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Abstract

We develop an approach for sparse representations of Gaussian Process (GP) models (which
are Bayesian types of kernel machines) in order to overcome their limitations caused by large
data sets. The method is based on a combination of a Bayesian online algorithm together with
a sequential construction of a relevant subsample of the data which fully specifies the prediction
of the GP model. By using an appealing parametrisation and projection techniques that use the
RKHS norm, recursions for the effective parameters and a sparse Gaussian approximation of the
posterior process are obtained. This allows both for a propagation of predictions as well as of
Bayesian error measures. The significance and robustness of our approach is demonstrated on a

variety of experiments.

1 Introduction

Gaussian processes (GP) [Bernardo and Smith, 1994; Williams and Rasmussen, 1996] provide promis-
ing Bayesian tools for modeling real-world statistical problems. Like other kernel based methods, such
as Support Vector Machines (SVMs) [Vapnik, 1995], they combine a high flexibility of the model by
working in often oo dimensional feature spaces with the simplicity that all operations are “kernelised”
— performed in the lower dimensional input space utilising positive definite kernels.

An important advantage of GPs over other non-Bayesian models is the explicit probabilistic for-
mulation of the model. This allows the modeller to assess the the uncertainty of the predictions by
providing Bayesian confidence intervals (for regression) or posterior class probabilities (for classifica-
tion). It also opens the possibility to treat a variety of other nonstandard data models (e.g. quantum
inverse statistics [Lemm et al., 2000], wind-fields [Evans et al., 2000; Berliner et al., 2000]) using a

kernel method.



GPs are non-parametric in the sense that the “parameters” to be learnt are functions f, of a
usually continuous input variable x € R%. The value f, is used as a latent variable in a likelihood
P(yl|fx, x) which denotes the probability of an observable output variable y given the input x. The a
priori assumption on the statistics of f is that of a Gaussian process: any finite collection of random
variables f; is jointly Gaussian. Hence, one must specify the prior means and the prior covariance
function of the variables f,. The latter is called the kernel Ko(x,x') = Cov(y,y’) [Vapnik, 1995;
Kimeldorf and Wahba, 1971]. Thus, if a zero-mean GP is assumed, the kernel K, fully specifies
the entire prior information about the model. Based on a set of input-output observations (xn,Yn)
(n=1,...,N) the Bayesian approach computes the posterior distribution of the process f, using the
prior and the likelihood [Williams, 1999; Williams and Rasmussen, 1996; Gibbs and MacKay, 1999].

A straightforward application of this simple appealing idea is impeded by two major obstacles:
non-Gaussianity of the posterior process and the size of the kernel matrix Ko(xi,%;). A first obvious
problem stems from the fact that the posterior process is usually non-Gaussian (except when the
likelihood itself is Gaussian in the f,). Hence, in many important cases its analytical form precludes
an exact evaluation of the multidimensional integrals that occur in posterior averages. Nevertheless,
various methods have been introduced to approximate these averages. A variety of such methods may
be understood as approximations of the non-Gaussian posterior process by a Gaussian one [Trecate
et al., 1999; Jaakkola and Haussler, 1999; Seeger, 2000], for instance in [Williams and Barber, 1998] the
posterior mean is replaced by the posterior maximum (MAP) and information about the fluctuations
are derived by a quadratic expansion around this maximum. The computation of these approximations,
which become exact for regression with Gaussian noise, require the solution of a system of coupled
nonlinear equations of the size equal to the number of data-points. The second obstacle which prevents
GPs from being applied to large datasets is that the matrix which couples these equations is typically
not sparse.

Hence, the development of good sparse approximations are of major importance. Such approxima-
tions aim at performing the most time consuming matrix operations (inversions or diagonalisations)
only on a representative subset of the training data. In this way, the computational time is reduced
from O(N3) to O(Np?); where N is the total size of the training data and p is the size of the repre-
sentative set. The memory requirement is @ (p?) as opposed to @(N?). So far, a variety of sparsity
techniques [Smola and Schélkopf, 2000; Williams and Seeger, 2001] for batch training of GPs have been
proposed. This paper presents a new approach which combines the idea of a sparse representation
with an on-line algorithm that allows for a speedup of the GP training by sweeping through a dataset
only once. A different sparse approximation which also allows for an on-line processing was recently
introduced by Tresp2000. It is based on combining predictions of models trained on samller data
subsets and needs an additional query set of inputs.

Central to our approach are exact expressions for the posterior means (fy); and the posterior
covariance Ki(x,x') (subscripts denote the number of data points) which are derived in section 2.

Although both quantities are continuous functions, they can be represented as finite linear (or re-
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spective bilinear) combinations of kernels Ky(x, x;) evaluated at the training inputs x; [Csaté et al.,
2000]. Using sequential projections of the posterior process on the manifold of Gaussian processes, we
obtain approximate recursions for the effective parameters of these representations. Since the size of
representations grows with the number of training data, we use a second type of projection to extract
a smaller subset of input data (reminiscent of the “support vectors” [Vapnik, 1995] or “relevance vec-
tors” of [Tipping, 2000]). This subset builds up a sparse representation of the posterior process on
which all predictions of the trained GP model rely. Our approach is related to the one introduced in
Wahba (1990) ch. 7. While we use the same measure for projection, we do not fix the set of basis

vectors from the beginning, but decide on-line which inputs to keep.

2 Online Learning with Gaussian Processes

In Bayesian learning, all information about the parameters that we wish to infer is encoded in prob-
ability distributions [Bernardo and Smith, 1994]. In the GP framework, the parameters are functions
and the GP priors specify a Gaussian distribution over a function space. The posterior process is
entirely specified by all its finite dimensional marginals. Hence, let f = {f(x1),...,f(xm)} be a set of
function values such that fp C f, where fp is the set of f(x;) = f; with x; in the observed set of inputs,

we compute the posterior distribution using the data likelihood together with the prior po(f) as
oo ()  PDIRol) "
(P(DIfp))o
where (P(D|fp))o is the average of the likelihood with respect to the prior GP (GP at time 0). This
form of the posterior distribution can be used to express posterior expectations as typically high
dimensional integrals. For prediction, one is especially interested in expectations of functions of the
process at inputs, which are not contained in the training set. At first glance, one might assume that
every prediction on a novel input would require the computation of a new integral. Even if we were
equipped with good methods for dealing with integrals approximately, this would make predictions
at new inputs a rather tedious task. Luckily, the following lemma shows that simple but important
predictive quantities like the posterior mean and the posterior covariance of the process at arbitrary
inputs can be expressed as a combination of a finite set of parameters which depend on the training

data only. For arbitrary likelihoods we can show that

Lemma 1 (Parametrisation). The result of the Bayesian update eq. (1) using a GP prior with mean
function (fy)o and kernel Ko(x,x') and data D = {(xn,yn)| n=1,..., N} is a process with mean and

kernel functions given by

N
<fx>post == <fx>0 + Z KO(X> Xi)q (1)
N (2)
Kpost (%,x') = Ko(x,x") + > Kolx,x:)R(1j)Ko (x5, X').

i,j=1
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Figure 1: Visualisation of the online approximation of the untractable posterior process. The resulting

approximate process from previous iteration is used as prior for the next one.

The parameters q(i) and R(ij) are given by

oP(DIf) 0P (D)

alt) =7 [afpo®) T2 and R = 5 [dfvolf) 55000 —attal) ()

where f = [f(x1),...,f(xn)]1T and Z = [dfpo(f) P(DIf) is a normalising constant.

The parameters q(i) and R(ij) have to be computed only once during the training of the model,
and are fixed when we make predictions. The parametric form of the posterior mean (assuming a zero
mean for the prior) resembles the representations for the predictors in other kernel approaches (such
as Support Vector machines) that are obtained by minimising certain cost functions. While the latter
representations are derived from the celebrated representer theorem of Kimeldorf and Wahba [Kimel-
dorf and Wahba, 1971] our result (eq.2) does to our best knowledge not follow from this but is derived
from simple properties of Gaussian distributions. To keep focused on the main flow, we defer the proof
to Appendix B.

Making an immediate use of this representation is usually not possible because the posterior process
is in general not Gaussian and the integrals cannot be computed exactly. Hence, we need approxi-
mations in order to keep the inference tractable [Csaté et al., 2000]. One popular method is to
approximate the posterior by a Gaussian process [Williams and Barber, 1998]. This may be formu-
lated within a variational approach, where a certain dissimilarity measure between the true and the
approximate distribution is minimised. The most popular choice is the Kullback-Leibler divergence

between distributions defined as

p(6)

KL(bla) = | 40 p(e)in 5 (4)
where 0 denotes the set of arguments of the densities. If p denotes the approximating Gaussian distri-
bution, one usually tries to minimise KL(P||ppost), with respect to P which in contrast to KL(ppost||P)
requires only the computation of expectations over tractable distributions.

In this paper, we will use a different approach. To speed up the learning process in order to allow

for the learning of large datasets, we aim at learning the data by a single sequential sweep through the
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examples. Let p; denote the Gaussian approximation after processing t examples, we use Bayes rule

_ Py )
Ppost (f) = (P(yes1lfp))e

to derive the updated posterior. Since ppost is no longer Gaussian, we use a variational technique

(5)

in order to project it to the closest Gaussian process P41 (see Fig. 1). Unlike the usual variational
method, we will now minimise the divergence KL(ppost||P). This is possible, because in our on-line
method, the posterior (5) contains only the likelihood for a single example and the corresponding non
Gaussian integral is one-dimensional, which can, for many relevant cases be performed analytically. It
is a simple exercise to show [Opper, 1998] that the projection results in the matching of the first two
moments (mean and covariance) of ppost and the new Gaussian posterior Pey1.

We expect that the use of the divergence KL(ppost||P) has several advantages over other projection
methods [Gibbs and MacKay, 1999; Williams, 1999; Williams and Barber, 1998; Jaakkola and Haussler,
1999]. First, this choice avoids the numerical optimisations that are usually necessary for the divergence
with inverted arguments. Second, this method is very robust, allowing for arbitrary choices of the single
data likelihood. The likelihood can be non-continuous and may even vanish over some range of values
of the process. Finally, if one interprets the KL divergence as the expectation of the relative log loss
of two distributions, our choice of divergence weights the losses with the correct distribution rather
than with the approximated one. We expect that this may correspond to an improved quality of
approximation.

In order to compute the on-line approximations of the mean and covariance kernel K; we ap-
ply Lemma 1 sequentially with only one likelihood term P(y¢x;) at an iteration step. Proceeding

recursively, we arrive at

<fx>t+] = <fx>t + q(tH) Ke(x, X¢41)

K1 (x,x") = Ke(x, x') + T K (x, Xe+1)Ke (X401, x7)

(6)

where the scalars @**V and r*+") follow from Lemma 1 (see Appendix B for details):

0
q(tH) = ———— In(P(yelfea))e
0(fes1)t )
(t+1) o’ 1 <p( If ))
T =——1In .
a<ft+1 >t Ye+11Te41))t

The averages in (7) are with respect to the Gaussian process at time t and the derivatives taken
with respect to (fii1)¢ = (f(x¢+1))¢. Note again, that these averages only require a one dimensional
integration over the process at the input xy7. Unfolding the recursion steps in the update rules (6) we

arrive at the parametrisation for the approximate posterior GP at time t as a function of the initial



kernel and the likelihoods (“natural parametrisation”):

t
(foe =D Kolx,xi)ou(i) = axfky
i=1
¢ (8)
Ke(x,x') = Ko(x,x") + Y Kolx,%:)Ce(i§)Ko(x5,x") = Ko (x,x") + k[ Ciky
i,j=1
with coefficients o (1) and C¢(ij) not depending on x and x’ (for details see Appendix C). For simplicity
the values o (i) are grouped into the vector oy = [ (1),...,a(t)]T, C¢ = {C¢(ij)}ij=1+ and we also
used vectorial (typeset in bold) notations for ky, = [Ko(x1,%), ..., Ko(x¢, x)]T.
The recursion for the GP parameters in eq. (8) are found from the recursion eq (6) and the

parametrisation lemmas:

o1 = Tepr (o) + q(t+1)st+l
Cit1 = U (Co) + T(t+”8t+131+1 (9)

Se1 = Tt (Cikeyr) + €4

where ki1 = ky,,, and e the t + T-th unit vector and s.;; is introduced for clarity. We also
introduced the operators T..; and U, ;, they extend a t-dimensional vector and matrix
to a t + 1-dimensional one by appending zeros at the end of the vector and to the last
row and column of the matrix respectively.

Since ey, is the t + 1-th unit vector, we see that the dimension of the vector & and the size of
matrix C increases with each likelihood point added.

Equations (6) and (7) show some resemblance to the well known extended Kalman filter. This is
to be expected, because the latter approach can also be understood as a sequential propagation of an
approximate Gaussian distribution. However, the main difference between the two methods is in the
way the likelihood model is incorporated. While the extended Kalman filter (see [Bottou, 1998] for
a general framework) is based on a linearisation of the likelihood, our approach uses a more robust
smoothing of the likelihood instead.

The drawback of using (9) in practice is the quadratic increase of the number of parameters with
the number of training examples. This is a feature common to most other methods of inference with
Gaussian processes. A modification of the learning rule that controls the number of parameters is the

main contribution of this paper and is detailed in the following.

3 Sparseness in Gaussian Processes

Sparseness can be introduced within the GP framework by using suitable approximations on the
representation eq. (8). Our goal is to perform an update without increasing the number of parameters

« and C when, according to a certain criteria, the error due to the approximation is not too large.



This could be achieved exactly, if the new input x{;; would be such that the relation

Ko(x, X¢41) = Z €1 (1)Ko (x, x¢) (10)

i=1
holds for all x. In such a case we would have a representation for the updated process in the form
eq. (8) using only the first t inputs, but with “renormalised” parameters & and C. A glance at eq. 9)

shows that the only change would be the replacement of the vector s¢, 1 by

S ~ Cikeyr + €. (11)
Note, that .41 is a vector of dimensionality t! Unfortunately, for most kernels and inputs x1 (10)
can not be fulfilled for all x. Nevertheless, as an approximation, we could try an update of the form
(11) where €1 is determined by minimising the error measure

“y Xt1) Zet-H Kol x1)|| (12)

where || - || is a suitably defined norm in a space of functions of inputs x (optimisation criteria in a
function space are presented in [Vijayakumar and Ogawa, 1999]). Eq. (12) becomes especially simple,
when the norm is based on the inner product of the reproducing kernel Hilbert space RKHS generated by
the kernel Ko In this case, for any two functions g and h that are represented as g(x) = Y _; ¢iKo(x, u;)
and h(x) = ), diKo(x,v;), for some arbitrary set of w;’s and v;’s, the RKHS inner product is defined
as [Wahba, 1990]:

(9(), 1)) gns = D €edsKo(us, vi) (13)

Y

with norm
||g||2RKHS = (g(')’ g( ) RKHS ZCTC)KO Z’UZJ) (14)

Y

Hence, in this case eq. (12) is
t t
Ko (%41, Xeq1) + Z Cey1(i)ee (j)KO(Xij) - ZZ €1 (1)Ko (xer1,%1) (15)
i,j=1 i=1

and simple minimisation of eq. (15) yields [Smola and Schélkopf, 2000]
@ =K ke (16)
where K¢ = {Ko(xi, %j)}ij=1.¢ is the Gram matrix. The expression

Ko(x,xes1) = Y €1 (1)Ko (x,%:) (17)

i=1
is simply the orthogonal projection (in the sense of the inner product eq. 13) of the function Ko(x, x41)

on the linear span of the functions Ky(x,x;). The approximate update using (11) will be performed
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Figure 2: Visualisation of the projection step. The new feature vector ¢, is projected to the subspace
spanned by {¢1, ..., d¢} resulting in the projection E]\)H] and the orthogonal residual (the “left out”
quantity) dres. It is important that dres has t + 1 components, i.e. it needs the extended basis

including ¢yq.

only, when a certain measure for the approximation error (to be discussed later) is not exceeded. The
set of inputs, for which the ezact update is performed, and the number of parameters is increased, will
be called “basis vector set” or BV set, an element will be BY . Proceeding sequentially, some of the
inputs are left out and others are included in BY set. However, due to the projection (17) the inputs
left out from BV set will still contribute to the final GP configuration — the one used for prediction
and to measure the posterior uncertainties. But the latter inputs will not be stored and do not lead to
an increase of the size of the parameter set.

This procedure leads to the new representation for the posterior GP only in terms of the BY set

and the corresponding parameters & and C:

(f) =) Kolx,xi)a(i)

ieBy

K(x,x") =Ko(x,x) + D> Kolx,x:)C(ij)Ko(x;,x").
i,jeBY

(18)

An alternative derivation of these results can be obtained from the representation of the Mercer
kernel [Wahba, 1990; Vapnik, 1995]

Ko(x,x") = b(x)" d(x"), (19)

in terms of the possibly infinite dimensional “feature vector” ¢(x) [Wahba, 1990]. Minimising (15)
and using (11) for an update is equivalent to replacing the feature vector ¢y corresponding to the

new input by its orthogonal projection

b1 =) en(i)ds (20)



onto the space of the old feature vectors (as in Fig. 2). Note however that this derivation may
be somewhat misleading, by suggesting that the mapping induced by the feature vectors plays a
special role for our approximation. This would be confusing because the representation eq. (19) is not
unique. Our first derivation based on the RKHS norm shows however that our approximation uses

only geometrical properties that are induced by the kernel K.

3.1 Projection-Induced Error

We need a rule to decide if the current input will be included in the BY set or not. We base the
decision on a measure of change on the sample averaged posterior mean of the GP due to the sparse
approximation.

Assuming a learning scenario where only the basis vectors are memorised, we measure the change

of the posterior mean due to the approximation by

Al = (Fen — (Fooy

where (f,); —7 Is the posterior mean with respect to the approximated process. Summing up the

absolute values of the changes for the elements in the BY set and the new input leads to

t+1 t+1
e = ) IARul =107 ) [Kolxi, i) = Rolxi, )
i=1 i=1

2

(21)

= 10 Kol xe1) = Rol-, xes1)

RKHS

where the second line follows from the orthogonal projection together with the definition of the inner
product in the RKHS (eq. 14)

It is an important observation that, also due to orthogonal projection, the error is concentrated
only on the last data point since ﬂo(-,xtﬂ) = Ko(+,x¢11) at the old data points x;, i = 1,...,t.

Rewriting eq. (21) using the coefficients for Ko(, X¢s1) from eq. (16), the error is

s =gt ( 1 —k3+1K€‘kt+1) = 19" Vv (22)

t+1)

where ki, ; = Ko(X¢41,%¢41) and q is given from eq. (7). The error measure €., is a product

of two terms. If the new input would be included into BY the corresponding coefficient o7 in the

t+1

posterior mean would be equal to q**"), which is the “ikelihood-dependent” part. The second term

Yer1 = Kipq — k1+1K;]kt+1 (23)

gives the geometrical part, which is the squared norm of the “residual vector” from the projection in
the RKHS (shown in Fig. 2), or equivalently the “novelty” of the current input. If we use the RBF
kernels, then the error eq. (22) is similar to the one used in deciding if new centres have to be included

in resource allocating network [McLachlan and Lowe, 1996; Platt, 1991].
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To compute the geometrical component of the error €., a matrix inversion is needed at each step.
The costly matrix inversion can be avoided by keeping track of the inverse Gram matrix Q, = K{ 1
The updates for the matrix can also be expressed with the variables 'y, and €. (for details see D),

and these updates will be important when deleting a BY :

Qi = U (Qy) + Y;J] (Tes1(€cr1) — ) (Tepr (@) —ecpr) ™. (24)

where U;,; and T.,; are the extension operators for a matrix and a vector respectively

(inroduced in eq. (9)).

3.2 Deleting a Basis Vector

Our algorithm may run into problems, when there is no possibility to include new inputs into BY
without deleting one of the old basis vectors because we are at the limit of our resources. This gives
the motivation to implement pruning: whenever a new example is found important, one should get
rid of the basis vector (BY ) with the smallest error and replace it by the new input vector. First we
will discuss the elimination of a BY and then the criterion based on which we choose the BY to be
removed.

To remove a basis vector from the BY set we first assume that the respective BY has just been added
— thus the previous update step was done with ey 1; the t + 1-th unit vector. With this assumption

we identify the elements g1, r(t+1

) and s¢;1 from eq. (9), compute €1 (this computation is also
replaced by an identification from eq. (24)) and use eq. (20) for an update without including the new
point in the BY set.

If we assume t + 1 basis vectors, &1 has t + 1 elements, and the matrices C¢;1 and Q. ; are
(t+1) x (t+1). Further assuming that we want to delete the last added element, the decomposition is
as illustrated in Fig. 3. Computing the “previous” model parameters and then using the non-increasing

update leads to the deletion equations (see Appendix E for details):

=o'
q*
 Yatdl
Q _ Q(t) B Q*Q*T
qgx*

where &, ¢ and Q are the parameters after the deletion of the last basis vector and C(t), Q(t), o),
Q*, C*, q*, and c* are taken from GP parameters before deletion. A graphical illustration of each
element is provided in Fig. 3.

Of particular interest is the identification of the parameters q*t" and <y¢y; since their product
gives the score of the basis vector that is being deleted. This leads to the score
ot o (t+ 1)

@ Qualt+1,t+1)

Et+1 =

(26)
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Figure 3: Grouping of the GP parameters for the update equation (25).

Thus we have the score for the last input point. Neglecting dependence of the GP posterior on the

ordering of the data, (26) gives us a score measure for each element 1 in the BY set:

|1 (1)]
=S 27
QL) 0
by rearranging the order in BY with element i at the last position. To summarise, if a deletion is
needed, then the basis vector with minimal score (from eq. (27)) will be deleted. The scores are

computationally cheap (linear).

3.3 The Sparse GP Algorithm

The following numerical experiments are based on the version of the algorithm that assumes a given
maximal size for the BY set.

We start by initialising the BY set with an empty set, the maximal number of elements in the BY
set with d, the prior kernel Ky, and a tolerance parameter €i,;. This latter will be used to prevent
the Gram matrix from being singular and is used in step 2. The GP parameters &, C, and the inverse
Gram matrix Q are set to empty values.

For each data element (y¢,1,X¢11) we will iterate the following steps:
1. Compute gV, r(t+1), to1s Kert, €1, and yiqq.

2. If Y141 < €101 then perform a reduced update, using €, in eq. (9) without extending the length
of the parameters & and C. Advance to the next data.

3. (else) Perform the update eq. (9) using the unit vector e.;. Add the current input to the BY

set and compute the inverse of the extended Gram matrix using eq. (24).

4. Tf the size of the BY set is larger than d, then compute the scores ¢; for all BV's from eq. (27),

find the basis vector with the minimum score and delete it using egs. (25).

5. Advance to the next data.
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The computational complexity scales quadratically with d, the maximal number of BV s allowed.
Having an iteration over all data, the computational time is O(Nd?).

[ To compare the computational complexity of the algorithm with the Bayesian Committee Machine
(Tresp 2000 and Tresp 2001) and Wahba et.al. NIPS11. |

Also a comment on Wahba’s 90 book Ch.7 — Subset-of-regressors method: considering a subset of

the training data, a function class of the form
k
f(x) =Y ciKolxi, x)
i=1

where the elements c¢; are given a prior N’ (O,Kf] ), with K the kernel matrix for the “subset”.

4 Experimental Results

In all experiments we used spherical RBF kernels

1|2
) =oxp (P51 (29

where ok is the width of the kernel and d is the input dimension.

4.1 Regression

In the regression model, we assume a multidimensional input x € R™ and an output y with the

likelihood : “ ; “2
U - Ix
———exps ————— . 29
V2noy, p{ 203 } (29)

Since the likelihood is Gaussian, the use of a Gaussian posterior in the on-line algorithm is ezact.

P(ylx) =

Hence, only the sparsity will introduce an approximation into our procedure. For a given number of

examples, the parametrisation (8) of the posterior in terms of & and C leads to a predictive distribution

1 2 AT 2
N R e (30)

X

of y for an input x

with 02 = o3 + kICth + k%. The online update rules eq. (9) for & and C in terms of the parameters
q®*V and r**V are:
1

A =y -k /oy T = (31)

x

To illustrate the performance, we begin with the toy example y = sin(x)/x +n where 1 is a zero-
mean Gaussian noise with variance o3 = 0.02. The results for the posterior means and the Bayesian
error bars together with the basis vectors are shown in Fig. 4. The large error bars obtained for the
“misspecified” kernel (with small width 0% = 0.1) demonstrate the advantage of propagating not only

the means but also the uncertainties in the algorithm.

12



RBF kernel 0i=l‘ input noise U§=0.02, 0i=0.1 RBF kernel ci=0.1, input noise c§=0A02, ci\=0.l
T T

12
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Figure 4: Results of the GP regression with 1000 noisy training data points with noise 0§ = 0.02.
The figures show the results for RBF kernels with two different widths. In the left figure the good fit
of the GP mean function (continuous lines) to the true function (dashed lines) is also consistent with
the tight Bayesian error-bars (dash-dotted lines) around the means. In the right figure, the error bars
are broader, reflecting the larger uncertainty. The BY set is marked with rhombs and we kept 10 and

15 basis vectors. We used o% = 1 for the left, and 0% = 0.1 for the right subfigure respectively.

The second dataset is the Friedman dataset #1 [Friedman, 1991], an artificial dataset frequently
used to assess the performance of regression algorithms. For this example, we demonstrate the effect of
the approximation introduced by the sparseness. The upper solid line in (5) shows the development of
the test error with increasing numbers of examples without sparseness, i.e. when all data are included
sequentially. The dots are the test errors obtained by running the sparse algorithm using different
sizes of the BY set. We see that almost two thirds of the original training set can be excluded from
the BY set without a significant loss of predictive performance. Finally, we have tested the effect of
the greediness of the algorithm by adding or removing examples in different ways. The dependence
on the data of the sparse GP is shown with the the error bars around the dots, and the dependence
of result on the different orders is well within these error-bars. The dash-dotted line is obtained by
first running the on-line algorithm without sparseness on the full data set and then building sets BY
of decreasing sizes by removing the least significant examples one after the other. Remarkably, the
performance is rather stable against these variations in the plateau region of (almost) constant test

error.

4.2 Classification

For classification we use the probit model [Neal, 1997] where a binary value y € {—1, 1} is assigned to
an input x € R™ with the data likelihood

P(ylf.) = Exf <y02x) , (32)
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Algorithm performance for the Friedman dataset

= During training
During removal ||
» Fixed BV size

Test error (500 test points)

s

50 100 150 200 250 300
Iteration # / BV number

Figure 5: Results for the Friedman data using the full GP regression (continuous line), the proposed
sparse GP algorithm with a fixed BY size (dots with error bars). The dash-dotted line is obtained by
sequentially reducing the size of the BY set. The lines show the average performance over 50 runs. The
“Full GP solution” uses only the specified number of data whereas the other two curves are obtained

by iterating over the full dataset (0% = 1 was used with 300 training and 500 test data).

Erf(x) is the cumulative Gaussian distribution!, with o the noise variance. The predictive distribution

for a new example x is:

p(ylx, &, C) = (P(ylf)); = Exf (M) (33)

where (f,) the mean of the GP at x given by eq. (8) and o2 = 03 + k* + k! Ck,. Based on eq. (9),
for a given input-output pair (x,y) the update coefficients ¢**1 and vV are computed (for details
see [Csaté et al., 2000]):

2
en) _ Y Eof’ ey _ 1 J Bl (Bl 4
q o, Erf T o2 | Erf Erf (34)

where Erf is the function Erf(z) evaluated at z = %, Erf’ and Erf” the first and second derivatives

at z.

We have tested the sparse GP algorithm on the USPS dataset? of gray-scale handwritten digit
images (of size 16 x 16) with 7291 training patterns and 2007 test patterns.

In the first experiment we studied the problem of classifying the digit 4 against all other digits.
Fig. 6.a plots the test errors of the algorithm for different BY set sizes and fixed values of hyperpa-
rameter 0% = 1.

The USPS dataset has been used previously to test the performance of other kernel-based classifi-

cation algorithms that are based on a sparse representations. We mention the kernel PCA method of

IErf(x) = ffoo dtexp(—t%/2)/V2mn
2 Available from http://www.kernel-machines.org/data/
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Results for class. 4 <-> non—4 USPS - multiclass classification
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Figure 6: Results for the binary (a) (detect digit 4 against non-4s). and multi-class (b) classification.

The multi-class case is a combination of the 10 individual classifiers: the example x is assigned to the
class with highest P(Ci|x). We compare different sizes of the BY set and the effect of reusing data a

second (circles) and a third (crosses) time.

[Scholkopf et al., 1999] or the Nystrom method of [Williams and Seeger, 2001]. They obtained slightly
better results than our on-line algorithm. When the basis of the Nystrom approach is reduced to 512
the mean error is & 1.7% [Williams and Seeger, 2001] and the PCA reduced-set method of [Scholkopf
et al., 1999] leads to an error rate of ~ 5%. This may be due to the fact that the sequential replacement
of the posterior by a Gaussian is an approximation for the classification problem. Hence, some of the
information contained in an example is lost even when the BY set would contain all data. As shown in
in Fig 6 we observe a slight improvement when the algorithm sweeps several times through the data.
However, it should be noted that the use of the algorithm (in its present form) on data that it has
already seen is a mere heuristic and can no longer be justified from a probabilistic point of view. A
change of the update rule based on a recycling of examples will be investigated elsewhere.

We have also tested our method on the more realistic problem of classifying all ten digits simulta-
neously. Our ability to compute Bayesian predictive probabilities is absolutely essential in this case.
We have trained 10 classifiers on the ten binary classification problems of separating a single digit
from the rest. A new input was assigned to the class with the highest predictive probability given by
eq. (33). Fig. 6 summarises the results for the multi-class case for different BY set sizes and Gaussian
kernels (with the external noise variance 0'% = 0). In this case, the recycling of examples was of less
significance. The gap between our on-line result and the batch performance reported in [Schélkopf
et al., 1999] is also smaller, this might be due to the Bayesian nature of the GPs that avoids the
over-fitting.

To reduce the computational cost we used the same set for all individual classifiers (only a single

inverse of the Gram matrix was needed and also the storage cost is smaller). This made the implemen-

15



Test Error when removing BVs
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Figure 7: The performance of the combined classifier trained with an initial BY size of 1500 and a

sequential removal of basis vectors.

tation of deleting a basis vector for the multi-class case less straightforward: for each input and each
basis vector there are 10 individual scores. We implemented a “minimax” deletion rule: whenever
a deletion was needed, the basis vector having the smallest maximum value among the 10 classifier

problems was deleted, i.e. the index 1 of the deleted input was

l =arg min max e

i€BY e,

0

(35)

Fig. 7 shows the evolution of the test error when the sparse GP algorithm was initially trained with
1500 BY s and (without any retraining) the “least scoring” basis vectors are deleted. Like in the
regression case (Fig. 5) we observe a long plateau of almost constant test error when up to 70% of the

BY s are removed.

5 Conclusions and further investigations

We have presented a greedy algorithm which allows to compute a sparse Gaussian approximation for
the posterior of GP models with general (factorising) likelihoods which is based on a single sweep
through the data set. So far, we have applied the method to regression and classification tasks and
obtained a performance close to batch methods.

The strength of the method lies in the fact that arbitrary, even non-continuous likelihoods which
maybe zero in certain regions, can be treated by our method. Such likelihoods may cause problems
for other Gaussian approximations based on local linearisations (advanced Kalman filters) or on the
averaging of the log-likelihood (variational Gaussian approximation). Our method merely requires the
explicit computation of a Gaussian smoothed likelihood and is thus well suited for cases, where (local)
likelihood functions can be modelled empirically as mixtures of Gaussians. If such expressions are
available, the necessary one-dimensional integrals can be done analytically and the on-line updates

require just matrix multiplications and function evaluations. A model of this structure for which
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we already have obtained promising preliminary results is the one used to predict wind-fields from
ambiguous satellite measurements based on a GP prior for the wind-fields and a likelihood model for
the measurement process.

However, a further development of the method requires the solution of various theoretical problems
at which we are presently working. An important problem is to assess the quality of our approxima-
tions. There are two sources of errors. One coming from the Gaussian on-line approximation and
another stemming from the additional sparsity. In both cases it is easy to obtain explicit expressions
for single step errors but it is not obvious how to combine these in order to estimate the cumulative
deviation between the true posterior and our approximation. It may be interesting to concentrate on
the regression problem first because in this case the Gaussian approximation is exact.

A different question is the (frequentist) statistical quality of the algorithm. Our on-line Gaussian
approximation (without sparseness) was found to be asymptotically efficient (in the sense of Fisher) in
the finite dimensional (i.e. parametric) case [Opper, 1996; Opper, 1998]. This result does not trivially
extend to the present infinite dimensional GP case and further studies are necessary. These may be
based on the idea of an effective, finite dimensionality for the set of well estimated parameters [Trecate
et al., 1999] . Such work should also give an estimate for the sufficient number of basis vectors and
explain the existence of the long plateaus (see Figs. 7 and 5) with practically constant test errors.

Besides a deeper understanding of the present algorithm, we find it also important to improve our
method in the following ways: our sparse approximation was found to preserve the posterior means
on previous data-points when projecting on a representation that leaves out the current example. A
further improvement might be achieved if information on the posterior variance would also be used
(e.g. by taking the KL loss rather than the RKHS norm) in optimising the projection. This may
however result in more complex time consuming updates.

Our experiments show that in some cases the performance of the on-line algorithm is inferior to
a batch method. We expect that our algorithm can be adapted to a recycling of data (e.g. along
the lines of [Minka, 2000]) such that a convergence to a sparse representation of the TAP mean field
method [Opper and Winther, 1999] is achieved.

A further drawback that will be addressed in future work is the lack of an (on-line) adaptation
of the kernel hyperparameters. Rather than setting them by hand, an approximate propagation of
posterior distributions for the hyperparameters would be desirable.

[777 referee2: for Gaussian regression and classification with logistic function we know that the
posteerior is unimodal 777?]

Finally, there may be cases of probabilistic models where the restriction to unimodal posteriors as
given by the Gaussian approximation is to severe. Hence, an on-line propagation of a mixture of GPs

has to be considered.
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A Properties of zero-mean (Gaussians

The following property of the Gaussian pdfs is often used in this paper, here we state it in a form of

a theorem:

Theorem 1. Let x € R™ and p(x) zero-mean Gaussian pdf with covariance & = {Xy} (i,j from 1 to

m). If g: R™ — R is a differentiable function not growing faster than a polynomial and with partial

derivatives 5
0;9(x) = gg(X) ,
then .
| axpte gt =3 x| axpl 390 (36)

j=1
In the following we will assume definite integration over R™ whenever the integral appears. Alterna-

tively, using the vector notation, the above identity reads:
@xpx) x9(0) = £ [axpx) Vg (37)
For a general Gaussian pdf with mean u the above equation transforms to:
[ @px) xg00 = [axpix) g+ X [axpix) Vix) (38)
Proof. The proof uses the partial integration rule:
|axpix1v(x) =~ [axg()vp(

where we have used the fast decay of the Gaussian function to dismiss one of the terms. Using the

derivative of a Gaussian pdf. we have:
ptx)vg0) = [ex gix)z Mxpi)

Multiplying both sides with X leads to eq. (37), completing the proof. For the nonzero mean the

deductions are also straightforward. O
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B Proof of the Parametrisation Lemma

Using Bayes’ rule, the posterior process has the form

~ polf) PDIf
P = Tatpe () PO

where f is a set of realisations for the random process indexed by arbitrary points from R™, the inputs
for the GPs.

We compute first the mean function of the posterior process:

_Jdfpo(f) fx P(DIf)
Jafpo(f) P(DIf)po(f)

(Fdvost :jdfﬁ(f) o
(39)

.l N
— @ T afpolfus o ) £ PODIF, - )
i=1

Z
where the denominator was denoted by Z and we used index notation for the realisations of the process
also (thus f(x) = f, and f(x;) = f;). Observe that, irrespectively of the number of the random variables
of the process considered, the dimension of the integral we need to consider is only N + 1, all other
random variables will integrate out (as in eq. (39)). We thus have an N + 1-dimensional integral in
the numerator and Z is an N-dimensional integral. If we group the variables related to the data as

fp = [f1,...,fn]7, and apply Th. 1 (eq. 36) replacing x; by fx and g(x) by P(D|fp), we have

1

N
(dvose = (<fx>ojdfxdfppo(fx,fp) P(DIf) + Y Kolx,x) [dfifopo(fs,fo) ammm) (10)
i=1

1=

where Kj is the kernel function generating the covariance matrix (X in Theorem 1). The variable fy

in the integrals disappears since it is only conained in py. Substituting back Z leads to

N
<fx>‘post = <fx>0 + Z KO(XaXi)qi (41)

i=1

where ¢ is read off from eq. (40)

g = Jdfppo(fp) 3:P(Dlfp)
" [dfppo(fp) P(DIfp)

and the coefficients q; depend only on the data, and are independent from x at which the posterior

(42)

mean is evaluated.
We can simpify the expression for q; by performing a change of variables in the numerator: f/ =
fi — (fi)o where (fi)o is the prior mean at x; and keeping all other variables unchanged f; = fj,j # 1,

leading to the numerator
| afopofp1aP DI,y (o, TR
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and the differentiation is with respect to f{. We then change the partial differentiation with respect
to f{ with the partial differentiation with respect to (f;)o and exchange the differentiation and integral

operators (they apply to a distinct set of variables), leading to

0
—jdf;po(f;w(m{, e (Foy s L)
o{fi)o

We then perform the inverse change of variables inside the integral and subsitute back into the ex-

pression for q;

0
B atys J afopo(fp)P(Difp) 2
S T dfope(fo)P(DIfn)  0(fio In deppo(fD)P(lep) : (43)

Writing the expression for the posterior kernel:

Kpost(x) XI) = <fxfx'>'post - <fx>post<fx’>post (44)

and applying Theorem 1 twice leads to

N N

Kpost (%, %) = Ko(x,x') + 3~ > Ko(x,%:) (D5 — qig5) Ko(x,x") (45)
i=1 j=1
where Dy is
Dy=1-2 p(isy) (46)
VT Zoafpf, "

Identifying Ry = Dj; — qiq; leads to the required parametrisation in equation (3) from Lemma 1.
Simplification of Ri; = Di;—dq;q; is also possible by changing the arguments of the partial derivative

and using the logarithm of the expectation. The result is

aZ
Ry = In [ dfopolfo)P(DIfo) (47)
Yo

0(f1)o0(f;
]

C Online Learning in GP Framework

We prove eq. (8) by induction. We will show that for every time-step we can express the mean and

kernel functions with coefficients & and C given by the recursion (also eq. (9)):

oy = T (o) + q(t+])st+1 (48)
Ciri = W (Co)+ T(H”stﬂslﬂ (49)
Sir1 = T (Ciker) + €

where & and C depend only on the data points x; and kernel function Ky but do not depend on the

values x and x’ (from eq. (8)) at which the mean and kernel functions are computed.
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Proceeding by induction and using the induction hypothesis &y = Co = 0 for time t = 1, we
have o1 (1) = q" and C;(1,1) = r(". The mean function at time t = 1 has is (f,) = o (1)Ko(x1,%)
(from lemma 1 for a single data, eq. (6)). Similarly the modified kernel is K;(x,x") = Ko(x,x') +
K(x,x1)Cq(1, 1)Ko(x1, x") with e and C independent of x and x’, this proving the induction hypothesis.

We assume that at time moment t we have the parameters oy and C; independent of the points x

and x'. These parameters specify a prior GP for which we apply the online learning:

Xt = ZKO xi, %) o (1) 4+ g+ [Z Ko(x, %i) Ce (i, ) Ko(xj, Xe41) + Kolx, X¢41)
i,j=1
= Z Ko (x, 1) [ (1) + q*P Z Ce(1,3)Ko(x5, xe41) | + a7 Ko (x, Xe11) (50)
j=1
t+1
= Z Ko (%, x1) ote11(1)
i1

and by pairwise identification we have eq. (48) or eq. (9) from the main body. The parameters o1

do not depend on the particular value of x. Writing down the update equation for the kernels
K (x,x") = Ke(x, x') + T(t+1)Kt(X, Xe+1) Ke(xeq1, x7)

leads to eq. (49) in a straightforward manner with Cyy1(i,j) independent of x and x’, completing the

induction. O

D Iterative computation of the inverse Gram matrix

In the sparse approximation eq. (16) we need the inverse Gram matrix of the BY set: Kgy = {Ko(x4,x;)}
is needed. In the following the elements of the BY set are indexed from 1 to t. Using the matrix
inversion formula 3 the addition of a new element can be carried out sequentially. This is a well known
fact, exploited also in the Kalman filter algorithm. We consider the new element at the end (last row

and column) of matrix K. Matrix K¢, is decomposed:

Kt kt+1]

Kt+l = "
k’t—H kt+1

(51)

Assuming K ! known and applying the matrix inversion lemma for K¢ :

K el

—1 t +1
Kt—H = N ]

kt+] K

K + K¢ kt+1kt+1Kt ]y;Jll _K;]kt+ﬂ’t_+]1
1., _

| kt+1Kt Yo Yo

3A useful guide to formulae for matrix inversions and block matrix manipulation can be found at Sam Roweis’

(52)

home-page: http://www.gatsby.ucl.ac.uk/ "roweis/notes.html
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where v = k{4 —k{ 1K "key1 is the geometric term from eq. (23). Using notations Key1Ker1 = €41

from eq. (16), K;' = Q,, and K;}; = Q.,; we have a recursion equation:

—1a AT —1 45
Qt + Yt+] et+1et+] _Yt+1et+]

Qt—H = 1 AT 1 (53)
—Yir1€e41 Yt
and in a more compact matrix notation:
Q1 =Q+ Y;L (@1 —eeq1)(€ey1 — € )T (54)

where e, is the t + 1-th unit vector. With this recursion equation all matrix inversion is eliminated
(this result is general for block matrices, such implementation, together with an interpretation of
the parameters has been also made in [Cauwenberghs and Poggio, 2001]). Using the score (26) and
including in BY only inputs with nonzero scores, the Gram matrix is guaranteed to be nonsingular,
Y41 > 0 guarantees non-singularity of the extended Gram matrix(see Fig. 2.b).

In numerical implementations is useful the fact that a Cholesky-like decomposition of the Gram
matrix is possible. Using the lower-triangular matrix R with the corresponding indices, and the identity

Q =R'R, we have the update for the Cholesky-decomposition

R 0
Ry = ( 71/t2AT 1/2) (55)

Yir1 €t t+1

that is a computationally very inexpensive operation, without additional operations provided that the

quantities y¢y1 and e, are already computed.

E Deleting a BY

Adding a basis vector is made with the equations:

o1 = O+ q(t+”(Ctkt+] + et+1) (56)
Ci1 = Co+ 7 (Cikir +eci1)(Cikiyr + )’ (57)
Qt+1 = Q.+ Y;L (@ei1 —epy1)(Cey1 — € )T (58)

where o and C are the iteratively learned Gaussian process parameters, Q is the inverse Gram matrix
of the basis vectors, also iteratively updated, y¢,1 and €., the geometrical characteristics of the new
basis vector, ki1 = [Ko(X1, Xes1), - - ., Ko(x¢, Xe41)]", and eqyq is the t + 1-th unity vector. Here for
simplicity it is assumed that all previous inputs were included in the basis set.

To optimally decrease the size of the parametrisation of the Gaussian Process (the number of basis
vectors), two questions need an answer. The first question is how to delete a basis vector from the set
of basis vectors with minimal loss of information. If the method is given, then one basis vector has to

be selected and removed.
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The first problem can be answered by inverting the parameter expansion equations. Assuming
that the parameters &1, Cii1, and Q,; are known, using pairwise correspondence we can identify
(t+1)
q

=o1(t+1) ! &, where the notations are defined in Fig 3.

Using similar correspondences for the matrix Ci;1 the following identifications can be done

) = Coq(t+1,t+1) ety (59)
et Ct
Ctkt+] - Ct+] (] ..t, t + ] ) d f t+]

Cip1
where the notations are from the decomposition of &1, Ci11 and Qg illustrated in Fig. 3. Substi-
tuting back into equations (56) and (57), the old values for GP parameters are

*
(t) t+1
o = 0 — Oy (60)
Cirt
(t) t—HCt—H
Ct Ct+1 - c*

(61)

Proceeding similarly, using elements of matrix Q,,, the correspondence with (58) is as follows

1 def 1
Y1 = Qi) T e (62)
it
*
A Qi (1.t,t+1) def Qt+1
€ - .. T T
t+1 qt+]

with the reduced set matrix Qt 11

A y  QnQi
Qui =Qy — = (63)
At
The inverse Gram matrix does not need any further modification, however for GP parameters an
update without adding the basis vectors is needed (conform to the non-increasing parameter update)

All vectors necessary for that type of update are already defined. The “optimal” reduced parameters
are given by the equations (a graphical illustration is provided in Fig. 3)

& = oy +og QI*‘ (64)
qt+1

C. CS&W’ t+1 tH*z H] - Qt+1Ct +Cii t+1] 0 (65)
it it
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