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Abstract: This paper is a survey of volume synthesis techniques which are part of the 
field of volume graphics. It focuses specifically on the use of voxel representation and 
volumetric techniques for traditiona! geometric applications of computer graphics. 

1. Introduction 
Volume data are 3D entities that may have information inside them, might not consist 
of surfaces, or might be too voluminous to be represented geometrically. Volume visu- 
alization is a method of extracting meaningful information from volumetric data using 
interactive graphics and imaging. It is concerned with voktme data representation, mod- 
eling, manipulation, and rendering [16]. Volume data are obtained by sampling (e.g., 
CT, MRI, ultrasound, confocal microscope), simulation (e.g., running on a supercom- 
puter), or modeling. Recently, volume modeling (volume synthesis) has been flourish- 
ing, where many traditional geometric graphics applications, such as CAD and flight 
simulation, have been exploiting the advantages of volume techniques for modeling, 
manipulation, and visualization. This approach is called volume graphics. 

Over the years many techniques have been developed to visualize 3D data. Since 
methods for displaying geometric primitives were already well-established, most of the 
early methods involve approximating a surface contained within the data using geomet- 
ric primitives. When volumetric data are visualized using surface rendering, a dimen- 
sion of information is essentially lost. In response to this, volume rendering techniques 
were developed that attempt to capture the entire 3D data in a single 2D image. Vol- 
ume rendering conveys more information than surface rendering, but at the cost of 
increased algorithm complexity, and consequently increased rendering times. To 
improve interactivity in volume rendering, many optimization methods as well as sev- 
eral special-purpose volume rendering machines have been developed. 

Sec. 2 introduces volume data and volume rendering. Volume graphics is presented 
in Sec. 3, followed by voxelization (Sec. 4), fundamentals of discrete topology (Sec. 5), 
point and volume sampling (Secs. 6, 7), texture mapping (Sec. 8), amorphous phenom- 
ena (Sec. 9), block operations and constructive solid modeling (Sec. 10), and volume 
sculpting (Sec. 11). Then, volume graphics is contrasted with surface graphics (Sec. 
12), and the features and weaknesses of volume graphics are discussed (Secs. 14, 15). 

2. Volume Rendering 
Volumetric data is typically a set S of samples (x, y, z, v), representing the value v of 
some property of the data, at a 3D location (x,y,z). If the value is simply a 0 or a 1, 
with a value of 0 indicating background and a value of 1 indicating the object, then the 
data is referred to as binary data. The data may instead be multivalued, with the value 
representing some measurable property of the data, including, e.g., color, density, or 
heat. The value v may even be a vector, representing, e.g., velocity at each location. 
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In general, the samples may be taken at purely random locations in space, but in most 
cases S is isotropic containing samples taken at regularly spaced intervals along three 
orthogonal axes. When the spacing along each axis is a constant, but there exist three 
different spacing constants for the three axes, S is anisotropic. Since the set of samples 
is defined on a regular grid, a 3D array (called also volume buffer, cubic frame buffer, 
3D raster) is typically used to store the values, with the element location indicating 
position of the sample on the grid. Thus, S is referred to as the array of values 
S(x,y,  z), which is defined only at grid locations. Alternatively, either rectilinear, 
curvilinear (structured), or unstructured grids are employed (e.g., [30]). In a rectilinear 
grid the cells are axis-aligned, but grid spacings are arbitrary. When such a grid has 
been non-linearly transformed while preserving the grid topology, the grid becomes 
curvilinear. Otherwise the grid is called unstructured or irregular. An unstructured 
volume data is a collection of cells whose connectivity has to be specified explicitly. 
These cells can be of arbitrary shape such as tetrahedra, hexahedra, or prisms. 

The array S defines the value of some measured property of the data at discrete loca- 
tions. A function f ( x ,  y, z) is defined over R 3 describing the value at any continuous 
location. The function f ( x ,  y, z) = S(x, y, z) if (x, y, z) is a grid location; otherwise 
f ( x ,  y, z) approximates the value at a location (x, y, z) by applying some interpolation 
function to S. The simplest function is zero-order interpolation, which is just a nearest- 
neighbor function. With this method there is a region of constant value around each 
sample in S. The region of constant value surrounding each sample is known as a voxel 
with each voxel being a rectangular cuboid having 6 faces, 12 edges, and 8 comers. 

Higher-order interpolation functions can also be used to define f ( x ,  y, z) between 
sample points. One common interpolation function is a piecewise function known as 

first-order interpolation, or trilinear interpolation. With this interpolation function, the 
value is assumed to vary linearly along directions parallel to the major axes. Let the 
point P lie at location (xp, yp, zp) within the regular hexahedron, known as a cell, 
defined by samples A through H. For simplicity, let the distance between samples in 
all three directions be 1, with sample A at (0, 0, 0) with a value of v A, and sample H at 
(1, 1, 1) with a value of vii. The value vp, according to trilinear interpolation, is then: 

vp = v A (1 - Xp)(1 - y p ) ( 1  - Z p )  + VE (1 -- Xp)(1 - -yp)  Zp + (1) 

V B Xp (1 -- yp)(1 -- Zp) + V F Xp (1 -- yp)  Zp + 

V C (1- -Xp)  yp ( 1 - - Z p ) +  V G (1- -Xp)  yp Zp + 

V D Xp yp (1 --Zp) + V H Xp yp Zp 

In general, A is at some location (xA, YA, zA), and H is at (X~4,yH, zh'). In this case, xp 
in Eq. 1 would be replaced by (xp - XA)/(x14 - XA), with similar terms for yp and zp. 

Representing a surface contained within a volumetric dataset using geometric primi- 
tives is useful in some applications, however it has several drawbacks. First, geometric 
primitives can only approximate surfaces within the data. Adequate approximations 
may require an excessive amount of geometric primitives. Thus, a trade-off must be 
made between accuracy and space. Second, since only a surface representation is used, 
much of the information contained within the data is lost. Also, amorphous phenom- 
ena, such as clouds, fog, and fire cannot be adequately represented using surfaces. 
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Volume rendering is the process of creating a 2D image directly from a 3D volume. 
Volume rendering can be achieved using an object-order, an image-order, or a domain- 
based technique. Object-order volume rendering uses a forward mapping scheme 
whereby the volume data is mapped onto the image plane [5]. Such a projection can be 
accomplished by traversing the data samples either in a back-to-front or a front-to-back 
order, projecting each sample onto the image plane. One such algorithm is the splatting 
algorithm [37] generating an approximated but smooth rendering. In image-order algo- 
rithms, a backward mapping scheme is used, whereby rays are cast from each pixel in 
the image plane through the volume to determine the pixel value. Ray casting [20, 32, 
33], discrete ray tracing [39], and volumetric ray tracing [29] are examples of image- 
based algorithms. In a domain-based technique the spatial volume data is first trans- 
formed into an alternative domain, such as compression [8, 25, 40], frequency [7, 22, 
31], or wavelet [24, 36], and then a projection is generated from that domain. 

Of particular interest is the image-order discrete ray-tracing [39]. Instead of travers- 
ing a continuous ray and detemfining the closest data sample for each step with zero- 
order interpolation [32], a discrete representation of the ray is traversed. This discrete 
ray is generated using a 3D line scan-conversion (voxelization) algorithm (see Sec. 6). 
For each pixel in the image plane, a ray is cast in the direction of the viewing ray. This 
ray is voxelized and the recursive contribution from each voxel along the path is con- 
tributes to the final pixel value, similar to common recursive ray tracing. 

3. Volume Graphics 
The 3D raster representation seems to be more natural for empirical imagery than for 
geometric objects, due to its ability to represent interiors and digital samples. Nonethe- 
less, its advantages are also attracting traditional surface-based applications that deal 
with synthetic scenes of geometric models. The geometric model is voxelized (3D 
scan-converted) into a set of voxels that "best" approximate the model. Each of the 
voxels is then stored in the volume buffer together with its pre-computed view- 
independent attributes. The voxelized model can be either binary [2, 12-14] (see Sec. 
6) or volume sampled [34] (see Sec. 7), which generates alias-free density voxelization 
of the model. Some surface-based application examples are the rendering of fractals, 
hypertextures, fur, gases, CAD models, and terrain for flight simulators [1, 18, 38]. 
Furthermore, in many applications involving sampled data, such as medical imaging, 
the data need to be visualized along with synthetic objects, as with scalpels, prosthesis, 
injection needles, radiation beams, and isodose surfaces. These objects can be vox- 
elized and mixed with the sampled organ in the voxel buffer [15]. 

Volume graphics [18] is concerned with the synthesis, modeling, manipulation, and 
rendering of volumetric geometric objects, stored in a volume buffer. Unlike volume 
visualization which focuses on sampled and computed data, volume graphics is con- 
cerned with modeled geometric scenes commonly represented in a volume buffer. As 
an approach, volume graphics has the potential to greatly advance the field of 3D 
graphics by offering an akernative to traditional surface graphics. 

4. Voxelization 

An indispensable stage in volume graphics is the synthesis of voxel-represented objects 
from their geometric representation. This stage, called voxelization, converts geometric 



90 

objects from their continuous geometric representation into a set of voxels that "best" 
approximates the continuous object. As this process mimics the scan-conversion pro- 
cess that pixelizes (rasterizes) 2D objects, it is referred to as 3D scan-conversion. In 
2D rasterization the pixels are directly drawn onto the screen to be visualized. How- 
ever, the voxelization process does not render the voxels but merely generates a 
database of the discrete digitization of the continuous object. 

Intuitively, a proper voxelization would simply "select" all voxels which are met (if 
only partially) by the object body. Although this approach could be satisfactory in some 
cases, the objects it generates are commonly too coarse and include excess voxels. For 
example, when a 2D curve is rasterized into a connected sequence ofpixels, the discrete 
curve does not "cover" the entire continuous curve, but it is connected and concisely 
and successfully "separates" both ~ of the curve [3]. 

One practical meaning of separation is apparent when a voxelized scene is rendered 
by casting discrete rays from the image plane to the scene. The penetration of the back- 
ground voxels (simulating the discrete ray traversal) through the voxelized surface 
causes the appearance of a hole in the final image of the surface. Another type of error 
might occur when a 3D flooding algorithm is employed either to fill an object or to 
measure its volume, surface area, or other properties. In this case the nonseparability of 
the surface causes a leakage of the flood through the discrete surface. 

Unfortunately, the extension of the 2D definition of separation to 3D and to voxel 
surfaces is not straightforward since voxelized surfaces cannot be defined as an ordered 
sequence of  voxels and a voxel on the surface does not have a specific number of adja- 
cent surface voxels. Furthermore, there are important topological issues, such as the 
separation of both sides of a surface, which cannot be well-defined by 2D terminology. 
The theory that deals with these topological issues is called 3D discrete topology. We 
sketch below a few informal definitions used in this field. 

5. Fundamentals of 3D Discrete Topology 
The 3D discrete space is a set of integral grid points in 3D Euclidean space defined by 
their Cartesian coordinates (x, y, z). A voxel is a unit cube centered at the integral grid 
point. The voxel value is mapped onto {0,1 }: the voxels assigned "1" are the "black" 
voxels representing opaque objects, and those assigned "0"  are the "white" voxels rep- 
resenting transparent background. In Sec. 7 we describe non-binary approaches where 
the voxel value is mapped onto the interval [0,1] representing either partial coverage, 
variable densities, or graded opacities. Due to its larger dynamic range of values, this 
approach supports 3D antialiasing and thus higher quality rendering. 

Two voxels are 26-adjacent if they share either a vertex, an edge, or a face. Every 
voxel has 26 such adjacent voxels: 8 share a vertex with the center voxel, 12 share an 
edge, and 6 share a face. Accordingly, face-sharing voxels are defined as &adjacent, 
and edge-sharing and face-sharing voxels are defined as 18-adjacent. The prefix N is 
used to define adjacency, where N = 6, 18, 26. A sequence of voxels having the same 
value (e.g., black) is called an N-path if all consecutive pairs are N-adjacent. A set of 
voxels W is N-connected if there is an N-path between every pair of voxels in W. An 
N-connected component is a maximal N-connected set. 

Given a 2D discrete 8-connected black curve, there are sequences of 8-colmected 
white pixels (8-components) that pass from one side of the black component to its other 
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side without intersecting it. This phenomenon is a discrete disagreement with the con- 
tinuous case where a closed curve cannot be penetrated without intersecting it. To 
avoid such a scenario, it has been the convention to define "opposite" types of connec- 
tivity for the white and black sets. "Opposite" types in 2D space are 4 and 8, while in 
3D 6 is "opposite" to 26 or to 18. Assume that a voxel space, denoted by E, includes 
one subset of "black" voxels S. If Z - S is not N-connected, that is, Z - S consists of at 
least two white N-connected components, then S is said to be N-separating in Z. 
Loosely speaking, in 2D, an 8-connected black path that divides the white pixels into 
two groups is 4-separating and a 4-connected black path that divides the white pixels 
into two groups is 8-separating. There are no analogous results in 3D space. 

Let W be an N-separating surface. A voxel p E W is an N-simple voxel if W - p is 
still N-separating. An N-separating surface is called N-minimal if it does not contain 
any N-simple voxel. A cover of a continuous surface is a set of voxels such that every 
point of the continuous surface ties in a voxel of the cover. A cover is a minimal cover 
if none of its subsets is also a cover. The cover property is essential in applications that 
employ space subdivision for fast ray macing [10]. The subspaces (voxels) which con- 
tain objects have to be identified along the traced ray. Note that a cover is not necessar- 
ily separating, while on the other hand it may include simple voxels. In fact, even a 
minimal cover is not necessarily N-minimal for any N [3]. 

6. Binary Voxelization 
A simple technique for the digitization of solids is spatial enumeration which employs 
point or cell classification in either an exhaustive fashion or by recursive subdivision 
[19]. However, this approach is computationally expensive and thus inappropriate for 
medium or high resolutions. Instead, objects should be directly voxelized, preferably 
generating an N-separating, N-minimal, and covering set, where N is application depen- 
dent. The voxelization algorithms should follow the same paradigm as 2D scan- 
conversion: should be incremental, accurate, use simple arithmetic (preferably integer 
only), and have a complexity that is linear with the number of voxels generated. 

The literature on voxelization is small. Danielsson [4] and Mokrzycki [23] devel- 
oped independently similar 3D curve algorithms where the curve is defined by the inter- 
section of two implicit surfaces. Voxelization algorithms have been developed for 3D 
lines, 3D circles, and a variety of surfaces and solids, including polygons, polyhedra, 
and quadric objects [12]. Efficient algorithms have been developed for voxelizing poly- 
gons using an integer-based decision mechanism embedded within a scan-line algo- 
rithm [14], parametric curves, surfaces, and volumes using an integer-based forward 
differencing technique [13], and quadric objects such as cylinders, spheres, and cones 
using "weaving" algorithms by which a discrete circle/line sweeps along a discrete cir- 
cle/line [2]. Fig. 1 includes examples ofvoxelized polygons, boxes, and cylinders. 

In discrete ray casting, a ray is discretized (binary voxelized) into a 6-, 18-, or 
26-connected line, and the voxels along this line are considered in determining the final 
pixel value. If  a surface projection is required, the line is traversed until the first voxel 
of the surface is encountered. This voxel is then shaded and the resulting color is stored 
in the pixel. 6-connected paths (6-paths) contain almost twice as many voxels as 
26-paths, so an image created using 26-paths would require less computation, but a 
26-path may miss an intersection that would be detected using a 6-path. 
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Figure l : Voxelized terrain enhanced with photo mapping of ~tell ite images, 
Buildings are synthetic binary voxel models raised on top of the terrain. 

7. V o l u m e  S a m p l i n g  

Binary voxelization generates topologically and geometrically consistent models, but 
exhibit object space aliasing. These algorithms have used a sampling method called 
point sampling. In point sampling, the continuous object is evaluated at the voxel cen- 
ter, and 0 or 1 is assigned to the voxel. Because of this binary classification, the resolu- 
tion of the 3D raster ultimately determines the precision of the discrete model. Impre- 
cise modeling results in jagged surfaces, known as object space aliasing (see Fig. 1). 
In this section, 3D object-space antialiasing is presented. It performs 3D antialiasing 
once, on a 3D view-independent representation, as part of modeling. Unlike antialias- 
ing of 2D scan-converted graphics, where the focus is on generating aesthetically pleas- 
ing displays, the emphasis in antialiased 3D voxelization is on producing alias-free 3D 
models that are stored in the view-independent volume buffer and may be used also to 
generate aesthetically pleasin~ displays. 

To reduce object space aliasing, volume sampling techniques have been developed 
[34], which estimate the density contribution of the geometric objects to the voxels. 
The density of a voxel is attenuated by a filter weight function which is proportional to 
the distance between the voxel center and the geometric object. Precomputed lookup 
tables of densities for a predefined geometric primitives can be used to select the den- 
sity value of voxels visited by the binary voxelization algorithm. Alternatively, each 
such voxel is "splatted" to its 3D neighbors using a similar filter. 

Since the voxelized geometric objects are represented as 3D rasters of densities, they 
can essentially be treated as sampled or simulated volume data, and volume rendering 
or volumetric global illumination can be employed. One primary advantage of this 
approach is that the smoothness of the volume-sampled objects is carried from object 
space over into its 2D projection in image space. Hence, silhouettes, reflections, and 
shadows are smooth. Furthermore, by not performing any geometric ray-object 
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intersections or surface normal calculations, the bulk of the rendering time is saved. In 
addition, constructive solid geometry (CSG) operations between two volume-sampled 
geometric models are accomplished at the voxel level, thereby reducing the problem of 
evaluating a CSG tree of such operations down to a fuzzy Boolean operation between 
pairs of non-binary voxels [34] (see Sec. 10). Volume-sampled models are also suitable 
for mixing with sampled or simulated datasets, since they can be treated uniformly as 
one common data representation. Furthermore, volume-sampled models lend them- 
selves to alias-free multi-resolution hierarchy construction [34]. 

8. Texture Mapping 
Objects are commonly enhanced with texture mapping, photo mapping, environment 
mapping, or solid texturing. Texture mapping is implemented during the last stage of 
the rendering pipeline, and its complexity is proportional to the object complexity. In 
volume graphics, however, texture mapping is performed during the voxelization stage, 
and the texture color is stored in each voxel in the volume buffer. 

In photo mapping six orthogonal photographs of  the real object are projected onto 
the voxelized object. Once this mapping is applied, it is stored within the voxels during 
voxelization, and therefore does not degrade the rendering performance. Texture and 
photo mapping are viewpoint independent, implying that once the texture is stored as 
part of the voxel, the mapping need not be repeated. This feature is exploited, e.g., by 
voxel-based flight simulators (see Fig. 1) and in CAD systems (see Fig. 2). 

A central feature of volumetric representation is that, unlike surface representation, it 
is capable of representing inner structures of objects, which can be revealed with appro- 
priate manipulation and rendering techniques. This capability is essential for the explo- 
ration of sampled or simulated objects. Synthetic objects are also likely to be solid 
rather than hollow. One method for modeling various solid types is solid texturing, in 
which a function or a 3D map models the color of an object in 3D (see Fig. 2). During 
the voxelization phase each voxel belonging to the object is assigned a value by the tex- 
turing function or the 3D map. This value is then stored as part of the voxel informa- 
tion, and it is recomputed for every change in the rendering parameters. 

9. Amorphous Phenomena 
While translucent objects can be represented by surface methods, these methods cannot 
efficiently support the modeling and rendering of amorphous phenomena (e.g., clouds, 
fire, smoke) that are volumetric in nature and lack any tangible surfaces. A common 
modeling and rendering approach is based on a function that, for any input point in 3D, 
calculates some object features such as density, reflectivity, or color. These functions 
can then be rendered by ray casting. Examples for the use of this or similar techniques 
are the rendering of fractals, hypertexmres, fur, and gases. 

The process of function evaluation at every sample point is repeated for every image 
generated. In contrast, the volumetric approach allows the pre-computation of these 
functions at every grid point of the volume buffer. The resulting volume can then be 
rendered from multiple viewpoints without recomputing the modeling function. As in 
other volume graphics techniques, accuracy is traded for speed, due to the resolution 
limit. Instead of accurately computing the function at each sample point, some type of 
interpolation from the precomputed grid values is employed. 
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Figure 2: Volume-sampled bolt and nut generated by CSG operations on helix 
cylindrical, and hexagonal primitives, reflected on a volume-sampled mirror. 

10. Block Operations and Constructive Solid Modeling 
The presortedness of the volume buffer naturally Lends itself to grouping operations. 
For example, multi-resolution volume hierarchy can support time-critical and space- 
critical volume graphics applications. The basic idea is similar to that of level-of-detail 
surface rendering, in which the perceptual importance of a given object in the scene 
determines its appropriate level-of-detail representation. For example, the terrain image 
shown in Fig. 1 was generated by the voxel-based Hughes Aircraft Co. flight simulator 
[38]. It simulates a flight over voxel-represented terrain enhanced with satellite or 
aerial photo mapping with additional synthetic raised objects, such as buildings, trees, 
vehicles, aircraft, clouds and the like. Parts of the terrain close to the obse~wer are ren- 
dered at high resolution which decreases towards the horizon. 

One simple level-of-detail approach is the 3D "mip-map" [21, 28], where every level 
of the hierarchy is formed by averaging eight voxels from the previous level. A better 
approach is based on sampling theory, in which an object is modeled with a sequence of 
alias-free volume buffers at different resolutions using volume-sampled voxelization 
[11]. To accomplish this, high frequencies are filtered out by applying an ideal low- 
pass filter (sinc) with infinite support. In practice, the ideal filter is approximated by fil- 
ters with finite support. Low sampling resolution of the volume buffer corresponds to a 
lower Nyquist frequency, and therefore requires a low-pass filter with wider support for 
good approximation. As one moves up the hierarchy, low-pass filters with wider and 
wider support are applied. Compared to the level-of-detail hierarchy in surface graph- 
ics, the multi-resolution volume buffers are easy to generate and to spatially correspond 
neighboring levels, and are free of object space aliasing. Furthermore, arbitrary resolu- 
tions can be generated, and errors caused by a non-ideal filter do not propagate and 
accumulate from level to level. Depending on the required speed and accuracy, a vari- 
ety of low-pass filters (zero order, cubic, Gaussian) can be applied. 
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An intrinsic characteristic of the volume buffer is that adjacent objects in the scene 
are also represented by neighboring memory cells. Therefore, rasters lend themselves to 
various meaningful grouping-based operations, such as bitblt in 2D, or voxblt in 3D 
[17]. These include transfer of volume buffer rectangular blocks (cuboids) while sup- 
porting voxel-by-voxel operations between source and destination blocks. Block opera- 
tions add a variety of modeling capabilities which aid in the task of image synthesis and 
form the basis for the efficient implementation of a 3D "room manager", which is the 
extension of window management to the third dimension. 

Since the volume buffer lends itself to Boolean operations that can be performed on a 
voxel-by-voxel basis during the voxelization stage, it is advantageous to use CSG as the 
modeling paradigm. Subtraction, union, and intersection operations between two vox- 
elized objects are accomplished at the voxel level, thereby reducing the problem of 
evaluating a CSG tree during rendering time down to a 1D Boolean operation between 
pairs of voxels during a preprocessing stage. 

For two point-sampled binary objects the operations of CSG or voxblt are trivially 
defined. However, the Boolean operations applied to volume-sampled models are anal- 
ogous to those of fuzzy set theory (cf. [6]). The volume-sampled model is a density 
function d(x)  over R 3, where d is 1 inside and 0 outside the object, and 0 < d < 1 
within the "soft" region of the filtered surface. The common operations, intersection, 
complement, difference, and union, between two objects A and B are: 

d A (-~ ~(x) - min (d,~(x), de(x) )  d2(x)  = 1 - dA(x ) (2) 

dA_B(X ) =- min (dA(X), 1 - de(x))  d A u n ( x )  - max (dA(x) ,  dB(x)) (3) 

However, the excluded-middle law (i.e., A 0 ~t ~ ~ and A t,.3 A ~ Universe) is no 
longer true. The min and max functions cause discontinuity where the soft regions of 
the two objects meet, since the value at each location in the region is determined solely 
by one of the two overlapping objects. Complex geometric models can be generated by 
performing the CSG operations in Eqs. 2-3 between volume-sampled primitives (see 
Fig. 2). Volume-sampled models can also function as matte volumes [5] for various 
matting operations, such as performing cut-aways and merging multiple volumes using 
the union operation. However, in order to preserve continuity on the cut-away bound- 
aries between the material and the empty space, one should use an alternative set of 
Boolean operators based on algebraic sum and product [6, 26] : 

d A (-.~(x) - dA(x ) dB(x ) dA(x ) =- 1 - dA(x ) (4) 

dA-B(X) = dA(X) - dA(X) dB(X) dA LJ B(x) = dA(X) + dB(X) - dA(X) dB(X) (5) 

Unlike the min and max operators, algebraic sum and product operators result in 
A L) A ~ A, which is undesirable. A consequence, e.g., is that during modeling via 
sweeping, the resulting model is sensitive to the sampling rate of the sweep [34]. 

11. Volume Sculpting 
Surface-based sculpting has been studied extensively, while volume sculpting has been 
recently introduced for clay or wax-like sculptures [9] and for detailed sculpting [35]. 
The latter approach is a free-form interactive modeling technique based on the 
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metaphor of sculpting and painting a voxel-based solid material, such as a block of 
marble or wood. There are two motivations for this approach. First, modeling topolog- 
ically complex and highly-detailed objects are still difficult in most CAD systems. Sec- 
ond, sculpting has shown to be useful in visualization applications. For example, scien- 
tists and physicians often need to explore the inner structures of their simulated or sam- 
pled datasets by gradually removing material. 

Real-time interaction could be achieved in this approach. The actions of sculpting 
(e.g., carving, sawing) and painting are localized in the volume buffer, and thus local- 
ized rendering is employed to reproject only those pixels that are affected. Thus, real- 
time interaction can be achieved. Carving uses a pre-existing volume-sampled tool to 
chip or chisel the object bit by bit. Since both the object and the tool are represented as 
independent volumes, the tool is positioned with respect to the object and a Boolean 
subtraction between the two volumes is performed. Sawing removes a whole chunk of 
material at once, much like a carpenter sawing off a piece of wood. Unlike carving, 
sawing requires generating the volume-sampled tool on-the-fly. To prevent object- 
space aliasing and to achieve interactive speed, 3D splatting is employed. 

12. Surface Graphics vs. Volume Graphics 
Contemporary 3D graphics has been employing an object-based approach at the 
expense of maintaining a display list of geometric objects and regenerating the frame- 
buffer after every change in the scene or the view. This approach, termed surface 
graphics, is supported by powerful geometry engines. Surface graphics strikingly 
resembles vector graphics that prevailed in the sixties and seventies. Like vector graph- 
ics, surface graphics represents the scene as a set of geometric primitives kept in a dis- 
play list. In surface graphics, these primitives are transformed, mapped to screen coor- 
dinates, and then scan-converted into pixels. Any change to the scene, viewing, or 
shading parameters requires repeating this process. Like vector graphics that did not 
support painting the interior of 2D objects, surface graphics generates merely the sur- 
faces of 3D objects and does not support the rendering of their interior. 

Instead of a display list maintained by surface graphics, volume graphics employs a 
3D volume buffer as a medium for representation and manipulation. A 3D scene is dis- 
cretized earlier in the image generation sequence, and the resulting 3D discrete form is 
used as a database of the scene for manipulation and rendering purposes, which in 
effect decouples discretization from rendering. Furthermore, all objects are converted 
into one uniform meta-object - the voxeL Each voxel is atomic and represents the infor- 
mation about, at most, one object that resides in that voxel. Volume graphics offers 
similar benefits to surface graphics, with several advantages that are due to the decou- 
pling, uniformity, and atomicity features. The rendering phase is insensitive to scene 
and object complexities, since all objects have been pre-voxelized with their view- 
independent attributes into a finite size volume buffer, and rendering performance 
depends mainly on the volume buffer resolution. Thus, volume graphics is particularly 
attractive for large scenes and for objects that are hard to render using conventional 
graphics, such as high-order curved surfaces and fractals, and those with texture and/or 
antialiasing. It supports Boolean and block operations and CSG. When 3D sampled or 
simulated data are used, such as that generated by medical scanners (see Fig. 3) or sci- 
entific simulations, volume graphic is suitable for their representation or their 
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Figure 3: Llnion operation between volume-sampled cylinder and MRI head. 

compatible intemixing with geometric objects (see Fig. 3). it is capable of representing 
amorphous phenomena and both the interior and exterior of 3D objects. 

Several weaknesses of volume graphics are related to the discrete nature of the repre- 
sentation; transformations and shading, for instance, are performed in discrete space. 
In addition, this approach requires substantial amounts of space (e.g., 256MB for 5123 
2B/voxel) and specialized processing. However, discrete artifacts can be alleviated in 
ways similar to 2D techniques, computer memories are significantly decreasing in price 
and size and increasing in speed, and volume engines, capable of rendering volumes in 
true real time of 30 frames/sec, are emerging [16; Ch. 6, 27]. 

Table 1 contrasts vector graphics with raster graphics. A primary appeal of raster 
graphics is that it decouples image generation from screen refresh, thus making the 
refresh insensitive to scene and object complexities. In addition, the raster form lends 
itself to block operations, such as bitblt and quadtree. Raster graphics is also suitable 
for 2D digital images, and thus provides the ideal environment for mixing digital 
images with synthetic graphics. Unlike vector graphics, raster graphics provides the 
capability to present shaded and textured surfaces, as well as line drawings. These 
advantages, coupled with advances in hardware, have led raster graphics to supersede 
vector graphics. The main weaknesses of raster graphics are the large memory and pro- 
cessing power it requires, and the discrete nature of the image. These difficulties 
delayed the full acceptance of raster graphics until the late seventies. In addition, the 
discrete nature of rasters make them less suitable for geometric operations such as 
transformations and accurate measurements, and once discretized object notion is lost. 

The same appeal that drove the evolution of computer graphics from vector graphics 
to raster graphics, once the memory and processing power became available, is driving 
a variety of applications from a surface-based to a volume-based approach. Naturally, 
this trend first appeared in applications involving sampled or simulated 3D data, such as 
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Table 1: Comparison between vector graphics and raster graphics 
and between surface graphics and volume graphics. 

2D Vector Graphics Raster Graphics 

Scene/object complexity - + 

Block operations - + 

Sampled data - + 

Interior - + 

Memory and processing + - 

Aliasing + - 

Transformations + - 

Objects + - 

3D Surface Graphics Volume Graphics 

3D medical imaging and scientific visualization, in which datasets are already in volu- 
metric form. These diverse empirical applications of volume visualization still provide 
a major driving force for advances in volume graphics. 

The comparison in Table 1 between vector and raster graphics strikingly resembles a 
comparison between surface and volume graphics. Actually, Table 1 itself is used also 
to contrast surface and volume graphics (see [18]). 

13. Conclusions 
Several of the concepts and methods of volume visualization have been presented. 
Although volumetric representations and visualization seem more natural for sampled 
or simulated datasets, their advantages are also attracting traditional geometric-based 
applications. This trend implies an expanding role for volume visualization, and it has 
the potential to revolutionize the field of computer graphics, by providing an altemative 
to surface graphics, called volume graphics. As summarized in Table 1, volume graph- 
ics has advantages over surface graphics by being viewpoint independent, insensitive to 
scene and object complexities, and lending itself to the realization of block operations, 
CSG modeling, and hierarchical representation. It is suitable for the representation of 
sampled or simulated datasets and their intermixing with geometric objects, and it sup- 
ports the display of internal structures. The problems associated with the volume repre- 
sentation - memory size, processing time, aliasing, and lack of geometric representa- 
tion - echo problems encountered when roster graphics emerged as an alternative tech- 
nology to vector graphics, and can be alleviated in similar ways. 

The progress so far in volume graphics, in hardware, and memory systems, coupled 
with the desire to reveal the inner structures of volumetric objects, suggest that volume 
visualization and volume graphics may develop into major trends in computer graphics. 
Just as raster graphics in the seventies superseded vector graphics for visualizing sur- 
faces, volume graphics has the potential to supersede surface graphics for handling and 
visualizing volumes as well as for modeling and rendering synthetic surfaces. 
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