
ORI GIN AL PA PER

Domain adaptation of statistical machine translation
with domain-focused web crawling

Pavel Pecina • Antonio Toral • Vassilis Papavassiliou • Prokopis Prokopidis •
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Abstract In this paper, we tackle the problem of domain adaptation of statistical

machine translation (SMT) by exploiting domain-specific data acquired by domain-

focused crawling of text from the World Wide Web. We design and empirically

evaluate a procedure for automatic acquisition of monolingual and parallel text and

their exploitation for system training, tuning, and testing in a phrase-based SMT

framework. We present a strategy for using such resources depending on their

availability and quantity supported by results of a large-scale evaluation carried out

for the domains of environment and labour legislation, two language pairs (English–

French and English–Greek) and in both directions: into and from English. In gen-

eral, machine translation systems trained and tuned on a general domain perform

poorly on specific domains and we show that such systems can be adapted
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successfully by retuning model parameters using small amounts of parallel in-

domain data, and may be further improved by using additional monolingual and

parallel training data for adaptation of language and translation models. The average

observed improvement in BLEU achieved is substantial at 15.30 points absolute.

Keywords Statistical machine translation � Domain adaptation �
Web crawling � Optimisation

1 Introduction

Recent advances in statistical machine translation (SMT) have improved machine

translation (MT) quality to such an extent that it can be successfully used in industrial

processes (e.g., Flournoy and Duran 2009). However, this mostly happens only in

specific domains where ample training data is available (e.g., Wu et al. 2008). Using

in-domain data for training has a substantial effect on the final translation quality: the

performance of an SMT system usually drops when it is applied to data of a different

nature than that on what it was trained (e.g., Banerjee et al. 2010).

SMT is an instance of a machine learning application which in general works

best if the data for training and testing are drawn from the same distribution (i.e.,

domain, genre, and style). In practice, however, it is often difficult to obtain

sufficient amounts of in-domain data (in particular, parallel data required for

translation and reordering models) to train a system with good performance for a

specific domain. The main problem is usually vocabulary coverage: domain-specific

texts typically contain a substantial amount of special vocabulary, which is not

likely to be found in texts from other domains (Banerjee et al. 2010). Additional

problems can be caused by divergence in style or genre, where the difference is not

only in lexis but also in other linguistic aspects such as grammar.

In order to achieve optimal performance, an SMT system should be trained on data

from the same domain, genre, and style as it is intended to be applied to. For many

domains, though, in-domain data of a sufficient size to train an SMT system with good

performance is difficult to find. Recent experiments have shown that even small

amounts of such data can be used to adapt an existing (general-domain) system to the

particular domain of interest (Koehn et al. 2007). Sometimes, appropriate sources of

such data come in the form of existing in-house databases and translation memories

(He et al. 2010). An alternative option pursued in this paper is to exploit the constantly

growing amount of publicly available text on the web, although acquiring data of a

sufficient quality and quantity from this resource is a complicated process involving

several critical steps (crawling, language identification, cleaning, etc.).
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In this research, we first present a strategy and relevant workflows for automatic web-

crawling and cleaning of domain-specific data with limited manual intervention. These

workflows are based on open-source tools and have also been deployed as web services

in the context of the Panacea1 research project (Poch et al. 2012). One advantage of

making the tools available as services is that chaining them together enables the building

of dynamic and flexible workflows, which can always be improved by integrating new

services and/or old legacy systems that may run on different technological platforms.

Moreover, the user does not have to deal with technical issues regarding the tools, such

as their installation, configuration, or maintenance.

These workflows are then employed to acquire monolingual and parallel data for

two domains: environment (env) and labour legislation (lab), and two language

pairs: English–French (EN–FR) and English–Greek (EN–EL). The crawled data is

further exploited for domain adaptation of a general-domain SMT system in several

ways: by domain-specific parameter tuning of the main log-linear model and by

adaptation of its components. The evaluation experiments carried out in a total of

eight evaluation scenarios (two domains, two language pairs, and both translation

directions: to and from English) confirm substantial and consistent improvements in

translation quality for all approaches compared to the baseline.

We explain the improvements brought about by analysing the experimental results in

detail. In a nutshell, tuning for matching-domain training and test data results in weight

vectors that trust (often long) translation table entries. Tuning with and for specific

domains (while using generic training data) allows the MT system to stitch together

translations from smaller fragments which, in this case, leads to improved translation

quality. Such tuning requires only small development sets which can be harvested

automatically from the web with minimal human intervention; no manual cleaning of the

development data is necessary.

In addition, additional improvements are realised by using monolingual and/or

parallel in-domain training data. Adaptation of language models focuses on

improving translation fluency and lexical selection for the particular domain.

Adaptation of the translation model then aims at reduction of the out-of-vocabulary

(OOV) rate and adding domain-relevant translation variants. All the data sets are

available via the European Language Resources Association (ELRA).

This paper is an extended and updated version of our previous work published as

Pecina et al. (2011, 2012a, b). Compared to these conference papers, we provide more

details of the experiments, full results and a more thorough analysis and description of

our findings. Some experiments are new, and not contained in the standalone papers.

These include a comparison of various methods for adaptation of language models and

translation models (including the state-of-the-art linear interpolation), as well as the

comparison of OOV rate (i.e., the ratio of source words unknown to the translation

model), language model perplexity measures, and average phrase length in the test set

translations (cf. Table 15). Compared to the previous papers, the translation quality

evaluation in this work is conducted on tokenized and lowercased translations to avoid

any bias caused by recasing and detokenization. We also provide much longer

descriptions of both related work as well as our data acquisition procedure. Finally, we

1 http://www.panacea-lr.eu/.
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formulate this paper as one concise yet coherent account of the full range of experiments

carried out.

The remainder of the paper is organised as follows. After the overview of related work

and description of the state-of-the-art in Sect. 2, we present our web-crawling procedure

for monolingual and parallel data in Sect. 3, and the baseline system including its

evaluation in Sect. 4. Section 5 is devoted to system adaptation by parameter tuning and

Sect. 6 to adaptation of language and translation models. Section 7, which concludes the

work, is followed by an Appendix containing formal definitions of the two domains

relevant to our work and complete results of the main experiments.

2 State-of-the-art and related work

In this section, we review the current state-of-the-art in the area of web crawling for

monolingual as well as parallel data and briefly describe the main concepts of

phrase-based SMT (PB-SMT) and its adaptation to specific domains.

2.1 Web crawling for textual data

Web crawling is the automatic process of travelling through the World Wide Web by

extracting links of already fetched web pages and adding them to the list of pages to be

visited. The selection of the next link to be followed is a key challenge for the evolution

of the crawl and is tied to the goal of the process. For example, a crawler that aims to

index the web as a whole may not prioritise the links at all, while a focused/topical

crawler that aspires to build domain-specific web collections (Qin and Chen 2005)

may use a relevance score to decide which pages to visit first or not at all.

Several algorithms have been exploited for selecting the most promising links.

The Best-First algorithm (Cho et al. 1998) sorts the links with respect to their

relevance scores and selects a predefined amount of them as the seeds for the next

crawling cycle. The PageRank (Brin and Page 1998) algorithm exploits the

‘popularity’ of a web page, i.e., the probability that a random crawler will visit that

page at any given time, instead of its relevance. Menczer and Belew (2000) propose

an adaptive population of agents and search for pages relevant to a domain using

evolving query vectors and neural nets to decide which links to follow.

In other approaches (Dziwiński and Rutkowska 2008; Gao et al. 2010), the selection

of the next links is also influenced by the distance between relevant pages (i.e., the

number of links the crawler must follow in order to visit a particular page starting from

another relevant page). A general framework, which defines crawling tasks of variable

difficulty and fairly evaluates focused crawling algorithms under a number of

performance metrics (precision and recall, relevance, algorithmic efficiency, etc.) was

proposed by Srinivasan et al. (2005).

Another challenging task in producing good-quality language resources from the

web is the removal of parts of the web page such as navigation links,

advertisements, disclaimers, etc. (often called boilerplate), since they are of only

limited or no value for the purposes of studying language use and change (Kilgarriff

and Grefenstette 2003) or for training an MT system. A review of cleaning methods

is presented by Spousta et al. (2008), among others.
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Apart from the crawling algorithm, classification of web content as relevant or

otherwise affects the acquisition of domain-specific resources, on the assumption

that relevant pages are more likely to contain links to more pages in the same

domain. Qi and Davison (2009) review features and algorithms used in web page

classification. Most of the reviewed algorithms apply supervised machine-learning

methods (support vector machines, decision trees, neural networks, etc.) on feature

vectors consisting of on-page features, such as textual content and HTML tags (Yu

et al. 2004). Many algorithms exploit additional information contained in web

pages, including anchor text of hyperlinks. Some methods adopt the assumption that

neighbouring pages are likely to be in the same domain (Menczer 2005).

The WebBootCat toolkit (Baroni et al. 2006) harvests domain-specific data from

the web by querying search engines with tuples of in-domain terms. Combine2 is an

open-source focused crawler based on a combination of a general web crawler and a

topic classifier. Efficient focused web crawlers can be built by adapting existing

open-source frameworks such as Heritrix,3 Nutch,4 and Bixo.5

2.2 Web crawling for parallel texts

Compared to crawling for monolingual data, acquisition of parallel texts from the

web is even more challenging. Even though there are many multilingual websites

with pairs of pages that are translations of each other, detection of such sites and

identification of the pairs is far from straightforward.

Considering the web as a parallel corpus, Resnik and Smith (2003) present the

STRAND system, in which they use a search engine to search for multilingual

websites and examine the similarity of the HTML structures of the fetched web

pages in order to identify pairs of potentially parallel pages. Besides structural

similarity, systems such as PTMiner (Nie et al. 1999) and WeBiText (Désilets et al.

2008) filtered fetched web pages by keeping only those containing language

markers in their URLs. Chen et al. (2004) proposed the Parallel Text Identification

System, which incorporated a content analysis module using a predefined bilingual

wordlist. Similarly, Zhang et al. (2006) adopted a naive aligner in order to estimate

the content similarity of candidate parallel web pages. Esplà-Gomis and Forcada

(2010) developed Bitextor, a system combining language identification with shallow

features (file size, text length, tag structure, and list of numbers in a web page) to

mine parallel pages from multilingual sites that have been already been stored

locally with the HTTrack6 website copier. Barbosa et al. (2012) crawl the web and

examine the HTML DOM tree of visited web pages with the purpose of detecting

multilingual websites based on the collation of links that are very likely to point to

in-site pages in different languages. Once a multilingual site is detected, they use an

2 http://combine.it.lth.se/.
3 http://crawler.archive.org/.
4 http://nutch.apache.org/.
5 http://openbixo.org/.
6 http://www.httrack.com/.
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intra-site crawler and alignment procedures to harvest parallel text for multiple pairs

of languages.

2.3 Phrase-based statistical machine translation

In PB-SMT (e.g., Moses (Koehn et al. 2007)), an input sentence is segmented into

sequences of consecutive words, called phrases. Each phrase is then translated into a

target-language phrase, which may be reordered with other translated phrases to

produce the output.

Formally, the model is based on the noisy channel model. The translation e of an

input sentence f is searched for by maximising the translation probability pðejfÞ
formulated as a log-linear combination of a set of feature functions hi and their

weights ki:

pðejfÞ ¼
Yn

i¼1

hiðe; fÞki :

Typically, the components include features of the following models (the symbols in

brackets refer to the actual features used in our experiments described in Sects. 4–

6): reordering (distortion) model (h1–h7), which allows the reordering of phrases in

the input sentences (e.g., distance-based and lexicalised reordering), language
model (h8), which ensures that the translations are fluent, phrase translation model
(h8–h12), which ensures that the source and target phrases are good translations of

each other (e.g., direct and inverse phrase translation probability, direct and indirect

lexical weighting, and phrase penalty), phrase penalty (h13), which controls the

number of phrases the translation consists of, and word penalty (h14), which

prevents the translations from being too long or too short.

The weights of the log-linear combination influence overall translation quality;

however, the optimal setting depends on the translation direction and data. A

common solution to optimise weights is to use Minimum Error Rate Training

(MERT: Och 2003), which automatically searches for the values that minimise a

given error measure (or maximise a given translation quality measure) on a

development set of parallel sentences. Theoretically, any automatic measure can be

used for this purpose; however, the most commonly used is BLEU (Papineni et al.

2002). The search algorithm is a type of coordinate ascent: considering the n-best

translation hypotheses for each input sentence, it updates the feature weight which is

most likely to improve the objective and iterates until convergence. The error

surface is highly non-convex. Since the algorithm cannot explore the whole

parameter space, it may converge to a local maximum. In practice, however, it often

produces good results (Bertoldi et al. 2009).

2.4 Domain adaptation in statistical machine translation

Domain adaptation is a very active research topic within the area of SMT. Three

main topics can be identified depending on the availability of domain-specific data:

(1) if any in-domain data is available, it can be directly used to improve the MT
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system, e.g., by combining the (limited) in-domain with (more extensive) out-of-

domain resources for training; (2) if in-domain data exists but is not readily

available, one may attempt to acquire domain-specific data (e.g., from the web,

which is the case of our work); (3) finally, if sources of in-domain data cannot be

identified, one may attempt to select pseudo in-domain data (Axelrod et al. 2011)

from general-domain sources. Below, we review a selection of relevant work that

falls into these topics.

The first attempt to perform domain adaptation was carried out by Langlais

(2002), who integrated in-domain lexicons in the translation model. Wu and Wang

(2004) used in-domain data to improve word alignment in the training phase. Much

work on domain adaptation in the interim has looked at mixture modelling, whereby

separate models are built for each data set (e.g., in-domain and out-of-domain)

which are then interpolated. There have been attempts to combine both language

models (Koehn and Schroeder 2007) and translation models (Nakov 2008; Sanchis-

Trilles and Casacuberta 2010; Bisazza et al. 2011). The features of the different

models can be combined by linear or log-linear interpolation (Foster and Kuhn

2007; Banerjee et al. 2011). Ways to optimize interpolation weights include the

minimization of the model perplexity on a development set (Sennrich 2012) and the

maximization of an evaluation metric (Haddow 2013). Mixture model techniques

have been applied to a number of scenarios, including the combination of different

kinds of data (e.g., questions and declarative sentences, Finch and Sumita 2008) and

the combination of different types of translation models (e.g., surface form and

factored, Koehn and Haddow 2012).

A second strand towards domain adaptation regards the acquisition of in-domain

data. Munteanu and Marcu (2005) extract in-domain sentence pairs from

comparable corpora. Daumé III and Jagarlamudi (2011) attempt to reduce OOV

terms when targeting a specific domain by mining their translations from

comparable corpora. Bertoldi and Federico (2009) rely on large amounts of in-

domain monolingual data to create synthetic parallel corpora for training. Pecina

et al. (2011) exploit automatically web-crawled in-domain resources for parameter

optimisation and to improve language models. Pecina et al. (2012a) extend this

work by using the web-crawled resources to also improve translation models.

The selection of pseudo in-domain data is another approach to domain-adaptation

based on the assumption that a sufficiently broad general-domain corpus will

include sentences that resemble the target domain. Eck et al. (2004) present a

technique for adapting the language model by selecting similar sentences from

available training data. Hildebrand et al. (2005) extended this approach to the

translation model. Foster et al. (2010) weight phrase pairs from out-of-domain

corpora according to their relevance to the target domain. Moore and Lewis (2010)

used difference of cross-entropy given an in-domain model and general-domain

model to filter monolingual data for language modelling. Axelrod et al. (2011) used

a similar approach to filter parallel training data. Recent works extend the cross-

entropy approach by combining this score with scores based on quality estimation

(Banerjee et al. 2013) and translation models (Mansour et al. 2011) and by using

linguistic units instead of surface forms to perform the selection (Toral 2013).

Domain adaptation of statistical machine translation 153

123



In a recent workshop held to better understand and address issues that arise in

domain adaptation for MT (Carpuat et al. 2012), the use of phrase-sense

disambiguation (Carpuat and Wu 2007) to model content in SMT was investigated,

with the conclusion that it can successfully model lexical choice across domains. In

addition, a method for translation mining based on document-pair marginal

matching was developed, with the aim of acquiring useful translations for OOVs

from comparable and parallel data.

3 Domain-focused web crawling for monolingual and parallel data

Domain-focused web crawling aims to visit (and store) web pages relevant to a

specific domain only. A critical issue is the construction of the domain definition

(see Appendix), since each web page visited by the crawler should be classified as

relevant or non-relevant to the domain with respect to this definition. As we did not

possess training data for the domains and languages targeted in our experiments, we

followed the approach of Ardö and Golub (2007) and represented each domain as a

list of weighted terms. Formally, the domain definition consists of triplets

hrelevance weight, term, domain or subdomain(s)i. If the terms are publicly

available online, as is often the case, this approach does not require any domain

expertise.

For our experiments, we selected English, French, and Greek terms (both single-

and multi-word entries) from the ‘‘Environment’’ (536, 277, and 513 terms

respectively) and ‘‘Employment and Working Conditions’’ (134, 96, and 157 terms

respectively) domains of the EuroVoc7 thesaurus v4.3. The EuroVoc structure also

allowed us to automatically assign each term to one or more of the following

subdomains: natural environment, deterioration of the environment, environmental

policy, energy policy and cultivation of agricultural land for env; labour law and

labour relations, organisation of work and working conditions, personnel manage-

ment and staff remuneration, employment and labour market for lab. Information

about subdomains can prove useful in acquiring more focused collections.

Each entry was manually assigned a weight indicating the term’s domain

relevance, with higher values denoting more relevant terms. Even though a domain

expert is required to differentiate relevant terms and assign various weights to them,

initial experiments showed that a domain-specific corpus can be constructed (see

Sect. 3.1) by using a unique positive weight at the scale of 100. In case of

ambiguous terms (e.g., ‘‘heavy metal’’ as a music genre and as an element

dangerous for the environment), a user could either exclude this term from the

domain definition or assign a negative weight to a term closely related to the

ambiguous term’s unwanted reading (i.e., include the term ‘‘music’’ and assign it a

negative weight) in order to penalize occurrences of this term. For illustration, a

sample from the definition for the env domain is given in Table 1.

7 http://eurovoc.europa.eu/.
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3.1 Acquisition of monolingual texts

In order to acquire in-domain corpora from the web, we implemented an open-

source focused crawler (Papavassiliou et al. 2013). The crawler adopts a distributed

computing architecture based on Bixo, an open-source web-mining toolkit running

on top of Hadoop8 and making use of ideas from the Nutch and Heritrix web

crawlers. In addition, the crawler integrates procedures for normalisation, language

identification, boilerplate removal, text classification and URL ranking. Users can

configure several settings related to focused crawling (i.e., number of concurrent

harvesters, filtering out specific document types, required number of terms, etc.) For

the acquisition of monolingual corpora, we used the focused crawler’s monolingual

mode of operation (FMC), which is also available as a web service.9

To initialise the crawler for the env domain, we constructed lists of seed URLs

selected from relevant lists in the Open Directory Project.10 Alternative resources

include the Yahoo11 directory. For the lab domain, similar lists were not so easy to find.

The seed lists were therefore generated from queries for random combinations of terms

using the WebBootCat toolkit (Baroni et al. 2006). When a page is fetched by the

crawler, it is parsed in order to extract its metadata and content and normalised to the

UTF-8 encoding. Next, the language is identified using the n-gram-based method

included in the Apache Tika toolkit.12 In order to detect parts of text not in the targeted

language, the language identifier is also applied at paragraph level and these parts are

marked as such. The next processing step concerns boilerplate detection. For this task,

we used a modified version of Boilerpipe (Kohlschütter et al. 2010), which also

extracts structural information (such as title, heading, and list item), and segments text

in paragraphs exploiting HTML tags. Paragraphs judged to be boilerplate are filtered

out and each normalised page is then compared to the domain definition.

The comparison to the domain definition is based on the amount of term

occurrences, their location in the web page (i.e., title, keywords, body) and their

weights. The page relevance score p is calculated as proposed by Ardö and Golub

(2007):

Table 1 An extract of an example English definition manually constructed for the environment domain

Weight Term Subdomain(s)

80 Desertification Deterioration of the environment; natural environment

80 Available energy resources Energy policy; natural environment

100 Biodiversity Natural environment

50 Clean industry Environmental policy

70 Deforestation Cultivation of agricultural land; deterioration of the environment

-100 Music

8 http://hadoop.apache.org/.
9 http://registry.elda.org/services/160.
10 http://dmoz.org/.
11 http://dir.yahoo.com/.
12 http://tika.apache.org/.
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p ¼
XN

i¼1

X4

j¼1

nij � wt
i � wl

j;

where N is the amount of terms in the domain definition, wt
i is the weight of term i,

wl
j is the weight of location j, and nij denotes the number of occurrences of term i in

location j. The four discrete locations in a web page are title, metadata, keywords,

and html body, with respective weights of 10, 4, 2, and 1 as proposed by Ardö and

Golub (2007). If p is higher than a predefined threshold, the web page is classified as

relevant to the domain and stored. The threshold is the minimum number of terms to

be found (the default value is 3) multiplied by the median value of the weights of all

terms in the domain definition. It is worth mentioning that the user can favour

precision over recall by setting the number of terms in the crawler’s configuration

file. Similarly, the page relevance score to each subdomain is calculated and if this

score is higher than the threshold, the web page is also classified as relevant to the

corresponding subdomain(s). Otherwise the document is considered to be in the

‘‘unknown’’ subdomain.

Even when a page is not classified as relevant, it is still parsed and its links are

extracted and added to the list of links to be visited. The fact that we keep links from

non-relevant pages allows us to exploit the Tunnelling strategy (Bergmark et al.

2002), according to which the crawler does not give up examining a path when it

encounters an irrelevant page. Instead, it continues searching that path for a

predefined number of steps (the default value is 4), which allows the crawler to

travel from one relevant web cluster to another when the number of irrelevant pages

between them is beneath some threshold.

Although it is important to prevent the crawler from being ‘choked’, it is critical

for crawl evolution to force the crawler to first follow links pointing to relevant

pages. Therefore, we also adopted the Best-First algorithm in our implementation

since this strategy is considered the baseline for almost all relevant related work. To

this end, a link relevance score l influenced by the source web page relevance score

p and the estimated relevance of the link’s surrounding text is calculated as

l ¼ p

N
þ
XM

i¼1

ni � wi;

where N is the amount of links originating from the source page, M is the amount of

terms in the domain definition, ni denotes the number of occurrences of the i-th term

in the surrounding text and wi is the weight of the i-th term. This formulation of the

link score was inspired by the conclusion of Cho et al. (1998), who stated that using

a similarity metric that considers the content of anchors tends to produce some

amount of differentiation between out-links and forces the crawler to visit relevant

web pages earlier. New and unvisited links are merged and then sorted by their

scores so that the most promising links are selected first for the next cycle. The

statistics from the acquisition procedure are provided in Table 2.

In order to estimate the crawler’s accuracy in acquiring in-domain resources, we

first ran trial crawls in English, French, and Greek for the env and lab domains and
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asked native speakers to classify a sample of the acquired documents as domain-

relevant or not based on provided domain descriptions (see Appendix). The results

of the trial phase are given in columns 3–6 in Table 2). The average accuracy over

all data sets is 94.0 % (see column 6).

Then we repeated the crawls to acquire larger collections (see columns 7–13).

Duplicate web pages were detected and removed based on MD5 hashes, and near-

duplicates were eliminated by employing the deduplication strategy implemented in

the Nutch framework, which involves construction of a text profile based on

quantised word frequencies.

As shown in column 10 of Table 2, the average precision at the end of the crawl

jobs is about 25 %, a result similar to the conclusions reached by Srinivasan et al.

(2005) and Dorado (2008). Figure 1 further illustrates the variation of the crawler’s

temporal precision (i.e., the ratio of stored over visited pages after each crawling

cycle) during the evolution of 3 crawls, where the average temporal precision

remains above 20 % after 400 crawling cycles (the default value of the maximum

number of URLs to be visited per cycle is 256).

The Ds of the 12th column in Table 2 refer to the percentage of documents

removed during deduplication. The relatively high percentages of documents

removed during deduplication is in accordance with the observation of Baroni et al.

(2009), where during compilation of the Wacky corpora the amount of documents

was reduced by more than 50 % following deduplication. Another observation is

that the percentages of duplicates for the lab domain are much higher than the ones

for env for all languages. This is explained by the fact that the web pages related to

lab are often legal documents or press releases replicated on many websites.

The final processing of the monolingual data was performed on paragraphs

marked by Boilerpipe and the language identifier. The statistics from this phase are

15%

20%

25%

30%

0 100 200 300 400

crawl cycles

te
m

po
ra

l p
re

ci
si

on
crawl jobs

EL lab

EN lab

FR env

Fig. 1 Visualisation of temporal precision (ratio of stored/visited pages per cycle) during three crawls
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presented in Table 3. Firstly, we discarded all paragraphs in languages different

from the targeted ones as well as those classified as boilerplate, which reduced their

total amount to 23.3 % on average. Removal of duplicate paragraphs then reduced

the total number of paragraphs to 14 % on average. Most of the removed

paragraphs, however, were very short chunks of text. In terms of tokens, the

reduction is only 50.6 %. The last three columns in Table 3 refer to the final

monolingual data sets used for training language models. For English and French,

we acquired about 45 million tokens for each domain; for Greek, which is less

frequent on the web, we obtained only about 15 and 20 million tokens for lab and

env, respectively. These datasets are available from the ELRA catalogue13 under

reference numbers ELRA-W00063–ELRA-W00068.

Statistics about the distribution of the subdomains of env and lab in English are

presented in Table 4. The distributions for the Greek and French collections are

similar, so we do not present them here. The main observation is that the collections

are biased to specific subdomains. For example, ‘‘labour market’’ and ‘‘labour law

and labour relations’’ cover 28.62 % and 25.68 % of the English lab data,

respectively. This is due to the popularity of these subdomains in comparison with

the rest, as well as the fact that the crawler’s goal was to acquire in-domain web

pages without a requirement to build corpora balanced equally across subdomains.

Another observation is that many documents were classified as parts of two

subdomains. For example, 38.09 % of the documents in the English env collection

were categorised in both ‘‘deterioration of the environment’’ and ‘‘natural

environment’’. This is explained by the fact that many terms of the domain

definition were assigned to more than one subdomain. In addition, many crawled

pages contain data relevant to these neighbouring subdomains.

3.2 Acquisition of parallel texts

We now describe the procedure for acquisition of parallel data. To this end, we used

the focused crawler’s bilingual mode of operation (FBC), which is also available as

a web service.14 Apart from the components for monolingual data acquisition

(normalisation, language identification, cleaning, text classification and deduplica-

tion), this mode integrates a component for detection of parallel web pages, as

illustrated in Fig. 2.

To guide FBC we used bilingual domain definitions, which consisted of the union

of monolingual domain definitions in the targeted languages for the selected

domain. In order to construct the list of seed URLs, we manually selected web pages

that were collected during the monolingual crawls and originated from in-domain

multilingual web sites. We then initialised the crawler with these URLs and forced

the crawler to follow only links internal to these sites. By adopting the same

crawling strategy mentioned in the previous subsection, FBC follows the most

promising links and continues crawling the web site until no more internal links can

be extracted.

13 http://catalog.elra.info/.
14 http://registry.elda.org/services/127.
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After downloading in-domain pages from the selected web sites, we employed

Bitextor to identify pairs of pages that could be considered translations of each

other. Specifically, for each candidate pair of pages, we examine the relative

difference in file size, the relative difference in length of plain text, the edit distance

of web page fingerprints constructed on the basis of HTML tags, and the edit

distance of the lists of numbers in the documents. If all measures are below

corresponding thresholds, as those are defined in the default configuration of

Bitextor, the pair under consideration is considered a pair of parallel pages. The

amount of the acquired in-domain bilingual data is reported in columns 3 and 4 of

Table 5.

Table 4 Distribution of subdomains in the monolingual English data crawled for the env and lab domains

Ratio (%)

Environment

Deterioration of the environment; natural environment 38.09

Natural environment 35.63

Environmental policy; natural environment 8.60

Energy policy 4.10

Deterioration of the environment; environmental policy; natural environment 3.34

Deterioration of the environment 2.64

Environmental policy 2.61

Cultivation of agricultural land 2.28

Deterioration of the environment; environmental policy 2.16

Unknown 0.56

Total 100.00

Labour legislation

Labour market 28.62

Labour law and labour relations 25.68

Organisation of work and working conditions 12.46

Labour market; organisation of work and working conditions 6.76

Labour law and labour relations; labour market 5.46

Employment 4.26

Employment; labour market 3.59

Labour law and labour relations; organisation of work and working conditions 3.40

Personnel management and staff remuneration 3.05

Labour market; personnel management and staff remuneration 2.76

Unknown 2.07

Labour law and labour relations; labour market; organisation of work and working conditions 1.90

Total 100.00
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3.3 Extraction of parallel sentences

After identification of parallel pages, the next steps of the procedure aim at

extraction of parallel sentences, i.e., sentence pairs that are likely to be mutual

translations. For each document pair free of boilerplate paragraphs, we applied the

following steps: identification of sentence boundaries by the Europarl sentence

splitter, tokenisation by the Europarl tokeniser (Koehn 2005), and sentence

alignment by Hunalign (Varga et al. 2005). Hunalign implements a heuristic,

language-independent method for identification of parallel sentences in parallel

texts, which can be improved by providing an external bilingual dictionary of word

forms. If no such dictionary is provided, Hunalign builds it automatically from the

data to be aligned. Without having such (external) dictionaries for EN–FR and EN–

EL at hand, we obtained them by applying Hunalign to realign Europarl data in

these languages. The resulting dictionaries were consequently used to improve

sentence alignment of our in-domain data.

For each sentence pair identified as parallel, Hunalign provides a confidence

score, which reflects the level of parallelism, i.e., the degree to which the sentences

are mutual translations. We manually investigated a sample of sentence pairs

extracted by Hunalign from the data pool for each domain and language pair (about

50 sentence pairs for each language pair and domain), by relying on the judgement

of native speakers, and estimated that sentence pairs with a score above 0.4 are of

sufficient translation quality. In the next step, we kept sentence pairs with 1:1

alignment only (one sentence on each side) and removed those with scores below

this threshold. Finally, we also removed duplicate sentence pairs.

The statistics from the parallel data acquisition procedure are displayed in

Table 5. An average of 84 % of source sentences extracted from the parallel

seed
URL list

domain
definition

Focused crawler

normalization

cleaning

language
identification

text classification

in-domain
subset of

multilingual sites

deduplication

detection of
parallel documents

extraction of
parallel sentences

data splittingdev set

training set

test set

Fig. 2 The entire workflow of parallel data acquisition resulting in training, development, and test sets
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documents were aligned 1:1, 10 % of these were then removed due to low estimated

translation quality, and after discarding duplicate sentence pairs we ended up with

73 % of the original source sentences aligned to their target sides.

3.4 Manual correction of test sentence pairs

The translation quality of a PB-SMT system built using the parallel sentences

obtained by the procedure described above might not be optimal. Tuning the

procedure and focusing on high-quality translations is possible, but leads to a trade-

off between quality and quantity. For translation model training, high translation

quality of the data is less essential than for tuning and testing. Bad phrase pairs can

be removed from the SMT translation tables according, for example, to significance

testing (Johnson et al. 2007). However, a development set containing sentence pairs

that are not good translations of each other might lead to sub-optimal values of

model weights, which would significantly harm system performance. If such

sentences are used in the test set, the evaluation would be unreliable.

In order to create reliable test and development sets for each language pair and

domain, we performed the following low-cost procedure. From the data obtained by

the steps described in Sect. 3.3, we selected a random sample of 3,600 sentence

pairs (2,700 for EN–EL in the lab domain, for which less data was available) and

asked native speakers to check and correct them. All 4 evaluators (2 for each

language) were researchers with postgraduate education and significant experience

in evaluation for NLP tasks. The task consisted of checking that the sentence pairs

belonged to the right domain, the sentences within a sentence pair were equivalent

in terms of content, and the translation quality was adequate and if not, correcting it.

Our goal was to obtain at least 3,000 correct sentence pairs (2,000 test pairs and

1,000 development pairs) for each domain and language pair. Accordingly, in order

to speed up the process, we did not instruct the correctors to amend every sentence

pair, but rather allowed them to skip (remove) any sentence pairs that were

misaligned. In addition, we asked them to remove those sentence pairs that were

obviously from a very different domain (despite being correct translations). The

number of manually verified and (if necessary) corrected sentence pairs is presented

in the last column in Table 5.

According to the human judgements, 53–72 % of sentence pairs were accurate

translations, 22–34 % needed only minor corrections, 1–3 % would require major

corrections (which was not necessary, as the accurate sentence pairs together with

those requiring minor corrections were enough to reach our goal of at least 3,000

sentence pairs), 2–5 % of sentence pairs were misaligned and would have had to be

translated completely (which was not necessary in most cases), and about 4 % of

sentence pairs were from a different domain (though correct translations). Detailed

statistics collected during the corrections are presented in Table 6.

In the next step, we selected 2,000 pairs from the corrected sentences for the test

set and left the remaining part for the development set. Those parallel sentences

which were not sampled for the correction phase were added to the training sets.

The correctors confirmed that the manual corrections were about 5–10 times faster
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than translating the sentences from scratch, so this can be viewed as a low-cost

method for acquiring in-domain test and development sets for MT. Further statistics

of all parallel data sets are given in Table 7. The data sets are available from ELRA

under reference numbers ELRA-W0057 and ELRA-W0058.

4 Baseline translation system

We now present our experimental set-up, the baseline (general-domain) system and

its performance. Our primary evaluation measure is BLEU (Papineni et al. 2002)

always reported as percentages. For detailed analysis, we also present PER

(Tillmann et al. 1997) and TER (Snover et al. 2006) in Tables 17–20. The latter two

are error rates, so the lower the score the better. In this paper, however, we report

the scores as ð1� PERÞ � 100 and ð1� TERÞ � 100 respectively so that all metrics

are in the range 0–100 where higher scores indicate better translations.

4.1 System description

Our SMT system is MaTrEx (Penkale et al. 2010), a combination-based multi-

engine architecture developed at Dublin City University. The architecture includes

various individual systems: phrase-based, example-based, hierarchical phrase-

based, and tree-based MT. In this work, we only exploit the phrase-based

component, which is based on Moses (Koehn et al. 2007), an open-source toolkit for

SMT.

For training, all data sets are tokenised and lowercased using the Europarl tools.15

The original (non-lowercased) target side of the parallel data is kept for training the

Moses recaser. The lowercased versions of the target side are used for training an

interpolated 5-gram language model with Kneser-Ney discounting (Kneser and Ney

1995) using the SRILM toolkit (Stolcke 2002). The parallel training data is

lowercased and filtered at the sentence level; we kept all sentence pairs having

fewer than 100 words on each side and with the length ratio within the interval

h0:11; 9:0i. The maximum length for aligned phrases is set to seven and the

Table 6 Statistics (%) of manual correction of a sample of parallel sentences extracted by Hunalign

EN–EL/env EN–FR/lab

1. Perfect translation 53.49 72.23

2. Minor corrections done 34.15 21.99

3. Major corrections needed 3.00 0.33

4. Misaligned sentence pair 5.09 1.58

5. Wrong domain 4.28 3.86

Total 100.00 100.00

15 http://www.statmt.org/europarl/.
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reordering models are generated using the parameters distance and orientation-
bidirectional-fe. The resulting system combines the 14 feature functions described

in Sect. 2.3.

The corresponding parameters are optimised on the development sets by MERT.

After running several experiments with MERT, we found out that variance of BLEU

caused by parameter optimization is quite low (about �0:25 and in almost all cases

statistically not significant) and due to the high number of experiments, for most

systems we tune the parameters only once. In Sect. 5.2, we analyse the weights

assigned by MERT to each parameter in our various experimental set-ups. For

decoding, test sentences are also tokenised and lowercased. The evaluation

measures are applied on tokenised and lowercased outputs and reference transla-

tions. To test statistical significance, we use paired bootstrap resampling for BLEU

(Koehn 2004) with p\0:05 and 10,000 samples. In tables presenting the translation

results in the following sections, the best scores for each translation direction and

domain, and those which are statistically indistinguishable from the best ones are

typed in bold.

4.2 General-domain data

For the baseline general-domain system, we exploited the widely used data provided

by the organisers of the SMT workshops (WPT 200516 – WMT 201117): the

Europarl parallel corpus (Koehn 2005) as training data for translation and language

models, and the WPT 2005 test sets as the development and test data for general-

domain tuning and testing, respectively.

Europarl is extracted from the proceedings of the European Parliament which

covers a number of topics (Koehn 2005), including some related to the domains of

our interest. For this reason, we take this corpus as a base for our domain-adaptation

experiments and consider it to be general-domain. There is also a practical

motivation for doing this: this corpus is relatively large, available for many

language pairs, easily accessible for both industry and academia, and can be

expected to play the same role in real-world applications. Europarl version 5,

released in 2010, comprises texts in 11 European languages including all languages

of interest in this work (see Table 8). Note that the amount of parallel data for EN–

EL is only about half of what is available for EN–FR. Furthermore, Greek

morphology is more complex than French morphology so the Greek vocabulary size

(we count unique lowercased alphabetical tokens) is much larger than the French

one. The WPT 2005 development and test sets contain 2,000 sentence pairs each,

available in the same languages as Europarl provided by the WPT 2005 organisers

as development and test sets for the translation shared task (later WMT test sets do

not include Greek data). All data sets used in our experiments contain a single

reference translation.

16 http://www.statmt.org/wpt05/.
17 http://www.statmt.org/wmt11/.
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4.3 Baseline system evaluation

A number of previously published experiments (e.g., Wu et al. 2008; Banerjee et al.

2010) reported significant degradation in translation quality when an SMT system

was applied to out-of-domain data. In order to verify this observation, we compare

the performance of the baseline system (trained and tuned on general-domain data)

on all our test sets: general-domain (gen) and domain-specific (env, lab). We present

the results in Table 9.

The BLEU scores obtained on the general domain test sets are quite high—they

range from 42.52 to 57.16 points. This is caused by the fact that the development

and test sentence pairs were taken from the same source (proceedings of the

European Parliament), where similar expressions and phrases often recur. We found

that about 5 % of EN–FR development and test sentence pairs also occur in the

training data (although no sentence pair duplicates were found in the EN–EL test

sets). The duplicates were probably added to later versions of Europarl after the

WPT 2005 test sets were released, but this does not affect our domain-adaptation

experiments presented in this paper.

Switching from general-domain to domain-specific test sets yields an average

absolute decrease of 21.16 BLEU points (48.22 % relative) on the env domain and

22.47 BLEU points (44.84 % relative) on the lab domain (see columns denoted by

D in Table 9). Although the magnitude of the decrease might be a little

overestimated (due to the occurrence of a portion of the gen test data in the

training data), the drop in translation quality is evident. It is caused by the

divergence of training and test data, which is also illustrated by the increase of the

OOV rates (ratios of untranslated words) and perplexity (PPL) of the reference

translations of the test sets given language models trained on the target side of the

parallel training data (this reflects how well the language model reflects the

characteristics of the target language). For both measures, lower scores indicate a

better fit.

The OOV rate increases from an average of 0.25 % on the gen domain to 1.12 %

on the env domain and 0.67 % on the lab domain, and the average perplexity

increased from 56.6 on the gen domain to 106.4 on the env domain and 98.5 on the

lab domain (see Table 9). It almost doubles when going from general (gen) to

Table 9 Performance comparison of the baseline systems (B0) tested on general (gen) and specific (env,

lab) domains

Direction General Environment Labour legislation

BLEU OOV PPL BLEU D OOV PPL BLEU D OOV PPL

English–French 52.57 0.11 28.1 29.61 �22.96 0.98 67.8 23.94 �28.63 0.85 83.2

French–English 57.16 0.11 32.0 31.79 �25.37 0.81 122.0 26.96 �30.20 0.68 153.6

English–Greek 42.52 0.22 130.0 21.20 �21.32 1.15 119.8 24.04 �18.48 0.47 82.1

Greek–English 44.30 0.56 36.0 29.31 �14.99 1.53 115.4 31.73 �12.57 0.69 74.9

Average 0.25 56.6 �21.16 1.12 106.4 �22.47 0.67 98.5

D refers to the change in BLEU score over the gen domain, OOV to the out-of-vocabulary rate (%) of the

test sentences, and PPL to perplexity of the reference translations given the target-side language models
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specific (env, lab) domain and makes scoring of hypotheses during decoding

difficult. An interesting case is the EN–EL translation direction, where the highest

perplexity is surprisingly achieved on the gen domain. This is probably due to the

morphological complexity of the target language and nature of the particular test set.

After a thorough analysis of the Greek side of this test set, we discovered some

inconsistency in tokenisation (introduced by the providers of the data) which

contributed to the higher PPL value. This does not, however, influence the findings

in this work. In all other cases, perplexity increases for domain-specific data.

5 Domain adaptation by parameter tuning

Optimisation of the log-linear combination parameters, which most modern SMT

systems are based on, is known to have a big influence on translation performance.

A sensible first step towards domain adaptation of a general-domain system is to use

in-domain development data. Such data usually comprises a small set of parallel

sentences which are repeatedly translated until the model parameters are adjusted to

their optimal values.18

By using the parallel data acquisition procedure described in Sect. 3, we acquired

development sets (506–1,411 sentence pairs depending on the language pair), which

prove to be very beneficial for parameter tuning in our experiments (see Table 10).

Compared to the baseline systems trained and tuned on general-domain data only

(denoted as B0), the systems trained on general-domain data and tuned on in-

domain data (denoted as P1) improve BLEU by 6.64 points absolute (24.82 %

relative) on average (compare columns B0 and P1 in Table 10). On the one hand,

this behaviour is to be expected, but taking into account that the development sets

contain only several hundreds of parallel sentences each, such an improvement is

nevertheless significant.

5.1 Correction of development data

A small amount of manual effort was put into the manual correction of the test as

well as development data acquired for the specific domains (see Sect. 3.4). In order

to assess the practical need to correct the development data, we compare baseline

systems tuned on manually corrected development sets with systems tuned on raw

development sets. This raw development data (denoted by raw in Table 7) contains

not only the sentences with imperfect translation, but also those that are misaligned

and/or belong to other domains. As a consequence, the raw development sets

contain 5–14 % more sentence pairs than the corrected ones (see Table 7). The

performance of the systems tuned using the raw development data is shown in

Table 10, column P2. In general, the absolute differences in BLEU compared to the

P1 systems are very small and not statistically significant for most of the scenarios

18 Note that the minimum number of development sentences is not strictly given, although we address

this issue in Sect. 5.5. The only requirement is that the optimisation procedure (MERT in our case) must

converge, which might not happen if the set is too small or somehow unbalanced.
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(figures in bold). The average absolute improvement over the baseline system B0 is

6.54 BLEU points, which is only 0.1 points less than the score obtained by the P1
systems. In practice, this finding makes the manual correction of development data

acquired by our procedure unnecessary since the results obtained using raw parallel

data are comparable.

5.2 Analysis of model parameters

The only things that change when the systems are tuned on in-domain data are the

weights of the feature functions in the log-linear combination optimised by MERT.

The reordering, language, and translation models all remain untouched, as they are

trained on general-domain data. Recall that the parameter space searched through by

MERT is large and the error surface highly non-convex, so the resulting weight

vectors might not be globally optimal and there might be other (i.e., different)

weight vectors that perform equally well or even better. For this reason, the actual

parameter values are not usually investigated. Our experiments, however, show that

the parameter values and their changes observed when switching from general-

domain to domain-specific tuning are in fact highly consistent, indicating interesting

trends (compare the black and grey bars in Fig. 3).

The high weights assigned to h11 (direct phrase translation probability) of the

general-domain tuned systems (black bars) indicate that the phrase pairs in the

systems’ translation tables apply well to the development data that are from the

same domain as the training data; a high reward is given to translation hypotheses

consisting of phrases with high translation probability (i.e., good general-domain

translations). The low negative weights assigned to h13 (phrase penalty) imply that

the systems prefer hypotheses consisting of fewer but longer phrases. Reordering in

the hypotheses is not rewarded and therefore not explicitly preferred (the weights of

the reordering models h1–h7 are assigned values around zero). In some scenarios

(e.g., for EN–FR and FR–EN), certain reordering schemes are even slightly

penalised (several weights of h1–h7 have negative values). The weight of h14 (word
penalty) is negative for the systems translating from English and slightly positive for

systems translating into English. This reflects the fact that translation from English

prefers shorter hypotheses (fewer words), while translation into English prefers

longer hypotheses (consisting of more words). This is probably due to the relative

morphological complexities of English and the other languages.

Comparing these findings with the results of the systems tuned on the specific

domains (grey bars), we observe that the weights of h11 (direct phrase translation
probability) decrease rapidly, with this weight being close to zero in some scenarios.

The translation tables do not provide enough good quality translations for the

specific domains, and the best translations of the development sentences consist of

phrases with varying translation probabilities. Hypotheses consisting of few (and

long) phrases are not rewarded any more (weights of h13 are higher); in most cases

they are penalised and hypotheses consisting of more (and short) phrases are

allowed or even preferred. In almost all cases, the reordering feature weights

(features h1–h7) increased substantially, and for domain-specific data the model
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significantly prefers hypotheses with specific reordering (which is consistent with

the two preceding observations). Language model weights (h8) do not change

substantially, with its importance as a feature remaining similar on general-domain

and domain-specific data.

As can be seen in Fig. 3, these findings are consistent across domains and

language pairs. The weight vectors of the systems tuned on domain-specific data are

quite similar but differ substantially from the parameters obtained by tuning on

general domain data.

5.3 Analysis of phrase-length distribution

From the analysis presented above, we conclude that a PB-SMT system tuned on

data from the same domain as the training data strongly prefers to construct

translations consisting of long phrases. Such phrases are usually of good translation

quality (local mistakes of word alignment disappear), fluent (formed by consecutive

sequences of words), and recurrent (frequent in data from the same domain).

Accordingly, they form good translations of the input sentences and are preferred

during decoding. This is, of course, a positive trait when the system translates

sentences from the same domain. However, if this is not the case and the input

sentences contain very few longer phrases from the translation tables, the general-

domain tuned system is not able to construct good translations by preferring the

longer and (for this domain) inadequate phrases. In this case, shorter phrases could

enable better translations to be stitched together.
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Fig. 3 Visualisation of model weights of the four systems in the twelve evaluation scenarios; the black
bars refer to model weights of the systems tuned on general-domain (gen) development sets, while the
grey bars refer to the model weights of the systems tuned on domain-specific development sets (env, lab)
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To support this hypothesis, we analysed the phrase length distribution actually

seen in the translation of the test sets. The average phrase lengths estimated for

various combinations of tuning and test domains and all language pairs are shown in

Table 11. The highest values are observed for translations of general-domain test

sets by systems tuned on the same domain: 3.49 on average across all language

pairs. The scores for systems trained on general-domain and tuned and tested on

domain-specific data are significantly lower and range from 1.54 to 2.97, depending

on the domain and language pair. Figure 4 illustrates the complete phrase-length

distribution in EN–FR translations by systems tuned and tested on various

combinations of general and specific domains.

Generally, a higher divergence of the test domain from the training domain leads

to shorter phrases being used in translation. However, when the systems tuned on

general-domain data are applied to specific domains, the average phrase lengths are

consistently longer than for domain-specific tuning. The systems are tuned to prefer

long phrases but the translation quality is lower. This situation can be interpreted as

overtraining; the model overfits the training (and tuning) data and on a different

domain fails to form the best possible translations (given the translation, reordering,

and language models). Nevertheless, preferring translations constructed of shorter

phrases (even single words) is not always better. For example, word-by-word

translation of non-compositional phrases would generally be erroneous.

5.4 Other alternatives to parameter optimisation

As we have already shown, in-domain tuning represents a way to effectively reduce

such overfitting. The problem, however, can also be reduced by cross tuning, i.e.,

tuning on specific domains different from the test domains (tuning on lab and testing

on env, and vice versa), see Table 10, column P3. In three scenarios (bold figures),

such systems perform as well as the in-domain tuned ones (no statistically

significant difference). In the other scenarios, the absolute difference in BLEU is

less than 0.4 points. The average gain over the systems tuned on the general domain

(B0) is 6.38 points absolute (compared with 6.64 points obtained by P1). This

observation is not very intuitive. One would expect that each domain would require

specific tuning. However, it seems that the in-domain tuning does not optimize the

general-domain trained system to a particular specific domain, but rather to any

Table 11 Average phrase length in translations by systems tuned/tested on various combination of

domains

gen/gen gen/env env/env gen/lab lab/lab

English–French 4.37 3.00 2.16 2.82 2.05

French–English 3.46 2.49 1.77 2.45 1.83

English–Greek 3.76 2.69 2.17 2.97 2.46

Greek–English 2.35 2.18 1.54 2.43 2.30

Average 3.49 2.59 1.91 2.67 2.16
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domain diverging from the general domain in a similar way (e.g., to the extent that

the translation model and language model cover the test data).

For comparison purposes only, we also report results of non-tuned systems P4
using the default weight vectors set by Moses (h1;...;7 ¼ 0:3; h8 ¼ 0:5;
h9;...;13 ¼ 0:2; h14 ¼ �1). Even this approach outperforms the baseline systems

B0. In some cases (e.g., the EN–EL translations), the results are very close to those

of systems tuned on in-domain data (P1). The average absolute improvement of the

systems with default parameters (P4) over the systems tuned on general domain is

4.42 BLEU points (compared with 6.64 points obtained from domain-specific tuning

on average).

5.5 Analysis of learning curves

Often, domain-specific parallel data is scarce, or completely unavailable for many

vertical sectors and must be prepared by manual translation of monolingual in-

domain sentences. We thus investigate how much development data is needed. The

only technical requirement is that the parameter optimisation method (MERT, here)

must converge in a reasonable number of iterations. For this reason, typical

development sets contain about 1,000–2,000 sentence pairs (cf. the size of

development sets provided for the WMT translation shared tasks). We vary the

amount of sentences in our development sets, tune the systems, test their

performance on the test sets and plot learning curves to capture the correlation

between translation quality (in terms of BLEU) and gradual increases in the size of

the development data.

The general shapes of the curves are consistent across all language pairs and thus

we provide the curves for the EN–FR translation direction only (see Fig. 5).

Increasing the size of development sets is beneficial only where the domains of

development and test data are the same. The curve of the system tuned and tested on

the general domain reaches a plateau at about 500 sentence pairs. In the case of in-

domain tuning for specific domains, the plateau is reached much earlier. Usually, as

few as 100–200 sentence pairs are enough to obtain optimal results. This is

gen/gen gen/env env/env gen/lab lab/lab

1 2 3 4 5 6 7

0

10

20

30

40

50

60

(%)

Fig. 4 Distribution of phrase length in English–French translations by systems tuned/tested on various
combinations of general (gen) and specific (env, lab) domains (maximum phrase length set to seven)
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encouraging, as tuning on specific domains yields the best results, and fortunately

requires only very limited amounts of bilingual data and seems reasonably tolerant

to imperfect translations and noise in the development sentences. The development

sets of more than 400–600 sentence pairs do not improve translation quality at all

and make the tuning process take longer; by the same token, the additional tuning

data does not actively degrade performance, so there is no need to reduce the size of

the tuning set. The systems tuned on the general-domain data and tested on specific

domains do not benefit from the development data at all; the initial and relatively

high BLEU scores achieved with zero-size development data sets (i.e., no tuning)

decrease with increasing size of the domain-specific development sets (see the

curves denoted as gen/env and gen/lab in Fig. 5).

6 Adaptation of language and translation models

In this section, we explore the potential of adapting the components of the SMT

model (language and translation models) by exploiting the crawled domain-specific

data in addition to the general-domain data used for training the baseline systems.

6.1 Language model adaptation

Improving an SMT system by adding in-domain monolingual training data cannot

reduce OOV rates nor introduce new phrase pairs into the translation models. Such

data can, however, improve the language models and contribute to better estimates

of translation fluency and thus help select better translation hypotheses.

In general, there are two ways of using monolingual data for adaptation of the

SMT model: the trivial approach is to retrain the existing language model on a

simple concatenation of the original general-domain data and the new domain-

specific data; a more advanced approach is to build an additional language model

based on the domain-specific data only and use it together with the original one.

This is possible in two ways (Foster and Kuhn 2007): the two models can be merged

by linear interpolation into one model or used directly as components in the log-

0 500 1000 1500 2000
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●

●
●

●

●

● ● ● ● ● ●

● gen/gen gen/env env/env gen/lab  lab/lab

(size)

(BLEU)

Fig. 5 Translation quality (BLEU) of FR–EN systems tuned on data of varying size. The domains of the
development and test sets are given in this order (dev/test)
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linear combination of the system. The two approaches are similar but not identical.

Both are parametrised by a single weight corresponding to the relative importance

of the two models (a linear interpolation coefficient and a model weight,

respectively) and require optimisation. Linear interpolation can be optimised by

minimising perplexity of some target-language data (e.g., the target side of the

development set). Log-linear combination allows direct optimisation of MT quality

(e.g., by MERT).

We experiment with all three approaches combining general-domain data

(comprising 27–53 million tokens, see Table 8) and in-domain data (15–45 million

tokens, see Table 3). System L1 exploits the simple concatenation of the data, L2 is

based on linear combination optimized on the target side of the (in-domain)

development data, and L3 employs two models combined in the log-linear fashion

using weights tuned by MERT on BLEU. The complete results are presented in

Table 12. Compared to the in-domain tuned systems (P1), all three methods

significantly improve translation quality across all scenarios. In general, the most

efficient approach is linear interpolation with an average absolute improvement of

4.88 BLEU points (14.95 % relative). With two exceptions, systems L2 outperform

both L1 and L3. In most cases, the improvement is statistically significant. For EN–

EL (both directions) in the lab domain, L2 is outperformed by simple concatenation

(L1), but this can be explained by the size of the development data used to optimize

the interpolation coefficient in L2 (506 sentences), which is probably insufficient.

Substantial improvements in BLEU over the system P1 are achieved especially for

translations into Greek (7.33 points for env, and 5.02 points for lab, both absolute)

despite the smallest size of the monolingual data acquired for this language (see

Table 3), which is probably due to the complex Greek morphology and the

subsequent problem of data sparsity.

Table 12 Results of language model adaptation by concatenation of training data (L1), linear interpo-

lation of general-domain and domain-specific models (L2), and employing the two independent models in

log-linear combination (L3)

Direction Test Base (P1) Concatenation (L1) Lin. interpol. (L2) Log-lin. comb. (L3)

BLEU BLEU D BLEU D BLEU D

English–French env 37.51 41.28 3.77 41.78 4.27 41.25 3.74

lab 32.15 36.15 4.00 38.54 6.39 35.54 3.39

French–English env 39.05 40.58 1.53 42.63 3.58 39.93 0.88

lab 33.48 38.05 4.57 41.11 7.63 33.95 0.47

English–Greek env 27.56 33.59 6.03 34.89 7.33 33.65 6.09

lab 30.07 35.09 5.02 34.15 4.08 34.33 4.26

Greek–English env 34.31 37.03 2.72 37.57 3.26 36.55 2.24

lab 37.57 40.15 2.58 40.09 2.52 40.01 2.44

Average 3.78 4.88 2.94

D refers to absolute improvement in BLEU over P1 trained on general domain and tuned for specific

domains
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6.2 Translation model adaptation

Parallel data is essential for building translation models of SMT systems. While a

good language model can improve an SMT system by preferring better phrase

translation options in given contexts, it has no effect if the translation model fails to

provide a phrase translation at all. In this experiment, we analyse the effect of using

the domain-specific parallel training data acquired as described in Sect. 3.2. These

data sets are relatively small, comprising 7,000–20,000 sentence pairs, depending

on the language pair and domain (see Table 5).

Similar to language model adaptation discussed in the previous subsection, there

are three main methods to combine parallel training data from two sources

(Banerjee et al. 2011): first, retraining the existing translation model on a simple

concatenation of the original general-domain and the new domain-specific data;

second, training a new translation model on the domain-specific data and

interpolating the two models in a linear fashion; and third, using the two translation

models in log-linear combination. The first approach does not require optimization

of any additional parameters. The second approach requires tuning of four extra

coefficients (one for each of the probability distributions provided by the translation

model, i.e., h9–h12), which is usually done by minimizing perplexity of the

development data (Sennrich 2012). The third approach adds the total of five new

weights (associated with the new translation model) to the weight vector, which is

then optimized in the traditional way by maximising translation quality on the

development data (by MERT, in our case).

We test all the alternative approaches, which are realised as systems T1 (single

translation model trained on a concatenation of data), T2 (linear interpolation of the

two translation models), T3 (two independent translation models in log-linear

combination), and compared with the in-domain-tuned systems (P1) in Table 13.

We again observe substantial improvements in translation quality in all scenarios.

However, there is no clear winner in this case: although the two more advanced

methods (systems T2 and T3) outperform the trivial one (system T0), the difference

between the two is marginal. The average increase in BLEU for T2 over T1 is 4.35

points absolute (13.11 % relative) and for T3 over P1 4.56 points absolute (13.87 %

relative). In three of the eight scenarios, the difference is not statistically significant,

T2 is significantly better in two scenarios, and T3 is better in three scenarios (see

Table 13).

The most substantial gain obtained by exploiting the domain-specific parallel

training data is observed for the EN–FR language pair (in both translation

directions) and the lab domain, where BLEU scores increase by 10.55–11.64 points

absolute (for system T3), while in other scenarios the increase in BLEU is between

0.33 and 4.35 points absolute only. This can be explained by the better match

between the training and test data, which is evident from the decrease in perplexity

of the reference translations given the target language models, as discussed in the

following section. This is likely to be caused by the size of the in-domain parallel

training data for this language pair and domain which is more than twice as large

compared to the EN–FR env data and more than three times larger compared to the

EN–EL data, both for the env and lab domains (see Table 3).
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In further experiments, we test the techniques for translation model adaptation in

systems with language models adapted by linear interpolation, which proved to be

the most effective method for language model adaptation. Overall, the results

presented in Table 14 are very positive: the improvements obtained by translation

model adaptation are to a large extent preserved even when this method is applied

together with language model adaptation. While linear interpolation of translation

models realised in systems T2 increases BLEU by 4.35 points absolute (T2 over P1,

see Table 13), the same technique adds an additional 3.78 BLEU points when

applied together with linear interpolation of language models (C2 over L2, see Table

14). The effect of using in-domain monolingual and parallel data is largely

independent and does not cancel out when these two types of resources are used at

the same time. On average, linear-interpolation outperforms the other two

techniques (C1 and C3), but in most scenarios the difference is not statistically

significant (cf. the bold figures in Table 14).

6.3 Complete adaptation and result analysis

In this section, we summarise the main results achieved by incremental improve-

ments obtained by adaptation of various components of a PB-SMT system. and

compare them with the original baseline systems trained and tuned on general-

domain data only. The results are accompanied by further analysis of three factors:

OOV rate in test sentences, perplexity of reference translations given the target

language models, and average phrase length in test translations.

The main results in terms of BLEU are presented in Table 15, with the detailed

characteristics of the systems given in Table 16. On average, in-domain parameter

tuning (P1) improves BLEU by 6.64 points absolute (24.82 % relative). Compo-

nents of the log-linear combination do not change, so OOV and perplexity remain

Table 13 Results of translation model adaptation by concatenation of training data (T1), linear inter-

polation of general-domain and domain-specific models (T2), and employing the independent models in

log-linear combination (T3)

Direction Test Base (P1) Concatenation (T1) Lin. interpol. (T2) Log-lin. comb. (T3)

BLEU BLEU D BLEU D BLEU D

English–French env 37.51 39.61 2.10 39.85 2.34 39.76 2.25

lab 32.15 41.33 9.18 42.08 9.93 42.70 10.55

French–English env 39.05 41.08 2.03 41.92 2.87 41.65 2.60

lab 33.48 43.54 10.06 45.06 11.58 45.12 11.64

English–Greek env 27.56 30.73 3.17 30.74 3.18 31.89 4.33

lab 30.07 30.48 0.41 30.51 0.44 30.51 0.44

Greek–English env 34.31 38.35 4.04 38.12 3.81 38.66 4.35

lab 37.57 38.07 0.50 38.20 0.63 37.90 0.33

Average 3.94 4.35 4.56

D refers to absolute improvement in BLEU over P1 trained on general domain and tuned for specific

domains
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the same. The average phrase length dropped from 2.63 to 2.04 words, i.e., by

22.5 %. The adapted language model (log-linear interpolation of general-domain

and domain-specific models tuned on the target side of development data, systems

L2) increased the gain in BLEU to 11.52 points absolute (43.73 % relative). The

perplexity of the reference translations given the target language models dropped by

45.4 % on average. The average phrase length decreased to 1.87 words. The

language model matches the test data domain better and helps to select better

translation hypotheses, which consist of even more (and shorter, eventually

reordered) phrases.

Finally, adaptation of the translation model (using linear interpolation general-

domain and domain-specific models tuned on the development data, systems C2)

boosts the average relative improvement in BLEU to 15.30 points absolute

(58.37 % relative). This step introduces new translation phrase pairs into the

translation model and decreases the OOV rate. Compared to the baseline (B0), OOV

drops by 30 % on average. In some scenarios (the EN–FR translation in the lab
domain), OOV decreases by as much as 50 %, which is a sign of a better match

between the test and training data. The target side of the parallel data also improves

the language models, with their perplexity falling by an average of 67.5 % relative.

The new in-domain material in the translation models also leads to longer phrases

being used in the best-scored translation hypotheses. The average phrase length

increased compared to the systems with adapted language models only (L2) by

almost 20 % to 2.18 words.

For comparison, Table 15 also reports the results of systems trained and tuned

solely on domain-specific data (C0), which illustrates the pure effect of such

training data. Although with one exception (EN–EL translation of the lab domain),

these systems outperform the baseline (B0), the requirement of using general-

domain data is evident in all scenarios. The average difference in BLEU of the fully

Table 14 Results of complete adaptation. Language models in all systems are adapted by linear inter-

polation; translation models are adapted by concatenation of training data (C1), linear interpolation of

general-domain and domain-specific models (C2), and employing the independent models in log-linear

combination (C3)

Direction Test Base (L2) Concatenation (C1) Lin. interpol. (C2) Log-lin. comb. (C3)

BLEU BLEU D BLEU D BLEU D

English–French env 41.78 43.70 1.92 43.85 2.07 43.75 1.97

lab 38.54 47.45 8.91 48.31 9.77 47.96 9.42

French–English env 42.63 43.93 1.30 44.22 1.59 44.12 1.49

lab 41.11 50.07 8.96 50.56 9.45 50.34 9.23

English–Greek env 34.89 38.41 3.52 37.90 3.01 38.22 3.33

lab 34.15 34.29 0.14 34.76 0.61 34.48 0.33

Greek–English env 37.57 40.85 3.28 40.64 3.07 40.81 3.24

lab 40.09 40.69 0.60 40.75 0.66 40.62 0.53

Average 3.58 3.78 3.69

D refers to absolute improvement in BLEU over L2 with translation models trained on general-domain

data only
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adapted systems (C2) and the systems trained on specific data only (C0) is 7.56

points absolute.

In Fig. 6, we visualise the weight vectors of the four systems presented in this

section for the env domain (the trends on the lab domain are the same). Compared to

the baseline (B0), the in-domain tuned systems (P1) do not trust the translation

model that much and prefer hypotheses consisting of more phrases which are shorter

and more reordered. The weight vectors of systems L2 do not change much. A

consistent increase, however, is observed for both the language model weight (h8)

and phrase penalty (h13). This is natural, as the language models match the test

domain better and the systems are better able to construct improved hypotheses

consisting of even shorter phrases. The parameters of the fully adapted systems (C2)

changed only slightly. A consistent change is observed for the phrase penalty (h13);

in most cases it dropped, which is reflected in an increase in average phrase length

in the test translations compared to systems L2 (see Table 16).

7 Conclusions

In the first main part of the paper (Sect. 4), we focused on a detailed exposition of

the pipeline for acquisition of monolingual and parallel data from the World Wide

Web. In the second part (Sects. 5–6), we added a thorough investigation of the

impact of resources that can be generated using the pipeline, focusing in particular

on major established/tried-and-tested approaches to domain adaptation of MT. We
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Fig. 6 Visualisation of model weights of the systems presented in Table 14 (env domain only) based on
general-domain data for training and tuning (B0), domain-specific parallel data for tuning (P1), additional
monolingual data for language models (L2), and additional parallel data for the translation model (C2)
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discussed the effect of tuning and adaptation on SMT system weights, analysed the

learning curves of parameter tuning, OOV rates, perplexity of the test data, and

phrase length in translations produced during various stages of adaptation.

The pipeline for the acquisition of domain-specific monolingual and parallel texts

from the web is based on existing open-source tools for web crawling, text

normalisation and cleaning, language identification, duplicate removal, and parallel

sentence extraction. It is implemented as easy-to-use web services ready to be

employed in industrial scenarios. It requires only limited human intervention for

constructing the domain definition and the list of seed URLs, which can easily be

tweaked and tuned to acquire texts with high accuracy of 94 %. This pipeline was

applied to acquire domain-specific resources for adaptation of a general-domain

SMT system. We crawled monolingual and parallel data for two language pairs

(English–French, English–Greek) and two domains (environment, labour legisla-

tion), which allowed us to perform a large-scale evaluation using a total of eight test

scenarios. The acquired data sets are available from ELRA.

Our domain-adaptation experiments focused on the following three components

of a PB-SMT model: parameters of the log-linear combination and their

optimisation, language model, and translation model. First, we confirmed the

observation from previous research that systems trained and tuned on general

domain perform poorly on specific domains. This finding is not surprising, but the

amount of loss and the fact that it is observed consistently was rather unexpected.

The average absolute decrease in BLEU in all the domain-specific evaluation

scenarios was 21.82 points (37.86 % relative).

We confirm the results of previous research on tuning-only adaptation. Tuning

the general domain-trained systems on specific target domain data recovers a

significant amount of the loss. Several hundreds of sentence pairs used as

development data improved the BLEU score of the baseline tuned on general-

domain data by 6.64 points absolute (24.82 % relative) on average. A detailed

analysis of the model parameters and phrase length distribution in translations of the

test data found that a system trained and tuned on general domain data strongly

prefers long and few phrases in the output translations, and thus underperforms on

specific domains where such phrases do not occur so frequently. In contrast, the

same systems tuned on domain-specific data produce output translations from

shorter phrases, allow specific reordering and perform significantly and consistently

better on specific domains.

Importantly, our findings show that the development data does not have to be

manually cleaned and corrected, as parameter tuning on the development set (here,

using MERT) is quite tolerant to imperfect translations and eventual noise in the

development sets. Cross-domain tuning on a different set also offers a good solution

when no in-domain development data is available, especially when the domains

differ in a similar way. This step has the effect of tweaking the original general-

domain system towards shorter phrases and it does not matter much which different

development sets are used.

The experiments with language model adaptation confirmed previous results.

Linear interpolation of the general-domain and domain-specific models increased

translation quality by a further 4.88 BLEU points absolute (14.95 % relative)
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compared to the general-domain systems tuned on in-domain development sets on

average and significantly outperformed other techniques (concatenation of training

data and log-linear combination of the two models). Adaptation of translation

models (using 7,000–20,000 acquired sentence pairs) increased BLEU scores by

4.56 points absolute (13.87 % relative) compared to the general-domain systems

tuned on in-domain development sets. In this case, linear interpolation and log-

linear combination produced similar results. In the combined approach, we observed

that the effect of using in-domain monolingual and parallel data is largely

independent and does not cancel out when these two types of resources are used at

the same time. The final BLEU scores increased by 3.78 points absolute (9.66 %

relative) with respect to the language-model-adapted systems, by 8.66 points

absolute (26.43 % relative) with respect to the in-domain tuned systems, and by

15.30 points absolute (58.37 % relative) with respect to the general-domain

baseline, all on average.

The pipeline for domain-focused web crawling described in this work proved to

be very successful in acquisition of domain specific data—both monolingual and

parallel. The experiments then showed a high impact of the acquired resources on

domain adaptation of MT. We mainly concentrated on parameter tuning and

analysis of its effects. Although we did not especially focuse on adaptation of

language models and translation models, the acquired data also significantly

improved these components and translation quality in general.
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Appendix

Domain definition: Environment

The environment domain refers to the interaction of humanity and the rest of the

biophysical or natural environment. Relevant texts address the impacts of human

activity on the natural environment, such as terrestrial, marine and atmospheric

pollution, waste of natural resources (forests, mineral deposits, animal species) and

climate change. Relevant texts also include laws, regulations and measures aiming

to reduce the impacts of human activity on the natural environment and preserve
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ecosystems and biodiversity, which mainly refer to pollution control and

remediation, legislation well as to resource conservation and management. Texts

on natural disasters and their effects on social life are also relevant.

Domain definition: Labour legislation

The labour legislation domain consists of laws, rules, and regulations, which address

the legal rights and obligations of workers and employers. Relevant texts refer to

Table 17 Complete results of all English–French systems

Domain System BLEU D 1-PER D 1-TER D

env B0 29.61 0.00 60.46 0.00 42.47 0.00

P1 37.51 7.90 66.28 5.82 51.47 9.00

P2 37.25 7.64 65.96 5.50 51.72 9.25

P3 37.47 7.86 66.12 5.66 51.95 9.48

P4 36.24 6.63 65.32 4.86 50.58 8.11

L1 41.28 11.67 67.91 7.45 54.13 11.66

L2 41.78 12.17 68.23 7.77 54.34 11.87

L3 41.25 11.64 67.99 7.53 54.04 11.57

T1 39.61 10.00 67.40 6.94 53.21 10.74

T2 39.85 10.24 67.67 7.21 53.38 10.91

T3 39.76 10.15 67.58 7.12 53.34 10.87

C1 43.70 14.09 69.14 8.68 55.96 13.49

C2 43.85 14.24 69.52 9.06 56.12 13.65

C3 43.75 14.14 69.49 9.03 55.78 13.31

C0 39.54 9.93 66.72 6.26 52.15 9.68

lab B0 23.94 0.00 57.15 0.00 36.40 0.00

P1 32.15 8.21 62.59 5.44 46.87 10.47

P2 31.88 7.94 62.50 5.35 46.03 9.63

P3 31.82 7.88 62.47 5.32 46.03 9.63

P4 30.60 6.66 61.54 4.39 45.14 8.74

L1 36.15 12.21 64.73 7.58 48.83 12.43

L2 38.54 14.60 66.01 8.86 50.70 14.30

L3 35.54 11.60 64.63 7.48 48.40 12.00

T1 41.33 17.39 67.77 10.62 53.07 16.67

T2 42.08 18.14 68.82 11.67 53.71 17.31

T3 42.70 18.76 69.12 11.97 54.06 17.66

C1 47.45 23.51 71.45 14.30 57.97 21.57

C2 48.31 24.37 71.94 14.79 58.89 22.49

C3 47.96 24.02 71.64 14.49 58.57 22.17

C0 43.05 19.11 69.14 11.99 54.63 18.23

D refers to absolute improvement over the baseline (B0)

186 P. Pecina et al.

123



issues such as the determination of wages, working time, leave, working conditions,

health and safety, as well as social security, retirement and compensation. It also

refers to issues such as rights, obligations and actions of trade unions, as well as

legal provisions concerning child labour, equality between men and women, work

of immigrants and disabled persons. Relevant texts also discuss measures aiming to

increase employment and worker mobility, to combat unemployment, poverty and

social exclusion, to promote equal opportunities, to avoid discrimination of any kind

and to improve social protection systems.

Table 18 Complete results of all French–English systems

Domain System BLEU D 1-PER D 1-TER D

env B0 31.79 0.00 63.13 0.00 47.79 0.00

P1 39.05 7.26 70.60 7.47 55.64 7.85

P2 38.93 7.14 70.55 7.42 55.55 7.76

P3 38.79 7.00 69.40 6.27 55.21 7.42

P4 34.05 2.26 59.36 -3.77 48.02 0.23

L1 40.58 8.79 71.13 8.00 56.65 8.86

L2 42.63 10.84 71.85 8.72 57.83 10.04

L3 39.93 8.14 70.83 7.70 56.16 8.37

T1 41.08 9.29 71.04 7.91 56.86 9.07

T2 41.92 10.13 71.63 8.50 57.55 9.76

T3 41.65 9.86 71.69 8.56 57.24 9.45

C1 43.93 12.14 72.71 9.58 58.95 11.16

C2 44.22 12.43 72.69 9.56 59.00 11.21

C3 44.12 12.33 72.79 9.66 58.98 11.19

C0 37.86 6.07 68.71 5.58 53.58 5.79

lab B0 26.96 0.00 59.94 0.00 43.04 0.00

P1 33.48 6.52 66.60 6.66 50.41 7.37

P2 33.34 6.38 66.55 6.61 50.33 7.29

P3 33.07 6.11 66.58 6.64 50.90 7.86

P4 29.69 2.73 56.85 -3.09 43.88 0.84

L1 38.05 11.09 68.74 8.80 53.54 10.50

L2 41.11 14.15 70.19 10.25 55.42 12.38

L3 33.95 6.99 60.46 0.52 47.78 4.74

T1 43.54 16.58 72.08 12.14 57.50 14.46

T2 45.06 18.10 73.28 13.34 59.03 15.99

T3 45.12 18.16 73.30 13.36 59.03 15.99

C1 50.07 23.11 75.34 15.40 62.66 19.62

C2 50.56 23.60 75.71 15.77 63.13 20.09

C3 50.34 23.38 75.71 15.77 63.10 20.06

C0 43.74 16.78 72.07 12.13 57.75 14.71

D refers to absolute improvement over the baseline (B0)
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Table 19 Complete results of all English–Greek systems

Domain System BLEU D 1-PER D 1-TER D

env B0 21.20 0.00 52.75 0.00 36.76 0.00

P1 27.56 6.36 57.65 4.90 43.48 6.72

P2 27.29 6.09 57.25 4.50 44.00 7.24

P3 27.26 6.06 57.04 4.29 44.44 7.68

P4 27.16 5.96 57.03 4.28 43.94 7.18

L1 33.59 12.39 61.07 8.32 47.48 10.72

L2 34.89 13.69 61.52 8.77 49.82 13.06

L3 33.65 12.45 60.98 8.23 47.74 10.98

T1 30.73 9.53 58.68 5.93 44.91 8.15

T2 30.74 9.54 58.99 6.24 45.29 8.53

T3 31.89 10.69 59.71 6.96 46.18 9.42

C1 38.41 17.21 63.99 11.24 51.09 14.33

C2 37.90 16.70 63.27 10.52 51.61 14.85

C3 38.22 17.02 63.89 11.14 51.28 14.52

C0 29.84 8.64 57.15 4.40 42.89 6.13

lab B0 24.04 0.00 53.69 0.00 38.79 0.00

P1 30.07 6.03 59.66 5.97 46.17 7.38

P2 30.23 6.19 59.67 5.98 46.15 7.36

P3 29.68 5.64 57.71 4.02 44.95 6.16

P4 29.76 5.72 58.73 5.04 45.59 6.80

L1 35.09 11.05 62.35 8.66 49.55 10.76

L2 34.15 10.11 61.90 8.21 48.74 9.95

L3 34.33 10.29 61.95 8.26 48.78 9.99

T1 30.48 6.44 60.11 6.42 46.79 8.00

T2 30.51 6.47 60.19 6.50 46.63 7.84

T3 30.51 6.47 59.99 6.30 46.43 7.64

C1 34.29 10.25 62.03 8.34 49.08 10.29

C2 34.76 10.72 62.40 8.71 49.74 10.95

C3 34.48 10.44 61.77 8.08 48.58 9.79

C0 26.19 2.15 55.05 1.36 40.57 1.78

D refers to absolute improvement over the baseline (B0)
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