-
phonon coupling matrix elements in MgB, and CaCg.

VIl. WANNIER FUNCTIONS AS BASIS FUNCTIONS

In Ch. [VI, we described the use of Wannier functions
as a compact tight-binding basis that represents a given
set of energy bands exactly, and that can be used to cal-
culate a variety of properties efficiently, and with very
high accuracy. This is possible because (a) WFs and
bands are related by unitary transformations, and (b)
WF's are sufficiently localized that any resulting tight-
binding representation may be truncated with little loss
of accuracy. In this Chapter, we review two further gen-
eral approaches to the use of WFs as optimal and com-
pact basis functions for electronic-structure calculations
that exploit their localization and transferability.

The first category includes methods in which WFs are
used to go up in the length scale of the simulations, using
the results of electronic-structure calculations on small
systems in order to construct accurate models of larger,
often meso-scale, systems. Examples include using WFs
to construct tight-binding Hamiltonians for large, struc-
turally complex nanostructures (in particular for study-
ing quantum transport properties), to parametrize semi-
empirical force-fields, and to improve the system-size
scaling of quantum Monte Carlo (QMC) and GW calcu-
lations, and the evaluation of exact-exchange integrals.

The second category includes methods in which WFs
are used to identify and focus on a desired, physically rel-
evant subspace of the electronic degrees of freedom that
is singled out (“downfolded”) for further detailed anal-
ysis or special treatment with a more accurate level of
electronic structure theory, an approach that is particu-
larly suited to the study of strongly-correlated electron
systems, such as materials containing transition metal,
lanthanoid, or even actinoid ions.

A. WFs as a basis for large-scale calculations

Some of the first works on linear-scaling electronic
structure algorithms (Baroni and Giannozzi, [1992; |Galli
and Parrinello [1992; |Hierse and Stechel, [1994; [Yang,
1991) highlighted the connection between locality in elec-
tronic structure, which underpins linear-scaling algo-
rithms (Sec.[[ILD)), and the transferability of information
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across length-scales. In particular, Hierse and Stechel
(1994) considered explicitly two large systems A and B,
different globally but which have a certain similar local
feature, such as a particular chemical functionalization
and its associated local environment, which we will call
C. They argued that the local electronic structure infor-
mation associated with C should be similar whether cal-
culated from system A or system B and, therefore, that
it should be possible to transfer this information from a
calculation on A in order to construct a very good ap-
proximation to the electronic structure in the locality of
feature C in system B. In this way, large computational
savings could be made on the self-consistency cycle, en-
abling larger-scale calculations.

The units of electronic structure information that
Hierse and Stechel| (1994) used were localized non-
orthogonal orbitals, optimized in order to variationally
minimize the total energy of the system. These orbitals
are also referred to in the literature as “support func-
tions” (Hernandez and Gillan) [1995) or “non-orthogonal
generalized Wannier functions” (Skylaris et al.l 2002).

1. MLWFs as electronic-structure building blocks

Since MLWFs encode chemically accurate, local (and
thus transferable) information, they can act as building
blocks to construct the electronic structure of very large-
scale systems (Lee et al., [2005). In this approach the
Hamiltonian matrix of a large nanostructure for which a
full, conventional DFT calculation would be intractable,
is built using first-principles calculations performed on
smaller, typically periodic fragments. The matrix ele-
ments in the basis of MLWF's that are obtained from the
calculations on the fragments can be used to construct
the entire Hamiltonian matrix of the desired system, with
the size of the fragments a systematically controllable de-
terminant of the accuracy of the method (Shelley et al.,
2011). Such an approach has been applied to complex
systems containing tens of thousands of atoms (Cantele
et al.,2009; Lee and Marzari, 2006; Li and Marzaril, 2011
Li et al., 2011} Shelley and Mostofi, 2011} [Shelley et al.
2011)).

An issue that arises when combining matrix elements
from more than one DFT calculation into a single tight-
binding Hamiltonian is that a common reference poten-
tial must be defined. For example, consider combining
the results of a calculation on a perfect bulk material
and one on the same material with an isolated structural
defect. In the latter case, the diagonal (on-site) matrix
elements (w,|H |w,) in the system with the defect should
converge to the same value as those in the pristine sys-
tem as one goes further away from the location of the de-
fect. With periodic boundary conditions, however, this
is not guaranteed: the difference between the matrix ele-
ments in the respective calculations will, in general, tend
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FIG. 34 Top: Illustration of the lead-conductor-lead geome-
try used in quantum transport calculations. The conductor
(C), left lead (L) and right lead (R) are described by Hamil-
tonians Hc, Hr, and Hpg, respectively. The coupling between
adjacent regions is described by matrices hrc and hcr. Bot-
tom: The leads are split into principal layers corresponding
to the sub-matrices in Eq. . From |Shelley et al.| (2011).

to a non-zero constant, this being the difference in ref-
erence potential between the two calculations. In other
words, the difference in value between the on-site matrix
elements from the bulk calculation and those from the
calculation with the defect, but far away from the loca-
tion of the defect, give a direct measure of the potential
offset between the two calculations. This offset can then
be used to align all of the diagonal matrix elements from
one calculation with those of the other, prior to them be-
ing combined in a tight-binding Hamiltonian for a larger
nanostructure. The potential alignment approach de-
scribed above has been used for transport calculations
(see next subsection), and for the determination of band
offsets and Schottky barriers (Singh-Miller, [2009), for cal-
culating formation energies of point defects (Corsetti and
Mostofi, [2011)), and for developing tight-binding models
of the surfaces of topological insulators (Zhang et al.,
2010) (see Sec. [VL.A4).

Last, it should be noted that charge self-consistency
could play an important role when trying to build the
electronic structure of large or complex nanostructures,
and one might have to resort to more sophisticated ap-
proaches. As a suggestion, electrostatic consistency could
be attained solving the Poisson equation for the entire
system (Léonard and Tersoff] [1999), then using the up-
dated electrostatic potential to shift appropriately the
diagonal elements of the Hamiltonian. In a more general
fashion, the electronic charge density and the Hartree and
exchange-correlation potentials could be updated and op-
timized self-consistently in a basis of disentangled, frozen
MLWPFs, using a generalized occupation matrix (Marzari
et al.l (1997).

2. Quantum transport

A local representation of electronic structure is partic-
ularly suited to the study of quantum transport, as we
illustrate here in the case of quasi-one-dimensional sys-
tems. We consider a system composed of a conductor C'
connected to two semi-infinite leads, R and L, as shown

46

in Fig. The conductance G through a region of in-
teracting electrons is related to the scattering properties
of the region itself via the Landauer formula (Landauer,
1970)

2¢?

G(F) = =T (E), (124)
where the transmission function 7 (FE) is the probabil-
ity that an electron with energy F injected at one end
of the conductor will transmit to the other end. This
transmission function can be expressed in terms of the
Green’s functions of the conductors and the coupling of

the conductor to the leads (Dattal [1995} |[Fisher and Leel
1981)),

T(E) =Tr(T'LGETrRGE), (125)
where Gg’a} are the retarded (r) and advanced (a)
Green’s functions of the conductor, and I'y gy are func-
tions that describe the coupling of the conductor to the
left (L) and right (R) leads. Since G® = (G™)T, we con-
sider G" only and drop the superscript.

Expressing the Hamiltonian H of the system in terms
of a localized, real-space basis set enables it to be par-
titioned without ambiguity into sub-matrices that cor-
respond to the individual subsystems. A concept that
is particularly useful is that of a principal layer (Lee
and Joannopoulos| [1981) (PL), which is a section of
lead that is sufficiently long such that (x}'[H|x}") ~ 0 if
|m —n| > 2, where H is the Hamiltonian operator of the
entire system and |x?) is the i*! basis function in the n'®
PL. Truncating the matrix elements of the Hamiltonian
in this way incurs a small error which is systematically
controlled by increasing the size of the PL. The Hamil-
tonian matrix in this basis then takes the block diagonal

form (see also Fig.

H® HO° 0o 0 0
HY HO b 0 0
H = 0 h}/C Hc hCR 0
0 0 hbp HY HY ..
0 0 HY HY ...

, (126)

o

where H¢ represents the Hamiltonian matrix of the con-
ductor region, H® and HY are those of each PL of the
left and right leads, respectively, H}? and HY' are cou-
plings between adjacent PLs of lead, and hyc and heog
give the coupling between the conductor and the leads.

In order to compute the Green’s function of the con-
ductor one starts from the equation satisfied by the
Green’s function G of the whole system,

(e— H)G =1 (127)



where I is the identity matrix, and € = E + in, where n
is an arbitrarily small, real constant.

From Egs. (127) and (126]), it can be shown that the
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2011)), as well as more methodological work on

improving the description of electron correlations within
this formalism (Bonferroni et all, 2008} [Calzolari et al.

Green’s function of the conductor is then given by (Datta,

[2007} [Ferretti et al.) |2005b.

1995)

Go=(e—Ho—%, —Xp)7 !, (128)
where we define X, = hzchth and Xp = ththTRC,
the self-energy terms due to the semi-infinite leads, and
gir.ry = (e — H{L,R})_l, the surface Green’s functions
of the leads.

The self-energy terms can be viewed as effective Hamil-
tonians that arise from the coupling of the conductor
with the leads. Once the Green’s functions of the leads
are known, the coupling functions 'y, gy can be easily

obtained as 1995)

Cirry = i[EEL,R} - E?L,R}]v (129)

where X¢; 5y = (ZEL’R})T.

As for the surface Green’s functions g;r, g of the semi-
infinite leads, it is well-known that any solid (or surface)
can be viewed as an infinite (semi-infinite in the case of
surfaces) stack of principal layers with nearest-neighbor
interactions (Lee and Joannopoulos, [1981). This corre-
sponds to transforming the original system into a lin-
ear chain of PLs. Within this approach, the matrix el-
ements of Eq. between layer orbitals will yield a
set of coupled equations for the Green’s functions which
can be solved using an efficient iterative scheme due to
[Lopez-Sancho et al (1984} [1985). Knowledge of the fi-
nite Hamiltonian sub-matrices in Eq. , therefore, is
sufficient to calculate the conductance of the open lead-
conductor-lead system given by Eq. .

There are a number of possibilities for the choice of
localized basis |x). Early work used model tight-binding
Hamiltonians (Anantram and Govindan, [1998; |Chicol
let al.,[1996}; Nardelli, [1999} Saito et al.|1996), but the in-
creasing sophistication of computational methods meant
that more realistic first-principles approaches could be
adopted (Buongiorno Nardelli et al.,|2001; Fattebert and|
Buongiorno Nardelli, 2003). Maximally-localized Wan-
nier functions were first used in this context by [Calzolari|
(2004), who studied Al and C chains and a (5,0)

carbon nanotube with a single Si substitutional defect,
and by 7 who studied covalent function-
alizations of metallic nanotubes - capabilities now en-
coded in the open-source packages Wannier90
and WanT (Ferretti et al) 2005a). This was
quickly followed by a number of applications to ever more
realistic systems, studying transport through molecular
junctions (Strange et al), [2008; [Thygesen and Jacob-|
2005), decorated carbon nanotubes and nanorib-
bons (Cantele et all 2009; [Lee and Marzari, 2006} Li
et al 2011} Rasuli et al.,2010), organic monolayers (Bon-
ferroni et al.l 2008), and silicon nanowires (Shelley and

The formulation described above relies on a localized
description of the electronic-structure problem, and it
should be noted that several approaches to calculating
electronic transport properties have been developed us-
ing localized basis sets rather than MLWFs, ranging from
Gaussians (Hod et all], [2006) to numerical atomic or-
bitals (Brandbyge et al 2002} [Markussen et al., [2006}
[Rocha et all, 2008]).

In addition, in the Keldysh formalism one can add
more complex interaction terms to the self-energies,
such as electron-phonon or (for molecular conductors)
electron-vibration interactions (Frederiksen et al., [2007]).
These latter can also be conveniently expressed in a ML-
WF's representation, and a natural extension of the previ-
ous quantum-transport formalism to the case of inelastic
scattering channels due to electron-vibration interactions
has recently been developed in a MLWF's basis (Kim and|

Marzari, 072).

3. Semi-empirical potentials

First-principles molecular dynamics simulations of
large-scale (thousands of atoms) systems for long
(nanoseconds) time-scales are computationally costly, if
not intractable. Molecular dynamics simulations with
empirical interatomic potentials are a feasible alternative
and there is an ongoing effort in developing potentials
that are more accurate, more transferable and, therefore,
more predictive. One approach in this direction is to fit
the parameters that appear within empirical potentials
so that they reproduce target properties, such as forces
and stresses, obtained from accurate DFT calculations
on a large number of atomic configurations
land Adams| [1994). In the particular class of ionic con-
densed matter systems, e.g., first and second row metal
oxides, it is well-known that the electronic properties of
an ion can be significantly affected by its coordination
environment and, therefore, that it is also important to
include an accurate description of polarization effects in
any interatomic potential. While simple potentials may
attempt to account for these many-body effects in an av-
erage manner, the result is that the potential loses trans-
ferability and, hence, predictive power. As a result, there
has been some effort in developing potentials such that
they are also fitted to information from DFT calculations
regarding the electron distribution around each ion, in
particular, dipoles and quadrupoles.

In this vein, [Aguado et al] (2003a)) introduced the use
of MLWFs in order to calculate dipole and quadrupole
moments in MgO and used these to construct an in-
teratomic potential based on the aspherical ion method




(AIM) potential (Rowley et all/1998). In an ionic system
such as this, MLWFs are found to be well-localized close
to the ions and each can therefore be associated unam-
biguously with a particular ion. The dipole moment p’
of each ion I is then calculated as

,U/i = _227777,04 + ZIR(IM
nel

(130)

where « is a Cartesian component, Z; is the charge of
ion I at position Ry, 7pe is the center of the nt® MLWF
and is given by Eq. or Eq. , and the factor of
two accounts for spin degeneracy.

For the quadrupole moments %B’ the fact that the
MLWFs are localized within the simulation cell is ex-
ploited in order to explicitly compute the real-space in-
tegral

0l = _22/ dr |w,(v)* [3rleh — (r7)2645] /2,
nel v

(131)
where r/ = r — R!, and the integral is performed over a
sphere V!, centered on R!, such that the integral of the
electron density associated with the MLWEF within this
sphere is greater than some threshold. The potential ob-
tained exhibits good transferability and the method has
been used to parametrize similar potentials for other al-
kaline earth oxides (Aguado et al., 2003b), Al,O3 (Jahn
et al) 2006), and the CaO-MgO-Al;03-SiO2 (CMAS)
mineral system (Jahn and Madden) [2007).

The use of MLWF's for attempting to obtain better in-
teratomic potentials has not been limited to the solid
state. In biomolecular simulations, an important fac-
tor in developing accurate force-fields is having an ac-
curate description of the electrostatic potential. Starting
from DFT calculations on isolated molecules, [Sagui et al.
(2004)) partition the electronic charge density into contri-
butions from individual MLWFs and calculate the multi-
poles of each using an order-by-order expansion of gauge-
invariant cumulants (Restay, 1998} [Souza et al.,{2000) (the
reader is referred to [Sagui et al| (2004) for full details).
Using fast particle mesh Ewald and multigrid methods,
these multipoles can then be used to generate the elec-
trostatic potential. Sagui et al|(2004) show that higher
order multipoles, e.g., up to hexadecapole, may be in-
corporated without computational or numerical difficulty
and that agreement with the ‘exact’ potential obtained
from DFT is very good. The idea of partitioning the
charge density according to individual MLWFs was also
employed by |Kirchner and Hutter| (2004) in order to
determine atomic charges in dimethyl sulfoxide, show-
ing that there can be significant deviations between the
gaseous and aqueous forms and, therefore, underlining
the importance of using polarizable force-fields for de-
scribing solvated systems.

Finally, we note that recently |Rotenberg et al.| (2010)
have proposed force-fields whose parametrization is based
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entirely on a partitioning of the electronic density in
terms of MLWFs. Their method has been applied suc-
cessfully to water and molten salts. It remains to be seen
whether the approach is extensible to more complex or
anisotropic systems.

4. Improving system-size scaling

The localized nature of MLWFs in real-space makes
them a natural and appealing choice of basis for elec-
tronic structure calculations as the sparsity exhibited by
operators that are represented in a localized basis may
be exploited in order to achieve computational efficien-
cies and improved scaling of numerical algorithms with
respect to system size. Recently, therefore, MLWF's have
been used for this very purpose in a number of contexts
and we mention, in brief, some of them here.

In quantum Monte Carlo (QMC) calculations (Foulkes
et al) [2001), a significant computational effort is ex-
pended in evaluating the Slater determinant for a given
electronic configuration of N electrons. These Slater
determinants are usually constructed from a set of ex-
tended single-particle states, obtained from, e.g., a DF'T
or Hartree-Fock calculation, represented in a basis set of,
e.g., extended plane-waves. This gives rise to O(N?) scal-
ing of the computational cost of evaluating such a deter-
minant. Williamson et al.| (2001]) suggested, instead, to
use MLWFs that were smoothly truncated to zero beyond
a certain cut-off radius that is independent of system size.
This ensures that each electron falls only within the local-
ization region of a fixed number of MLWFs, thus reduc-
ing the asymptotic scaling by one factor of N. Further-
more, by representing the MLWFs in a basis of localized
spline functions, rather than plane-waves or even Gaus-
sian functions, the evaluation of each orbital is rendered
independent of system size, thereby reducing the overall
cost of computing the determinant of the given config-
uration to O(N). More recently, rather than truncated
MLWFs, the use of non-orthogonal orbitals obtained by
projection (Reboredo and Williamson, 2005|) or other lo-
calization criteria (Alfe and Gillan) [2004) has also been
suggested.

In another development, Wu et al| (2009) use ML-
WFs in order to compute efficiently Hartree-Fock
exact-exchange integrals in extended systems. Hybrid
exchange-and-correlation functionals (Becke, {1993) for
DFT calculations, in which some proportion of Hartree-
Fock exchange is included in order to alleviate the well-
known problem of self-interaction that exists in local and
semi-local functionals such as the local-density approxi-
mation and its generalized gradient-dependent variants,
have been used relatively little in extended systems. This
is predominantly due to the computational cost associ-
ated with evaluating the exchange integrals between ex-
tended eigenstates that are represented in a plane-wave



basis set. |Wu et al| (2009) show that by performing a
unitary transformation of the eigenstates to a basis of
MLWFs, and working in real-space in order to exploit
the fact that spatially distant MLWFs have exponen-
tially vanishing overlap, the number of such overlaps that
needs to be calculated scales linearly, in the limit of large
system-size, with the number of orbitals (as opposed to
quadratically), which is a sufficient improvement to en-
able Car-Parrinello molecular dynamics simulations with
hybrid functionals.

Similar ideas that exploit the locality of MLWFs have
been applied to many-body perturbation theory ap-
proaches for going beyond DFT and Hartree-Fock cal-
culations, for example, in the contexts of the GW ap-
proximation (Umari et al., [2009), the evaluation of local
correlation in extended systems (Buth et al., [2005; |Pisani
et all, [2005), and the Bethe-Salpeter equation (Sasioglu
et al.,|2010). The improved scaling and efficiency of these
approaches open the possibility of such calculations on
larger systems than previously accessible.

Finally, we note that MLWF's have been used recently
to compute van der Waals (vdW) interactions in an ap-
proximate but efficient manner (Andrinopoulos et al.,
2011} |Silvestrelli, 2008l [2009b). The method is based
on an expression due to |Andersson et al.| (1996) for the
vdW energy in terms of pairwise interactions between
fragments of charge density. MLWFs provide a localized
decomposition of the electronic charge density of a sys-
tem and can be used as the basis for computing the vdW
contribution to the total energy in a post-processing (i.e.,
non-self-consistent) fashion. In order to render tractable
the necessary multi-dimensional integrals, the true ML-
WFs of the system are substituted by analytic hydrogenic
orbitals that have the same centers and spreads as the
true MLWFs. The approach has been applied to a vari-
ety of systems, including molecular dimers, molecules ph-
ysisorbed on surfaces, water clusters and weakly-bound
solids (Andrinopoulos et al., 2011}; |Espejo et al., 2012;
Silvestrelli, 2008, |2009allb; [Silvestrelli et al., |2009). Re-
cently, |Ambrosetti and Silvestrelli| (2012)) have suggested
an alternative, simpler formulation that is based on Lon-
don’s expression for the van der Waals energy of two
interacting atoms ([Eisenschitz and London, [1930]).

B. WFs as a basis for strongly-correlated systems

For many strongly-correlated electron problems, the
essential physics of the system can be explained by con-
sidering only a subset of the electronic states. A re-
cent example is understanding the behavior of unconven-
tional (high-Tt.) superconductors, in which a great deal
of insight can be gained by considering only the ML-
WFs of p and d character on Cu and O, respectively,
for cuprates (Sakakibara et al. [2010]), and those on As
and Fe, respectively, for the iron pnictides (Cao et al.l
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2008; [Hu and Hul 2010; Kuroki et al.,|2008; \Suzuki et al.,
2011)). Other strongly-correlated materials for which MT.-
WF's have been used to construct minimal models to
help understand the physics include manganites (Kovacik
and Ederer, 2010), topological insulators (Zhang et al.,
2009alb) (see also Sec. 7 and polyphenylene viny-
lene (PPV), in particular relating to electron-hole exci-
tations (Karabunarliev and Bittner, [2003alb).

Below we outline some of the general principles behind
the construction and solution of such minimal models.

1. First-principles model Hamiltonians

Consider a strongly-correlated electron system de-

scribed by a Hamiltonian of the form

H = Hy + Hiy, (132)

where ﬁo contains the one-particle terms and ﬁim the

interaction (e.g., Coulomb repulsion) terms. In second-

quantized notation and expressed in terms of a complete
tight-binding basis, this may be expressed as

ij R,R/

1 7 2 nr
RR'R"R /\T /\T ~ ~
+ B E E ikl CRCjR/ CKR CIR" 5
ijkl RR'R'R"

(133)

where R labels the correlated site, lower-case indices
(such as ¢ and j) refer to the orbital and spin degrees
of freedom, é;rR (¢;m) creates (annihilates) an electron in
the orbital w;r(r), and h and U contain the matrix el-
ements of the single-particle and (screened) interaction
parts of the Hamiltonian, respectively.

Usually, a complete tight-binding representation of all
the states of the system is not required, and the essential
physics can be described by a smaller set of physically
relevant orbitals. For example, those states close to the
Fermi level, or those of a particularly symmetry, or those
localized on specific sites, may be sufficient. In this way,
the size of the basis used to represent the many-body
Hamiltonian is greatly reduced, rendering Eq. more
amenable to solution (see, e.g., Solovyev| (2008)).

In this spirit, MLWFs obtained from DFT calculations
have been used as the orbital basis for these minimal
modelsm Advantages of using MLWFs include the fact
that they can be chosen to span precisely the required
energy range (using the disentanglement procedure out-
lined in Sec. [[LL2)), and that they naturally incorporate

20 An alternative approach is to obtain the orbitals via the down-
folding method, discussed in Ch. m



hybridization and bonding appropriate to their local en-
vironment.

The single-particle hopping parameters of the model
Hamiltonian are obtained easily from the matrix ele-
ments of the DFT Hamiltonian represented in the ba-
sis of MLWFs, using Eq. . The interaction pa-
rameters of the model Hamiltonian can be calculated,
for example, from either constrained DFT (Anisimov,
et all,[1991} [Dederichs et all,[1984; [McMahan et al) [1990;
Nakamura et al., 2006), within the random phase ap-
proximation (Aryasetiawan et all 2004; Miyake et al.,
2009} [Solovyev and Imadal, [2005} [Springer and Aryase-|
tiawan, [1998), or by direct calculation of the matrix
elements of a suitable screened Coulomb interaction be-
tween, for example, MLWFs (Miyake et all, 2006; [Naka-|
mura et al., 2006). It is interesting to note that numer-
ical evidence suggests that on-site Coulomb interactions
(both screened and bare), are maximized when calcu-
lated with a basis of MLWFs (Miyake and Aryasetiawan),
and, therefore, that MLWFs may be an optimally
localized basis for this purpose. This is perhaps not sur-
prising given the broad similarities between MLWF's and
WFs obtained via the Edmiston-Ruedenberg localization
scheme (Edmiston and Ruedenberg), [1963), discussed in
Sec. [IT-A] which maximizes the electronic Coulomb self-
interaction of each orbital.

Once the parameters of the model have been deter-
mined, the model Hamiltonian is then said to be “from
first-principles”, in the sense that the parameters of the
model are determined from DFT rather than by fitting to
experiments. The many-body Hamiltonian in the mini-
mal basis of MLWFs may be then solved by direct di-
agonalization, or one of a number of other approaches
that are too numerous to review here but which include,
for example, the dynamical mean-field theory (DMFT)
approach. DMFT maps the many-body problem on to
an Anderson impurity model in which
on-site correlation is treated non-perturbatively and the
correlated sites are coupled to a self-consistent energy
bath that represents the rest of the system. The impu-
rity sites, also known as the “correlated subspaces”, are
defined by localized projector functions and MLWFs are
a common choice (Lechermann et al) 2006; [Trimarchi|
let al., |2008; Weber et al.,|2010). In particular, one would
typically choose orbitals of d or f character associated
with transition metal, lanthanoid or actinoid ions. The
Green’s function for the impurity site is calculated self-
consistently, for example, by a numerical functional in-
tegration (which constitutes the bulk of the computa-
tion). Further self-consistency with the DFT ground-
state may also be attained by using the solution to the
impurity problem to update the electronic density that is
then used to construct an updated Kohn-Sham potential,
which determines a new set of eigenstates, MLWFs and,
hence, model Hamiltonian parameters that can then be
fed back in to the DMFT cycle. The reader is referred
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to [Kotliar et al| (2006)) and [Held| (2007) for further de-
tails; other examples that use localized Wannier functions
or generalized tight-binding models to address correlated
electrons problems can be found in|Amadon et al.| (2008));
|Anisimov et al.| (2005); [Held et al.|(2008)); Korotin et al.|
(2008); | Korshunov et al (2005); and Ku et al.| (2002)).

2. Self-interaction and DFT + Hubbard U

In the approaches just described, the results of a DFT
calculation are used to parametrize the model Hamilto-
nian of a strongly correlated electron system. In contrast,
in a DFT+U formulation (Anisimov et al., [1993] [1991)
the energy functional is explicitly augmented with a Hub-
bard term U aimed at improving the de-
scription of strong interactions, such as those associated
with localized d and f electronic states, and at repair-
ing the mean-field underestimation of on-site Coulomb
repulsions.

In DFTH4U the Hubbard manifold is defined by a set of
projectors that are typically atomic-like orbitals of d or f
character. Localization of this manifold plays a key role,
since DFT+U effectively corrects for the lack of piecewise
linearity in approximate energy functionals (Cococcioni
land de Gironcoli, 2005; Perdew et al) [1982) and thus
greatly reduces self-interaction errors (Kulik et al., 2006;
[Mori-Sanchez et all [2008; [Perdew and Zunger| [1981)).
Since strongly localized orbitals are those that suffer most
from self-interaction, MLWFs can become an appealing
choice to define Hubbard manifolds adapted to the chem-
istry of the local environment. In fact, MLWFs have
been successfully used as Hubbard projectors (Anisimov
et all Fabris et all [2005; [Miyake and Aryaseti-
awan[, , and it has been argued that their shape can
constitute an additional degree of freedom in the calcu-
lations (O’Regan et all 2010), provided their localized,
atomic character is maintained. It should also be pointed
out that the value of U entering the calculations should
not be considered universal, as it depends strongly on
the manifold chosen (e.g. for pseudopotential calcula-
tions on the oxidation state of the reference atomic cal-
culation (Kulik and Marzari, 2008)), or on the structure
or electronic-structure of the problem studied.

Last, it should be pointed out that functionals that
aim to correct directly for some effects of self-interaction
— such as the Perdew-Zunger correction (Perdew and

ZungerL 1981)) or Koopmans-compliant functionals (Dabo
et al.|, 2010) — can lead naturally in a periodic system to
Wannier-like localized orbitals that minimize the total

energy (Park et al) [2011} |Stengel and Spaldin, [2008)),
while the canonical orbitals that diagonalize the Hamil-
tonian still preserve Bloch periodicity.




VIilIl. WANNIER FUNCTIONS IN OTHER CONTEXTS

As described in Sec. [[I.A] Wannier functions provide an
alternative, localized, description of a manifold of states
spanned by the eigenstates (energy bands) of a single-
particle Hamiltonian that describes electrons in a peri-
odic potential. The equivalence of the Wannier repre-
sentation and the eigenstate representation may be ex-
pressed in terms of the band projection operator P, see
Eq. . This operator satisfies the idempotency con-
dition P? = P, which embodies simultaneously the re-
quirements of orthogonality and Pauli exclusion.

From their conception, and until relatively recently,
Wannier functions have been used almost exclusively in
this context, namely to represent a manifold of single-
particle orbitals for electrons. Furthermore, as discussed
in Sec. [l we need not restrict ourselves to an isolated
group of states, such as the occupied manifold: the dis-
entanglement procedure enables a subspace of a larger
manifold, e.g., of occupied and unoccupied states, to be
selected which may then be wannierized. This has, for
example, opened up areas of application in which Wan-
nier functions are used as tight-binding basis functions
for electronic structure and transport calculations, as de-

scribed in Sec. [VI and Sec. [VIIl

From a general mathematical point of view, however,
the set of orthogonal eigenfunctions of any self-adjoint
(Hermitian) operator may be “rotated” by unitary trans-
formation to another orthogonal basis that spans the
same space. As we have seen, the unitary transforma-
tion is arbitrary and may be chosen to render the new
basis set maximally-localized, which has computational
advantages when it comes to representing physical quan-
tities that are short-ranged. When the operator in ques-
tion has translational symmetry, the maximally-localized
functions thus obtained are reminiscent of the Wannier
functions familiar from electronic structure theory. Of-
ten, such a basis is also preferable to using another local-
ized basis because information regarding the symmetries
of the self-adjoint operator from which the basis is de-
rived is encoded within it.

These ideas have led to the appropriation of the MLWF
formalism described in Sec. [l for contexts other than
the description of electrons: the single-particle electronic
Hamiltonian is replaced by another suitable periodic self-
adjoint operator, and the Bloch eigenstates are replaced
by the eigenfunctions of that operator, which may then
be transformed to give a MLWF-like representation that
may be used as an optimal and compact basis for the de-
sired calculation, for example, to analyze the eigenmodes
of the static dielectric matrix in ice and liquid water (Lu
et al.l [2008)).

Below we review the three most prominent of these
applications, namely to the study of phonons, photonic
crystals, and cold atom lattices.

o1

A. Phonons

Lattice vibrations in periodic crystals are usually de-
scribed in terms of normal modes, which constitute a
delocalized orthonormal basis for the space of vibra-
tions of the lattice such that an arbitrary displace-
ment of the atoms in the crystal may be expressed
in terms of a linear combination of its normal modes.
By analogy with the electronic case, [Kohn| (1973) first
showed (for isolated phonon branches in one dimen-
sion) that a similar approach could be used for con-
structing a localized orthonormal basis for lattice vibra-
tions that span the same space as the delocalized nor-
mal modes. The approach was subsequently generalized
to isolated manifolds in three-dimensions by [Tindemans-
van Eijndhoven and Kroese| (1975)). The localized modes
are now generally referred to as lattice Wannier func-
tions (LWF's) (fﬁiguez et al.; |2000; Rabe and Waghmare),
1995).

Following the notation of Sec.[VI.D] we denote by q the
phonon wavevector, and by eq the matrix whose columns
are the eigenvectors of the dynamical matrix. As in case
of electronic Wannier functions, the phases of these eigen-
vectors are undetermined. A unitary transformation of
the form

[éq]w = [quq]uuv (134)

performed within a subspace of dispersion branches that
is invariant with respect to the space group of the crys-
tal, results in an equivalent representation of generalized
extended modes [éq] ,,, that are also orthonormal. LWF's
may then be defined by

1 _iaR [~
[wr],, = N, > e Ry, (135)
q
with the associated inverse transform
el = D €V [wr),, - (136)
R

By construction, the LWFs are periodic according to
WR4+t = WR, where t is a translation vector of the Born-
von Karman supercell.

The freedom inherent in Eq. allows very local-
ized LWFs to be constructed, by suitable choice of the
transformation matrix Mq. As noted by Kohn| (1973),
the proof of exponential localization of LWFs follows
the same reasoning as for electronic Wannier functions
(Sec. [[IL.G).

The formal existence of LWF's was first invoked in order
to justify the construction of approximate so-called local
modes of vibration which were used in effective Hamilto-
nians for the study of systems exhibiting strong coupling
between electronic states and lattice instabilities, such as
perovskite ferroelectrics (Pytte and Feder) |1969; Thomas
and Muller| [1968)).



Zhong et al.|(1994)) used first-principles methods in or-
der to calculate the eigenvector associated with a soft
mode at q = 0 in BaTiO3z. A localized displacement
pattern, or local mode, of the atoms in the cell was then
parametrized, taking account of the symmetries associ-
ated with the soft mode, and the parameters were fit-
ted to reproduce the calculated soft mode eigenvector at
q = 0. The degree of localization of the local mode was
determined by setting to zero all displacement parame-
ters beyond the second shell of atoms surrounding the
central atom. Although this spatial truncation results in
the local modes being non-orthogonal, it does not hamper
the accuracy of practical calculations. As the local modes
are constructed using information only from the eigen-
vector at q = 0, they do not correspond to a particular
phonon branch in the Brillouin zone. |[Rabe and Wagh-
mare| (1995) generalized the approach to allow fitting to
more than just q = 0, but rather to a small set of, usu-
ally high-symmetry, g-points. The phase-indeterminacy
of the eigenvectors is exploited in order to achieve op-
timally rapid decay of the local modes. Another ap-
proach, introduced by fﬁiguez et al.| (2000), constructs
local modes via a projection method that preserves the
correct symmetry. The procedure is initiated from sim-
ple atomic displacements as trial functions. The quality
of the local modes thus obtained may be improved by
systematically densifying the g-point mesh that is used
in Eq. . Although there is no formal criterion of
maximal-localization in the approach, it also results in
non-orthogonal local modes that decay exponentially.

These ideas for generating local modes from first-
principles calculations have been particularly success-
ful for the study of structural phase transitions in
ferroelectrics such as BaTiOs (Zhong et all [1994]
1995), PbTiO3 (Waghmare and Rabe, |[1997), Kb-
NiO3 (Krakauer et all[1999), PbsGeTe, (Cockayne and
Rabe, [1997) and perovskite superlattices (Lee et al.,
2008)).

The use of maximal-localization as an exclusive cri-
terion for determining LWFs was first introduced by
Giustino and Pasquarello| (2006). In this work, a
real-space periodic position operator for non-interacting
phonons was defined, by analogy with the periodic posi-
tion operator for non-interacting electrons (Eq. (43)).

The problem of minimizing the total spread of a set of
WF's in real-space is equivalent to the problem of simulta-
neously diagonalizing the three non-commuting matrices
corresponding to the three components of the position
operator represented in the WF basis, and |Giustino and
Pasquarello (2006)) use the method outlined by |Gygi et al.
(2003) to achieve this. It is worth noting that |Giustino
and Pasquarello| (2006)) furthermore define a generalized
spread functional that, with a single parameter, allows
a trade-off between localization in energy (the eigenstate
or Bloch limit) and localization in space (the Wannier
limit), resulting in so-called mized Wannier-Bloch func-
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tions which may be obtained for the electrons as well as
the phonons.

Finally, as first pointed out by [Kohn| (1973), and sub-
sequently by |Giustino et al.|(2007a), maximally-localized
lattice Wannier functions correspond to displacements of
individual atoms. This may be seen by considering a vi-
brational eigenmode, eg, = ei’lseiq'R, and noting that it
may be expressed as

écyls = Z eiq'RléRRﬁss/ec”ls,.
s'R/

Eq. stands in direct correspondence to the elec-
tronic analogue given by the inverse of Eq. , from
which we conclude that the LWF's do indeed correspond
to individual atomic displacements drgr’dss and, further-
more, that the required unitary transformation is the ma-
trix of eigenvectors [eq],,. As discussed in Sec.
Giustino et al.| (2007a) exploit this property for the effi-
cient interpolation of dynamical matrices and calculation
of electron-phonon couplings.

(137)

B. Photonic crystals

Photonic crystals are periodic arrangements of dielec-
tric materials that are designed and fabricated in order to
control the flow of light (John) |1987; Yablonovitch, |1987)).
They are very much to light what semiconductors are to
electrons and, like semiconductors that exhibit an elec-
tronic band gap in which an electron may not propagate,
photonic crystals can be engineered to exhibit photonic
band gaps: ranges of frequencies in which light is forbid-
den to propagate in the crystal. In the electronic case,
a band gap results from scattering from the periodic po-
tential due to the ions in the crystal; in the photonic
case, it arises from scattering from the periodic dielectric
interfaces of the crystal. Again by analogy with elec-
tronic materials, localized defect states can arise in the
gap by the deliberate introduction of defects into a per-
fect photonic crystal structure. The ability to control the
nature of these states promises to lead to entirely light-
based integrated circuits, which would have a number of
advantages over their electronic counterparts, including
greater speeds of propagation, greater bandwidth, and
smaller energy losses (Joannopoulos et al., [1997)).

In SI units, Maxwell’s equations in source-free regions
of space are

V-E=0, V-B=0, (138)
0B oD
E=-"—" H="—" 139
V x TR V x 5 (139)
where the constitutive relations between the fields are
D =¢6E, B =puuoH. (140)

Considering non-magnetic materials (u, = 1) with a po-
sition dependent dielectric constant e,(r), and fields that



vary with a sinusoidal dependence e~*?, it is straightfor-
ward to derive electromagnetic wave equations in terms

of either the electric field E or the magnetic field H,

w2

V x (V x E(r)) = C—zer(r)E(r), (141)
w2
V x (1 (r)V x H(r)) = C—QH(I'), (142)

where ¢ = (ugeo)~/? is the speed of light.

For a perfect periodic dielectric structure, €/(r) =
& (r + R), where R is a lattice vector. Application of
Bloch’s theorem leads to solutions that are indexed by
wavevector k, which may be chosen to lie in the first
Brillouin zone, and a band index n. For example

an (I‘) - eik-runk (I‘),

where u_ (r) = u  (r + R) is the periodic part of
the magnetic field Bloch function. The electromagnetic
wave equations can be solved, and hence the Bloch func-
tions obtained, by a number of methods including finite-
difference time domain (Taflove and Hagness| [2005; |Yee,
1966)), transfer matrix (Pendryl |1996; [Pendry and Mack-
innonl, [1992)), empirical tight-binding methods (Lidorikis
et al.l |1998; Yariv et al., [1999), and Galerkin techniques
in which the field is expanded in a set of orthogonal ba-
sis functions (Mogilevtsev et al.}[1999). Within the latter
class, use of a plane-wave basis set is particularly com-
mon (Ho et al.l|{1990; |Johnson and Joannopoulos| 2001).

The operators V x V and V x e, 1(r)V are self-adjoint
and, therefore, the fields satisfy orthogonality relations

given by@

Leung| (1993)) first suggested that transforming to a
basis of Wannier functions localized in real space would
be advantageous for computational efficiency, especially
when dealing with defects in photonic crystals which, us-
ing conventional methods, require very large supercells
for convergence. Although of great formal importance for
justifying the existence of a suitable localized basis, and
hence the tight-binding approach, the non-uniqueness of
the transformation between Bloch states and Wannier
functions caused difficulties. As a result, early work was
limited to the case of single, isolated bands (Konotop,
1997} [Leung, [1993) or composite bands in which the ma-
trix elements U,%‘,% were treated as parameters to fit the
tight-binding band structure to the plane-wave result.

21 The notation A-B = 2?21 A;B;, and denotes the scalar product
of the vectors A and B, with Cartesian components {A4;} and
{B;}, respectively.
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The formalism for obtaining maximally-localized Wan-
nier functions, however, removed this obstacle and sev-
eral applications of MLWFSs to calculating the proper-
ties of photonic crystals have been reported since, in
both two-dimensional (Garcia-Martin et al. [2003; |Jiao
et all 2006; Whittaker and Croucher} 2003) and three-
dimensional (Takeda et al.,|2006|) photonic crystal struc-
tures, as well as for the case of entangled bands (Hermann
et al. |2008]) (see Busch et al.| (2003)) for an early review).

Typically one chooses to solve for either the electric
field E , or the magnetic field H ,. Once the Bloch
states for the periodic crystal are obtained, a basis of
magnetic or electric field Wannier functions may be con-
structed using the usual definition, e.g., for the magnetic
field

v )
oL / dk e ™ BN UM H(r), (145)
BZ oy

H
WiR)(r) =
satisfying orthogonality relations

/ e WS W — 5 orR, (146)

where the unitary transformation U,(ylfyz is chosen in the
same way described in Sec. [[]| such that the sum of the
quadratic spreads of the Wannier functions is minimized,
i.e., such that the Wannier functions are maximally lo-
calized.

Concentrating on the magnetic field, it may be ex-
panded in the basis of Wannier functions with some ex-
pansion coefficients ¢, R,

H(r) =Y corWiR (1),
nR

(147)

which on substitution into Eq. gives the tight-
binding representation of the wave-equation for the mag-
netic field in the Wannier function basis.

The utility of the approach becomes evident when con-
sidering the presence of a defect in the dielectric lattice
such that e,(r) — &(r) + de(r). The magnetic field wave
equations become

V x ([ (r) + A7 (r)] V x H(r)) = C—H(r),

where

—de(r)
ex(r)[ex(r) + de(r)]
Using the Wannier functions from the defect-free calcula-

tion as a basis in which to expand H(r), as in Eq. (147]),

the wave equations may be written in matrix form,

A(r) =

(149)

2
Z RR/ RR/ w
(Ann’ + Bnn’ ) Ch/R — gcnR,
n'R’

(150)



where

Cc

, 1% T (RoR/ Wik \ 2 (k)
ARR' _ / dk ¢’ (B=R) N7 ot (Lmk )" gy
(271')3 BZ ; < ) mn

and

Brll{nl?'/ = /dI’ A(I‘) [V X WnR(r)]* . [V X W iry (I‘)] .

(152)
Due to the localization and compactness of the basis,
these matrix equations may be solved efficiently to find
frequencies of localized cavity modes, dispersion rela-
tions for waveguides, and the transmission and reflec-
tion properties of complex waveguide structures. Fig.
for example, shows the photonic band structure for a
three-dimensional photonic crystal structure with a two-
dimensional defect.
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FIG. 35 (Color online) Photonic band structure (bottom) of
the 3D Si woodpile structure intercalated with a 2D layer
consisting of a square lattice of square rods (top left). Solid
lines indicate the photonic band structure calculated by the
plane-wave expansion (PWE) method, and black points indi-
cate that reproduced by the MLWFs. Shaded regions indicate
the photonic band structure of the woodpile projected onto
the 2D k| space. The square rods in the 2D layer are cho-
sen to structurally match the woodpile. The thickness of the
layer is 0.8a, where a is the lattice parameter of the woodpile
structure. Top right: absolute value of the 17th MLWF of the
magnetic field in the yz plane. Adapted from [Takeda et al]

(2006).
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C. Cold atoms in optical lattices

A good 70 years after Albert Einstein predicted that a
system of non-interacting bosons would undergo a phase
transition to a new state of matter in which there is
macroscopic occupation of the lowest energy quantum
state, major achievements in laser cooling and evapora-
tive cooling of atoms enabled the first experimental real-
izations of Bose-Einstein condensation (Anderson et al.
11995; Bradley et all [1995; Davis et al) |1995) and the
award of Nobel prizes in 1997 and 2001. Since then, the
study of cold atoms trapped in optical lattices has flour-
ished. For a reviews see Bloch et al.| (2008) and
land Oberthaler]| (2006]).

Ultracold atoms trapped in optical lattices provide a
versatile alternative to electrons in crystal lattices for the
study of quantum phenomena. Indeed, they have a num-
ber of advantages over the solid state in this respect, such
as the absence of lattice defects, the absence of a counter-
part to the electron-phonon interaction, and the ability
to control precisely both the nature of the inter-atomic
interactions and the depth and periodicity of the optical
lattice potential.

The second quantized Hamiltonian for a system of N
weakly interacting bosons of zero spin and mass m in a
(periodic) external potential Vy(r) = Vo(r + R) is given

by (Vikalov, 2009)

(153)

where g = 4magh?/m, it is assumed that the atoms
interact via a short-range pseudopotential with as as
the s-wave scattering length, and ¥(r) and ¥f(r) are
bosonic field operators obeying canonical commutation
relations (Fetter and Waleckal, [2003).

In a Bose-Einstein condensate, wherein the condensate
particle densities are typically of the order of 10 cm™3
or more, the mean-field limit of this Hamiltonian is usu-
ally taken, which leads to the Gross-Pitaevskii equa-
tion, also known as the non-linear Schrodinger equation
(NLSE),

Vi)t w(rJ)IQ] o(r. 1)

2m

(154)
©(r, t) is the condensate wavefunction, the squared norm
of which gives the condensate density. The Gross-
Pitaevskii equation has been used with remarkable suc-

cess in the study of BEC 2001]).
As shown, for example, by |[Alfimov et al| (2002), a
basis of Wannier functions, localized to each site « of the
optical lattice, may be used to expand the condensate

L0
zhago(r, t) =




wavefunction,

(155)

= Z Cno(t)Wna ()

The Wannier functions are related to the Bloch eigen-
states ¥, () of the eigenvalue equation

d2
- 2 )| (o) = emiale)  (150)
by the usual Wannier transformation
L im (k) —ikal
wna(x) = % dk e*®Me wnk('x) (157)

Substituting Eq. (155)) into Eq. (154]), leads to a tight-
binding formulation known as the discrete non-linear
Schrédinger equation (DNLSE),

chﬁena ,3+ Z ZCZBCJVckUUnZJzn’

By, 4.5,k
(158)
where
L

€na = % dk e_lkaLfnkv

(159)

and the interaction matrix is given by

Us‘szn = g/dx Wha (2)w;g(2)wjqy (2)wky(x).  (160)

Truncating the first term on the right-hand side of
Eq. to nearest-neighbors only, and the second term
to on-site (« = B = v = n) terms within a single band
(n =1 = j = k) results in the usual tight-binding de-
scription (Chiofalo et al.,[2000; [ Trombettoni and Smerzi,
2001)),

+USY ¢ |2 c
nnnn no no-

(161)

As pointed out by Alfimov et al.| (2002)), using a WF
basis enables the range and type of interactions encapsu-
lated in the DNLSE to be systematically controlled and
improved. On the most part, however, WFs have been
used in the context of the NLSE in order to carry out
formal derivations and to justify the use of empirical or
semi-empirical tight-binding models.

An interesting analogy with electrons in atomic lat-
tices manifests itself when the filling of sites in the optical
lattice is low and hence particle correlations need to be
accounted for more rigorously. This is done via the Bose-
Hubbard model, developed by |Fisher et al.| (1989)) in the
context of He-4, and first applied to cold atoms in opti-
cal lattices by [Jaksch et al.| (1998). The Bose-Hubbard
Hamiltonian is derived from Eq. by expanding the

iacna = Cna€not€ni (Cn,a—1+cn,oz+1)

%)

boson field operator in terms of WFs of a single band,
localized at the lattice sites,

b= hawa ()

where the bosonic particle creation and annihilation op-
erators, be and bT, respectively, satisfy the usual com-
mutation rules (Fetter and Walecka, 2003)). This, on
approximation to nearest-neighbor coupling, and on-site
only interactions, results in the standard Bose-Hubbard
Hamiltonian (Jaksch et al. [1998)

—J Z bTbﬁ+ Zna Nlg — 1 7

<a,B>

(162)

Hpy = (163)

where 1, = I;LBQ is the number operator for lattice site «,
and the nearest-neighbor hopping and on-site repulsion
parameters are given by

_ / dr wo(r) {—;;VQ + Vo(r)} wi(r),  (164)

U=y [ dr )",

which may be calculated explicitly using WFs con-
structed from Bloch eigenstates (Shotter et al. [2008;
Vaucher et all) [2007). The Bose-Hubbard model is the
bosonic analogue to the Hubbard model for fermions. As
in the latter case, the behavior of the model depends
on the competition between hopping (J) and on-site (U)
energies which determines whether the system is in a su-
perfluid or a Mott insulator phase.

Finally, we note that in work that is closely related
to, and combines elements from both ideas developed in
photonic crystals and cold atoms, WFs have also been
used to represent polaritons in coupled cavity arrays, a
class of systems that serves as another experimental re-
alization of the Bose-Hubbard model (Hartmann et al.,
2008, 12006)).

and

(165)

IX. SUMMARY AND PROSPECTS

In this review, we have summarized methods for con-
structing WFs to represent electrons in periodic solids
or other extended systems. While several methods have
been surveyed, our emphasis has been on the one of
Marzari and Vanderbilt| (1997), essentially the general-
ization of the approach of Foster and Boys (Boys! 1960,
1966} |Foster and Boys, [1960alb) to periodic systems,
in which the gauge freedom is resolved by minimizing
the sum of the quadratic spreads of the WFs. The
widespread adoption of this approach is reflected in the
fact that it has been incorporated as a feature into a large



number of modern first-principles electronic-structure
code packages including QuaNTUM ESPRESSO (Gian-
nozzi et al., 2009), ABINIT (Gonze et al)2009), FLEUR
(Freimuth et al. [2008), WIEN2K (Kunes et al., [2010;
Schwarz et al, 2002)), SiesTAa (Korytdar et al) 2010;
Soler et all 2002)), and VASP (Franchini et al) 2011}
Kresse and Furthmiller] [1996]). In the above cases this
has been done by providing an interface to the WAN-
NIERIO package (Mostofi et al. 2008), an open-source
post-processing code developed by the Authors, offering
most of the capabilities described in this review. Other
efforts have also seen the implementation of MLWFs in
CPMD (CPMD;|1990), GPAW (Enkovaara et al.,[2010)),
OPENMX (OpenMZX||2011)), and WANT (Calzolari et al.,
2004; [Ferretti et al.l[2005a) - this latter, and WANNIER9O,
also allowing for quantum-transport calculations.

After an initial wave of applications increased the vis-
ibility of WFs in the community and demonstrated their
utility for a variety of applications, other methods for
constructing WFs were also developed, as discussed in
Secs. [l and [[T]] For some purposes, e.g., for many plane-
wave based LDA+U and DMFT calculations, methods
based on simple projection onto trial orbitals proved suf-
ficient. Methods tuned specifically to I'-point sampling
of the BZ for supercell calculations also became popular.
And, as surveyed briefly in Sec. [VIII] the construction
and application of WFs was also extended to periodic
systems outside the electronic-structure context, e.g., to
phonons, photonic crystals, and cold-atom optical lat-
tices.

Still, the vast majority of applications of WF methods
have been to electronic structure problems. The breadth
of such applications can be appreciated by reviewing the
topics covered in Secs. Very broadly, these fall
into three categories: investigations into the nature of
chemical bonding (and, in complex systems such as lig-
uids, the statistics of chemical bonding), as discussed in
Sec. [[V} applications that take advantage of the natural
ability of WFs and WF charge centers to describe dipolar
and orbital magnetization phenomena in dielectric, fer-
roelectric, magnetic, and magnetoelectric materials, as
reviewed in Sec. [V} and the use of WF for basis func-
tions, as surveyed in Secs. [VI{VTI]

Today these methods find applications in many topical
areas including investigations into novel superconductors,
multiferroics, and topological insulators. The importance
of WFs is likely to grow in response to future trends in
computing, which are clearly moving in the direction of
more massive parallelization based on algorithms that
can take advantage of real-space partitioning. This fea-
ture of WFs should also facilitate their adoption in formu-
lating new beyond-DFT methods in which many-body in-
teractions are included in a real-space framework. Thus,
the growing pressures for increased efficiency and accu-
racy are likely to elevate the importance of WF-based
methods in coming years. Overall, one can look forward
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to continued innovation in the development and applica-
tion of WF-based methods to a wide variety of problems
in modern condensed-matter theory.

REFERENCES

Abu-Farsakh, H., and A. Qteish, 2007, Phys. Rev. B 75,
085201.

Aguado, A., L. Bernasconi, S. Jahn, and P. A. Madden, 2003a,
Faraday Discuss. 124, 171.

Aguado, A., L. Bernasconi, and P. A. Madden, 2003b, J.
Chem. Phys. 118, 5704.

Alber, F., G. Folkers, and P. Carloni, 1999, J. Phys. Chem.
B 103, 6121.

Alfe, D., and M. J. Gillan, 2004, J. Phys.: Condens. Matter
16, L305.

Alfimov, G. L., P. G. Kevrekidis, V. V. Konotop, and
M. Salerno, 2002, Phys. Rev. E 66, 046608.

Amadon, B., F. Lechermann, A. Georges, F. Jollet, T. O.
Wehling, and A. I. Lichtenstein, 2008, Phys. Rev. B 77,
205112.

Ambrosetti, A., and P. L. Silvestrelli, 2012, Phys. Rev. B 85,
073101.

Anantram, M. P.; and T. R. Govindan, 1998, Phys. Rev. B
58, 4882.

Andersen, O. K., and T. Saha-Dasgupta, 2000, Phys. Rev. B
62, R16219.

Anderson, M. H., J. R. Ensher, M. R. Matthews, C. E. Wie-
man, and E. A. Cornell, 1995, Science 269, 198.

Anderson, P. W., 1961, Phys. Rev. 124, 41.

Anderson, P. W., 1968, Phys. Rev. Lett. 21, 13.

Andersson, Y., D. C. Langreth, and B. I. Lundqvist, 1996,
Phys. Rev. Lett. 76, 102.

Andrinopoulos, L., N. D. M. Hine, and A. A. Mostofi, 2011,
J. Chem. Phys. 135, 154105.

Anisimov, V. L., D. E. Kondakov, A. V. Kozhevnikov, I. A.
Nekrasov, Z. V. Pchelkina, J. W. Allen, S. K. Mo, H. D.
Kim, P. Metcalf, S. Suga, A. Sekiyama, G. Keller, et al.,
2005, Phys. Rev. B 71, 125119.

Anisimov, V. 1., A. V. Kozhevnikov, M. A. Korotin, A. V.
Lukoyanov, and D. A. Khafizullin, 2007, J. Phys.: Condens.
Matter 19, 106206.

Anisimov, V. 1., I. V. Solovyev, M. A. Korotin, M. T. Czyzyk,
and G. A. Sawatzky, 1993, Phys. Rev. B 48, 16929.

Anisimov, V. L., J. Zaanen, and O. K. Andersen, 1991, Phys.
Rev. B 44, 943.

Artacho, E., and L. Mildns del Bosch, 1991, Phys. Rev. A 43,
5770.

Aryasetiawan, F., and O. Gunnarsson, 1998, Rep. Prog. Phys.
61, 237.

Aryasetiawan, F., M. Imada, A. Georges, G. Kotliar, S. Bier-
mann, and A. I. Lichtenstein, 2004, Phys. Rev. B 70,
195104.

Ashcroft, N. W., and N. D. Mermin, 1976, Solid State Physics
(Brooks Cole).

Bader, R. F. W., 1991, Chem. Rev. 91, 893.

Bako, 1., J. Hutter, and G. Palinkas, 2002, J. Chem. Phys.
117, 9838.

Baranek, P., C. M. Zicovich-Wilson, C. Roetti, R. Orlando,
and R. Dovesi, 2001, Phys. Rev. B 64, 125102.

Baroni, S., and P. Giannozzi, 1992, Europhys. Lett. 17, 547.



Baroni, S., S. de Gironcoli, A. D. Corso, and P. Gianozzi,
2001, Rev. Mod. Phys. 73, 515.

Becke, A., and K. Edgecombe, 1990, J. Chem. Phys. 92, 5397.

Becke, A. D., 1993, J. Chem. Phys. 98, 1372.

Benoit, D. M., D. Sebastiani, and M. Parrinello, 2001, Phys.
Rev. Lett. 87, 226401.

Berghold, G., C. J. Mundy, A. H. Romero, J. Hutter, and
M. Parrinello, 2000, Phys. Rev. B 61, 10040.

Berlijn, T., D. Volja, and W. Ku, 2011, Phys. Rev. Lett. 106,
077005.

Bernasconi, L., J. Blumberger, M. Sprik, and R. Vuilleumier,
2004, J. Chem. Phys. 121, 11885.

Bernasconi, L., and P. A. Madden, 2001, J. Molec. Struct.:
Theochem 544, 49.

Bernasconi, L., P. A. Madden, and M. Wilson, 2002,
PhysChemComm 5, 1.

Bernasconi, M., P. L. Silvestrelli, and M. Parrinello, 1998,
Phys. Rev. Lett. 81, 1235.

Bhattacharjee, J., and U. V. Waghmare, 2005, Phys. Rev. B
71, 045106.

Bhattacharjee, J., and U. V. Waghmare, 2010, Phys. Chem.
Chem. Phys. 12, 1564.

Billas, I. M. L., C. Massobrio, M. Boero, M. Parrinello,
W. Branz, F. Tast, N. Malinowski, M. Heinebrodt, and
T. P. Martin, 1999, J. Chem. Phys. 111, 6787.

Bloch, 1., J. Dalibard, and W. Zwerger, 2008, Rev. Mod. Phys.
80, 885.

Blount, E. 1., 1962, Solid State Physics 13, 305.

Blumberger, J., L. Bernasconi, I. Tavernelli, R. Vuilleumier,
and M. Sprik, 2004, J. Am. Chem. Soc. 126, 3928.

Boero, M., 2007, J. Phys. Chem. A 111, 12248.

Boero, M., Y. Morikawa, K. Terakura, and M. Ozeki, 2000a,
J. Chem. Phys. 112, 9549.

Boero, M., M. Parrinello, S. Huffer, and H. Weiss, 2000b, J.
Am. Chem. Soc. 122, 501.

Boero, M., M. Parrinello, K. Terakura, T. Ikeshoji, and C. C.
Liew, 2003, Phys. Rev. Lett. 90, 226403.

Boero, M., K. Terakura, T. Ikeshoji, C. C. Liew, and M. Par-
rinello, 2000c, Prog. Theor. Phys. Suppl. 138, 259.

Boero, M., K. Terakura, T. Ikeshoji, C. C. Liew, and M. Par-
rinello, 2000d, Phys. Rev. Lett. 85, 3245.

Boero, M., K. Terakura, T. Ikeshoji, C. C. Liew, and M. Par-
rinello, 2001, J. Chem. Phys. 115, 2219.

Bonferroni, B., A. Ferretti, A. Calzolari, A. Ruini, M. J. Cal-
das, and E. Molinari, 2008, Nanotech. 19, 285201.

Bowler, D. R., and T. Miyazaki, 2012, Rep. Prog. Phys. 75,
036503.

Boykin, T. B., 1995, Phys. Rev. B 52, 16317.

Boys, S. F., 1960, Rev. Mod. Phys. 32, 296.

Boys, S. F., 1966, in Quantum Theory of Atoms, Molecules,
and the Solid State, edited by P.-O. Lowdin (Academic
Press, New York), p. 253.

Bradley, C. C., C. A. Sackett, J. J. Tollett, and R. G. Hulet,
1995, Phys. Rev. Lett. 75, 1687.

Brandbyge, M., J. L. Mozos, P. Ordején, J. Taylor, and
K. Stokbro, 2002, Phys. Rev. B 65, 165401.

Brouder, C., G. Panati, M. Calandra, C. Mourougane, and
N. Marzari, 2007, Phys. Rev. Lett. 98, 046402.

Brown, L. D., D. A. Kleier, and W. N. Lipscomb, 1977, J.
Am. Chem. Soc. 99, 6787.

Bucher, D., and S. Kuyucak, 2008, J. Phys. Chem. B 112,
10786.

Buongiorno Nardelli, M., J.-L. Fattebert, and J. Bernholc,
2001, Phys. Rev. B 64, 245423.

57

Busch, K., S. F. Mingaleev, A. Garcia-Martin, M. Schillinger,
and D. Hermann, 2003, J. Phys.: Condens. Matter 15,
R1233.

Buth, C., U. Birkenheuer, M. Albrecht, and P. Fulde, 2005,
Phys. Rev. B 72, 195107.

Calandra, M., G. Profeta, and F. Mauri, 2010, Phys. Rev. B
82, 165111.

Calzolari, A., A. Ferretti, and M. B. Nardelli, 2007, Nanotech.
18, 424013.

Calzolari, A.; N. Marzari, I. Souza, and M. B. Nardelli, 2004,
Phys. Rev. B 69, 035108.

Cangiani, G., A. Baldereschi, M. Posternak, and H. Krakauer,
2004, Phys. Rev. B 69, 121101.

Cantele, G., Y.-S. Lee, D. Ninno, and N. Marzari, 2009, Nano
Lett. 9, 3425.

Cao, C., P. J. Hirschfeld, and H. P. Cheng, 2008, Phys. Rev.
B 77, 220506.

Car, R., and M. Parrinello, 1985, Phys. Rev. Lett. 55, 2471.

Cardoso, J.-F., and A. Soulomiac, 1996, STAM J. Matrix
Anal. Appl. 17, 161.

Ceresoli, D., U. Gerstmann, A. P. Seitsonen, and F. Mauri,
2010a, Phys. Rev. B 81, 060409.

Ceresoli, D., N. Marzari, M. G. Lopez, and T. Thonhauser,
2010b, Phys. Rev. B 81, 184424.

Ceresoli, D., T. Thonhauser, D. Vanderbilt, and R. Resta,
2006, Phys. Rev. B 74, 024408.

Chan, T. L., Y. X. Yao, C. Z. Wang, W. C. Lu, J. Li, X. F.
Qian, S. Yip, and K. M. Ho, 2007, Phys. Rev. B 76, 205119.

Chen, W.; M. Sharma, R. Resta, G. Galli, and R. Car, 2008,
Phys. Rev. B 77, 245114.

Chico, L., L. X. Benedict, S. G. Louie, and M. L. Cohen,
1996, Phys. Rev. B 54, 2600.

Chiofalo, M. L.; M. Polini, and M. P. Tosi, 2000, European
Phys. J. D 11, 371.

des Cloizeaux, J., 1963, Phys. Rev. 129, 554.

des Cloizeaux, J., 1964a, Phys. Rev. 135, A685.

des Cloizeaux, J., 1964b, Phys. Rev. 135, A698.

Cockayne, E., and K. M. Rabe, 1997, Phys. Rev. B 56, 7947.

Cococcioni, M., and S. de Gironcoli, 2005, Phys. Rev. B 71,
035105.

Coh, S., and D. Vanderbilt, 2009, Phys. Rev. Lett. 102,
107603.

Coh, S., D. Vanderbilt, A. Malashevich, and I. Souza, 2011,
Phys. Rev. B 83, 085108.

Corsetti, F., 2012, On the properties of point defects in sili-
con nanostructures from ab initio calculations (PhD Thesis,
Imperial College London).

Corsetti, F., and A. A. Mostofi, 2011, Phys. Rev. B 84,
035209.

Costanzo, F., and R. G. Della Valle, 2008, J. Phys. Chem. B
112, 12783.

Coudert, F. X., R. Vuilleumier, and A. Boutin, 2006,
ChemPhysChem 7, 2464.

CPMD, 1990, http://www.cpmd.org, copyright IBM Corp
1990-2008, Copyright MPI fiir Festkorperforschung
Stuttgart 1997-2001.

Dabo, I., A. Ferretti, N. Poilvert, Y. L. Li, N. Marzari, and
M. Cococcioni, 2010, Phys. Rev. B 82, 115121.

Dabo, I., B. Kozinsky, N. E. Singh-Miller, and N. Marzari,
2008, Phys. Rev. B 77, 115139.

Datta, S., 1995, Electronic Transport in Moesoscopic Systems
(Cambridge University Press, Cambridge).

D’Auria, R., I. F. W. Kuo, and D. J. Tobias, 2008, J. Phys.
Chem. A 112, 4644.


http://www.cpmd.org

d’Avezac, M., N. Marzari, and F. Mauri, 2007, Phys. Rev. B
76, 165122.

Davis, K. B., M. O. Mewes, M. R. Andrews, N. J. Vandruten,
D. S. Durfee, D. M. Kurn, and W. Ketterle, 1995, Phys.
Rev. Lett. 75, 3969.

Dawson, 1., P. D. Bristowe, M.-H. Lee, M. C. Payne, M. D.
Segall, and J. A. White, 1996, Phys. Rev. B 54, 13727.
Dederichs, P. H., S. Bliigel, R. Zeller, and H. Akai, 1984, Phys.

Rev. Lett. 53, 2512.

Dellago, C., and M. M. Naor, 2005, Comput. Phys. Commun.
169, 36.

Dovesi, R., B. Civalleri, R. Orlando, C. Roetti, and V. R.
Saunders, 2005, in Reviews in Computational Chemistry,
Vol 21 (John Wiley & Sons, Inc.), pp. 1-125.

Dulffin, R. J., 1953, Duke Math. J. 20, 233.

Duffin, R. J., and D. H. Shaffer, 1960, Duke Math. J. 27, 582.

Dyer, P. J., and P. T. Cummings, 2006, J. Chem. Phys. 125,
144519.

Edmiston, C., and K. Ruedenberg, 1963, Rev. Mod. Phys. 35,
457.

Eiguren, A., and C. Ambrosch-Draxl, 2008, Phys. Rev. B 78,
045124.

Eisenschitz, R., and F. London, 1930, Z. Phys. 60, 491.

Enkovaara, J., C. Rostgaard, J. J. Mortensen, J. Chen,
M. Dulak, L. Ferrighi, J. Gavnholt, C. Glinsvad,
V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma,
et al., 2010, J. Phys.: Condens. Matter 22, 253202.

Ercolessi, F., and J. B. Adams, 1994, Europhys. Lett. 26, 584.

van Erp, T. S., and E. J. Meijer, 2003, J. Chem. Phys. 118,
8831.

Espejo, C., T. Rangel, Y. Pouillon, A. H. Romero, and
X. Gonze, 2012, Comput. Phys. Commun. 183, 480.

Essin, A. M., J. E. Moore, and D. Vanderbilt, 2009, Phys.
Rev. Lett. 102, 146805.

Essin, A. M., A. M. Turner, J. E. Moore, and D. Vanderbilt,
2010, Phys. Rev. B 81, 205104.

Evarestov, R. A., V. P. Smirnov, and D. E. Usvyat, 2003,
Solid State Commun. 127, 423.

Evarestov, R. A.; V. P. Smirnov, and D. E. Usvyat, 2004, Int.
J. Quantum Chem. 96, 95.

Fabris, S., S. de Gironcoli, S. Baroni, G. Vicario, and G. Bal-
ducci, 2005, Phys. Rev. B 71, 041102.

Fang, Z., N. Nagaosa, K. Takahashi, A. Asamitsu,
R. Matthieu, T. Ogasawara, H. Yamada, M. Kawasaki,
Y. Tokura, and K. Terakura, 2003, Science 302, 92.

Faralli, C., M. Pagliai, G. Cardini, and V. Schettino, 2006, J.
Phys. Chem. B 110, 14923.

Fattebert, J.-L., and M. Buongiorno Nardelli, 2003, in Spe-
cial Volume: Computational Chemistry, edited by C. L.
Bris (North-Holland), volume X of Handbook of Numerical
Analysis, p. 571.

Fernandez, P., A. Dal Corso, and A. Baldereschi, 1998, Phys.
Rev. B 58, R7480.

Fernandez, P., A. Dal Corso, F. Mauri, and A. Baldereschi,
1997, Phys. Rev. B 55, R1909.

Ferretti, A., B. Bonferroni, A. Calzolari, and M. B. Nardelli,
2005a, http://www.wannier-transport.org.

Ferretti, A., A. Calzolari, B. Bonferroni, and R. Di Felice,
2007, J. Phys.: Condens. Matter 19, 036215.

Ferretti, A., A. Calzolari, R. Di Felice, and F. Manghi, 2005b,
Phys. Rev. B 72, 125114.

Ferretti, A., A. Calzolari, R. Di Felice, F. Manghi, M. J. Cal-
das, M. B. Nardelli, and E. Molinari, 2005c, Phys. Rev.
Lett. 94, 116802.

98

Fetter, A. L., and J. D. Walecka, 2003, Quantum Theory
of Many-Particle Systems (Dover Publications Inc., New
York), chapter 1.

Fisher, D. S., and P. A. Lee, 1981, Phys. Rev. B 23, 6851.

Fisher, M. P. A., P. B. Weichman, G. Grinstein, and D. S.
Fisher, 1989, Phys. Rev. B 40, 546.

Fitzhenry, P., M. M. M. Bilek, N. A. Marks, N. C. Cooper,
and D. R. McKenzie, 2003, J. Phys.: Condens. Matter 15,
165.

Flury, B. N., and W. Gautschi, 1986, STAM J. Sci. Stat.
Comp. 7, 169.

Fornari, M., N. Marzari, M. Peressi, and A. Baldereschi, 2001,
Comput. Mater. Sci. 20, 337.

Foster, J. M., and S. F. Boys, 1960a, Rev. Mod. Phys. 32,
300.

Foster, J. M., and S. F. Boys, 1960b, Rev. Mod. Phys. 32,
303.

Foulkes, W. M. C., L. Mitas, R. J. Needs, and G. Rajagopal,
2001, Rev. Mod. Phys. 73, 33.

Franchini, C., R. Kovacik, M. Marsman, S. S. Murthy,
J. He, C. Ederer, and G. Kresse, 2011, Arxiv preprint
arXiv:1111.1528 .

Frederiksen, T., M. Paulsson, M. Brandbyge, and A.-P.
Jauho, 2007, Phys. Rev. B 75, 205413.

Freimuth, F., S. Bliigel, and Y. Mokrousov, 2010, Phys. Rev.
Lett. 105, 246602.

Freimuth, F.; Y. Mokrousov, D. Wortmann, S. Heinze, and
S. Bliigel, 2008, Phys. Rev. B 78, 035120.

Gaigeot, M. P., M. Martinez, and R. Vuilleumier, 2007, Mol.
Phys. 105, 2857.

Gaigeot, M. P., and M. Sprik, 2003, J. Phys. Chem. B 107,
10344.

Gaigeot, M. P., R. Vuilleumier, M. Sprik, and D. Borgis, 2005,
J. Chem. Theory Comput. 1, 772.

Galli, G., 1996, Curr. Opin. Sol. State Mater. Sci. 1, 864.

Galli, G., and M. Parrinello, 1992, Phys. Rev. Lett. 69, 3547.

Garcia-Martin, A., D. Hermann, F. Hagmann, K. Busch, and
P. Wolfle, 2003, Nanotech. 14, 177.

Gervasio, F. L., P. Carloni, and M. Parrinello, 2002, Phys.
Rev. Lett. 89, 108102.

Ghosez, P., and X. Gonze, 2000, J. Phys.: Condens. Matter
12, 9179.

Ghosez, P., X. Gonze, P. Lambin, and J.-P. Michenaud, 1995,
Phys. Rev. B 51, 6765.

Giannozzi, P., S. Baroni, N. Bonini, M. Calandra, R. Car,
C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni,
I. Dabo, A. Dal Corso, S. de Gironcoli, et al., 2009, J.
Phys.: Condens. Matter 21, 395502.

de Gironcoli, S., S. Baroni, and R. Resta, 1989, Phys. Rev.
Lett. 62, 2853.

Giustino, F., M. L. Cohen, and S. G. Louie, 2007a, Phys. Rev.
B 76, 165108.

Giustino, F., M. L. Cohen, and S. G. Louie, 2008, Nature
452, 975.

Giustino, F.; S. G. Louie, and M. L. Cohen, 2010, Phys. Rev.
Lett. 105, 265501.

Giustino, F., and A. Pasquarello, 2005, Phys. Rev. B 71,
144104.

Giustino, F., and A. Pasquarello, 2006, Phys. Rev. Lett. 96,
216403.

Giustino, F., P. Umari, and A. Pasquarello, 2003, Phys. Rev.
Lett. 91, 267601.

Giustino, F.,; J. R. Yates, I. Souza, M. L. Cohen, and S. G.
Louie, 2007b, Phys. Rev. Lett. 98, 047005.


http://www.wannier-transport.org

Goedecker, S., 1998, Phys. Rev. B 58, 3501.

Goedecker, S., 1999, Rev. Mod. Phys. 71, 1085.

Goedecker, S., T. Deutsch, and L. Billard, 2002, Phys. Rev.
Lett. 88, 235501.

Gonze, X., B. Amadon, P. M. Anglade, J. M. Beuken, F. Bot-
tin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas,
M. Cote, T. Deutsch, L. Genovese, et al., 2009, Comput.
Phys. Commun. 180, 2582.

Graf, M., and P. Vogl, 1992, Phys. Rev. B 51, 4940.

Grimvall, G., 1981, The Electron-Phonon Interaction in Met-
als (North-Holland, New York).

Grossman, J. C., E. Schwegler, E. W. Draeger, F. Gygi, and
G. Galli, 2004, J. Chem. Phys. 120, 300.

Grosso, G., and G. P. Parravicini, 2000, Solid State Physics
(Academic Press).

Gygi, F., J. L. Fattebert, and E. Schwegler, 2003, Comput.
Phys. Commun. 155, 1.

Haldane, F. D. M., 1988, Phys. Rev. Lett. 61, 2015.

Hamann, D. R., and D. Vanderbilt, 2009, Phys. Rev. B 79,
045109.

Harrison, W. A., 1980, Solid State Theory (Dover).

Hartmann, M. J., F. Brandao, and M. B. Plenio, 2008, Laser
& Photon. Rev. 2, 527.

Hartmann, M. J., F. G. S. L. Brandao, and M. B. Plenio,
2006, Nature Phys. 2, 849.

Hasan, M. Z., and C. L. Kane, 2010, Rev. Mod. Phys. 82,
3045.

Hasan, M. Z., and J. E. Moore, 2011, Annu. Rev. Cond. Matt.
Phys. 2, 55.

He, L. X., and D. Vanderbilt, 2001, Phys. Rev. Lett. 86, 5341.

Heine, V., 1980, in Solid State Physics, edited by H. Ehrenre-
ich, F. Seitz, and D. Turnbull (Academic Press, New York),
volume 35, p. 1.

Held, K., 2007, Adv. Phys. 56, 829.

Held, K., O. K. Andersen, M. Feldbacher, A. Yamasaki, and
Y. F. Yang, 2008, J. Phys.: Condens. Matter 20, 064202.
Hermann, D., M. Schillinger, S. F. Mingaleev, and K. Busch,

2008, J. Opt. Soc. Am. B 25, 202.

Hernédndez, E., and M. J. Gillan, 1995, Phys. Rev. B 51,
10157.

Hernandez, E., M. J. Gillan, and C. M. Goringe, 1996, Phys.
Rev. B 53, 7147.

Heuft, J. M., and E. J. Meijer, 2005, J. Chem. Phys. 122,
094501.

Hierse, W., and E. B. Stechel, 1994, Phys. Rev. B 50, 17811.

Hine, N. D. M., and W. M. C. Foulkes, 2007, J. Phys.: Con-
dens. Matter 19, 506212.

Hirshfeld, F. L., 1977, Theor. Chim. Acta 44, 129.

Ho, K. M., C. T. Chan, and C. M. Soukoulis, 1990, Phys.
Rev. Lett. 65, 3152.

Hod, O., J. E. Peralta, and G. E. Scuseria, 2006, J. Phys.
Chem. 125, 114704.

Hu, S. J., and X. Hu, 2010, J. Phys. Chem. C 114, 11614.

Hubbard, J., 1963, Proc. R. Soc. Lond. A 276, 238.

Hurd, C. M., 1972, The Hall Effect in Metals and Alloys
(Plenum, New York).

Iftimie, R., J. W. Thomas, and M. E. Tuckerman, 2004, J.
Chem. Phys. 120, 2169.

Ikeda, T., M. Hirata, and T. Kimura, 2005, J. Chem. Phys.
122, 024510.

fﬁiguez, J., A. Garcia, and J. M. Pérez-Mato, 2000, Phys.
Rev. B 61, 3127.

Ismail-Beigi, S., and T. A. Arias, 1999, Phys. Rev. Lett. 82,
2127.

99

Jahn, S., and P. A. Madden, 2007, Phys. Earth Planet. Inter.
162, 129.

Jahn, S., P. A. Madden, and M. Wilson, 2006, Phys. Rev. B
74, 024112.

Jaksch, D., C. Bruder, J. I. Cirac, C. W. Gardiner, and
P. Zoller, 1998, Phys. Rev. Lett. 81, 3108.

Janak, J. F.; 1978, Phys. Rev. B 18, 7165.

Jarvis, E. A. A., and E. A. Carter, 2001, J. Phys. Chem. B
105, 4045.

Jiang, L., S. Levchenko, and A. Rappe, 2012, Phys. Rev. Lett.
108, 166403.

Jiao, Y., S. H. Fan, and D. A. B. Miller, 2006, IEEE J. Quan-
tum Elect. 42, 266.

Joannopoulos, J. D., P. R. Villeneuve, and S. H. Fan, 1997,
Nature 387, 830.

John, S., 1987, Phys. Rev. Lett. 58, 2486.

Johnson, S. G., and J. D. Joannopoulos, 2001, Opt. Express
8, 173.

Jungwirth, P., and D. J. Tobias, 2002, J. Phys. Chem. A 1086,
379.

Karabunarliev, S., and E. R. Bittner, 2003a, J. Chem. Phys.
119, 3988.

Karabunarliev, S., and E. R. Bittner, 2003b, J. Chem. Phys.
118, 4291.

Kim, S., and N. Marzari, 2012, arXiv:1204.6369 .

King-Smith, R. D., and D. Vanderbilt, 1993, Phys. Rev. B
47, 1651.

King-Smith, R. D., and D. Vanderbilt, 1994, Phys. Rev. B
49, 5828.

Kioupakis, E., P. Rinke, A. Schleife, F. Bechstedt, and C. G.
Van de Walle, 2010, Phys. Rev. B 81, 241201.

Kirchner, B., 2007, Phys. Rep. 440, 1.

Kirchner, B., and J. Hutter, 2004, J. Chem. Phys. 121, 5133.

Koch, E., and S. Goedecker, 2001, Solid State Commun. 119,
105.

Kohn, W., 1959, Phys. Rev. 115, 809.

Kohn, W., 1964, Phys. Rev. 133, A171.

Kohn, W., 1973, Phys. Rev. B 7, 2285.

Kohn, W.; 1996, Phys. Rev. Lett. 76, 3168.

Kohn, W., and L. J. Sham, 1965, Phys. Rev. 140, A1133.

Konotop, V. V., 1997, J. Opt. Soc. Am. B 14, 364.

Korotin, D., A. V. Kozhevnikov, S. L. Skornyakov, I. Leonov,
N. Binggeli, V. I. Anisimov, and G. Trimarchi, 2008, Eur.
Phys. J. B 65, 91.

Korshunov, M. M., V. A. Gavrichkov, S. G. Ovchinnikov, I. A.
Nekrasov, Z. V. Pchelkina, and V. I. Anisimov, 2005, Phys.
Rev. B 72, 165104.

Korytar, R., M. Pruneda, J. Junquera, P. Ordején, and
N. Lorente, 2010, J. Phys.: Condens. Matter 22, 385601.
Kotliar, G., S. Y. Savrasov, K. Haule, V. S. Oudovenko,
O. Parcollet, and C. A. Marianetti, 2006, Rev. Mod. Phys.

78, 865.

Kovacik, R., and C. Ederer, 2010, Phys. Rev. B 81, 245108.
Krakauer, H., R. C. Yu, C. Z. Wang, K. M. Rabe, and U. V.
Waghmare, 1999, J. Phys.: Condens. Matter 11, 3779.
Kreitmeir, M., H. Bertagnolli, J. J. Mortensen, and M. Par-

rinello, 2003, J. Chem. Phys. 118, 3639.

Krekeler, C., B. Hess, and L. Delle Site, 2006, J. Chem. Phys.
125, 054305.

Kresse, G., and J. Furthmiiller, 1996, Phys. Rev. B 54, 11169.

Ku, W., T. Berlijn, and C.-C. Lee, 2010, Phys. Rev. Lett.
104, 216401.

Ku, W., H. Rosner, W. E. Pickett, and R. T. Scalettar, 2002,
Phys. Rev. Lett. 89, 167204.



Ku, W., H. Rosner, W. E. Pickett, and R. T. Scalettar, 2003,
J. Solid State Chem. 171, 329.

Kudin, K. N.; and R. Car, 2008, J. Am. Chem. Soc. 130,
3915.

Kudin, K. N.; R. Car, and R. Resta, 2007, J. Chem. Phys.
127, 194902.

Kulik, H. J., M. Cococcioni, D. A. Scherlis, and N. Marzari,
2006, Phys. Rev. Lett. 97, 103001.

Kulik, H. J., and N. Marzari, 2008, J. Chem. Phys. 129,
134314.

Kunes, J., R. Arita, P. Wissgott, A. Toschi, H. Ikeda, and
K. Held, 2010, Comput. Phys. Commun. 181, 1888 .

Kuo, I. F. W., and C. J. Mundy, 2004, Science 303, 658.

Kuo, I. F. W., C. J. Mundy, B. L. Eggimann, M. J. McGrath,
J. I. Siepmann, B. Chen, J. Vieceli, and D. J. Tobias, 2006,
J. Phys. Chem. B 110, 3738.

Kuo, I. F. W.; C. J. Mundy, M. J. McGrath, and J. I. Siep-
mann, 2008, J. Phys. Chem. C 112, 15412.

Kuroki, K., S. Onari, R. Arita, H. Usui, Y. Tanaka, H. Kon-
tani, and H. Aoki, 2008, Phys. Rev. Lett. 101, 087004.
Lambrecht, W. R. L., and O. K. Andersen, 1986, Phys. Rev.

B 34, 2439.

Landauer, R., 1970, Philos. Mag. 21, 863.

Lechermann, F.; A. Georges, A. Poteryaev, S. Biermann,
M. Posternak, A. Yamasaki, and O. K. Andersen, 2006,
Phys. Rev. B 74, 125120.

Lee, D. H., and J. D. Joannopoulos, 1981, Phys. Rev. B 23,
4988.

Lee, J. H., U. V. Waghmare, and J. J. Yu, 2008, J. Appl.
Phys. 103, 124106.

Lee, Y.-S., 2006, FElectronic Structure and Quantum Conduc-
tance of Nanostructures (PhD Thesis, MIT).

Lee, Y.-S., and N. Marzari, 2006, Phys. Rev. Lett. 97, 116801.

Lee, Y.-S., M. B. Nardelli, and N. Marzari, 2005, Phys. Rev.
Lett. 95, 076804.

Leggett, A. J., 2001, Rev. Mod. Phys. 73, 307.

Léonard, F., and J. Tersoff, 1999, Phys. Rev. Lett. 83, 5174.

Leung, K., and S. B. Rempe, 2004, J. Am. Chem. Soc. 126,
344.

Leung, K. M., 1993, J. Opt. Soc. Am. B 10, 303.

Li, E. Y., and N. Marzari, 2011, ACS Nano 5, 9726.

Li, E. Y., N. Poilvert, and N. Marzari, 2011, ACS Nano 5,
4455.

Lidorikis, E., M. M. Sigalas, E. N. Economou, and C. M.
Soukoulis, 1998, Phys. Rev. Lett. 81, 1405.

Lightstone, F. C., E. Schwegler, M. Allesch, F. Gygi, and
G. Galli, 2005, ChemPhysChem 6, 1745.

Lightstone, F. C.; E. Schwegler, R. Q. Hood, F. Gygi, and
G. Galli, 2001, Chem. Phys. Lett. 343, 549.

Lim, S. H. N., D. G. McCullooch, A. R. Merchant, N. A.
Marks, M. M. M. Bilek, and D. R. McKenzie, 2002, Molec-
ular Simulation 28, 971.

Liu, Y., H.-J. Zhang, and Y. Yao, 2009, Phys. Rev. B 79,
245123.

Lopez, M. G., D. Vanderbilt, T. Thonhauser, and 1. Souza,
2012, Phys. Rev. B 85, 014435.

Lopez-Sancho, M. P., J. M. Lopez-Sancho, and R. J., 1984, J.
Phys. F 14, 1205.

Lopez-Sancho, M. P., J. M. Lopez-Sancho, and R. J., 1985, J.
Phys. F 15, 851.

Léwdin, P.-O., 1951, J. Chem. Phys. 19, 1396.

Lu, D. Y., F. Gygi, and G. Galli, 2008, Phys. Rev. Lett. 100,
147601.

Lu, W. C., C. Z. Wang, T. L. Chan, K. Ruedenberg, and

60

K. M. Ho, 2004, Phys. Rev. B 70, 041101.

Madsen, G. K. H.; and D. J. Singh, 2006, Comput. Phys.
Commun. 175, 67.

Makov, G., and M. C. Payne, 1995, Phys. Rev. B 51, 4014.

Malashevich, A.; I. Souza, S. Coh, and D. Vanderbilt, 2010,
New J. Phys. 12, 053032.

Maradudin, A. A., and S. H. Vosko, 1968, Rev. Mod. Phys.
40, 1.

Markussen, T., R. Rurali, M. Brandbyge,
Pekka Jauho, 2006, Phys. Rev. B 74, 245313.

Martin, R. M., 2004, Electronic Structure: Basic Theory
and Practical Methods (Cambridge University Press, Cam-
bridge).

Martonak, R., C. Molteni, and M. Parrinello, 2000, Phys.
Rev. Lett. 84, 682.

Martonak, R., C. Molteni, and M. Parrinello, 2001, Compu-
tational Materials Science 20, 293.

Marx, D., and J. Hutter, 2009, Ab-initio Molecular Dynamics:
Basic Theory and Advanced Methods (Cambridge Univer-
sity Press, Cambridge).

Marzari, N., and D. Vanderbilt, 1997, Phys. Rev. B 56(20),
12847.

Marzari, N., and D. Vanderbilt, 1998, AIP Conf. Proc. 436,
146.

Marzari, N., D. Vanderbilt, and M. C. Payne, 1997, Phys.
Rev. Lett. 79, 1337.

Matta, C. F.; R. J. Boyd, and A. Becke (eds.), 2007, The
Quantum Theory of Atoms in Molecules: From Solid State
to DNA and Drug Design (Wiley-VCH, Weinheim).

Mauri, F., G. Galli, and R. Car, 1993, Phys. Rev. B 47, 9973.

Mauri, F., B. G. Pfrommer, and S. G. Louie, 1996a, Phys.
Rev. Lett. 77, 5300.

Mauri, F., O. Zakharov, S. de Gironcoli, S. G. Louie, and
M. L. Cohen, 1996b, Phys. Rev. Lett. 77, 1151.

Mazin, I. I., D. A. Papaconstantopoulos, and D. J. Singh,
2000, Phys. Rev. B 61, 5223.

McGrath, M. J., J. I. Siepmann, I. F. W. Kuo, and C. J.
Mundy, 2007, Mol. Phys. 105, 1411.

McMahan, A. K., J. F. Annett, and R. M. Martin, 1990, Phys.
Rev. B 42, 6268.

McWeeny, R., 1960, Rev. Mod. Phys. 32, 335.

Meregalli, V., and M. Parrinello, 2001, Solid State Commun.
117, 441.

Minehardt, T. J., N. Marzari, R. Cooke, E. Pate, P. A. Koll-
man, and R. Car, 2002, Biophysical Journal 82, 660.

Miyake, T., and F. Aryasetiawan, 2008, Phys. Rev. B 77,
085122.

Miyake, T., F. Aryasetiawan, and M. Imada, 2009, Phys. Rev.
B 80, 155134.

Miyake, T., P. H. Zhang, M. L. Cohen, and S. G. Louie, 2006,
Phys. Rev. B 74, 245213.

Mogilevtsev, D., T. A. Birks, and P. S. Russell, 1999, J. Light-
wave Technology 17, 2078.

Molteni, C., R. Martonak, and M. Parrinello, 2001, J. Chem.
Phys. 114, 5358.

Mori-Sanchez, P., A. J. Cohen, and W. Yang, 2008, Phys.
Rev. Lett. 100, 146401.

Morsch, O., and M. Oberthaler, 2006, Rev. Mod. Phys. 78,
179.

Mostofi, A. A., J. R. Yates, Y.-S. Lee, 1. Souza, D. Vanderbilt,
and N. Marzari, 2008, Comput. Phys. Commun. 178, 685.

Mulliken, R. S., 1955, J. Chem. Phys. 23, 1833.

Mundy, C. J., and I. F. W. Kuo, 2006, Chem. Rev. 106, 1282.

Murray, E. D., and D. Vanderbilt, 2009, Phys. Rev. B 79,

and A. tti



100102.

Nagaosa, N.; J. Sinova, S. Onoda, A. H. MacDonald, and
N. P. Ong, 2010, Rev. Mod. Phys. 82, 1539.

Nakamura, K., R. Arita, Y. Yoshimoto, and S. Tsuneyuki,
2006, Phys. Rev. B 74, 235113.

Nakhmanson, S. M., M. B. Nardelli, and J. Bernholc, 2005,
Phys. Rev. B 72, 115210.

Nardelli, M. B., 1999, Phys. Rev. B 60, 7828.

Naumov, I., A. M. Bratkovsky, and V. Ranjan, 2009, Phys.
Rev. Lett. 102, 217601.

Nenciu, G., 1983, Commun. Math. Phys. 91, 81.

Nenciu, G., 1991, Rev. Mod. Phys. 63, 91.

von Niessen, W., 1972, J. Chem. Phys. 56, 4290.

Niu, Q., 1991, Mod. Phys. Lett. B 5, 923.

Noel, Y., C. M. Zicovich-Wilson, B. Civalleri, P. D’Arco, and
R. Dovesi, 2002, Phys. Rev. B 65, 014111.

Noffsinger, J., F. Giustino, S. G. Louie, and M. L. Cohen,
2008, Phys. Rev. B 77, 180507.

Noffsinger, J., F. Giustino, S. G. Louie, and M. L. Cohen,
2009, Phys. Rev. B 79, 104511.

Noffsinger, J., F. Giustino, B. D. Malone, C.-H. Park, S. G.
Louie, and M. L. Cohen, 2010, Comput. Phys. Commun.
181, 2140 , ISSN 0010-4655.

Noffsinger, J., E. Kioupakis, C. G. V. de Walle, S. G. Louie,
and M. L. Cohen, 2012, Phys. Rev. Lett. 108, 167402.
Nunes, R. W., and X. Gonze, 2001, Phys. Rev. B 63, 155107.
Nunes, R. W.; and D. Vanderbilt, 1994, Phys. Rev. Lett. 73,

712.

Odelius, M., B. Kirchner, and J. Hutter, 2004, J. Phys. Chem.
A 108, 2044.

Ogitsu, T., F. Gygi, J. Reed, Y. Motome, E. Schwegler, and
G. Galli, 2009, J. Am. Chem. Soc. 131, 1903.

Okada, J. T., P. H-L. Sit, Y. Watanabe, Y. J. Wang,
B. Barbiellini, T. Ishikawa, M. Itou, Y. Sakurai, A. Bansil,
R. Ishikawa, M. Hamaishi, T. Masaki, et al., 2012, Phys.
Rev. Lett. 108, 067402.

OpenMX, 2011, http://www.openmx-square.org.

Ordejon, P.; D. Drabold, M. P. Grumbach, , and R. M. Mar-
tin, 1993, Phys. Rev. B 48, 14646.

O’Regan, D. D., N. D. M. Hine, M. C. Payne, and A. A.
Mostofi, 2010, Phys. Rev. B 82, 081102(R).

O’Regan, D. D., M. C. Payne, and A. A. Mostofi, 2011, Phys.
Rev. B 83, 245124.

O’Regan, D. D., M. C. Payne, and A. A. Mostofi, 2012,
arXiv:1203.4371 .

Ortiz, G., and R. M. Martin, 1994, Phys. Rev. B 49, 14202.

Pagliai, M., C. Cavazzoni, G. Cardini, G. Erbacci, M. Par-
rinello, and V. Schettino, 2008, J. Chem. Phys. 128,
224514.

Panati, G., 2007, Annales Henri Poincare 8, 995.

Panati, G., and A. Pisante, 2011, arXiv:1112.6197 .

Park, C.-H., A. Ferretti, I. Dabo, N. Poilvert, and N. Marzari,
2011, arXiv:1108.5726 .

Park, C. H., F. Giustino, M. L. Cohen, and S. G. Louie, 2007,
Phys. Rev. Lett. 99, 086804.

Park, C. H., F. Giustino, M. L. Cohen, and S. G. Louie, 2008,
Nano Letters 8, 4229.

Park, C.-H., F. Giustino, C. D. Spataru, M. L. Cohen, and
S. G. Louie, 2009, Phys. Rev. Lett. 102, 076803.

Pasquarello, A., and R. Resta, 2003, Phys. Rev. B 68, 174302.

Pauling, L., 1960, The Nature of the Chemical Bond (Cornell
University Press, Ithaca), 3rd edition.

Payne, M. C.; M. P. Teter, D. C. Allan, T. A. Arias, and J. D.
Joannopoulos, 1992, Rev. Mod. Phys. 64, 1045.

61

Peelaers, H., B. Partoens, M. Giantomassi, T. Rangel,
E. Goossens, G.-M. Rignanese, X. Gonze, and F. M.
Peeters, 2011, Phys. Rev. B 83, 045306.

Pendry, J. B., 1996, J. Phys.: Condens. Matter 8, 1085.

Pendry, J. B., and A. Mackinnon, 1992, Phys. Rev. Lett. 69,
2772.

Perdew, J. P.; R. G. Parr, M. Levy, and J. J. L. Balduz, 1982,
Phys. Rev. Lett. 49, 1691.

Perdew, J. P., and A. Zunger, 1981, Phys. Rev. B 23, 5048.

Piana, S., D. Sebastiani, P. Carloni, and M. Parrinello, 2001,
J. Am. Chem. Soc. 123, 8730.

Pickard, C. J., and F. Mauri, 2001, Phys. Rev. B 63, 245101.

Picozzi, S., K. Yamauchi, I. A. Sergienko, C. Sen, B. Sanyal,
and E. Dagotto, 2008, J. Phys.: Condens. Matter 20,
434208.

Pipek, J., and P. G. Mezey, 1989, J. Chem. Phys. 90,
4916,4926.

Pisani, C., M. Busso, G. Capecchi, S. Casassa, R. Dovesi,
L. Maschio, C. Zicovich-Wilson, and M. Schutz, 2005, J.
Chem. Phys. 122, 094113.

Posternak, M., A. Baldereschi, S. Massidda, and N. Marzari,
2002, Phys. Rev. B 65, 184422.

Posternak, M., A. Baldereschi, E. J. Walter, and H. Krakauer,
2006, Phys. Rev. B 74, 125113.

Posternak, M., R. Resta, and A. Baldereschi, 1994, Phys. Rev.
B 50, 8911.

Pytte, E., and J. Feder, 1969, Phys. Rev. 187, 1077.

Qi, X.-L., T. L. Hughes, and S.-C. Zhang, 2008, Phys. Rev.
B 78, 195424.

Qian, X., J. Li, and S. Yip, 2010, Phys. Rev. B 82, 195442.

Qian, X. F., J. Li, L. Qi, C. Z. Wang, T. L. Chan, Y. X. Yao,
K. M. Ho, and S. Yip, 2008, Phys. Rev. B 78, 245112.

Rabe, K. M., and U. V. Waghmare, 1995, Phys. Rev. B 52,
13236.

Aberg, D., B. Sadigh, and P. Erhart, 2012, arXiv:1201.3860 .

Rasuli, R., H. Rafii-Tabar, and A. I. Zad, 2010, Phys. Rev. B
81, 125409.

Raugei, S., G. Cardini, and V. Schettino, 1999, J. Chem.
Phys. 111, 10887.

Raugei, S., and M. L. Klein, 2002, J. Chem. Phys. 116, 196.

Reboredo, F. A., and A. J. Williamson, 2005, Phys. Rev. B
71, 121105.

Resta, R., 1992, Ferroelectrics 136, 51.

Resta, R., 1994, Rev. Mod. Phys. 66, 899.

Resta, R., 1998, Phys. Rev. Lett. 80, 1800.

Resta, R., 2000, J. Phys.: Condens. Matter 12, R107.

Resta, R., 2002, J. Phys.: Condens. Matter 14, R625.

Resta, R., 2006, J. Chem. Phys. 124, 10414.

Resta, R., 2010, J. Phys.: Condens. Matter 22, 123201.

Resta, R., and S. Sorella, 1999, Phys. Rev. Lett. 82, 370.

Resta, R., and D. Vanderbilt, 2007, in Physics of Ferro-
electrics: A Modern Perspective, edited by C. Ahn and
K. M. Rabe (Springer-Verlag), Topics in Applied Physics
105, pp. 31-68.

Rocha, A. R., M. Rossi, A. Fazzio, and A. J. R. da Silva,
2008, Phys. Rev. Lett. 100, 176803.

Roman, E.; Y. Mokrousov, and I. Souza, 2009, Phys. Rev.
Lett. 103, 097203.

Romero, A. H., P. L. Silvestrelli, and M. Parrinello, 2000,
Phys. Status Solidi B 220, 703.

Romero, A. H., P. L. Silvestrelli, and M. Parrinello, 2001, J.
Chem. Phys. 115, 115.

Rotenberg, B., M. Salanne, C. Simon, and R. Vuilleumier,
2010, Phys. Rev. Lett. 104, 138301.


http://www.openmx-square.org

Rowley, A. J., P. Jemmer, M. Wilson, and P. A. Madden,
1998, J. Chem. Phys. 108, 10209.

Sagui, C., P. Pomorski, T. A. Darden, and C. Roland, 2004,
J. Chem. Phys. 120, 4530.

Saharay, M., and S. Balasubramanian, 2004, ChemPhysChem
5, 1442.

Saito, R., G. Dresselhaus, and M. S. Dresselhaus, 1996, Phys.
Rev. B 53, 2044.

Sakakibara, H., H. Usui, K. Kuroki, R. Arita, and H. Aoki,
2010, Phys. Rev. Lett. 105, 057003.

Salanne, M., R. Vuilleumier, P. A. Madden, C. Simon,
P. Turq, and B. Guillot, 2008, J. Phys.: Condens. Mat-
ter 20, 494207.

Salvador, P.; J. E. Curtis, D. J. Tobias, and P. Jungwirth,
2003, Phys. Chem. Chem. Phys. 5, 3752.

Sanchez-Portal, D., E. Artacho, and J. Soler, 1995, Solid State
Commun. 95, 685.

Santis, L. D., and R. Resta, 2000, Surf. Sci. 450, 126.

Sasioglu, E., A. Schindlmayr, C. Friedrich, F. Freimuth, and
S. Bliigel, 2010, Phys. Rev. B 81, 054434.

Satpathy, S., and Z. Pawlowska, 1988, Phys. Status Solidi B
145, 555.

Savin, A., O. Jepsen, J. Flad, O. K. Andersen, H. Preuss, and
H. G. von Schnering, 1992, Angew. Chem., Int. Ed. Engl.
31, 187.

Savrasov, S. Y., D. Y. Savrasov, and O. K. Andersen, 1994,
Phys. Rev. Lett. 72, 372.

Schulz, W. W., P. B. Allen, and N. Trivedi, 1992, Phys. Rev.
B 45, 10886.

Schwarz, K., P. Blaha, and G. K. H. Madsen, 2002, Comput.
Phys. Commun. 147, 71 .

Schwegler, E., G. Galli, and F. Gygi, 2001a, Chem. Phys.
Lett. 342, 434.

Schwegler, E., G. Galli, F. Gygi, and R. Q. Hood, 2001b,
Phys. Rev. Lett. 87, 265501.

Scipioni, R., D. A. Schmidt, and M. Boero, 2009, J. Chem.
Phys. 130, 024502.

Sebastiani, D., 2003, Mod. Phys. Lett. B 17, 1301.

Sebastiani, D., G. Goward, I. Schnell, and M. Parrinello, 2002,
Comput. Phys. Commun. 147, 707.

Sebastiani, D., and M. Parrinello, 2001, J. Phys. Chem. A
105, 1951.

Seeman, K. M., Y. Mokrousov, A. Aziz, J. Miguel, F. Kronast,
W. Kucj, M. G. Blamir, A. T. Hindmarch, B. J. Hickey,
I. Souza, and C. H. Marrows, 2009, Phys. Rev. Lett. 104,
076402.

Segall, M. D., R. Shah, C. J. Pickard, and M. C. Payne, 1996,
Phys. Rev. B 54, 16317.

Selloni, A., P. Carnevali, R. Car, and M. Parrinello, 1987,
Phys. Rev. Lett. 59, 823.

Sgiarovello, C., M. Peressi, and R. Resta, 2001, Phys. Rev. B
64, 115202.

Shaltaf, R., T. Rangel, M. Gruning, X. Gonze, G. M. Rig-
nanese, and D. R. Hamann, 2009, Phys. Rev. B 79, 195101.

Sharma, M., R. Resta, and R. Car, 2005, Phys. Rev. Lett. 95,
187401.

Sharma, M., R. Resta, and R. Car, 2007, Phys. Rev. Lett. 98,
247401.

Sharma, M., Y. D. Wu, and R. Car, 2003, Int. J. Quantum
Chem. 95, 821.

Shelley, M., and A. A. Mostofi, 2011, Europhys. Lett. 94,
67001.

Shelley, M., N. Poilvert, A. A. Mostofi, and N. Marzari, 2011,
Comput. Phys. Commun. 182, 2174.

62

Shi, J., G. Vignale, D. Xiao, and Q. Niu, 2007, Phys. Rev.
Lett. 99, 197202.

Shi, N., and R. Ramprasad, 2006, Phys. Rev. B 74, 045318.

Shi, N., and R. Ramprasad, 2007, Appl. Phys. Lett. 91,
242906.

Shotter, M., D. Trypogeorgos, and C. Foot, 2008, Phys. Rev.
A 78, 051602.

Silvestrelli, P. L., 1999, Phys. Rev. B 59, 9703.

Silvestrelli, P. L., 2008, Phys. Rev. Lett. 100, 053002.

Silvestrelli, P. L., 2009a, Chem. Phys. Lett. 475, 285.

Silvestrelli, P. L., 2009b, J. Phys. Chem. A 113, 5224.

Silvestrelli, P. L., F. Ancilotto, and F. Toigo, 2000, Phys. Rev.
B 62, 1596.

Silvestrelli, P. L., K. Benyahia, S. Grubisic, F. Ancilotto, and
F. Toigo, 2009, J. Chem. Phys. 130, 074702.

Silvestrelli, P. L., N. Marzari, D. Vanderbilt, and M. Par-
rinello, 1998, Solid State Commun. 107, 7.

Silvestrelli, P. L., and M. Parrinello, 1999a, J. Chem. Phys.
111, 3572.

Silvestrelli, P. L., and M. Parrinello, 1999b, Phys. Rev. Lett.
82, 3308.

Singh-Miller, N. E., 2009, Molecular-Scale Devices from First
Principles (PhD Thesis, MIT).

Sit, P. H.-L., C. Bellin, B. Barbiellini, D. Testemale, J. L.
Hazemann, T. Buslaps, N. Marzari, and A. Shukla, 2007,
Phys. Rev. B 76, 245413.

Skylaris, C. K., P. D. Haynes, A. A. Mostofi, and M. C. Payne,
2005, J. Chem. Phys. 122, 084119.

Skylaris, C. K., A. A. Mostofi, P. D. Haynes, O. Dieguez, and
M. C. Payne, 2002, Phys. Rev. B 66, 035119.

Smirnov, V. P., R. A. Evarestov, and D. E. Usvyat, 2002, Int.
J. Quantum Chem. 88, 642.

Smirnov, V. P., and D. E. Usvyat, 2001, Phys. Rev. B 64,
245108.

Soler, J. M., E. Artacho, J. D. Gale, A. Garci, J. Junquera,
P. Ordejon, and D. Sanchez-Portal, 2002, J. Phys.: Con-
dens. Matter 14, 2745.

Solovyev, 1. V., 2004, Phys. Rev. B 69, 134403.

Solovyev, 1. V., 2008, J. Phys.: Condens. Matter 20, 293201.

Solovyev, I. V., and M. Imada, 2005, Phys. Rev. B 71, 045103.

Soluyanov, A. A., and D. Vanderbilt, 2011a, Phys. Rev. B 83,
235401.

Soluyanov, A. A., and D. Vanderbilt, 2011b, Phys. Rev. B
83, 035108.

Souza, L., J. Ifiiguez, and D. Vanderbilt, 2002, Phys. Rev.
Lett. 89, 117602.

Souza, 1., N. Marzari, and D. Vanderbilt, 2001, Phys. Rev. B
65, 035109.

Souza, 1., and D. Vanderbilt, 2008, Phys. Rev. B 77, 054438.

Souza, 1., T. Wilkens, and R. M. Martin, 2000, Phys. Rev. B
62, 1666.

Spiegel, K., and P. Carloni, 2003, J. Phys. Chem. B 107,
2091.

Spiegel, K., and A. Magistrato, 2006, Org. Biomol. Chem. 4,
2507.

Sporkmann, B., and H. Bross, 1994, Phys. Rev. B 49, 10869.

Sporkmann, B., and H. Bross, 1997, J. Phys.: Condens. Mat-
ter 9, 5593.

Springer, M., and F. Aryasetiawan, 1998, Phys. Rev. B 57,
4364.

Stengel, M., and N. A. Spaldin, 2006a, Phys. Rev. B 73,
075121.

Stengel, M., and N. A. Spaldin, 2006b, Nature 443, 679.

Stengel, M., and N. A. Spaldin, 2007, Phys. Rev. B 75,



205121.

Stengel, M., and N. A. Spaldin, 2008, Phys. Rev. B 77,
155106.

Stengel, M., N. A. Spaldin, and D. Vanderbilt, 2009a, Nature
Physics 5, 304.

Stengel, M., N. A. Spaldin, and D. Vanderbilt, 2009b, Nature
Materials 8, 392.

Stengel, M., D. Vanderbilt, and N. A. Spaldin, 2009¢, Phys.
Rev. B 80, 224110.

Stephan, U., R. M. Martin, and D. A. Drabold, 2000, Phys.
Rev. B 62, 6885.

Strange, M., I. S. Kristensen, K. S. Thygesen, and K. W.
Jacobsen, 2008, J. Chem. Phys. 128, 114714.

Subotnik, J. E., A. Sodt, and M. Head-Gordon, 2007, Phys.
Chem. Chem. Phys. 9, 5522.

Sullivan, D. M., K. Bagchi, M. E. Tuckerman, and M. L.
Klein, 1999, J. Phys. Chem. A 103, 8678.

Sulpizi, M., and P. Carloni, 2000, J. Phys. Chem. B 104,
10087.

Sulpizi, M., A. Laio, J. VandeVondele, A. Cattaneo, U. Roth-
lisberger, and P. Carloni, 2003, Proteins: Struct., Funct.,
Genet. 52, 212.

Sulpizi, M., P. Schelling, G. Folkers, P. Carloni, and
L. Scapozza, 2001, J. Biol. Chem. 276, 21692.

Suzuki, K., H. Usui, and K. Kuroki, 2011, J. Phys. Soc. Japan
80, 013710.

Suzuki, T., 2008, Phys. Chem. Chem. Phys. 10, 96.

Taflove, A., and S. C. Hagness, 2005, Computational electrod-
inamics: the finite-difference time-domain method (Artech
House, Norwood MA), 3rd edition.

Takeda, H., A. Chutinan, and S. John, 2006, Phys. Rev. B
74, 195116.

Tang, H., and S. Ismail-Beigi, 2009, Phys. Rev. B 80, 134113.

Taraskin, S. N., D. A. Drabold, and S. R. Elliott, 2002, Phys.
Rev. Lett. 88, 196405.

Thomas, H., and K. A. Muller, 1968, Phys. Rev. Lett. 21,
1256.

Thonhauser, T., D. Ceresoli, A. A. Mostofi, N. Marzari,
R. Resta, and D. Vanderbilt, 2009, J. Chem. Phys. 131,
101101.

Thonhauser, T., D. Ceresoli, D. Vanderbilt, and R. Resta,
2005, Phys. Rev. Lett. 95, 137205.

Thonhauser, T., and D. Vanderbilt, 2006, Phys. Rev. B 74,
235111.

Thouless, D. J., 1983, Phys. Rev. B 27, 6083, URL http:
//link.aps.org/doi/10.1103/PhysRevB.27.6083.

Thygesen, K. S., L. B. Hansen, and K. W. Jacobsen, 2005a,
Phys. Rev. Lett. 94, 026405.

Thygesen, K. S., L. B. Hansen, and K. W. Jacobsen, 2005b,
Phys. Rev. B 72, 125119.

Thygesen, K. S., and K. W. Jacobsen, 2005, Chem. Phys.
319, 111.

Tindemans-van Eijndhoven, J. C. M., and C. J. Kroese, 1975,
J. Phys. C: Solid State Phys. 8, 3963.

Tkatchenko, A., and M. Scheffler, 2009, Phys. Rev. Lett. 102,
073005.

Tobias, D. J., P. Jungwirth, and M. Parrinello, 2001, J. Chem.
Phys. 114, 7036.

Todorova, T., P. H. Hunenberger, and J. Hutter, 2008, J.
Chem. Theory Comput. 4, 779.

Todorova, T., A. P. Seitsonen, J. Hutter, I. F. W. Kuo, and
C. J. Mundy, 2006, J. Phys. Chem. B 110, 3685.

Trimarchi, G., I. Leonov, N. Binggeli, D. Korotin, and V. I.
Anisimov, 2008, J. Phys.: Condens. Matter 20, 135227.

63

Trombettoni, A., and A. Smerzi, 2001, Phys. Rev. Lett. 86,
2353.

Tse, J. S., 2002, Annu. Rev. Phys. Chem. 53, 249.

Tuckerman, M. E.; 2002, J. Phys.: Condens. Matter 14,
R1297.

Tuckerman, M. E.; and G. J. Martyna, 2000, J. Phys. Chem.
B 104, 159.

Uehara, K., and J. S. Tse, 2000, Phys. Rev. B 61, 1639.

Umari, P., and N. Marzari, 2009, J. Chem. Phys. 131, 094104.

Umari, P., and A. Pasquarello, 2002, Phys. Rev. Lett. 89,
157602.

Umari, P., and A. Pasquarello, 2003, Phys. Rev. B 68, 085114.

Umari, P., G. Stenuit, and S. Baroni, 2009, Phys. Rev. B 79,
201104.

Umari, P., A. J. Williamson, G. Galli, and N. Marzari, 2005,
Phys. Rev. Lett. 95, 207602.

Usui, H., R. Arita, and K. Kuroki, 2009, J. Phys.: Condens.
Matter 21, 064223.

Usui, H., S. Shibata, and K. Kuroki, 2010, Phys. Rev. B 81,
205121.

Usvyat, D. E., R. A. Evarestov, and V. P. Smirnov, 2004, Int.
J. Quantum Chem. 100, 352.

Vanderbilt, D., and R. D. King-Smith, 1993, Phys. Rev. B
48, 4442.

Vanderbilt, D., and R. Resta, 2006, in Conceptual foundations
of materials properties: A standard model for calculation of
ground- and excited-state properties, edited by S. G. Louie
and M. L. Cohen (Elsevier), volume 1 of Contemporary
Concepts of Condens. Matt. Science, pp. 139-163.

Vaucher, B., S. R. Clark, U. Dorner, and D. Jaksch, 2007,
New J. Phys. 9, 221.

Volja, D.; B. Kozinsky, A. Li, D. Wee, N. Marzari, and
M. Fornari, 2011, arXiv:1112.1749 .

Vuilleumier, R., 2006, in Computer Simulations in Condens.
Matt. Systems: from Materials to Chemical Biology, edited
by M. Ferrario, C. G., and B. K. (Springer), volume 1.

Vuilleumier, R., and M. Sprik, 2001, J. Chem. Phys. 115,
3454.

Waghmare, U. V., and K. M. Rabe, 1997, Phys. Rev. B 55,
6161.

Wahn, M., and J. Neugebauer, 2006, Phys. Status Solidi B
243, 1583.

Wang, X., J. R. Yates, I. Souza, and D. Vanderbilt, 2006,
Phys. Rev. B 74, 195118.

Wang, X., J. R. Yates, D. Vanderbilt, and I. Souza, 2007,
Phys. Rev. B 76, 195109.

Wannier, G. H., 1937, Phys. Rev. 52, 191.

Watkins, G. D., and R. P. Messmer, 1974, Phys. Rev. Lett.
32, 1244.

Weber, C., K. Haule, and G. Kotliar, 2010, Phys. Rev. B 82,
125107.

Whittaker, D. M., and M. P. Croucher, 2003, Phys. Rev. B
67, 085204.

Williamson, A. J., R. Q. Hood, and J. C. Grossman, 2001,
Phys. Rev. Lett. 87, 246406.

Wu, X., M. Stengel, K. M. Rabe, and D. Vanderbilt, 2008,
Phys. Rev. Lett. 101, 087601.

Wu, X. F.; O. Dieguez, K. M. Rabe, and D. Vanderbilt, 2006,
Phys. Rev. Lett. 97, 107602.

Wu, X. F.; A. Selloni, and R. Car, 2009, Phys. Rev. B 79,
085102.

Wu, Y., 2004, Molecular Dynamics Study of Chemical Reac-
tions (PhD Thesis, Princeton University).

Xia, Y., et al., 2009, Nature Physics 5, 398.


http://link.aps.org/doi/10.1103/PhysRevB.27.6083
http://link.aps.org/doi/10.1103/PhysRevB.27.6083

Xijao, D., M.-C. Chang, and Q. Niu, 2010, Rev. Mod. Phys.
82, 1959.

Xiao, D., J. Shi, and Q. Niu, 2005, Phys. Rev. Lett. 95,
137204.

Yablonovitch, E.; 1987, Phys. Rev. Lett. 58, 2059.

Yamauchi, K., F. Freimuth, S. Bliigel, and S. Picozzi, 2008,
Phys. Rev. B 78, 014403.

Yang, H., Y. Liu, C. Zhuang, J. SHi, Y. Yao, S. Massidda,
M. Monni, Y. Jia, X. Xi, Q. Li, Z.-K. Kiu, Q. Feng, et al.,
2008, Phys. Rev. Lett. 101, 067001.

Yang, W., 1991, Phys. Rev. Lett. 66, 1438.

Yao, Y., L. Kleinman, A. H. MacDonald, J. Sinova, T. Jung-
wirth, D.-S. Wang, E. Wang, and Q. Niu, 2004, Phys. Rev.
Lett. 92, 037204.

Yariv, A., Y. Xu, R. K. Lee, and A. Scherer, 1999, Optics
Lett. 24, 711.

Yates, J. R., X. Wang, D. Vanderbilt, and I. Souza, 2007,
Phys. Rev. B 75, 195121.

Yazyev, O. V., E. Kioupakis, J. E. Moore, and S. G. Louie,
2012, Phys. Rev. B 85, 161101(R).

Yazyev, O. V., J. E. Moore, and S. G. Louie, 2010, Phys. Rev.
Lett. 105, 266806.

64

Yee, K. S., 1966, IEEE Trans. Antennas Propag. 14, 302.

Yukalov, V. 1., 2009, Laser Physics 19, 1.

Zhang, H., F. Freimuth, S. Bliigel, Y. Mokrousov, and
I. Souza, 2011a, Phys. Rev. Lett. 106, 117202.

Zhang, H.-J., S. Chadov, L. Muchler, B. Yan, X.-L. Qi,
J. Kubler, S.-C. Zhang, and C. Felser, 2011b, Phys. Rev.
Lett. 106, 156402.

Zhang, H. J., C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C.
Zhang, 2009a, Nature Physics 5, 438.

Zhang, H.-J., C.-X. Liu, X.-L. Qi, X.-Y. Deng, X. Dai, S.-C.
Zhang, and Z. Fang, 2009b, Phys. Rev. B 80, 085307.

Zhang, W.; R. Yu, H.-J. Zhang, X. Dai, and Z. Fang, 2010,
New. J. Phys. 12, 065013.

Zhong, W., D. Vanderbilt, and K. M. Rabe, 1994, Phys. Rev.
Lett. 73, 1861.

Zhong, W., D. Vanderbilt, and K. M. Rabe, 1995, Phys. Rev.
B 52, 6301.

Zicovich-Wilson, C. M., R. Dovesi, and V. R. Saunders, 2001,
J. Chem. Phys. 115, 9708.

Zurek, E., O. Jepsen, and O. K. Andersen,
ChemPhysChem 6, 1934.

2005,



	Maximally localized Wannier functions: Theory and applications
	Abstract
	 Contents
	I INTRODUCTION
	II REVIEW OF BASIC THEORY
	A Bloch functions and Wannier functions
	1 Gauge freedom
	2 Multiband case
	3 Normalization conventions

	B Wannier functions via projection
	C Maximally localized Wannier functions
	1 Real-space representation
	2 Reciprocal-space representation

	D Localization procedure
	E Local minima
	F The limit of isolated systems or large supercells
	1 Real-space formulation for isolated systems
	2 -point formulation for large supercells

	G Exponential localization
	H Hybrid Wannier functions
	I Entangled bands
	1 Subspace selection via projection
	2 Subspace selection via optimal smoothness
	3 Iterative minimization of I
	4 Localization and local minima

	J Many-body generalizations

	III RELATION TO OTHER LOCALIZED ORBITALS
	A Alternative localization criteria
	B Minimal-basis orbitals
	1 Quasiatomic orbitals
	2 NMTO and Downfolding

	C Comparative discussion
	D Non-orthogonal orbitals and linear scaling
	E Other local representations

	IV ANALYSIS OF CHEMICAL BONDING
	A Crystalline solids
	B Complex and amorphous phases
	C Defects
	D Chemical interpretation
	E MLWFs in first-principles molecular dynamics

	V ELECTRIC POLARIZATION AND ORBITAL MAGNETIZATION
	A Wannier functions, electric polarization, and localization
	1 Relation to Berry-phase theory of polarization
	2 Insulators in finite electric field
	3 Wannier spread and localization in insulators
	4 Many-body generalizations

	B Local polar properties and dielectric response
	1 Polar properties and dynamical charges of crystals
	2 Local dielectric response in layered systems
	3 Condensed molecular phases and solvation

	C Magnetism and orbital currents
	1 Magnetic insulators
	2 Orbital magnetization and NMR
	3 Berry connection and curvature
	4 Topological insulators and orbital magnetoelectric response


	VI WANNIER INTERPOLATION
	A Band-structure interpolation
	1 Spin-orbit-coupled bands of bcc Fe
	2 Band structure of a metallic carbon nanotube
	3 GW quasiparticle bands 
	4 Surface bands of topological insulators

	B Band derivatives
	1 Application to transport coefficients 

	C Berry curvature and anomalous Hall conductivity
	D Electron-phonon coupling

	VII WANNIER FUNCTIONS AS BASIS FUNCTIONS
	A WFs as a basis for large-scale calculations
	1 MLWFs as electronic-structure building blocks
	2 Quantum transport
	3 Semi-empirical potentials
	4 Improving system-size scaling

	B WFs as a basis for strongly-correlated systems
	1 First-principles model Hamiltonians
	2 Self-interaction and DFT + Hubbard U


	VIII WANNIER FUNCTIONS IN OTHER CONTEXTS
	A Phonons
	B Photonic crystals
	C Cold atoms in optical lattices

	IX SUMMARY AND PROSPECTS
	 References


