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Abstract

‘We develop mean field approaches for probabilistic independent component anal-
ysis (ICA). The sources are estimated from the mean of their posterior distribution
and the mixing matrix (and noise level) is estimated by maximum a posteriori
(MAP). The latter requires the computation of (a good approximation to) the
correlations between sources. For this purpose we investigate three increasingly ad-
vanced mean field methods: variational, linear response and adaptive TAP and test
the resulting algorithms on a number of problems. On synthetic data the advanced
mean field approaches are able to recover the correct mixing matrix in cases where
the variational mean field theory fails. For hand-written digits, sparse encoding
is achieved using non-negative source and mixing priors. For speech, the mean
field method is able to separate in the underdetermined (overcomplete) case of two
sensors and three sources. One major advantage of the proposed method is its
generality and implementational simplicity. Finally, we point out several possible
extensions of the approaches developed here.

1 Introduction

Reconstruction of statistically independent source signals from linear mixtures is an ac-
tive research field with numerous important applications, for background and references
see e.g. [Lee 1998; Girolami 2000]. Blind signal separation in the face of additive noise
typically involves four estimation problems: Estimation of source signals, source distri-
bution, mixing coefficients, and noise distribution.

A full Bayesian treatment of the combined estimation problem is possible but re-
quires extensive Monte Carlo sampling [Belouchrani and Cardoso 1995], therefore sev-
eral authors have proposed variational (aka mean field or ensemble) approaches in which



the posterior distributions are either approximated by factorized Gaussians and/or in-
tegrals over the posteriors are evaluated by saddle point approximations [Attias 1999;
Belouchrani and Cardoso 1995; Lewicki and Sejnowski 2000; Lappalainen and Miskin
2000; Hansen 2000; Rowe 1999; Knuth 1999]. The resulting algorithm is an Expectation-
Maximization (EM) like procedure with the four estimations performed sequentially. One
important problem with these approximations arises from the assumed posterior inde-
pendence of sources. In particular, variational mean field theory using factorized trial
distributions only treats “self-interactions” correctly, while producing trivial second mo-
ments, i.e. (S;S;) = (S;)(S;) for i # j. This is a poor approximation when estimating
the mixing matrix and noise distribution since these estimates will typically depend upon
correlations.

Recently, Kappen and Rodriguez [Kappen and Rodrfguez 1998] pointed out that for
Boltzmann Machines this naive mean-field (NMF) approximation — introduced in this
context by [Peterson and Anderson 1987] — may fail completely in some cases. They
went on to propose an efficient learning algorithm based on linear response (LR) theory.
LR theory gives a recipe for computing an improved approximation to the covariances
directly from the solution to the NMF equations [Parisi 1988]. In this paper, we give
a general presentation of LR theory and apply it to the probabilistic ICA problem.
We also briefly outline the supposedly more accurate adaptive TAP mean field theory
[Opper and Winther 2000b] and compare this method to the NMF and LR approach.
Whereas estimates of correlations obtained from variational mean field theory and its
linear response correction in general differ, adaptive TAP is constructed such that it is
consistent with linear response theory.

We expect that advanced mean field methods such as LR and TAP can be useful
in the many contexts within neural computation, where variational mean field theory
already have proven to be useful, e.g. for sigmoid belief networks [Saul et al. 1996]. In our
experience, the main difference between variational mean field and the advanced methods
lies in the estimates of correlations (often needed in algorithms of the EM-type) and the
calculation of the likelihood of the data. We will not discuss the latter here, however,
see [Opper and Winther 2000b] for a general method for computing the likelihood from
the covariance matrix. In ICA simulations, we find that the variational approach can
fail typically by ignoring some of the sources and consequently overestimating the noise
covariance. The LR and TAP approaches on the other hand succeed in all cases studied.
However, we do not find a significant improvement using TAP (which is also somewhat
more computationally intensive), suggesting that LR is close to being the optimal mean
field approach for the probabilistic ICA model.

The derivation of the mean-field equations are valid for a general source prior (with-
out temporal correlation) and tractable for priors that can be folded analytically with a
Gaussian distribution. This includes mixture of Gaussians, Laplacian and binary distri-
butions. For other priors, one has to evaluate an extensive number of one dimensional
integrals numerically. Alternatively, one can construct computationally tractable ICA
algorithms using priors that are only defined implicitly. To illustrate this point we define
one such algorithm which approximately corresponds to the prior having a power law
tail.

To underline the flexibility and computational power of the probabilistic ICA frame-
work and its mean field implementation, we give two quite different real world examples
of recent interest that straight forwardly can be solved in this framework. The first ex-
ample is that of separating speech in the overcomplete setting of two sensors and three
sources [Lewicki and Sejnowski 2000] using a heavy tailed source prior such a Laplacian
or the (approximative) power law prior described above. The second real world problem



considered in this paper is that of feature extraction in images. For images, it is natural
to work with a non-negativity constraint for the mixing matrix and sources as in [Lee
and Seung 1999]. In the probabilistic framework this type of prior knowledge is readily
built into the mixing matrix and source priors.

Throughout this paper we confine ourselves to fixed source priors. There are, however,
no theoretical problems in extending the EM algorithm to estimating hyperparameters,
see e.g. [Attias 1999] for an example of such source prior parameter estimation.

The paper is organized as follows. In section 2 the basic probabilistic ICA model and
the associated learning problem is stated. Section 3 concerns the inference part of the
learning problem; we will see that variational mean field theory, linear response theory
and the adaptive TAP approach can be seen as stepwise more refined ways of estimating
correlations. Applying the advanced mean field methods to independent component
analysis is the main contribution of this paper. Another contribution is the generality
of the framework: In section 4 we examine various types of explicitly given source priors
which in turn leads us to define an implicitly given source prior. The impatient or
application minded reader might consult section 4.1 which shows a tabel summarizing
all priors considerd in this paper. Section 5 shows some simulation results on both
synthetic data and on real world data. Finally, obvious ways to extend this work is
outlined in the conclusion given in section 6. The pseudo-code for the algorithm is
outlined in appendix A and some additional priors not directly used in this paper are
given in appendix B.

2 Probabilistic ICA

We formulate the ICA problem as follows [Hansen 2000]: The measurements are a col-
lection of N temporal D-dimensional signals X = {X4},d=1,...,Dandt=1,...,N,
where X4 denotes the measurement at the dth sensor at time ¢. Similarly, let S = {S,;+},
m=1,..., M, denote a collection of M mutually statistical independent sources, where
Sm¢ is the mth source at time ¢. The measured signal X is assumed to be an instanta-
neous linear mixing of the sources corrupted with additive white Gaussian noise I' that
is,

X=AS+T, (1)
where A is a (time independent) mixing matrix and the noise is assumed to be with-
out temporal correlations and with time independent covariance matrix X, i.e. we have
LaiLaryr = 6 Xagqr. We thus have the following likelihood for parameters and sources,

¥ o 1 T(X-AS)TS(X-AS) (2)

P(X|A,X,S) = (det27X)”
The aim of independent component analysis is to recover the unknown quantities: the
sources S, the mixing matrix A and the noise covariance X from the observed data.
The main difficulty is associated with estimation of the source signals. The estimation
problems for the mixing matrix and the noise convariance matrix are relatively simple,
given the sufficient source statistics. Hence, our primary objective is to improve on the
estimate of sufficient statistics from the posterior distribution of the sources. The mixing
matrix A and the noise covariance X are then in turn estimated by maximum a posteriori
(MAP) (or maximum likelihood IT (ML-II)). This naturally leads to a EM-type algorithm
where the expectation step amounts to finding the posterior mean and covariances of the
sources and the maximization step is the MAP/ML-II estimation. Mean field methods
especially the advanced ones are well suited for the non-trivial expectation step.



Given the likelihood eq. (2), the posterior distribution of the sources is readily given
by,
P(X|A, X, 8)P(S)

P(SIX, A, ) = =Lt 3)

where P(S) is a prior on the sources which might include temporal correlations (although
we will postpone this problem to a future contribution [Hgjen-Sgrensen et al. 2001]).

2.1 Estimation of mixing matrix and noise covariance

The likelihood of the parameters is given by,
P(X|A,X) = /dSP(X|A,2,S) P(S) . (4)

The problem of estimating the mixing matrix and noise covariance now amounts to
finding the saddle-points of the likelihood eq. (4) wrt. the mixing matrix and noise
covariance. We note that the saddle-points will be given in terms of averages over the
source posterior. These calculations of mean sufficient statistic wrt. to the posterior are
the main challenge for mean field approaches since the sources will be coupled through
the observations.

The mixing matrix A will be estimated by maximum a posteriori (MAP) and the
noise by ML-II for convenience,

Ayap = argmaxP(A|X,X) (5)
A
EMLII = argmaxP(X|A,2) ; (6)
b
where the posterior of A is given by P(A|X,¥) « P(X|A,X)P(A), where P(A) is the

prior on A. For the optimization in egs. (5) and (6), we need the derivatives of the
likelihood term,

aiA g P(X|A,®) = =L(X(S)” — A(ssT)) (7)
6% log P(X|A, %) = %2—1<(x —AS)(X - AS)):m ™! - gz—l : (8)

where (-) = (-)g|a,»,x denotes the posterior average wrt. the sources given the mixing
matrix and noise covariance. Equating eq. (8) to zero leads to the well known result for
3

’

XML = %((X — AS)(X — AS)T) . 9)

In the particular case of measurements with i.i.d. noise we can simplify the covariance
3 = 021, hence 02 = Tr X1/ D, where D is the number of sensors.

For A, we consider two factorized priors, P(A) = [],,, P(Aam), a zero mean Gaussian
P(Agm) x exp(—agmAZ,. /2) and the Laplace distribution P(Agm) < exp(—Bam|Adm|)-
Furthermore, we consider optimizing Ay, both unconstrained and constrained to be
non-negative. Clearly, the MAP approach offers a flexibility for encoding prior knowledge
about A that are not available in the maximum likelihood IT approach, i.e. one can encode
sparseness [Hyvérinen and Karthikesh 2000] and non-negativeness (for e.g. images and
text, see section 5 and [Lee and Seung 1999]).



Unconstrained mixing matrices. A straight forward calculation give us the follow-
ing iterative equation for the MAP estimate of A

AEHD = (X(8)T - B(aA® + fsign(A1))) (8ST) !, (10

where we have included both priors and set ag,, = a and B4, = 8. This equation can
be solved explicitly for the Gaussian prior with equal noise variance on all sensors, i.e.
B=0and ¥ = %I

A =X(S)T ((ssT) + aa21)71 . (11)

The ML-II estimate is the special case obtained by setting a = 0.

Non-negative mixing matrices. To enforce non-negative A, we introduce a set of
non-negative Lagrange multipliers Lq,, > 0 and maximize the modified cost: log P(A|X, X)+
Tr LT A. Solving for the Lagrange multipliers we get,

L=X""A(SST) - X(S)") +aA + 3. (12)

We can write down an iterative update rule for Ay, > 0 using the Kuhn-Tucker condition
LgmAgm = 0 [Luenberger 1984] together with the result for the Lagrange multipliers:

D) _ [B7"X(S) "am 4B
dm (B LA®(SST )] gm + ad) 4 587"

(13)

In the case of no prior knowledge i.e. @ = 0 and 8 = 0, we get a update rule simi-
lar to the image space reconstruction algorithm used in positron emission tomography
(see e.g. [Pierro 1993] for references) or the more recently proposed non-negative matrix
factorization procedure of [Lee and Seung 1999].

3 Mean Field Theory

We will present three different mean field approaches that give us estimates of the source
second moment matrix of increasing quality: First, we derive mean field equations using
the standard variational mean field theory. Next, using linear response theory, we obtain
directly from the variational solution improved estimates of (SST) needed for estimat-
ing A and ¥. Finally, we present the adaptive TAP approach of Opper and Winther
[Opper and Winther 2000b] which goes beyond the simple factorized trial distribution
of variational mean field theory to give a theory which is self-consistent to within linear
response corrections. From mean field theory we also get an approximation to the likeli-
hood P(X|A,X) which can be used for model selection [Hansen 2000].! In appendix A,
we summarize all mean field equations and give an EM-type recipe for solving them.

The following derivation is valid for any source prior without temporal correlations.
Specific source priors are discussed in section 4. Although equations for the mean field
estimates of the mean and covariance of the sources are written with equality in this
section, it is to be understood that they are only approximations.

IThe variational approximation is a lower bound to the exact likelihood whereas the TAP and LR
aproximations — not given here — are not bounds, but hopefully more accurate.



3.1 Variational Approach

We adopt a standard variational mean field theoretic approach and approximate the pos-
terior distribution, P(S|X, A, X), in a family of product distributions Q(S) = [1,,,; @(Sm1)-
For a Gaussian likelihood P(X|A, X, S), the optimal choice of Q(Sn:) is given by a Gaus-
sian times the prior [Csaté et al. 2000):

Q(Smt) X P(Smt)e_%)‘mtsfnt“’")’mtsmt X (14)

To simplify the notation in the following we will parameterize the likelihood as,
1
P(X|A,X,S) = P(X|J,h,S) = Ee—%“(STJSH“("TS) , (15)

where log C' = % log det 27X + % TrXTE'X, the M x M interaction matrix J and the
field h (having same dimension as S) are given by

J = ATx'A (16)
h = AT®S7'X. (17)

Note that h acts as an external field from which all moments of the sources can be
obtained. This is the key property that we will make use of in the next section when we
derive the linear response corrections. The starting point of the variational derivation of
mean field equations is the Kullback-Leibler divergence between the product distribution
Q(S) and the true source posterior, i.e.

_ Q(S)
KL= /dSQ(S)IOg P(SX,A, %)
— log P(X|A, =) — log P(X|A, S, NMF) (18)
IOgP(XlA,E,NMF) = Zlog/dSth(S’mt)e_%)‘mtS'th‘f"YmtSmt (19)
mt

5 3Ot = ) (S2) + Te(h = 7)"(8)
+§ Tr(ST) (diag(J) — J)(S) —InC,

where P(X|A,X,NMF) is the naive mean field approximation to the likelihood and
diag(J) is the diagonal matrix of J. The Kullback-Leibler is zero when P = @ and
positive otherwise. The parameters of ) should consequently be chosen as to minimze
K L. The saddle points define the mean field equations:?

% —0: 7 =h— (J - diag(J))(S) (20)
OKL
oy =0 me= T (21)

2Note that @Q(Sm:¢) is a also the variational mean field approximation to the marginal distribution
f]_[m,#m’t,# dS,p P(S|X, A, X).

3The requirement that we should be at a local minima of log P(X|A, X, NMF) is fulfilled when the
covariance matrix eq. (25) is positive definite. To test whether we are at the global minima is harder.
However, when the model is well-matched to the data, we expect the problem to be convex.



The remaining two equations depend explicitly on the source prior, P(S);

OKL

=0: Snt) = lo / Syt P (S )€™ 3Ame Smitrme Sme
D Ymt (Smt) ot g +P(Smt)
= f(’Ymt; )\mt) (22)
aK—L -0 2y i 2AmtS +HYme Sme
o 0: (So.4) = 23)\mt log/dSth(S t)e” . (23)

The variational mean f(ym¢, Ame plays as crucual role in defining the mean field algorithm
since all dependence upon the prior is implicit in f (and in g—,’: as well for the advanced

methods). In section 4, we calculate f(ymt, Amt) for some of the prior distributions found
in the ICA literature.

3.2 Linear Response Theory

So far we have not discussed how to obtain mean field approximations to the covariances
XZ,m’ = <SmtSm’t’) - <Smt><Sm’t’) .

Since variational mean field theory uses a factorized trial distribution, the covariances
between different variables is trivially predicted to be zero. However, using linear response
theory, we can improve the variational mean field solution. As mentioned earlier, h acts
as an external field. This makes it possible to calculate the means and covariances as
derivatives of log P(X|J,h), i.e.

Olog P(X|J,h)

<Smt) = Tmt (24)
2
X%’m’ _ 9%log P(X|J,h) _ A Smt) ‘ (25)

ahm’t’ ahmt 6hm’t’

These relations are exact when using the exact likelihood. However, we can also use
the NMF likelihood through the mean field equations (20), (21) and (22) to derive an
approximate equation for Xmm’

Xtt _ 8f('7mt7 mt) OYmt
mm 67mt ahm’t’
Of (Ymts Amt) tt
= —_— - mm!! " i 6mml 6 . 2
6’)’mt m! Z//;‘,ng s Xomm * * ( 6)

As a direct consequence of the lack of temporal correlations in the present setting, the
x-matrix factorizes in time, i.e. x¥ , = & xt,,.,. We can straightforwardly solve for

Xmm!

Xowmr = [(Ae + D)7 (27)

where we have defined the diagonal matrix

. Of (rmts Ame) \ ™
At = dlag (Alta ey AMt) ) Amt = (%) - Jmm . (28)

. . . JLNMF
For comparison, the naive mean field result is x,»,, " = dmm’ 5

from eq. (23).

3(Smt) which follows directly



Why is the covariance matrix obtained by linear response more accurate? Here, we
give an argument that can be found in Parisi’s book on statistical field theory [Parisi
1988]: Let us assume (as always implicit in any mean field theory) that the approximate
and exact distribution is close in some sense, i.e. Q(S)—P(S|X, A, X) = €. Then by direct
application of the factorized distribution we have (S;,¢Sm ) Exact = (SmtSmre)Nmr+O(€).
On the other hand since K L, eq. (18) is non-negative the NMF theory log-likelihood gives
a lower bound on the log-likelihood. Consequently, the linear term vanishes in the ex-
pansion of the log-likelihood: log P(X|A, X) = log P(X|A, X, NMF) + O(£2). Obtaining
moments of the variables through derivatives of the approximate log-likelihood, i.e. by
linear response, is therefore more precise than to use the trial distribution directly.

For some specific cases it is possible to demonstrate the improvement directly. Con-
sider the Gaussian prior? P(S,;) o< exp(—S2,,/2). In this case the variational mean field,
eq. (22) is given by f(v,A) = /(1 + X). Thus, the variational mean field theory predicts

Xﬁnljnl\,/m = Omm %f—::) =1/(1+ Amt) = 1/(1 + Jpum). However, the linear response esti-
mate eq. (27) gives X\ = [(T+J )~'], ..., and hence reconstructs the full covariance

matrix identical with the exact result obtained by direct integration.

3.3 Adaptive TAP Approach

So far we have derived two different estimates of the covariance matrix from variational
mean field theory: X' N = agf_:z) and X2M% = [(Ay+J )~'],.,.,- Obviously
there is no guarentee that the two estimates are identical. Variational mean field theory
is thus not self-consistent to within linear response corrections. The adaptive TAP ap-
proach [Opper and Winther 2000b] on the other hand goes beyond the factorized trial
distribution and requires self-consistency for the covariances estimated by linear response.
This is achieved by introducing a set of MT additional mean field (or variational) pa-
rameters, the variances A,; in the marginal distribution eq. (14), such that the diagonal

term x5 TAP obeys

O{Sm _
Sod_ (6, +9)7],,, )
where A,;; and v, now depend upon A.:
Amt = (Xﬁnm)_l - )\mt (30)
Ymt = hmt - Z(Jmm’ - )\m’témm')<sm’t) - (31)

To recover the variational mean field equations (28) and (20), we just let A\ = Jm- It
is beyond the scope of this paper to rederive the adaptive TAP mean field theory, consult
[Opper and Winther 2000b] for a derivation valid for models with quadratic interactions
and general variable prior. However, we have chosen to present and test the resulting
theory because it offers the most advanced (and hopefully the most precise) mean field
approximation for this type of model.

4 Source Models

In this section we calculate for various source priors the variational mean f, eq. 22)
and the derivative 0 f/0vy needed for the linear response correction and adaptive TAP.

41t is noted that a Gaussian source prior is not suitable for doing source separation. We merely use
it here to shown that the linear response correction in this case recovers the exact result.



The priors that we are considering are all chosen such that the variational mean can
be calculated using tables of standard integrals, e.g. [Gradshteyn and Ryzhik 1980]. It
turns out to be convenient to introduce the Gaussian kernel D with unit variance and
its associated cumulative distribution function (cdf.) @ in order to keep the following
expressions of a manageable size, i.e.

D(z) = 1 exp (—%wz) , D'(z) = —zD(x)

o o

4.1 Summary of source priors

Table 1 summarizes the variational means and response functions corresponding to the
priors described in this paper. It should be mentioned that this is by no means a complete
list of all priors for which it is possible to calculate these quantities, e.g. the Rayleigh
distribution is one such prior.

Source Prior P(S) Mean Function | Response Func.
F(,N) = (8) %)

Binary 36(S—1)+16(S+1) tanh(y) 1—(S)?
Gaussian Mix. eq. (34) egs. (36) & (38)

Gaussian —=exp(=57/2) v/(1+X) 1/(1+ )
Heavy tail not analytic I -« )\alvg )\ + aﬁ
Uniform 7—0(S —a)0(b - 9) eq. (62) q. (63)
Laplace 1 exp(=]9)) eq. (40) eq. (42)
Pos. Gauss \/gexp(—S2/2)®(S) eq. (57) eq. (59)
Exponential exp(—S)O(S) eq. (44) eq. (45)

Table 1: The variational mean and response function corresponding to various source
The three first rows describe source priors having negative, zero and positive
kurtosis, respectively. The fourth row express non-negative priors. The step—function is

priors.

defined as ©(S) =1 for S > 0 and zero otherwise.

4.2 Mixture of Gaussians source prior

In this section we consider a general mixture of Gaussians, i.e.

p(S|p, o)

i=1

Zﬂ'zp S|Nzao'z) s

SeR

where each of the N, individual mixture components are parametrized by,

Using this source prior the generative ICA model becomes the independent factor
analysis model proposed in [Attias 1999]. Since the main scope of this paper is concerned

p(S|ui,0i) = ——=e

270

3(5—pi)?/a?




with reliable inferring mean sufficient statics wrt. the sources we will in contrary to
[Attias 1999] always regard the source parameters as fixed, e.g. we are at no times
adapting the source priors to data. However, it is straight forward to extend the proposed
methodology to allow for this possibility, e.g. in a EM setting where the improved mean
field solutions are being used in the posterior expectation of the complete log likelihood.

Trivial but tedious calculations shows that the variational mean f of a mixture of
Gaussians is given by,

N 05+ g
Dimh ki X741 €

= , 36
f S ekl (36)
where we have introduced
W 1 (vt pifoi)?
Ki = \/W , and &= 2((#1/01) o?+1 ). (37)

The derivatives wrt. v are easy to obtain but are left out in the interest of space. For
the special case of a mixture of two Gaussians (N,,, = 2) with common variance o2 and
means y; = tu we get,

(y0? + ptanh(—2E Yy . (38)

f o2 +1

B 1
A2 +1
For 02 = 0 and pu = 1, we recover the variational mean for the binary source P(S) =
16(S — 1)+ 16(S +1): f = tanh(y). This particular choice of the bi-Gaussian source
distribution (eq. 38) which is also known as the symmetric Pearson mixture density,
was proposed in [Girolami 1998] as a simple way of archiving a negative kurtosis (sub-
Gaussian) density function. To become familiar with the f-function and its derivative,
consider the variational mean of the bi-Gaussian with 62 = 1 shown in figure 1(a,b) for
two values of p; namely p = 1, for which the density function is uni-modal and y = 4
for which the density function is significantly bimodal. We seen that the more bimodal
the source distribution are the more compact becomes the region of high curvature.
By introducing additional mixture components it is possible to form the region of high
curvature, which is illustrated in figure 1(g) in the case of a mixture of five Gaussians.

4.3 Laplace source prior

Although a sub-Gaussian distribution may be a reasonable source prior for some applica-
tions, e.g. telecommunications (discrete priors, see e.g. [van der Veen 1997]) or processing
of functional magnetic resonance images [Petersen et al. 2000], there is, however, a large
class of interesting real world signals, such as speech, which have heavier tails than the
Gaussian distribution. We therefore need to consider source priors which have positive
kurtosis (super-Gaussian). One such choice which have been widely used in the ICA
community is P(S) = 1/(w cosh S) [Bell and Sejnowski 1995; MacKay 1996]. Using this
prior, however, it is not possible to calculate the variational mean analytically. Instead
we consider the Laplace or double exponential distribution which is very similar. The
Laplace density is given by,

p(S) = ge’"‘s‘ . SeR n>0. (39)

The variational mean can be calculated as,

1 &ky + 6k

f:\/X Ky + Kk

(40)

10



where we have introduced,

_JFn
\/X’

Using egs. (32) and (33), the derivative is found to be,

of _ 1 § — &= (§4r— + & ky)
3 (1 — & &+ D(§+)D(§7)m + ﬁmf) - (42

' and ky = B(££L)D(E5) . (41)

Figure 1(c,d) shows the variational mean and its derivative for a slowly decaying (n = 0.5)
and a fast decaying (n = 2) Laplacian prior. The Laplacian prior have, contrary to the
bi-Gaussian source, its region of high curvature for numerical large values of ~.

4.4 Exponential source prior

Some application domains naturally restrict the possible range of the hidden sources and
the mixing matrix due to the physical interpretation of these quantities in the genera-
tive model. This is for instance the case when the measured signal is known to be a
positive superposition of latent counting numbers or intensities. Positivity constrains
are relevant, e.g., in “parts based representations” of natural images, deconvolution of
the power spectrum of nuclear magnetic resonance resonance (NMR) spectrometers and
latent semantic analysis in text mining [Lee and Seung 1999]. In this section we consider
the exponential source prior parameterized by,

p(S)=ne ", SeRy,n>0 (43)
which gives
_ 182 +DE
= R e “
o - 1, DO (45)

dy A VAB(E)

with
Y1
E=-—+". (46)
VA
Figure 1(e,f) shows the variational mean and its derivative for the exponential source
prior. It is verified that the exponential variational mean is non-negative. At this point
we will make some short remarks on some implementational issues when the normal cdf.
® appears in the denominator of the variational mean. Special care have to be taken
when £ - —o0, e.g. when v—n < 0 and A is small, i.e. for small self-interactions. Using
I’Hospital’s rule together with eqs. (32) and (33), it is seen that

%%—5 for £ = -0, (47)

2(¢)
which in turn implies that the variational mean f — 0 and its derivative (8f/07y) — 1/A
for £ - —oo. In section 5.4, we will use this prior to learn a set of sparse localized
basis functions in images. The source priors considered until now are just some examples
of priors where the variational mean can be computed analytically. In appendix B we
simply state some additional examples of priors for which this calculation can be carried
out analytically.

11
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Figure 1: Shows the variational mean f (left row) and its derivative f' (right row) as a
function of v and A. (a) and (b) shows the bi-Gaussian case with 62 = 1 for p; = +1
and p; = +4, respectively. (c) and (d) shows the Laplacian prior for decay rates n = 1/2
and n = 2, respectively. (e) and (f) shows the exponential prior for decay rates n = 1/2
and n = 2, respectively.; (g) shows the variational mean f and the derivative f’ of a
mixture of five Gaussian with mixing proportions 7; = 1/5, means p; = {—4,-1,0,1,4}
and standard deviations o; = {1, 2,4,2,1}. (h) shows the heavy tailed prior eq. (48) with

a=1.
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4.5 Power law tail prior

In the previous sections we have only considered source priors for which it was possible
to carry out the integration eq. (22) analytically. For arbitrary source priors, however,
the one dimensional integral may be be solved using standard approaches for numerical
integration. Alternatively, we could simply use the insight gained in the previous sections,
where we considered the functional form of the variational mean of various source priors,
to come up with computationally tractable f functions directly. To give an example of
this, we will construct a f which for large |y|/v/A corresponds to a distribution with
a power law tail P(S) oc |S|™* for |S| large. In this limit the integral in eq. (22) is

dominated by its saddlepoint. The saddlepoint value of S is Sp = 35 (1+4/1 — 4;’—2’\) ~ -

%. This gives the behavior of the mean function for large v. We can now straightforwardly
construct a mean function that has this assumptotic behavior and is weel-defined for small
values of ~y: - oy
f_/\ aX+v2 " (48)

Figure 1(h) shows the heavy tail f-function as a function of v and A. Figure 2 shows for
a fixed A = 1 the variational mean and derivative for some of the unconstrained source
priors considered so far. For v — oo, the Gaussian and the uniform (improper) prior
give respectively the the lower and upper value for f for the priors considered.

The variational means and derivatives for the priors considered in this paper are
summarized in the table in section 4.1.

5 Simulations

In this section we compare the performance of the different mean field approaches de-
scribed in the previous sections, i.e. NMF, LR correction and TAP. To begin with, we
conduct two experiments with artificial generated data. The source priors used in these
experiments are equal to the source prior which generated the dataset. We consider both
the complete case in which 2 binary sources are mixed into 2 sensors and the overcom-
plete case of 3 continuous sources mixed into 2 sensors. Finally, we apply the linear
response corrected mean field approach for to perform ICA on two real world datasets;
namely speech signals and parts of the MNIST handwritten digit database.

5.1 Synthetic binary sources in an complete setting

Independent component analysis of binary sources have been considered e.g. in data
transmission using binary modulation schemes such as MSK or biphase codes [van der
Veen 1997]. Here, we consider a binary source S = {£1} with prior distribution 1[6(S —
1)+8(S+1)]. In this case we recover the well known mean field equations (S) = tanh(vy).
Figure 3(a) shows the column vectors of the mixing matrix and 1000 samples generated
from the ICA generative model using a fairly low noise variance, 02 = 0.3. Ideally,
the noise-less measurements would consist of the four combinations (with sign) of the
columns in the mixing matrix. However, due to the noise, the measurements will be
scattered around these prototype observations (shown as + in figure 3(a)). Figure 3(b)
shows, for each of the mean field approaches, the variance as a function of iteration
number. At these moderate noise variances an improvement in the convergence rate
is obtained by using the linear response corrected mean field solution. The adaptive
TAP approach, on the other hand, is seen to have a slower convergence rate and only
a marginal improvement in the estimated noise variance and mixing matrix is obtained.
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Figure 2: Shows the variational mean (top) and derivative (lower) as a function of v for
various source priors and fixed A = 1. From top to bottom the legends are; [- -] Gaussian
with unit mean and variance; [- - -] Mixture of two Gaussians with 0 mean and std. 1
and 2; [- -] Mixture of two Gaussians with unit variance and mean at £3; [—] and [-e-]
Laplacian with n = 1 and n = 1/4, respectively; [--] Heavy tail with oo = 1/2; [- -]
Uniform (improper) distribution.
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Figure 3: Binary source recovery for a low noise variance, 0> = 0.3. (a) Shows 1000
measurements (scatter plot), +/- the column vectors of the true mixing matrix (the
solid axis) and the measurement prototypes (+) for the noise-less case. (b) Shows the
estimated variance for NMF, LR and TAP as a function of iteration. The thick solid line
is the true empirical noise variance. The empirical variance is the variance of the 1000
random noise contributions. The trajectories of the fix-point iteration using (c) NMF,
(d) LR and (e) adaptive TAP. The initial condition is mark ’x’ and final point 'o’. The
dashed lines are the true mixing matrix.

This is due to the fact that this approach is critically sensitive to how well the variational
parameters have been determined.

Figure 3(c,d,e) shows, for the different mean field approaches, the trajectories of the
fix-point iterations. All the methods uses the same initial conditions (’x’) and the final
point in the trajectory is mark ’o’. The dashed lines are + /- the column vectors of the
true mixing matrix. In this case there is no significant difference in the mixing matrix
estimated using the different mean field approaches.

We now increase the noise variance to 02 = 1. In this case it is hard to identify
the prototype signals from the measured data (see figure 4(a)). The naive mean field
approach fails in recovering the mixing matrix. Figure 4(c) shows that one of the direc-
tions in the mixing matrix vanishes during the fix-point iterations which in turn results
in the noise variance being overestimated (see figure 4(b)). However, the linear response
corrected mean field approach and adaptive TAP recovers the true mixing matrix.

5.2 Continuous sources in an overcomplete setting

In this section the problem is to recover more sources than sensors; in particular we
consider mixing 3 source into 2 sensors. The source used in this experiment is the
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Figure 4: Binary source recovery for a high noise variance, 0> = 1. (a) Shows 1000
measurements (scatter plot), +/- the column vectors of the true mixing matrix (the
solid axis) and the measurement prototypes (+) for the noise-less case. (b) Shows the
estimated variance for NMF, LR and TAP as a function of iteration. The thick solid line
is the true empirical noise variance. The trajectories of the fix-point iteration using (c)
NMF, (d) LR and (e) adaptive TAP. The initial condition is mark ’x’ and final point
‘o’. The dashed lines are the true mixing matrix.

symmetric Pearson mixture eq. (38) with u = 1. A total of 2000 samples was generated
from the generative model (see figure 5(a)) and the three mean field approaches was
used to learn the mixing matrix. The trajectories plot in figure 5(c) shows that the naive
mean field approach fails in recovering the mixing matrix. Similar to the binary case with
high variance, one of the directions in the mixing matrix vanishes (see figure 5). Only
the dominant direction in the dataspace is captured whereas the two remaining direction
collapses into one “mean” direction. However, both the linear response corrected and
the adaptive TAP mean field approaches succeed in estimating the mixing matrix. We
will restrict ourselves to the LR approach in the next real world examples since NMF has
turned out to fail in some cases and TAP is considerably more computationally expensive
while giving comparable performance.

5.3 Separating 3 speakers from 2 microphones

In this section we consider the problem of separating three speakers from two micro-
phones. At hand we have the three original speech signals, each having a duration of
1 second and sampled at 8 kHz. The speech signals is then instantaneously linearly
mixed into 2 microphones. Figure 6(a) shows a scatter plot of the 8000 samples in the
measurement (microphone) space. The fact that natural speech has a heavy tailed distri-
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Figure 5: Overcomplete continuous source recovery with o2 = 1. (a) Shows 2000 mea-
surements (scatter plot), +/- the column vectors (4 times axis) of the true mixing matrix
(the solid axis). (b) Shows the estimated variance for NMF, LR and TAP as a function
of iteration. The thick solid line is the true empirical noise variance. The trajectories of
the fix-point iteration using (¢) NMF, (d) LR and (e) adaptive TAP. The initial condition
is mark ’x’ and final point ’o’. The dashed lines are the true mixing matrix.

bution makes this overcomplete problem somewhat easiler in the sense that the hidden
directions of the mixing matrix reviels themself clearly in the scatter plot. The linear
response corrected mean field approach was used in performing ICA with the computa-
tionally tractable variational mean eq. (48) with a = 1. The initial mixing matrix was
randomly picked (shown as the dotted axis in figure 6(a)). Figure 6(b) shows the con-
vergence of the algorithm in term of the angle between the estimated directions and the
true directions (the dashed lines in figure 6(a)). Figure 6(a) shows that the algorithm
converges rapidly to a mixing matrix which is close to the one that gave raise to the
mixed speech signals. each of the inferred sources against each of the true sources (see
three recoverd sources is nicely correlated with exactly one of the true sources and (more
or less) uncorrelated with the remaning sources (note that the solution is invariant under
a relabelling of the sources and columns of the mixing matrix plus a change of scale and

sign).

5.4 Local feature extraction with sparse positive encoding

In this section we apply the linear response corrected ICA algorithm to the problem of
finding a small set of localized images representing parts of the digit images in the MNIST
handwritten digit database. For illustration purposes we will only consider a small sub-
set of the database, namly the first 500 cases of the handwritten digit “3”. As mention

17



angle / degree

9% 20 40 60 80 100
iteration
(b)

Figure 6: Overcomplete speech separation (3-in-2) using the heavy tailed f-function
eq. (48) with a = 1; see figure 1(h). (a) scatter plot of 1 sec. of the mixed speech (@8
kHz), the true A (dashed lines), the initial A (black dotted) and the estimated A. (b)
shows the estimated angle as a function iteration. The horizontal lines illustrate true
angles at 0 and £45 degrees.

already in section 4.4 it is natural to consider positive constraints on latent variables (say
pixels) when dealing with images. However, such constraints are usually ignored by most
of the commonly used preprocessing models e.g. the principal component analysis (PCA)
generative model which simply amounts to sequentially finding orthogonal directions
(components) with maximum variance in the data space. Ignoring such constraints is
problematic since for an unconstrained model to yield positive digit images there have
to an interaction between positive and negative regions in different components and it is
therefore not obvious what the set of components represents visually.

To illustrate these points we conduct two ICA experiments using the exponential prior
P(S) = e %, S € Ry. In the first experiment we do not constrain the mixing matrix
thereas in the second experiment the mixing matrix is constrained to be positive. For
both experiment we assume that there are 25 hidden images. Figure 8(a) shows the 25
hidden images obtained using ICA with positively constrained sources but unconstrained
mixing matrix. Although the sources in this case are positively constrained, the fact that
hidden images are allowed to be subtracted in order to obtain a positive image leads to
non-local hidden images which are hard to interpret visually. Figure 8(b) shows the
25 hidden images obtained by performing ICA which inforces the positive constraint on
the mixing matrix. In this case the hidden images clearly represents local features, in
particular the different handwriting styles/strokes in the various parts of the written
digit.

6 Conclusion

In this paper, we have presented a probabilistic (Bayesian) approach to ICA. Sources
are estimated by their posterior mean while maximum a posteriori estimates are used
for the mixing matrix and the noise covariance. By this procedure we dervied an EM-
type algorithm. The expectation step is carried out using different mean field (MF)
approaches namely variational (aka ensemble learning or naive MF), linear response and
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Figure 7: Overcomplete speech separation (3-in-2) using the heavy tailed f-function
eq. (48) with a = 1. Shows the scatterplots of the ICA estimated sources S (9 versus
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the true sources St(:)ue, i=1,2,3.

adaptive TAP. The MF theories produce estimates of posterior source correlations of
increasing quality. These are needed for the maximization step in the estimate for the
mixing matrix and the noise.

The importance of a good estimate of correlations is seen for for specific examples
where in fact the simplest variational approach fails. The general applicability of the
formalism and its MF implementation is demonstrated on local feature extraction in im-
ages (using non-negative mixing matrix and source priors) and in overcomplete separation
of speech (using heavy tailed source priors). The good performance of the mean field
approach supports the belief that we get fair estimates of the posterior means and co-
variances. However, a rigourous test requires either explicit numerical integration which
is possible only for low dimensional problems or Monte Carlo sampling (which may also
be inaccurate in complex cases).

In the following, we will discuss a number of possible extensions of this work. One
obvious extension is the modelling of temporal correlations. The most general formula-
tion of the model with temporal correlation leads to the consideration of the junction
tree algorithm. We are currently working on a mean field algorithm for online belief
propagation on the junction tree [Hgjen-Sgrensen et al. 2001].

Optimization of the hyperparameters of the prior can be performed by extending the
current EM algorithm. The mean field approach can also be used to derive leave-one-out
estimators [Opper and Winther 2000a; Opper and Winther 2000b] that can be used both
for optimization of hyperparameters and model selection. Model selection can also be
performed using the (approximate mean field) likelihood of a test set.
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Figure 8: Feature extraction of the handwritten digit “3” using a exponential prior with
n =1 and (a) unconstrained mixing matrix and (b) positive constrained mixing matrix.
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Finally, it could be interesting to relax some of the basic requirement of model.
Firstly, that of statistical independence of the sources. Our formalism can be extended
to treat a priori Gaussian correlations between (the non-Gaussian) sources. We should
be able estimate these correlations effectively by for example the linear response tech-
nique. Secondly, the model can be extended to nonlinear mixing by e.g. introducing
a sigmoidal squashing of the mixed signal. This situation can also with some increase
in the computational complexity be included in the mean field framework [Opper and
Winther 2000b].
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A Algorithmic recipe
In table 2, we give an EM recipe for solving the mean field equations and the equations for

the mixing matrix and the noise covariance. It is indicated in the table which equations
that have been used. Here, we have giving the equations for adaptive TAP. Linear
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response theory is obtained by omitting the updating step for \,¢, i.e. by setting Ny := 0.
Furthermore setting xt..... := Omm f'(Ymt, Amt) instead of x? := (Ay +J)~! leads to the
naive mean field algorithm.

In the table, we have given the update rule for the non-negative mixing matrix eq.
(13). To get to the unconstrained mixing matrix, the unconstrained update rule eq. (10)
should be used.

Note that we use a greedy update step for all variables but the means (S). Especially
adaptive TAP is quite sensitive to the choice of the learning rate 5. It is therefore made
adaptive such that it is increased with a factor of 1.1 if the sum of the squared deviations
>t 16(Sme)|? decreases compared to the previos update. Otherwise it is decreased
with a factor 2. Our experience with the TAP equations also indicates that running
with variable number of updates of (S) could be helpful. However, in the simulations
described here we kept the number of iterations fixed.

B Some additional analytical source priors

In this appendix we derive the variational mean and response function for some additional
analytical source priors which have not been directly used in this paper. We show these
calculations in some details since they are of the same type as the one we carried out in
deriving the variational mean of the sources in section 4.

B.1 Positively constrained Gaussian source prior

Calculating the variational mean eq. (22) in general involves the calulation of an intergral
of the form,

/ dSP(S)e= 1515 (49)

where P(S) is the source prior. The source priors considered in this paper are all of such
a form that this integral can reparameterized into a integral over a Gauassian kernel.
For this reason in is usefull to have at hand an expression for the integral of a Gaussian
kernel, i.e,

[ dse” PSS = (VorD(=) [ " dse M- (50)
= (\/X\/2_WD(%))1/E dSe 275 (51)

_2E
VAD(Z) (52)

where £ = \/X(m —~/A). The first equality follows from completing squares and introduc-
ing the Gaussian pdf., eq. (32). The second equality follows by changing the integration
variable whereas the final equality follows by introducing the Gaussian cdf., eq. (33). We
can now calculate the following integral,

+o0 1—&(—2) 3(2)
IAS%4+yS _ VA VA
/0 dse / / VAD(Z%)  VAD(Z) (53)
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where the factor of proportionality is independent of . It is remembered that the actual
factor of proportionality is not needed in calculating the variational mean,

®7'®D 0D, & ID/VR+q/AED

fnA) = (5 — 7 P B (54)
-7 ﬂ (55)

X+ \/X@(%) .

We can now return to the problem of calculating the variational mean of a positively
constrained Gaussian parameterized by,

p(S|u,0) = 2er—%<S—u>2/U2, SeR, (56)

where p and ¢? are the mean and variance, respectively. Multiplying the source prior
onto the Gaussian kernel and identifying terms it is seen that the product can be written
as a Gaussian with A := A+ 1/02 and v := v+ p/0?. Substituting back into eq. (55) we
directly optain the variational mean,

Fo ) = v+ /o’ D(x)

1
A+ 1/0? + VA+1/02 ®(k)

= A tufo? (58)

VA+1/o2’

and the response function can be readily derived,
2 D D 2
of _ _wo () _ D) _(Dx) . (59)
oy A+1/0? d(k) ®(k)

B.2 Uniform source prior

(57)

where we have introduced

In this section we consider the uniform prior,
1
P(S) = S € la;b 60
() =5— 53] (60)

where b > a. By reusing the calculations made in appendix B.1 we directy optain,

b b a _
a — 00 —00 ﬁ

where K, = VA(z —v/\) = Vz — \_’/LX Here, we have again left out the normalizing

constant since it is of no importance in the caluclation of the variational mean,

_ 7 1 Dlka) = D)
f(’YJ)‘) - )\ + \/X (I)(I"v}b) _ @(K'a) ’ (62)
and the response function,
0f _ 1 (. raD(ra) = kD(ks)  (D(ra) = D(rp) >
5§‘X<“+ B() = B(ra) ‘(@@@—@@»))' (03)

This appendix showed some illustrative exsamples of the caluculation needed in deriving
the variational mean and response functions for the source priors considered in this

paper.
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Initialization: Egs. (16),(17) and (21)
J=ATE7'A
h:=AT®"'X
(S) := 0 (or small random values if 0 is a fixed point)
form:=1,...,Mandt:=1,...,N:

Amt = Jmm
endfor
N(sy :=20,Ny := 10,N4a := 10,Nx, := 1,ftol := 10-°

do:
Expectation-step:
for N(gy iterations, eqs. (31) and (22)
form:=1,...,.Mandt:=1,...,N:
Ymt = hmt - Zml(Jmm’ - /\m’tdmm’xs’m’t)
5<Smt> = f('Ymt; )\mt) - <Smt>

endfor
(S) :=(S) +nd(S)
endfor

for N, iterations, egs. (30) and (29)
form:=1,...,M and t:=1,...,N:

— 1
Amt - )\mt + fl(’Ymt’Ami)
endfor
form:=1,...,.Mand t:=1,...,N:
— 1 _ 1
OAmt = (BT T ~ Flrmishond)
)\mt = )‘mt + 6)‘mt
endfor
endfor

fort:=1,...,N,eq. (27)
X' =M+ 3)!
endfor
Maximization-step
for N, iterations, eq. (13) or (10)
ford:=1,...,.Dandm:=1,...,M:

-1 T
OAim = T5TASS a7 a7 Adm — Adm
Agm = Agm + 0Aam
endfor
endfor
for Ny iterations, eq. (9)
6% = H(X-AS)(X-AS)T)—%

¥ =Y +06X
endfor
J:=ATY 1A
h:= ATY" !X

while max(|6(Smt) [, [Ame|?, |6 Adm|?, [6Saar|?) > ftol

Table 2: Pseudo-code for the mean field ICA algorithms.
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