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Abstract

Large-scale annotated corpora are a prerequisite to developing high-performance NLP
systems. Such corpora are expensive to produce, limited in size, often demanding linguistic
expertise. In this paper we use text rewriting as a means of increasing the amount of labeled
data available for model training. Our method uses automatically extracted rewrite rules
from comparable corpora and bitexts to generate multiple versions of sentences annotated
with gold standard labels. We apply this idea to semantic role labeling and show that
a model trained on rewritten data outperforms the state of the art on the CoNLL-2009
benchmark dataset.

1. Introduction

Recent years have witnessed increased interest in the automatic identification and labeling
of the semantic roles conveyed by sentential constituents (Gildea & Jurafsky, 2002). The
goal of the semantic role labeling task is to discover the relations that hold between a
predicate and its arguments in a given input sentence (e.g., “who” did “what” to “whom”,
“when”, “where”, and “how”).

(1) [Mrs. Yeargin]A0 [gave]V [the questions and answers]A1 [two days before the
examination]TMP to [two low-ability geography classes]ARG2.

In sentence (1), A0 represents the Agent or giver, A1 represents the theme or thing given,
A2 represents the Recipient, TMP is a temporal modifier indicating when the action took
place, and V determines the boundaries of the predicate. The semantic roles in the example
are labeled in the style of PropBank (Palmer, Gildea, & Kingsbury, 2005), a broad-coverage
human-annotated corpus of semantic roles and their syntactic realizations. Under the Prop-
Bank annotation framework each predicate is associated with a set of core roles (named A0,
A1, A2, and so on) whose interpretations are specific to that predicate1 and a set of adjunct
roles such as location or time whose interpretation is common across predicates (e.g., two
days before the examination in sentence (1) above).

This type of semantic information is shallow but relatively straightforward to infer auto-
matically and useful for the development of broad coverage, domain-independent language
understanding systems. Indeed, the analysis produced by existing semantic role labelers has
been shown to benefit a wide spectrum of applications ranging from information extraction
(Surdeanu, Harabagiu, Williams, & Aarseth, 2003) and question answering (Shen & Lapata,

1. More precisely, A0 and A1 have a common interpretation across predicates as proto-agent and proto-
patient in the sense described by Dowty (1991).
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Source Target

1. The retreating guerrillas were soon pur-
sued by the government forces.

Government forces soon pursued the re-
treating guerrillas.

2. A survey conducted by the Gallup Poll
last summer indicated that one in four
Americans takes cues from the stars or be-
lieves in ghosts.

A survey was conducted by the Gallup
Poll last summer. It indicated that one in
four Americans takes cues from the stars
or believes in ghosts.

3. The examiner who was kind let the stu-
dent finish his lunch.

The kind examiner let the student finish
his lunch.

4. Because she didn’t know the rules, she
died.

She died, because she didn’t know the
rules.

5. Mexico City, the biggest city in the world,
has many interesting archaeological sites.

Mexico City has many interesting archae-
ological sites.

6. The arrival of the train was unexpected. The train’s arrival was unexpected.

Table 1: Examples of syntactic rewriting.

2007), to machine translation (Wu & Fung, 2009) and summarization (Melli, Wang, Liu,
Kashani, Shi, Gu, Sarkar, & Popowich, 2005).

Most SRL systems to date conceptualize the semantic role labeling task as a supervised
learning problem and rely on role-annotated data for model training. Supervised methods
deliver reasonably good performance, with F1-scores in the low eighties on standard test
collections for English. They rely primarily on syntactic features (such as path features)
in order to identify and classify roles. This has been a mixed blessing as the path from an
argument to the predicate can be very informative but also quite complicated. Many paths
through the parse tree are likely to occur a relatively small number of times (or not at all)
resulting in very sparse information for the classifier to learn from. Even if the training
data includes examples for a specific predicate and set of arguments, unless a test sentence
contains them in the same syntactic structure, then as far as the classifier is concerned, the
labeling of items within the two sentences is unrelated.

Our idea is to use use rewrite rules in order to create several syntactic variants for
a sentence, thus alleviating the training requirements for semantic role labeling. Rewrite
rules are typically synchronous grammar rules defining how a sequence of source terminals
and nonterminals rewrites to a sequence of target terminals and nonterminals. Such rules
are most often extracted from monolingual corpora containing parallel translations of the
same source text (Barzilay & McKeown, 2001; Pang, Knight, & Marcu, 2003), bilingual
corpora consisting of documents and their translations (Bannard & Callison-Burch, 2005a;
Callison-Burch, 2007), or comparable corpora such as Wikipedia revision histories (Coster
& Kauchak, 2011; Woodsend & Lapata, 2011). Examples of rewrites are given in Table 1.
These include transforming passive to active sentences (see sentence pair (1) in Table 1),
splitting a long and complicated sentence into several shorter ones (see (2) in Table 1),
removing redundant parts of a sentence (see (3) in Table 1), reordering parts in a sentence
(see (4) in Table 1), deleting appositives (see (5) in Table 1), transforming a prepositional
phrase into a genitive (see (6) in Table 1), and so on.
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We automatically extract syntactic rewrite rules from corpora and use them to generate
multiple versions of role annotated sentences whilst preserving their original semantic roles.
We therefore expand the training data with a wide range of syntactic variations for each
predicate-argument combination and then learn a semantic role labeler on the expanded
dataset. The approach we describe essentially increases the size of the training data by
creating many different syntactic variations for different predicates and their roles.

Rewrite rules have been previously deployed in a variety of text-to-text generation appli-
cations ranging from summarisation (Galley & McKeown, 2007; Yamangil & Nelken, 2008;
Cohn & Lapata, 2009; Ganitkevitch, Callison-Burch, Napoles, & Van Durme, 2011), to
question answering (Wang, Smith, & Mitamura, 2007), information retrieval (Park, Croft,
& Smith, 2011), simplification (Zhu, Bernhard, & Gurevych, 2010; Woodsend & Lapata,
2011; Feblowitz & Kauchak, 2013), and machine translation (Callison-Burch, 2008; Mar-
ton, Callison-Burch, & Resnik, 2009; Ganitkevitch, Cao, Weese, Post, & Callison-Burch,
2012). However, the application of text rewriting as a means of increasing the amount of
labeled data available for model training is novel to our knowledge. We show experimen-
tally, that syntactic transformations improve SRL performance beyond the state of the art
when using the CoNLL-2009 benchmark dataset and the best scoring system (Björkelund,
Hafdell, & Nugues, 2009). Importantly, our approach can be used in combination with any
SRL learner or role-annotated data. Moreover, it is not specifically tied to the SRL task
or the employed learning model and dataset. Rewrite rules could be used to expand the
training data for other tasks that make use of syntactic features such as semantic parsing
(Kwiatkowski, 2012) and textual entailment (Mehdad, Negri, & Federico, 2010; Wang &
Manning, 2010).

In the following, we present an overview of related work (Section 2) and then describe
how rewrite rules are automatically extracted and filtered for correctness (Section 3). Sec-
tion 4 details our experiments and Section 5 reports our results.

2. Related Work

The idea of transforming sentences to make them more amenable to NLP technology dates
back to Chandrasekar, Doran, and Srinivas (1996) who argue that simpler sentences would
decrease the likelihood for an incorrect parse. To this end, they employ mostly hand-crafted
syntactic rules aimed at splitting long and complicated sentences into simpler ones. Kle-
banov, Knight, and Marcu (2004) preprocess texts into Easy Access Sentences, i.e., sentences
consisting of one finite verb and its dependents in order to facilitate information seeking ap-
plications such as summarization or information retrieval in accessing factual information.
In a similar vein, Vickrey and Koller (2008) devise a large number of hand-written rules
in order to simplify sentences for semantic role labeling. They present a log-linear model
which jointly learns to select the best simplification (out of a possibly exponential space
of candidates) and role labeling. Kundu and Roth (2011) use textual transformations for
domain adaptation. Rather than training a new model on out-of-domain data, they propose
to rewrite the out-of-domain text so that it is more similar to the training domain. They
pilot their idea in semantic role labeling using hand-written rewrite rules and show that it
compares favorably with approaches that retrain their model on the target domain.
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Other work has focused on the idea of automatically expanding the data available for a
given task without, however, applying any transformations. Fürstenau and Lapata (2012)
combine labeled and unlabeled data by projecting semantic role annotations from a labeled
source sentence onto an unlabeled target sentence. They find novel instances for classifier
training based on their lexical and structural similarity to manually labeled seed instances.
Zanzotto and Pennacchiotti (2010) increase the datasets for textual entailment by mining
Wikipedia revision histories.

Contrary to previous work, we automatically extract general rewrite rules from vari-
ous data sources including Wikipedia revision histories, comparable articles, and bilingual
corpora. Given a sentence in the (semantic role) annotated data, we create several syn-
tactic transformations, many of which may be erroneous. We only maintain for model
training the transformations whose role labels are preserved under a syntactic rewrite. We
identify which transformations are label-preserving automatically, without requiring any
SRL-specific knowledge. Our approach differs from that of Vickrey and Koller (2008) in
three important aspects: (a) we employ automatic rules which are not simplification spe-
cific, (b) we do not attempt to select the best rewrite, any transformations that preserve
the gold standard role labels are used for training (c) we do not have a model that jointly
rewrites sentences and labels their semantic roles; we only rewrite the training data which
is then available to any model for the SRL task. Our work shares with that of Kundu
and Roth (2011) the idea of transforming the sentences while preserving the gold standard
role labels. However, we do not transform the test data to make it look like the training
data. This unavoidably requires specialized knowledge of the differences between the two
domains, which our more general model does not have.

As mentioned earlier, we use synchronous grammars to extract the set of possible syn-
tactic rewrites. Synchronous context-free grammars (SCFGs; Aho & Ullman, 1969) are
a generalization of the context-free grammar (CFG) formalism to simultaneously produce
strings in two languages. They have been used extensively in syntax-based statistical MT
(Wu, 1997; Yamada & Knight, 2001; Chiang, 2007; Graehl & Knight, 2004) and related
generation tasks such as sentence compression (Galley & McKeown, 2007; Cohn & Lapata,
2009, 2013; Ganitkevitch et al., 2011), sentence simplification (Zhu et al., 2010; Feblowitz
& Kauchak, 2013; Woodsend & Lapata, 2011), and summarization (Woodsend & Lapata,
2012). Rather than focusing on one type of transformation (e.g., simplification or compres-
sion), we learn the full spectrum of rewrite operations and then select rules appropriate for
the task at hand. Furthermore, our results show that rewrite rules improve semantic role
labeling performance across the board, irrespectively of the specific variant of synchronous
grammar or corpus used. We experiment with conventional (weighted) SCFGs (Aho &
Ullman, 1969) and tree substitution grammars (Eisner, 2003) and employ transformation
rules extracted from Wikipedia revision histories (Zhu et al., 2010; Woodsend & Lapata,
2011) and bitexts (Ganitkevitch, Van Durme, & Callison-Burch, 2013).

3. Method

In this section we describe the general idea behind our algorithm and then move on to
present our specific implementation. We define a transformation g to be a function that
maps an example sentence s into a modified sentence s′. Let G̃ be the set of known

136



Text Rewriting Improves Semantic Role Labeling

transformation functions, G̃ = {g1, g2, . . . , gñ}. Suppose now that there are labels associated
with example s. In the context of this paper, these are semantic role labels. Labels could be
defined over spans of tokens, but here we use the CoNLL 2008–9 formalism where it is the
head word of the span that is labelled. The transformation function is therefore a mapping
between tokens t in sentence s to tokens t′ in s′. We do not require that the mapping
involves all the tokens of s or s′, but we do require that the mappings are one-to-one.

A label-preserving transformation is a transformation gi mapping from (some of the)
tokens t in example s to tokens t′ in s′, such that the (correct) labels of t′ are identical to
the labels of its source tokens t for all the token mappings defined in gi. In other words, those
labels that could be preserved, have been preserved, and no others have been introduced.
Let G be the set of label-preserving transformation functions, with G ⊂ G̃. The problem
that we address in this paper is therefore two-fold: Firstly, to find automatically a set of
possible transformation functions G̃ which due to its automated nature will unavoidably be
an error-prone process. Secondly, to identify (again automatically) those transformations G
which are actually label-preserving — more specifically, those transformations that rewrite
a training instance s into s′ through varying its syntactic structure, and yet preserve the
semantic roles of those arguments that appear in the new version s′.

Algorithm 1 describes our approach which boils down to three steps: (a) extracting
transformations, (b) refining transformations, and (c) generating and labeling an extended
corpus. A standard gold annotated corpus is used to train an initial semantic role labeling
model (see lines 1–2 in Algorithm 1). Meanwhile, a set of candidate transformation func-
tions G̃ are extracted from some suitable comparable or parallel corpus (line 3). This full
set of transformation functions is used to rewrite the gold corpus, creating a much extended
corpus which inevitably will contain grammatically or semantically incorrect sentences. The
extended corpus is next automatically labeled using the original SRL model after prepro-
cessing through a normal SRL pipeline (whose details we discuss in Section 4.2), without
knowledge of the transformation functions involved.

We could in theory use this extended corpus as the basis of training a further SRL
model. However, it will contain many errors, and is unlikely to yield useful information
to guide the model. One approach could be to manually correct the rewrites that have
been generated automatically, but this would be very time and resource-intensive. Instead,
we do the corrections automatically, and create an extended corpus where the rewrites do
not impair the quality of the training data. We therefore learn which rules yield accurate
rewrites, i.e., rewrites which preserve the labels of the gold-standard. Our intuition is
that, given a large number of possible rewrites, the SRL model will in general label the
accurate rewrites correctly and mis-label the erroneous sentences, due to it finding them
more confusing. We thus compare the semantic role labels produced by the model with the
labels for corresponding predicate-argument pairs in the gold corpus, and provide them as
samples to train a binary classifier (here an SVM) which learns to predict which rewrites
are likely to be successful and which are problematic (lines 11–19 in Algorithm 1).

Each rewritten sentence is classed as a positive sample if the SRL model is able to label
the transformation to the same standard or better than it was able to label the original
sentence, i.e. the labels that the SRL model predicts for the transformed sentence match
those it predicted for the original, or have now been corrected with respect to the mapped
gold labels. If, however, a semantic role is no longer predicted correctly, or missed, or an
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Algorithm 1 Learn SRL model Mextended by extending a gold training corpus Cgold through
transformation functions G̃.

1: Mgold ← SRL model trained on Cgold

2: Cmodel ← label Cgold using Mgold

Extract transformations:
3: G̃← all transformation functions that can be extracted from pairs of aligned sentences

in comparable corpora

Refine transformations:
4: initialize SVM training data DSVM ← ∅
5: for s ∈ sentences in Cgold do
6: for g ∈ applicable transformations in G̃ do
7: s′ ← rewrite s using g
8: label s′ using Mgold

9: if SRL labels of s′ match labels of s in Cgold or equivalent s in Cmodel then
10: y ← true
11: else
12: y ← false
13: end if
14: add (s′, y) to DSVM

15: end for
16: end for
17: train SVM using DSVM

18: G← {g ∈ G̃ : g has positive SVM weight}
Generate extended corpus:

19: initialize refined rewrite corpus Crefined ← ∅
20: for s ∈ sentences in Cgold do
21: for g ∈ applicable transformations in G do
22: s′ ← rewrite s using g
23: project labels from s to s′ using g
24: add s′ to Crefined

25: end for
26: end for
27: Cextended ← Cgold ∪ Crefined

Retrain SRL model:
28: Mextended ← SRL model trained on Cextended

29: return Mextended
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erroneous role introduced, this is classified as a negative sample, as such a sample is likely
to harm the training of a new SRL model.

Once the SVM has identified the refined set of transformation functions G (line 20), these
transformations are used to create an extended training corpus. This time, knowledge of
the transformation function is involved to project the labels that correspond to the original
gold corpus (lines 21–28). In the case of SRL, the labels describe the predicate and its
arguments. This extended corpus supplements the original gold standard corpus (line 29),
and the combination is then used to create a further SRL model (line 30).

It is worth noting that our method does not impinge on the actual process of learning an
SRL model, as it is concerned with the preparation of training data. We therefore believe
it can be applied to a range of SRL modeling approaches, and that gains in performance
we achieve are largely orthogonal to those that could be made by improving other aspects
of the learning process (see Section 5.3 for empirical evidence).

3.1 Learning Transformations

Conceptually a wide range of text-rewriting transformation functions could be included in
the set G̃, such as paraphrasing, simplification or translation into another language. Here,
we focus on transformation functions that can be expressed in synchronous context-free
grammars (Aho & Ullman, 1969). Synchronous rules operate on parse tree constituents in
a context-free manner, and typically modify the syntax. The transformations we consider
can be sub-categorized into:

1. Statement extraction. Constituents of a sub-tree of the parse tree are identified, ex-
tracted from their context and rewritten as a complete sentence, typically shorter and
simpler, although not necessarily so.

2. Compression. The original sentence is rewritten by compressing constituents of the
parse tree, typically by deleting nodes.

3. Insertion. New elements are added to the parse tree. As significant chunks of new
text would have semantic role information of their own, in practice these insertions
are often additional punctuation to clarify the scope of phrases, or a simple structure
such as “It is . . . .” to aid in statement extraction.

4. Substitution. Through using a lexicalized synchronous grammar, text can be replaced
with new text, and paraphrases represented.

We obtain a set of possible transformations G̃ from monolingual comparable corpora
drawn from Wikipedia and bitexts (see Section 4 for details). In the following we describe
the grammar formalisms and resources we consider.

3.1.1 Transformations from Monolingual Corpora

We extract transformation rules from corpora that are only broadly comparable, using an
unsupervised process. These corpora are constructed from Wikipedia revision histories, and
comparable Wikipedia articles. As a result, it cannot be guaranteed that the aligned source
and target sentences are truly related, nor can it be expected that the source sentence will
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fully generate the target sentence. In practice this means that in addition to not requiring
a strictly synchronous structure over the source and target sentences, we cannot assume
an alignment between source and target root nodes, or require a surjective alignment of all
target nodes to nodes in the source parse tree. To be able to describe structural mismatches
and non-isomorphic tree pairs (the grammar rules can comprise trees of arbitrary depth,
and fragments can be mapped) we represent transformation functions using the synchronous
tree substitution grammar formalism (Eisner, 2003).

A synchronous tree-substitution grammar (STSG) defines the space of valid pairs of
source and target parse trees. Rules specify how to map tree fragments of the source parse
tree into fragments in the target tree, recursively and free of context. Following Cohn and
Lapata (2009), a STSG is a 7-tuple, G = (NS ,NT ,ΩS ,ΩT , P,RS , RT ) where N are the
non-terminals and Ω are the terminals, with the subscripts S and T indicating source and
target respectively. P are the productions and RS ∈ NS and RT ∈ NT are the distinguished
root symbols.

Typically, each production is a rewrite rule for two aligned non-terminals X ∈ NS and
Y ∈ NT in the source and target:

〈X,Y 〉 → 〈α, γ,∼〉,

where α and γ are elementary trees rooted with the symbols X and Y respectively. While
in a synchronous context free grammar α and γ would be limited to one level elementary
trees, an STSG imposes no such limits and the elementary trees can be arbitrarily deep.
A one-to-one alignment between the frontier nodes (non-terminal leaves of the elementary
trees) in α and γ is specified by ∼.

In our experiments, we investigate two STSG variants, the strictly synchronous tree
substitution grammar T3 (Cohn & Lapata, 2009), which was originally developed for the
task of text compression, but does support a full range of transformation operations and
the quasi-synchronous tree substitution grammar (QTSG) of Woodsend and Lapata (2011),
which has been used in text simplification and summarization (Woodsend & Lapata, 2012).
In T3 tokens are first aligned using a probabilistic aligner which has been initially provided
with identity mappings for the entire vocabulary. In our experiments we used the Berkeley
aligner (Liang, Taskar, & Klein, 2006), however any aligner with broadly similar output
could have been used instead. Synchronous rules comprising trees of arbitrary depth are
extracted from the pair of input CFG parse trees, consistent with the alignment. Across
the complete corpus of aligned trees, T3 filters the extracted rules to provide the maximally
general rule set, consisting of rules with the smallest depth, which are still capable of
synchronously deriving any of the original aligned tree pairs. After removing identity rules,
the resulting grammar forms the transformation functions G̃.

Unlike T3, QTSG works with only a partial alignment of tokens, based on identity.
Non-terminal nodes in the parse trees are then aligned to be consistent with the token
alignment. This can have the result that sections of both the source and target parse trees
remain unaligned. Then, like T3, synchronous rules comprising trees of minimum necessary
depth are extracted from the pair of input trees, consistent with the alignment, and as
before, identity rules are removed to form G̃.

As an example, Figure 1 shows two comparable parse trees aligned at the token level.
The synchronous rules extracted from this alignment by T3 and QTSG are shown in Table 2.
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Figure 1: Example of sentence alignment showing source (above) and target (below) trees.

Where it is possible to extract rules from nodes at the child level, then the rules that T3
and QTSG extract at the parent level will be identical. In cases where a sub-tree has been
compressed, (in the example, have come to question is compressed to question), QTSG
extracts the full sub-tree until frontier nodes align, while T3 will extract several rules of the
smallest depth.

3.1.2 Transformations from Bitexts

We also obtain transformation rules from the ParaPhrase DataBase (PPDB, Ganitkevitch
et al., 2013), a collection of English (and Spanish) paraphrases derived from large bilingual
parallel corpora. A variety of paraphrases (lexical, phrasal, and syntactic) are obtained
following Bannard and Callison-Burch’s (2005b) bilingual pivoting method.
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Rules extracted by T3

〈S, S〉 → 〈[S NP
1

VP
2

.
3

], [S NP
1

VP
2

.
3

]〉

〈NP, NP〉 → 〈[NP [NNP Modern] NNS
1

], [NP [DT Some] NNS
1

]〉

〈VP, VP〉 → 〈[VP VBP
ε

VP
1

], [VP VP
1

]〉

〈VP, VP〉 → 〈[VP VBN
ε

[S VP
1

]], [VP VP
1

]〉

〈VP, VP〉 → 〈[VP TO
ε

VP
1

], [VP VP
1

]〉

〈VP, VP〉 → 〈[VP [VB question] NP
1

], [VP [VBP question] NP
1

]〉

〈NP, NP〉 → 〈[NP NP
1

PP
2

], [NP NP
1

PP
2

]〉

〈NP, NP〉 → 〈[NP DT
1

NN
2

], [NP DT
1

NN
2

]〉

〈PP, PP〉 → 〈[PP IN
1

NP
2

], [PP IN
1

NP
2

]〉

〈NP, NP〉 → 〈[NP ADVP
ε

DT
1

JJ
2

CD
3

NNS
4

], [NP DT
1

JJ
2

CD
3

NNS
4

]〉

Rules extracted by QTSG

〈S, S〉 → 〈[S NP
1

VP
2

.
3

], [S NP
1

VP
2

.
3

]〉

〈NP, NP〉 → 〈[NP NNP
ε

NNS
1

], [NP [DT Some] NNS
1

]〉

〈VP, VP〉 → 〈[VP VBP
ε

[VP VBN
ε

[S [VP TO
ε

[VP VB
1

NP
2

]]]]], [VP VBP
1

NP
2

]〉

〈NP, NP〉 → 〈[NP NP
1

PP
2

], [NP NP
1

PP
2

]〉

〈NP, NP〉 → 〈[NP DT
1

NN
2

], [NP DT
1

NN
2

]〉

〈PP, PP〉 → 〈[PP IN
1

NP
2

], [PP IN
1

NP
2

]〉

〈NP, NP〉 → 〈[NP ADVP
ε

DT
1

JJ
2

CD
3

NNS
4

], [NP DT
1

JJ
2

CD
3

NNS
4

]〉

Table 2: Synchronous tree grammar rules extracted by T3 and QTSG from the aligned
sentences in Figure 1. Boxed indices are short-hand notation for the alignment, ∼.

The intuition is that two English strings e1 and e2 that translate to the same foreign
string f can be assumed to have the same meaning. The method then pivots over f to
extract 〈e1, e2〉 as a pair of paraphrases. An example is shown in Figure 2 (taken from
Ganitkevitch et al., 2013). The method extracts a wide range of possible paraphrases some
of which are unavoidably noisy due to inaccurate word alignments. Paraphrases are ranked
by computing p(e1|e2) as shown below:

p(e2|e1) ≈
∑
f

p(e2|f)p(f |e1) (2)

where p(ei|f) and p(f |ei) are translation probabilities estimated from the bitext (Koehn,
Och, & Marcu, 2003).

Rewrite rules in PPDB are obtained using a generalization of the method sketched
above to extract syntactic paraphrases (Ganitkevitch et al., 2011). Using techniques from
syntactic machine translation (Koehn, 2010), SCFG rules are first extracted from English-
foreign sentence pairs. For a foreign phrase the corresponding English phrase is found via the
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... fünf Landwirte , weil

... 5 farmers were in Ireland ...

...

oder wurden , gefoltert

or have been , tortured

festgenommen 

thrown into jail

festgenommen

imprisoned

...

... ...

...

Figure 2: Paraphrases extracted via bilingual pivoting.

word alignments. This phrase pair is turned into a SCFG rule by assigning a left-hand side
nonterminal symbol, corresponding to the syntactic constituent that dominates the English
phrase. To introduce nonterminals into the right-hand sides of the rule, corresponding sub-
phrases in the English and foreign phrases are replaced with nonterminal symbols. Doing
this for all sentence pairs in a bilingual parallel corpus results in a translation grammar
that serves as the basis for syntactic machine translation. A translation grammar can be
converted into a paraphrase grammar as follows. Let r1 and r2 denote translation rules
where the left-hand side nonterminals 〈X,Y 〉 and foreign language strings γ match:

r1 = 〈X,Y 〉 → 〈α1, γ,∼〉 (3)

r2 = 〈X,Y 〉 → 〈α2, γ,∼〉

A paraphrase rule rp is then created by pivoting over f :

rp = 〈X,Y 〉 → 〈α1, α2,∼〉 (4)

Although not shown in equations (3) and (4), the rules of the SCFG are associated
with a set of features that are combined in a log-linear model to estimate the derivation
probabilities.

3.1.3 Manual Transformations

Our experiments primarily make use of automatically learned transformations since these
can be adapted to different tasks, domains or languages. However, for the proposed ap-
proach it is not necessary that transformation functions are acquired automatically — such
functions could be also crafted by hand. We thus also investigated the effectiveness of
rewrites generated by the system of Heilman and Smith (2010) (henceforth H&S), which
uses a sophisticated hand-crafted rule-based algorithm to extract simplified declarative sen-
tences in English from syntactically complex ones. These rules are similar to those en-
gineered by Vickrey and Koller (2008) but deterministic in that they will only generate
a unique rewrite for a given sentence. The algorithm operates on the standard phrase

143



Woodsend & Lapata

structure tree of an input sentence. It extracts new sentence trees from the input tree for
the following: non-restrictive appositives and relative clauses; subordinate clauses with a
subject and finite verb; and participial phrases that modify noun phrases, verb phrases, or
clauses. In addition, the algorithm splits conjoined S, SBAR, or VP nodes, and extracts new
sentence trees for each conjunct. Each output tree is further processed to move any leading
prepositional phrases and quotations to be the last children of the main verb phrase, and
the following are removed: noun modifiers offset by commas (non-restrictive appositives,
non-restrictive relative clauses, parenthetical phrases, participial phrases), verb modifiers
offset by commas (subordinate clauses, participial phrases, prepositional phrases), leading
modifiers of the main clause (nodes that precede the subject).

Table 3 shows examples of rules extracted using the T3, QTSG and PPDB grammar
formalisms applied to a sentence from the CoNLL dataset. The final column of Table 3 in-
dicates whether the transformation could be classed as statement extraction, compression,
insertion, or substitution. As reflected in the table, T3 captures compression transfor-
mations by deleting nodes in the parse tree; QTSG rules are a range of mainly syntactic
transformations; and PPDB transformations are substitutions of words or short phrases.

3.2 Refining Transformations

As mentioned earlier, the transformation rules obtained from our synchronous grammars
could be used to rewrite the gold standard sentences. Unfortunately, due to the nature of
the corpora from which the rules are obtained and the automatic extraction process, many
of the rules will contain errors which will impair rather than improve the quality of the
training data. Our idea is to extrapolate which rules to trust by observing how the SRL
labeler handles the rewritten sentences. If it has mis-labeled them, it is possible that the
rewrite is not correct or that the original labels have not been preserved.

Each rewritten sentence is classed as a positive sample if the SRL model predicts the
same labels for the transformed sentence as those it predicted for the original, or the labels
have now been corrected with respect to the gold labels. If, however, a semantic role is no
longer predicted correctly, or missed, or an erroneous role introduced, this is classified as a
negative sample, as such a sample is likely to harm the training of a new SRL model. To
capture the full impact of a candidate transformation function, a sentence is provided as
a positive sample to the classifier only if all the labels (i.e., all predicates and arguments)
from the source sentence have been successfully projected onto the rewrite. Table 4 shows
examples of positive and negative samples of T3, QTSG, and PPDB rewrites. Note that
no refining was used on the H&S outputs.

To decide which transformation function to include in the refined set, we used a linear
kernel SVM (Vapnik, 1995) as a binary classifier, but other classifiers or indeed suitable
statistical tests for contingency could be used. The input to the SVM learner is a set
of l training samples (x1, y1), . . . , (xl, yl), xi ∈ Rn, y ∈ {+1, 1}. xi is an n dimensional
feature vector representing the ith sample, and yi is the label for that sample. The learning
process involves solving a convex optimization problem to find a large-margin separation
hyperplane between positive and negative samples. In order to cope with inseparable data,
some misclassification is allowed, the amount of which is determined by a parameter C,
which can be thought of as a penalty for each misclassified training sample. From one
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Grammar Examples Type

Original Bell, based in Los Angeles, makes and distributes electronic, computer and
building products.

T3

Bell, based, makes and distributes electronic, computer and building products.
〈PP, PP〉 → 〈[PP IN

ε
NP

ε
], [PP ]〉 Comp

Bell, based in Los Angeles, makes and distributes.
〈NP, NP〉 → 〈[NP ADJP

ε
NNS

ε
], [NP ]〉 Comp

Based in Los Angeles, makes and distributes electronic, computer and building
products.
〈NP, NP〉 → 〈[NP NNP

ε
,], [NP ]〉 Comp

Bell, based in Angeles’s, makes and distributes electronic, computer and build-
ing products.
〈NP, NP〉 → 〈[NP NNP

ε
NNP

1
], [NP NNP

1
[POS ’s]]〉 Comp

QTSG

Bell makes and distributes electronic, computer and building products.
〈NP, NP〉 → 〈[NP NP

1
, VP

ε
,], [NP NP

1
]〉 Comp

It makes and distributes electronic, computer and building products.
〈S, S〉 → 〈[S NP

ε
VP

1
.
2

], [S [NP It] VP
1

.
2

]〉 Ins

Bell was based in Los Angeles.
〈NP, S〉 → 〈[NP NP

1
, VP

2
,], [S NP

1
[VP [VBD was] VP

2
] .]〉 Ext

Bell, based in Los, makes and distributes electronic, computer and building
products.
〈NP, NP〉 → 〈[NP NNP

1
NNP

ε
], [NP NNP

1
]〉 Comp

Los Angeles makes and distributes electronic, computer and building products.
〈NP, NP〉 → 〈[NP NP

ε
, [VP VBN

ε
[PP IN

ε
NP

1
]] ,], [NP NP

1
]〉 Comp

PPDB
Bell, founded in Los Angeles, makes and distributes electronic, computer and
building products.
〈VP, VP〉 → 〈[VP [X based] PP

1
], [VP [X founded] PP

1
]〉 Sub

Bell, building in Los Angeles, makes and distributes electronic, computer and
building products.
〈VP, VP〉 → 〈[VP [X based] IN

1
NP

2
], [VP [X building] IN

1
NP

2
]〉 Sub

Bell, based during Los Angeles, makes and distributes electronic, computer
and building products.
〈VP, VP〉 → 〈[VP VBN

1
IN

ε
NP

2
], [VP VBN

1
[X during] NP

2
]〉 Sub

Table 3: Examples of transformation rules extracted using T3, QTSG and PPDB grammar
formalisms, applied to the sentence marked Original. The final column indicates
whether the rule is statement extraction (Ext), compression (Comp), insertion
(Ins) or substitution (Sub). As before, boxed indices are short-hand notation for
the alignment, ∼.

view (the dual problem), the result is a set of Support Vectors, the associated weights αi,
and a constant b. From another view (the primal problem), the result is a vector w that
defines the separation hyperplane, with a dimension that depends on the particular kernel
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Original Bell, based in Los Angeles, makes and distributes electronic, computer and building products.

T3

Bell, based, makes and distributes electronic, computer and building products. +
Bell, based in Los Angeles, makes and distributes. +
Based in Los Angeles, makes and distributes electronic, computer and building products. +
Bell, based in Angeles’s, makes and distributes electronic, computer and building products. –

QTSG

Bell makes and distributes electronic, computer and building products. +
It makes and distributes electronic, computer and building products. +
Bell was based in Los Angeles. +
Bell, based in Los, makes and distributes electronic, computer and building products. –
Bell, based in Angeles, makes and distributes electronic, computer and building products. +
Los Angeles makes and distributes electronic, computer and building products. –

PPDB
Bell, founded in Los Angeles, makes and distributes electronic, computer and building products. –
Bell, building in Los Angeles, makes and distributes electronic, computer and building products. –
Bell, based during Los Angeles, makes and distributes electronic, computer and building products. –

H&S Bell makes. Bell distributes. Bell is based in Los Angeles.

Original For its employees to sign up for the options, a college also must approve the plan.

T3

For it, a college also must approve the plan. –
A college also must approve the plan. +
For its employees to sign up for the options, this a also must approve this the. –
For its employees to sign up for, a college also must approve the plan. +

QTSG
For its employees to sign up for the options, a college also must approve. –
For its employees to sign up for the options, a college also must approve plan. +
For its employees to sign up for all of the options, a college also must approve the plan. –

PPDB

For its employees to sign up for the options, a college also must adopt the plan. +
For its employees to sign up for the options, a college also must agree to the plan. –
For its employees to sign up for the options, a college also must endorse the plan. +
For its employees to sign up for the options, a college also needs to approve the plan. –

H&S A college must approve the plan for its employees to sign up for the options.

Original That went over the permissible line for warm and fuzzy feelings.

T3

That went over the permissible line for feelings. +
That went over for warm and fuzzy feelings. –
That went over it for it. –
That went. +

QTSG
That went over the line for warm and fuzzy feelings. +
That went over the permissible line for feelings. –
That went over permissible for warm and fuzzy feelings. –

PPDB
That went over the permissible line for hot and fuzzy feelings. –
That went during the permissible line for warm and fuzzy feelings. +

H&S That went over the permissible line for warm and fuzzy feelings.

Table 4: Examples of rewrites generated by T3, QTSG, and PPDB for a source sentence
(Original) from the CoNLL-2009 training set. Symbols +/– indicate whether the
sample was classified as positive (i.e., argument label preserving) and forms part
of extended training corpus, or not.
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function used in the SVM. In the case of the linear kernel function, w is n–dimensional, as
the feature vectors, and there is a straight-forward relationship w =

∑l
j=1 yjαjxj between

primal and dual variables, effectively assigning weights to the explicitly specified features.
Other kernel functions allow for interaction between variables. For instance when using
binary valued features, a degree–2 polynomial kernel function implies that the classifier
considers all available pairs of features as well.

We used the identity of the transformation functions involved as the features of each
sample, so the size of the feature space n = ‖G̃‖, and features were binary-valued. Other
features could be easily incorporated in this setting, perhaps capturing information on the
structure of the source sentence or the transformation function, and this might achieve good
results in conjunction with a polynomial kernel, but we did not pursue this avenue further.
Instead we used a linear kernel, and due to the simple structure of our features, the SVM
assigned a weight to each transformation function independent of the source sentence. We
chose which transformation functions should form the refined set based on whether their
corresponding weight was above a global threshold value, and we set the threshold value by
maximizing the performance of the resulting SRL model on the development set.

3.3 Labeling the Extended Corpus

Once the SVM has identified the refined set of transformation functions G, these transfor-
mations are used to create an extended training corpus. Using the alignment information
in the transformation functions to trace the position of tokens from the original sentence to
the rewrite, the semantic role labels of the gold corpus are projected onto the correspond-
ing predicate-argument pairs in the rewritten corpus. Assuming the SVM has correctly
identified the transformation function involved as indeed label-preserving, and that the
transformation functions can be applied in the current context, the semantic role labeling
of the rewrite will now be of the same quality standard as the source. Both conditions are
however unlikely to be true, resulting in a degradation in the quality of the rewrite corpus.
The corpus of rewrites is appended to the original gold standard corpus to create a new
larger training corpus, which is then used to create a further SRL model.

4. Experimental Setup

In this section we present our experimental setup for assessing the performance of our ap-
proach. We give details on the corpora and grammars we used to create the transformations,
and model parameters used to identify those that preserve labels. We explain how an ex-
isting SRL system was modified through our approach, and how we evaluated the effects of
increasing the training data with our transformations.

4.1 Grammar Extraction

We extracted synchronous grammars from two monolingual comparable corpora drawn
from Wikipedia. A corpus of 137,362 aligned sentences created by pairing Simple English
Wikipedia with English Wikipedia (Kauchak, 2013). And a corpus of 14,831 paired sen-
tences from comparing consecutive revisions of articles in Simple English Wikipedia (Wood-
send & Lapata, 2011). These corpora provide a large repository of monolingual, comparable
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Grammar Aligned Revisions

T3 13,562 5,386
QTSG 3,875 669

Table 5: Non-identical rules extracted from each Wikipedia corpus, with rules appearing
only one or two times removed.

sentences, taken from real-world writing. Advantageously, Simple English Wikipedia en-
courages contributors to employ simpler grammar than the ordinary English Wikipedia; the
corpora therefore naturally contain many examples of syntactic variation such as reorder-
ing and sentence splitting, as well as paraphrasing and changes to content. Table 5 lists
the number of non-identical rules each grammar formalism extracted from the Wikipedia
corpora, once rules with an instance count of only one or two were removed.

In addition to these grammars extracted from Simple English Wikipedia, we worked
with the monolingual synchronous grammar included in the Paraphrase Database (Gan-
itkevitch et al., 2013), where paraphrases were extracted from bilingual parallel corpora.
The English portion of PPDB contains over 220 million paraphrase pairs, including 140
million paraphrase patterns capturing syntactic transformations with varying confidence.
To form a synchronous grammar, we used highest scoring 585,000 paraphrases from the
subset of constituent syntactic paraphrases (where all nonterminals were labeled with Penn
Treebank constituents).

4.2 Semantic Role Labeler

The method presented in this paper crucially relies on a semantic role labeler for refining
the transformations and performing the semantic analysis in general. We used the pub-
licly available system of Björkelund et al. (2009). Out of the those that competed in the
CoNLL-2009 SRL-only challenge, it was ranked first for English language, and second over-
all. To the best of our knowledge, this system represents the state-of-the-art for English
SRL parsing. The system architecture consists of a four-stage pipeline of classifiers: for
predicate identification (although this module is not required in evaluation), for predicate
sense disambiguation, a binary classifier for argument identification, and finally argument
classification using a multiclass classifier. Beam search is used to identify the arguments of
each predicate and to label them, according to local classifiers using features which relate
mainly to dependency parse information linking predicates to potential arguments and their
siblings. In addition, a global reranker can be used to select the best combination of can-
didates (see Section 5 for details). The SRL system requires tokenized input with lemma,
POS-tag and dependency parse information. This information was already provided in the
gold-standard training corpus (see immediately below). To create equivalent information
for the transformed text and evaluation files, we used the mate-tools pipeline (Björkelund
et al., 2009), retrained (like the SRL model itself) on just the training partition of the data.

We used the English language benchmark datasets from the CoNLL-2009 shared task to
train and evaluate the SRL models. We identified and labeled semantic arguments for nouns
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Corpus Sentences Tokens

Training 39,272 958,174
+ H&S 55,474 909,358
+ PPDB 238,732 7,071,550
+ T3 203,941 4,701,688
+ QTSG 500,627 9,623,471
+ T3 + QTSG 704,561 14,325,166
+ PPDB + T3 442,666 11,773,245
+ PPDB + QTSG 739,352 16,695,028
+ PPDB + T3 + QTSG 943,286 21,396,723

Development 1,334 33,368
Test in-domain 2,399 57,676
Test out-of-domain 425 7,207

Table 6: Statistics on corpora used to train and evaluate the SRL models.

and verbs (Hajič, Ciaramita, Johansson, Kawahara, Mart́ı, Màrquez, Meyers, Nivre, Padó,
Štěpánek, Straňák, Surdeanu, Xue, & Zhang, 2009). We used the training, development,
test and out-of-domain test partitions as they were provided, and some statistics on these
data sets are shown in Table 6. Specifically, we show the increase on the training data
effected by our method when using transformations obtained from T3, QTSG, PPDB, and
their combinations. For comparison we also use the manual transformations available from
Heilman and Smith (2010). To train the SRL model (and also the previous stages in the NLP
pipeline), we used data from the training partition only, while the development partition
was used to identify the best subset of G transformations2.

We used LibLinear (Fan, Chang, Hsieh, Wang, & Lin, 2008) to train the SVM, and
the hyper-parameters of the SVM were tuned by cross-validation on the training set to
maximise the area under ROC curve, using the automatic grid-search utility of the python
package scikit-learn (Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel,
Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, & Duch-
esnay, 2011). An assessment of the cross-validation accuracy (in terms of F1 score and area
under ROC curve) of the SVM for each grammar is shown in Table 7. The results show
that PPDB rewrites are the most accurate to employ, perhaps because the rules are the
most heavily lexicalized of all the grammars. T3 grammar is the most unpredictable to use,
although the SVM scores considerably higher than chance.

Test sets were used solely for evaluation, making use of the indicators in the data
files as to which words were argument-bearing predicates. Results were generated using
the CoNLL-2009 evaluation script unmodified. We only report results on semantic roles
(i.e., not in combination with syntactic dependencies which tends to yield higher scores)
using both the in-domain and out-of-domain evaluation data. In the evaluation script,
semantic propositions are evaluated by converting them to semantic dependencies between

2. The result of this re-training was that the performance reported here is worse than for the models
available on the mate website, which have been trained on all partitions of the CoNLL-2009 data
(training, development and test).
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Grammar F1 Area under ROC

PPDB 0.85 0.82
T3 0.67 0.61
QTSG 0.78 0.72

Table 7: Statistics on the SVM’s performance for each grammar, obtained through cross-
validation on the training set.

a predicate and each of its arguments, and labeling the dependency with the labels of the
corresponding argument. Additionally, a dependency is created from a virtual root node to
each predicate and labeled with the predicate sense. To be comparable with other published
results, in general we report the scores that combine predicate sense and argument role label
predictions. In Tables 12, 13 and 14, however, we focus on arguments only, and remove the
predicate sense scores.

5. Results

In this section we provide empirical evidence on the performance of our approach. Our
experiments were primarily designed to answer the following questions. Does text rewriting
generally improve SRL performance? Does it matter which transformation rules to use,
i.e., are some rules better than others? Are the transformation rules useful on out-of-
domain data? Which SRL labels are mostly affected by rewriting? Does performance vary
depending on the size of the original training data? Are the results sensitive to the learner
being employed? We first examine the effect of different (transformation) grammars on
the SRL task both on in-domain and out-of-domain test data, and then move on to assess
which labels are mostly affected by our method. Finally, we present results on the effect of
combining our approach with a global reranker and training with different-sized datasets.

5.1 Transformation Rules Improve F1 Across the Board

Table 8 (left half) shows SRL performance (measured in terms of precision, recall, and F1)
on the in-domain CoNLL-2009 test set. For the training corpora rewritten by the H&S
system, the T3, QTSG, and PPDB grammars, all of the resulting SRL models significantly
(p < 0.01) improve over a model trained on the original corpus. We used stratified shuf-
fling (Noreen, 1989) to examine whether differences in F1 were significant (Padó, 2006).
Recall shows the largest increase, particularly with the acquired synchronous grammars,
indicating that the increased training data is resulting in better coverage. Generally this is
not at the expense of precision which in all cases apart from PPDB has increased as well.
Significant gains are also seen in the acquired grammars compared to the H&S system, with
the exception of T3 where there is greater variation in its performance.

We also combined the rewrites produced by the different grammars (see T3+QTSG,
PPDB+T3, PPDB+QTSG and PPDB+T3+QTSG in Table 8) but this did not significantly
improve performance over the individual grammars (although still significantly better than
the original model and the H&S system), suggesting that the grammars are capturing very
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In-domain Out-of-domain
P R F1 P R F1

Original 86.79 83.58 85.15 76.04 71.73 73.82
H&S 87.08 83.73 85.37 † 76.33 70.86 73.49
PPDB 86.42 84.64 85.52 †‡ 75.37 72.66 73.99 †‡
T3 86.84 84.25 85.52 † 76.04 72.29 74.12
QTSG 87.04 84.34 85.67 †‡ 76.88 72.83 74.89 †‡
PPDB+T3 86.61 84.45 85.51 †‡ 75.65 72.49 74.03 †‡
PPDB+QTSG 86.70 84.81 85.75 †‡ 76.64 73.22 74.89 †‡
T3+QTSG 86.78 84.62 85.69 †‡ 76.56 72.88 74.67 †‡
PPDB+QTSG+T3 86.76 84.69 85.71 †‡ 76.54 73.19 74.83 †‡

– label projection 80.95 78.75 79.83 †‡ 66.94 66.93 66.93 †‡

Table 8: Semantic evaluation results on CoNLL-2009 in-domain and out-of-domain test
sets (combining predicate word sense and argument role labels). Results for the
models trained on the Original training set, a baseline extension to the training set,
extensions due to each grammar and all combinations. – label projection: results
from training on the PPDB+QTSG+T3 training corpus, but without rewriting
the labels using gold corpus information. † Difference from Original is significant
at p < 0.01. ‡ Difference from H&S is significant at p < 0.01.

Also produced by this grammar
PPDB T3 QTSG

Proportion of sentences
produced by this grammar

H&S 0.4 0.2 28.1
QTSG 0.0 3.2

Table 9: Sentence rewrite overlap (%) in the refined rewrite corpora produced by H&S,
PPDB, T3 and QTSG.

similar information. For instance, T3 and QTSG are extracted from the same corpora
of aligned sentence pairs. The degree of overlap in the rewrite corpora produced by the
grammars is shown in Table 9. Although the degree of overlap in exact sentences is low,
the relative performance of the resulting models is closer (discussed below). Overall, the
best performing system uses transformations obtained from QTSG and PPDB, which is not
surprising as the rules extracted from these grammars present minimal overlap.

Benefits also transfer to out-of-domain text for the acquired grammars, improving the
overall performance even more than for the in-domain data (see right half in Table 8). The
F1-score of the QTSG model is over 1% higher than the original model, and Recall for
the model combining all the acquired grammars has increased by 1.5%. Meanwhile, the
rewrites of the H&S system do not seem to improve coverage, resulting in a drop in Recall
and F1-score.
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In-domain Out-of-domain
P R F1 P R F1

Original 86.79 83.58 85.15 76.04 71.73 73.82
PPDB 87.34 83.10 85.17 76.41 71.42 73.83
T3 87.36 83.26 85.26 76.49 71.76 74.05
QTSG 87.48 83.31 85.34 76.75 72.00 74.30

Table 10: Results on CoNLL-2009 in-domain and out-of-domain test sets, training the SRL
model only on rewrites that were labeled as positive.

SVM Quality
Thresholds Count P R F1

None – 80.26 76.28 78.22
+0.001 10 80.74 76.99 78.82
-0.001 10 80.82 76.87 78.80
-0.2 10 80.65 76.86 78.71
All 10 80.55 77.08 78.78

+0.001 5 80.46 76.54 78.45
+0.001 3 80.00 76.13 78.02

Table 11: Effect of selecting transforms by SVM on the quality of the resulting model
(precision, recall and F1 measures on labeling the development set).

In addition, we examined whether filtering the set of acquired transformation functions
is indeed beneficial. In the approach we have proposed, transformations are applied to the
training corpus twice: the first time as input to an SVM to identify the more reliable rewrite
rules, and in a second pass the reduced set of rules is applied to the whole training corpus.
An alternative approach would be to apply the transforms only once, and then train the SRL
model. We thus took the rewrites that are labeled positive in steps 9–14 of Algorithm 1 and
corrected the labels to gold-standard (step 23). SRL models were subsequently trained using
the extended training corpus, created by concatenating the original training dataset with
these rewrites. Table 10 shows SRL performance for different grammars (PPDB, T3, and
QTSG) on the test set. Although precision and F1 have increased over the original model,
the gains are much reduced compared to the results obtained using the SVM (Table 8). It
appears that the extra rewrites obtained by applying generally-reliable transforms to the
whole training set increases coverage, and so improves the performance of the models.

Table 11 shows how altering the quality threshold (and removing indicator features
for the number of times each transformation function was extracted) affects performance.
Results are shown for the QTSG grammar on the (in-domain) development set (we observed
similar patterns for all other grammars and grammar combinations). The SVM quality
threshold varied from very positive (no transformations accepted) to very negative (all
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In-domain Out-of-domain
P R F1 P R F1

Original 82.69 78.25 80.41 71.44 65.62 68.40
H&S 83.08 78.45 80.70 † 71.65 64.25 67.75
PPDB 82.34 79.89 81.10 †‡ 70.68 67.02 68.80 †‡
T3 82.88 79.30 81.05 †‡ 71.54 66.46 68.90 ‡
QTSG 83.00 79.27 81.09 †‡ 72.48 66.98 69.62 †‡
PPDB+T3 82.61 79.62 81.09 †‡ 71.16 66.88 68.95 †‡
PPDB+QTSG 82.62 80.01 81.29 †‡ 72.11 67.47 69.71 †‡
T3+QTSG 82.75 79.77 81.23 †‡ 72.08 67.09 69.49 †‡
PPDB+QTSG+T3 82.83 79.95 81.37 †‡ 72.08 67.54 69.74 †‡

Table 12: Performance in the labeling of semantic arguments (predicate word sense informa-
tion removed). † Difference from Original is significant at p < 0.01. ‡ Difference
from H&S is significant at p < 0.01.

In-domain Out-of-domain
P R F1 P R F1

Original 89.56 84.75 87.09 87.20 80.10 83.50
H&S 89.71 84.71 87.14 87.40 78.38 82.65
PPDB 88.99 86.34 87.65 86.24 81.78 83.95
T3 89.57 85.70 87.59 87.09 80.90 83.88
QTSG 89.53 85.50 87.47 87.28 80.66 83.84
PPDB+T3 89.10 86.28 87.66 86.75 81.53 84.06
PPDB+QTSG 89.28 86.05 87.63 86.77 81.18 83.88
T3+QTSG 89.33 86.10 87.68 87.34 81.29 84.20
PPDB+QTSG+T3 89.33 86.23 87.75 86.90 81.43 84.07

Table 13: Accuracy of identification but not classification (labeling) of semantic arguments.

transformations). These findings indicate that constructing G to be transformations with
a positive SVM weight (threshold of +0.001) gives better results that no transformations,
or any more permissive threshold.

5.2 Transformation Rules Improve Semantic Role Assignment for Verbal and
Nominal Predicates

The results in Table 8 combine accuracy in predicting the sense of predicates and accuracy in
labeling their arguments. Generally, the models are better at assigning the correct predicate
sense. An interesting result is that much of the gain in performance seen here by rewriting
the training corpus comes through improving semantic role assignment. It appears that
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Figure 3: Changes in F1-score for the PPDB+T3+QTSG model over Original, measured
by pairs of predicate POS-tag and argument.

introducing syntactic variation in the training data provides the model with wider coverage
in syntactic dependency paths between predicate and arguments.

Table 12 shows results for the same models and data sets as above, but focusing on
the argument labels only. The acquired grammars show the biggest improvements, with
over 1% improvement in Recall in each case, and gains in F1-score between 0.5% and 1.2%.
The same models and data sets were used in Table 13, with the results here for argument
identification only, not classification (unlabelled arguments). There are improvements over
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Figure 4: Relative performance in terms of F1-score of the QTSG (red) and PPDB (blue)
models, by pairs of predicate POS-tag and argument.

Original in both Recall and F1. They are not as large as before, showing that the overall
gains are a result of improvements in both argument identification and classification.

A breakdown of the gains in F1-score by predicate POS-tag and argument is shown in
Figure 3, illustrating the relative improvements of the model trained on all acquired gram-
mars (PPDB+T3+QTSG) to the model trained on the original CoNLL training data. This
further analysis reveals that most of the gain came from increased precision and recall in
predicting the core arguments. There are additional gains in the modifiers of nominal pred-
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Dependency path distance 0–1 2 3 4 5 6 7+

Proportion of test set 75.75 13.67 5.54 2.62 1.13 0.56 0.73

SRL model:
Original 88.83 74.27 61.73 54.76 43.08 23.91 12.27
PPDB +0.49 +1.43 +2.65 +3.26 +4.78 +5.53 –0.06
T3 +0.63 +1.15 +1.65 +1.67 +1.42 +1.22 +0.69
QTSG +0.53 +0.66 +1.82 +2.98 +3.01 –0.96 +0.43
PPDB+QTSG+T3 +0.74 +1.60 +2.49 +2.02 +6.20 +1.35 +1.61

Table 14: F1-scores for labeled arguments where distance between predicate and argument
is measured as the number of arcs in the dependency graph. Results are from
the CoNLL in-domain test set. Lower rows show the change in F1-score over the
Original SRL model.

icates. There was some improvement and some losses in the very common core arguments
(A0 and A1) of the verbal predicates, but the more striking gains were seen for the other
core argument labels. This seems consistent with the models learning from wider syntactic
coverage. Figure 4 shows a similar breakdown of the gains in F1-score by predicate POS-
tag and argument, this time comparing the improvements seen from the QTSG corpus with
those resulting from PPDB. The differences are less pronounced, with PPDB improving the
core arguments more, and QTSG improving performance in labeling modifiers.

We also investigated the effect of the label projection mechanism itself. We used the
rewrites produced by all grammars (PPDB+T3+QTSG) to extend the training set. How-
ever, instead of using projected labels, we used the the original model Mgold (trained on the
training partition of CoNLL-2009) to label the refined corpus. We then retrained on the
extended corpus and used this retrained model to label the test corpus. In other words, we
removed step 25 in Algorithm 1. This can be considered as a form of self-training. Results
on both the test and out-of-domain sets show that using automatically generated labels
instead of projected ones seriously impairs the resulting model, with F1-scores decreasing
by almost 6% on the test set and 8% on the out-of-domain set (see last row of Table 8).

5.3 Transformation Rules Improve Performance of Relations Involving Long
Dependency Paths

The dependency path (the sequence of arcs through the syntactic dependency tree) between
a predicate and its argument is typically short. Table 14 shows that in the gold-labeled
test set, three-quarters of the arguments are direct dependency heads or children of the
predicate, or in the case of nominal predicates, the argument is the predicate itself. Existing
SRL models are highly accurate over these shorter paths—the original SRL model has an
F1-score of almost 89%—but prediction accuracy drops considerably as the dependency path
grows. As can be seen in Table 14, adding rewrites to the training set improves prediction
accuracy for almost all combinations of transformation grammar and dependency path
distance, and the largest gains are seen when the number of arcs in the dependency path
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In-domain Out-of-domain
P R F1 P R F1

Original 88.44 84.42 86.38 77.89 72.73 75.22
H&S 88.68 84.34 86.46 78.11 71.76 74.80
PPDB 86.42 84.64 85.52 †‡ 76.73 73.36 75.01 †‡
T3 88.04 84.78 86.38 77.07 72.97 74.97
QTSG 88.41 85.05 86.70 †‡ 78.34 73.70 75.95 ‡
T3+QTSG 88.24 85.21 86.70 †‡ 78.00 73.53 75.70 ‡
PPDB+T3 86.61 84.45 85.51 †‡ 77.30 73.51 75.35 †‡
PPDB+QTSG 86.70 84.81 85.75 †‡ 77.41 73.82 75.57 †‡
PPDB+QTSG+T3 87.94 85.25 86.57 †‡ 77.67 73.73 75.64 †‡

Table 15: Results on the CoNLL test sets for models combining extended training data and
global reranker. † Difference from Original is significant at p < 0.01. ‡ Difference
from H&S is significant at p < 0.01.

is between three and six. Improvements in F1-score are observed for individual grammars
and their combination (PPDB+QTSG+T3).

5.4 Transformation Rules Improve Performance Even When a Global
Reranker is Used

The SRL system we used (Björkelund et al., 2009) can optionally incorporate a global
reranker (Toutanova, Haghighi, & Manning, 2005). The reranker re-scores the complete
predicate-argument structure, using features from all stages of the local pipeline and addi-
tional features representing the sequence of core argument labels for the current predicate.
Table 15 presents evaluation results for a global reranker trained with the extended corpora
produced by our method. Compared to the model trained on the original corpus, adding
the reranker does provide significant improvement.3 Training on the extended data gives
further increases in performance; these are now smaller, though still significant, than was
the case in Table 8. This indicates that the global reranker is compensating for some, but
not all, of the new information contained in the extended training data.

5.5 Transformation Rules Improve Performance Across (Small and Large)
Datasets

We also investigated the accuracy of the labeler as a function of the size of the original
training data. For each size, subsets of the original training data were created (with re-
placement) and used to train the SRL model, and the performance of each resulting model
measured using the development set. For each training subset, we applied Algorithm 1: the
original SRL model was trained only on the subset; we created an extended corpus from

3. The scores reported here are higher than the official CoNLL-2009 ones (in domain P:87.46, R:83.87,
F1:85.63; out of domain P:76.04, R:70.76, F1:73.31) through using the mate-tools NLP pipeline for
the dependency parse, rather than the dependency information provided in the test set.
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Figure 5: SRL model performance as a function of the size of the training data, with and
without additional rewrites. Error bars show standard error over 10 experiments.

the subset using the grammar; an SVM was trained each time to refine the transformations
to those that preserved labels; and the SRL model retrained on the original plus refined
rewritten version of the corpus subset.

In particular, we wanted to investigate if the rewritten text provided a performance
benefit when there was only a small amount of training data, and any such benefit would be
subsumed if more labeled training data was provided. The learning curves in Figure 5 show
the contrary: while increasing the quantity of source training data undoubtedly improves
the quality of the SRL model, we found that including the rewritten training data in addition
consistently improves both precision and recall measures. The learning curves in Figure 5
use the QTSG grammar as the set of transformation functions; we obtained similar results
with PPDB and T3 (and all grammar combinations), however we omit them for the sake
of brevity.

6. Conclusions

In this paper we investigated the potential of text rewriting as a means of increasing the
amount of training data available for supervised NLP tasks. Our method automatically
extracts rewrite rules from comparable corpora and uses them to generate multiple syntac-
tic variants for sentences annotated with gold standard labels. Application of our method
to semantic role labeling reveals that syntactic transformations improve SRL performance
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〈NP, NP〉 → 〈[NP DT
1

JJ
ε

NNS
2

], [NP DT
1

NNS
2

]〉

QTSG 〈NP, NP〉 → 〈[NP NP
1

, NP
ε

CC NP
ε

], [NP NP
1

]〉

〈NP, S〉 → 〈[NP NP
1

PP
2

], [S It is NP
1

PP
2

.]〉

〈S̄, S̄〉 → 〈[S̄ even if it VBZ
1

NP
2

], [S̄ even though it VBZ
1

NP
2

]〉

PPDB 〈ADJP, ADJP〉 → 〈[ADJP just as JJ
1

], [ADJP equally JJ
1

]〉

〈PP, PP〉 → 〈[PP in the past month], [PP in the last month]〉

Table 16: Examples of QTSG and PPDB synchronous grammar rules given high importance
during refinement. Boxed indices indicate alignment, ∼.

beyond the sate of the art on the CoNLL 2009 benchmark dataset. Specifically, we ex-
perimentally show that (a) rewrite rules, whether automatic or hand-written, consistently
improve SRL performance, although automatic variants tend to perform best; (b) syntac-
tic transformations improve SRL performance both within- and out-of-domain; and (c)
improvements are observed across learners, even when using a global reranker.

In the future we would like to explore better ways of identifying the best (i.e., per-
formance enhancing) rewrite rules which may be task and grammar specific. Table 16
illustrates the rules deemed important (i.e., given high weight) by our SVM classifier for
the SRL task. For instance, we could undertake more detailed feature engineering, includ-
ing tree-based and ngram features to capture the grammaticality of the rewritten sentences.
Throughout this paper we have argued that transformation rules can be used to enhance
performance in the SRL task. Conversely, some of the work described here might be of
relevance to other NLP tasks employing rewriting. For example, the idea of identifying
label preserving transformations, could be used to learn which rules are meaning preserving
and consequently safe to use in tasks such simplification or sentence compression. Machine
translation, textual entailment, and semantic parsing are additional application areas which
stand to benefit from more accurate rewrite rules. Much of the methodology reported here
could be adapted to machine translation either for training with larger datasets (Callison-
Burch, Koehn, & Osborne, 2006), for domain-adaptation (Irvine, Quirk, & Daumé III,
2013), or evaluation (Kauchak & Barzilay, 2006)

Finally, beyond supervised SRL, we would like to adapt our method to unsupervised
semantic role induction (Lang & Lapata, 2011; Titov & Klementiev, 2012), investigate alter-
native synchronous grammar extraction methods (e.g., based on dependency information),
and obtain rewrite rules from larger comparable corpora.
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