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Abstract

We propose a weakly supervised semantic segmentation algo-
rithm based on deep neural networks, which relies on image-
level class labels only. The proposed algorithm alternates be-
tween generating segmentation annotations and learning a
semantic segmentation network using the generated anno-
tations. A key determinant of success in this framework is
the capability to construct reliable initial annotations given
image-level labels only. To this end, we propose Superpixel
Pooling Network (SPN), which utilizes superpixel segmen-
tation of input image as a pooling layout to reflect low-level
image structure for learning and inferring semantic segmen-
tation. The initial annotations generated by SPN are then
used to learn another neural network that estimates pixel-
wise semantic labels. The architecture of the segmentation
network decouples semantic segmentation task into classi-
fication and segmentation so that the network learns class-
agnostic shape prior from the noisy annotations. It turns out
that both networks are critical to improve semantic segmen-
tation accuracy. The proposed algorithm achieves outstand-
ing performance in weakly supervised semantic segmentation
task compared to existing techniques on the challenging PAS-
CAL VOC 2012 segmentation benchmark.

Introduction
Semantic segmentation is a computer vision task that as-
signs a semantic label (e.g., object class) to every pixel in
an image. This task is particularly challenging when objects
involve substantial appearance variations due to changes in
pose, scale and illumination, or objects boundaries are dis-
tracted by occlusion and background clutter. Recently, Deep
Neural Networks (DNNs) have been extensively studied to
tackle this problem, and some algorithms demonstrate im-
pressive performance (Long, Shelhamer, and Darrell 2015;
Noh, Hong, and Han 2015; Chen et al. 2015; Vemulapalli et
al. 2016; Lin et al. 2016b; Qi 2016)

However, the data-hungry nature of DNNs restricts their
applications to semantic segmentation in an uncontrolled
and realistic environment. Training DNNs for semantic seg-
mentation demands a large number of pixel-level segmenta-
tion annotations. However, the collection of large-scale an-
notations is dreadfully labor-intensive and it is difficult to
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maintain good quality of labels in terms of accuracy and
consistency. For this reason, existing datasets often suffer
from lack of annotated examples and class diversity, and it
is not straightforward to learn DNNs for semantic segmen-
tation that can handle various object classes in real world
images.

Weakly supervised approaches for semantic segmenta-
tion have been proposed to alleviate the challenge (Dai,
He, and Sun 2015; Papandreou et al. 2015; Pinheiro and
Collobert 2015; Pathak, Krähenbühl, and Darrell 2015). In-
stead of pixel-level annotations, they make use of weaker
annotations such as bounding boxes (Dai, He, and Sun
2015; Papandreou et al. 2015), scribbles (Lin et al. 2016a),
and image-level class labels (Pinheiro and Collobert 2015;
Pathak, Krähenbühl, and Darrell 2015), all of which are
much less expensive to obtain than pixelwise segmenta-
tion annotations and readily available in various large-scale
datasets such as PASCAL VOC (Everingham et al. 2010)
and ImageNet (Russakovsky et al. 2015). The main chal-
lenge in training a model based on weak supervision is the
step to generate pixelwise label maps from incomplete infor-
mation through self-supervision. The most popular choice
for this task is to employ discriminative objectives for the
identification of local image regions relevant to each seman-
tic category. However, although such strategy is useful to
roughly localize objects, it often concentrates on small dis-
criminative parts of an object and is not sufficient to cover
entire object areas; it leads to poor segmentation perfor-
mance compared to fully supervised approaches.

We believe that weakly supervised semantic segmentation
can be improved by considering low-level structures of in-
dividual images and shape information commonly observed
in multiple images. We realize this idea using two DNNs
with an iterative optimization procedure. Specifically, our
approach alternates between 1) generating segmentation an-
notations and 2) learning a semantic segmentation network
using the generated annotations, where the learned network
is in turn used to generate annotations for the next round.
The success of this framework relies on the capability to
generate dependable initial annotations given image-level
class labels only. For the purpose, we propose Superpixel
Pooling Network (SPN), which employs superpixel segmen-
tation as a pooling layout to reflect low-level image structure
for learning and inferring semantic segmentation in a weakly
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supervised setting. The initial annotations generated by SPN
are then given to learn DecoupledNet (Hong, Noh, and Han
2015), which is the second network in our approach for the
final semantic segmentation. By decoupling semantic seg-
mentation into classification and segmentation tasks, Decou-
pledNet learns class-agnostic shape prior from the initial an-
notations effectively. Both SPN and DecoupledNet substan-
tially improve segmentation accuracy according to our ob-
servation. Our framework outperforms the existing state-of-
the-art techniques in weakly supervised semantic segmenta-
tion with only a single round training, and its performance
is further improved by additional rounds, where annotations
are generated by DecoupledNet of the previous iterations.
The contribution of our approach is three-fold:
• We propose a novel DNN architecture to exploit super-

pixels as a pooling layout for generating segmentation
annotations with image-level labels only. The proposed
SPN is naturally combined with existing DecoupledNet
for weakly supervised semantic segmentation.

• To construct robust initial segmentation labels for train-
ing, we introduce techniques for segmentation label sani-
tization and reliable image identification, which are useful
to improve the final segmentation performance.

• The proposed algorithm demonstrates impressive perfor-
mance, and achieves the state-of-the-art accuracy com-
pared to existing approaches with significant margins.

Related Work
The state-of-the-art algorithms on semantic segmentation
rely on DNN (Long, Shelhamer, and Darrell 2015; Noh,
Hong, and Han 2015; Zheng et al. 2015; Chen et al. 2015;
Badrinarayanan, Handa, and Cipolla 2015). These algo-
rithms are built with a classification network pre-trained on
a large-scale image collection (Russakovsky et al. 2015).
The standard framework of semantic segmentation is to
train the encoder and/or decoder networks for pixel-level
classification based on ground-truth segmentation masks.
Long et al. (Long, Shelhamer, and Darrell 2015) pro-
posed an efficient end-to-end learning framework based
on Fully-Convolutional Network (FCN). Later approaches
have improved the FCN-style architecture by applying fully-
connected CRF (Chen et al. 2015) as post-processing or in-
tegrating it as a network component (Zheng et al. 2015).
Other alternatives have built deep decoding networks based
on deconvolution network (Noh, Hong, and Han 2015;
Badrinarayanan, Handa, and Cipolla 2015) to preserve ac-
curate object boundaries. Although these approaches have
achieved substantial improvement in performance, there is a
critical bottleneck in collecting a large amount of segmen-
tation annotations to learn their DNNs, which limits their
practicality for semantic segmentation in the wild.

Weakly supervised approaches (Pinheiro and Collobert
2015; Papandreou et al. 2015; Pathak et al. 2015; Hong,
Noh, and Han 2015) have been proposed to resolve the data
deficiency issues. In this setting, models for semantic seg-
mentation is trained with only image-level labels (Pinheiro
and Collobert 2015; Papandreou et al. 2015; Pathak et al.
2015), scribbles (Lin et al. 2016a), or bounding box (Dai,

He, and Sun 2015). To build an association between coarse
labels and pixel-level fine annotations, they often employ
auxiliary objectives such as a classification loss to obtain
coarse localization of semantic categories, which are of-
ten refined by Multiple Instance Learning (MIL) (Pinheiro
and Collobert 2015; Pathak et al. 2015) or Expectation-
Maximization (EM) (Papandreou et al. 2015). However,
these approaches tend to localize only few discriminative
parts of object because of the missing supervision on seg-
mentation, and perform much worse than fully-supervised
methods. To mitigate this issue, (Hong et al. 2016) proposed
a transfer-learning approach that exploits segmentation an-
notations of other object classes, and (Pinheiro and Collobert
2015) investigated the use of various shape priors such as su-
perpixels and object proposals. Also, (Pathak, Krähenbühl,
and Darrell 2015) showed that even a very little supervision
such as one-bit information about object size improves seg-
mentation performance significantly.

Our approach attempts to bridge the gap between dis-
criminative localization and shape estimation, which is at-
tained by the use of superpixel as a unit for shape estima-
tion (SPN) and integration of a shared segmentation network
across multiple object classes (DecoupledNet).

Superpixel Pooling Network
This section describes the architecture of SPN including the
details of the superpixel pooling layer, and the learning strat-
egy for SPN. It also discusses how to compute initial seg-
mentation annotations of training images using SPN.

Architecture
SPN is composed of three parts: 1) a feature encoder fenc,
2) an upsampling module composed of a feature upsampler
fups and the superpixel pooling layer, and 3) two classifica-
tion modules that classify feature vectors obtained from the
encoder and the upsampling module. The entire network is
learned with the two separate classification losses computed
by the last component. Overall architecture of SPN is illus-
trated in Fig. 1.

The encoder of SPN computes a convolutional feature
map z = fenc(x) of input image x. As a part of the en-
coder, we adopt the VGG16 network (Simonyan and Zis-
serman 2015) pre-trained on ImageNet excluding its fully-
connected layers. The parameters of the VGG16 network is
fixed throughout. To adapt the encoder to the target task, we
add an additional convolutional layer, which is learned from
scratch, on the top of the convolutional layers of the VGG16
network. The encoder is thus fully convolutional and outputs
a feature map that contains a spatial information.

Given the convolutional feature map z, a straightforward
way to estimate object area is to classify every spatial loca-
tion of the feature map—akin to the sliding-window method
in object detection. To learn such classifier jointly with other
network parameters, global average pooling (Zhou et al.
2016) or global max pooling (Oquab et al. 2015) is applied
to the feature map to convert it into a single feature vec-
tor, which is then used to learn classification layers based
on classification loss. However, the activation map obtained
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Figure 1: Overall architecture of SPN. SPN takes two inputs for inference: an image and its superpixel map. Given an input
image, our network extracts high-resolution feature maps using encoder fenc followed by several upsampling layers fups, and the
superpixel pooling layer aggregates features inside of each superpixel by exploiting an input superpixel map as pooling layout.
Then relevance of superpixels to semantic categories is obtained by training a model with discriminative loss in a similar
way to (Zhou et al. 2016). Note that we put additional branch of global average pooling for regularization, which prevents
undesirable training noises introduced by superpixels.

by this approach is not sufficient for semantic segmentation
since it assigns high scores to only few discriminative parts
of an object and its resolution is too low to recover object
shape accurately.

We design the Superpixel-Pooling (SP) layer to resolve
the above issue. Unlike traditional pooling layers, the pool-
ing layout of the SP layer is not pre-defined but determined
by superpixels of the input image. Through the SP layer, we
can aggregate feature vectors spatially aligned with super-
pixels by average-pooling. The output of the SP layer then
becomes an N ×K matrix, where N means the number of
superpixels in the input image and K indicates the number
of channels in the feature map (K = 512 in the current SPN
architecture). Analogous to (Zhou et al. 2016), the N×K su-
perpixel features are then averaged over superpixels to build
a single 1×K vector, which will be classified by the follow-
ing fully-connected layer to compute and backpropagate the
classification loss.

The simplest way to utilize the SP layer is to directly
connect the feature map and the SP layer, but this is not
appropriate since the resolution of the feature map is too
low; a feature map location may be associated with a large
number of superpixels, which leads to overly-smoothed fea-
ture vectors of superpixels. We thus add a non-linear up-
sampling module fups between the feature map and the
SP layer. This module consists of two deconvolution lay-
ers (Long, Shelhamer, and Darrell 2015) and one unpooling
layer (Zeiler and Fergus 2014) followed by another two de-
convolution layers. A batch normalization layer (Ioffe and
Szegedy 2015) and a rectified linear unit (Nair and Hinton
2010) are attached after every deconvolution layer. We em-
ploy a shared pooling switch (Noh, Hong, and Han 2015)
between the last pooling layer of the encoder and the un-
pooling layer, which is known to be useful to reconstruct
object structure in the semantic segmentation scenario. All
the parameters of the upsampling module are trained from
scratch.

Finally, SPN has a branch that directly applies global av-
erage pooling to the feature map z and classifies the aggre-
gated feature vector. This branch aims at preventing the net-

work from being spoiled by the SP layer and keeping dis-
criminative parts with high activation scores.

Forward and Backward Propagations via SP Layer
This section derives forward and backward propagations
through the SP layer. Let pi = {pki }k=1,...,Ki

be the i-th
superpixel of an image, where pki indicates individual pixels
belonging to pi and Ki denotes the number of pixels in pi.

The results of the forward propagation through the SP
layer are feature vectors, each of which is average-pooled
from the area of the associated superpixel. Let ẑ = fups(z)
be the upsampled feature map, which is the input of the SP
layer. The pooled feature vector of the i-th superpixel is then
given by

z̄i =
1

Ki

∑
j

∑
k

I(pki ∈ rj) ẑj =
∑
j

hj
i ẑ

j , (1)

where rj and ẑj represent the receptive field and the feature
vector of the j-th location in ẑ, respectively. I(pki ∈ rj) is an
indicator function that is 1 if the center of rj is closer to pki
than those of any other receptive fields are, and 0 otherwise.
The average of indicator functions over the superpixel is de-
noted by hj

i =
∑

k I(p
k
i ∈ rj)/Ki, which represents how

much area of the i-th superpixel is occupied by the recep-
tive field rj (i.e., the responsibility of rj for the superpixel
pi). Through global average pooling over all superpixels, we
obtain a single feature vector for the input image, which is
given by

z̃ =
1

N

∑
i

z̄i =
1

N

∑
i

∑
j

hj
i ẑ

j , (2)

where N indicates the number of superpixels. The image-
level feature vector z̃ is then classified by the fully connected
layer following the SP layer, and the result is fed to the loss
function L.

In the backward propagation, the gradient of ẑj of the in-
put feature map is derived as
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∂L
∂ẑj

=
∂L
∂z̃

∂z̃

∂ẑj
=

1

N

∂L
∂z̃

∂
∑

i

∑
j′ h

j′
i ẑj

′

∂ẑj
=

1

N

∂L
∂z̃

∑

i

hj
i .

(3)
Note that although individual input images in a mini-batch

may have different numbers of superpixels, the forward and
backward propagations do not depend on the number of su-
perpixels due to the average pooling over all superpixels per
image.

Learning SPN
Loss function. SPN is learned with classification losses as
only image-level class labels are available in our setup. Since
multiple objects of different classes may appear in an image,
given C object classes, our loss function is thus defined as
the sum of C binary classification losses as shown in

L(f(x),y)

=
1

C

C∑
c=1

{
yc log

efc(x)

1 + efc(x)
+ (1− yc) log

1

1 + efc(x)

}
,

(4)

where fc(x) and yc ∈ {0, 1} are the network output and the
ground-truth label for a single class c, respectively. Note that
the SPN outputs two class score vectors at the end of the two
branches (Fig. 1), and they are treated independently by the
identical loss function.

Multi-scale learning. Objects are depicted with different
scales in images. To better model such scale variations of ob-
jects, we follow the approach of (Oquab et al. 2015) that ran-
domly resizes images in the input mini-batch during train-
ing. Specifically, we first make images square by padding
zeros to its shorter dimension, and rescale them randomly to
one of the 6 predefined sizes: 2502, 3002, 3502, 4002, 4502,
and 5002 pixels. Note that our SPN consists only of con-
volutional and global pooling layers except the SP layer, so
the network is naturally fit to this multi-scale approach if the
SP layer could work with images of different sizes. To this
end, we compute the responsibilities of the receptive field
(i.e., hj

i ’s in Eq. (1)) for all 6 possible input resolutions in
advance per image. We observed empirically that this multi-
scale approach helps to estimate object area more accurately.

Generating Initial Annotations with SPN
Superpixel-pooled class activation map. SPN assigns a
feature vector to each superpixel through the SP layer as de-
scribed in Eq. (1). During inference, the feature vector of
each superpixel is first given to the fully-connected classifi-
cation layer following the SP layer, and the class scores of
the individual superpixels are computed. As a result, we ob-
tain a tensor in R

W×H×C , where W and H are the width
and height of the input image, respectively, and each chan-
nel corresponds to an activation map for the associated class.
As in training, an input image is rescaled to the 6 predefined
sizes, and 6 activation tensors are computed accordingly. Fi-
nally, the 6 tensors are aggregated by max-pooling. We refer

Figure 2: Qualitative comparison of CAM (Zhou et al. 2016)
and our SP-CAM with initial segmentation results obtained
by thresholding them. CAM is computed by classifying ev-
ery location of the feature map z with the fully-connected
layer directly connected to z. CAM could not cover the en-
tire object area due to its localized activations on limited res-
olution. Class activations in SP-CAM preserves object shape
more accurately by employing superpixel as a unit for shape
estimation.

to the aggregated tensor as Superpixel-Pooled Class Activa-
tion Map (SP-CAM).

SP-CAM is motivated by Class Activation Map (CAM)
of (Zhou et al. 2016), but has a critical advantage. Unlike
CAM, where each location of the feature map is activated in-
dependently, SP-CAM assigns class activations to individual
superpixels, which allows to generate class activation scores
in the original resolution with image structures preserved.
This property of SP-CAM is particularly useful for semantic
segmentation as illustrated in Fig. 2.

Generating initial annotation with SP-CAM. We obtain
initial segmentation annotations of training images through
their SP-CAMs. The activation map of each class in SP-
CAM is thresholded by 50% of the maximum score of the
map; in other words, pixels whose activation scores are be-
low the threshold are ignored. Furthermore, we disregard the
activation maps of the classes unmatched with the image-
level ground-truth labels. We call this step annotation saniti-
zation. Note that using image-level labels is not unfair since
our goal is not the inference of segmentation labels but the
construction of segmentation annotations of training images
given the labels for image-level classification. The segmen-
tation annotation of the SP-CAM is then given by searching
for the label with the maximum activation score in every
pixel. If the activation scores of a pixel are below a pre-
defined threshold in all the C channels, it is considered as
background. An example of initial annotation is illustrated
in Fig. 2.

Iterative Learning of DecoupledNet
The output of SPN already produces decent segmentation
results thanks to the use of superpixel as a unit for shape es-
timation. However, SPN is still not free from the limitation
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of discriminative learning; it tends to exaggerate the class
scores of discriminative superpixels, thus some parts of an
object could be lost when initial annotations are generated
by the procedure described above. A solution to resolve this
issue would be to get hints from annotations of other images,
and this idea can be realized by learning class-agnostic seg-
mentation knowledge from a number of initial segmentation
annotations. We adopt DecoupledNet (Hong, Noh, and Han
2015) as the network that learns such segmentation knowl-
edge from the initial annotations and refine them iteratively.

DecoupledNet decomposes the semantic segmentation
problem into two separate tasks of classification and seg-
mentation, and is composed of two decoupled networks to
handle the two tasks. Following (Hong, Noh, and Han 2015),
the classification network of DecoupledNet is trained with
image-level labels and serves as a feature encoder in our
framework. Unlike the original setting, however, its segmen-
tation network is now trained with generated noisy annota-
tions instead of ground-truth segmentations. Since the bi-
nary segmentation network is shared across different object
classes, DecoupledNet can learn class-agnostic segmenta-
tion knowledge from annotations of multiple object classes,
which allows it to generate more accurate annotations for the
next round of training.

In each round of our algorithm, DecoupledNet is learned
from generated annotations, which are provided by SPN at
the first round and by DecoupledNet trained in the previ-
ous iteration from the second round. We learn the segmenta-
tion network of DecoupledNet from scratch at every round
to avoid annotation biases of the previous round. Note that
only a subset of reliable annotations are used to learn the
network to minimize undesirable effects by incomplete and
noisy annotations. To this end, we define the reliability of an
annotation based on the degree of scatter, which is the ra-
tio of the squared perimeter to the area of segmentations in
the annotation. Only a subset of least scattered annotations
are then selected for training, while assuming that less scat-
tered annotations are more reliable. Note that DecoupledNet
is well suited to this reliable subset selection since the net-
work has shown superior performance even with only a lim-
ited number of segmentation annotations given in training.
We observed empirically that DecoupledNet learned with a
subset of reliable annotations consistently outperforms its
counterpart learned with all annotations. The trained Decou-
pledNet is in turn used to generates annotations for the next
round. As in the case of SPN, the generated annotations are
sanitized by image-level labels to remove irrelevant or unre-
liable segments in the annotations.

The above procedure is repeated until the predefined num-
ber of iterations is reached. The DecoupledNet trained at the
final round is considered as our model for semantic segmen-
tation.

Experiments
This section describes implementation details, and demon-
strates the effectiveness of our approach in PASCAL
VOC 2012 segmentation benchmark (Everingham et al.
2010) with comparisons to the-state-of-the-art techniques

for weakly supervised semantic segmentation. As an eval-
uation metric, we adopt segmentation accuracy defined by
intersection over union between ground-truth and predicted
segmentation.

Implementation Details
Both of SPN and DecoupledNet are trained on PASCAL
VOC 2012 dataset (Everingham et al. 2010). Besides the
provided image sets for the semantic segmentation task, we
employ additional images used in (Hariharan et al. 2011) to
enlarge training set. In total, 10,582 images are used to train
the networks, and the validation set of 1,449 images is kept
for evaluating our approach. Superpixels of the images are
computed by (Zitnick and Dollár 2014).

SPN is implemented in Torch7 (Collobert, Kavukcuoglu,
and Farabet 2011). The network parameters are optimized
by Adam (Ba and Kingma 2015) with an initial learning rate
of 0.001. The optimization converges after approximately
9K iterations with mini-batches of 12 images. The training
procedure takes about 3 hours on a single Nvidia TITAN X
GPU with 12Gb RAM in our experiment.

We learn DecoupledNet for two rounds. When learn-
ing DecoupledNets, we follow the original setup described
in (Hong, Noh, and Han 2015), and the number of iterations
is set to 9K for both rounds. As a training set, top 300 most
reliable annotations are selected per class at each round.

Evaluation on PASCAL VOC Benchmark
Analysis of generated annotation. We first analyze and
evaluate annotations generated by our algorithm at each
round. Details of the results are summarized in Fig. 3. It
turns out that both of the sanitization and reliable subset se-
lection are essential to improve the quality of annotations
and in turn learn a better segmentation network.

We also compare SPN with CAM (Zhou et al. 2016) in
terms of the annotation quality. Without reliable subset se-
lection, annotations generated by SPN achieves 43.8% in av-
erage accuracy while those by CAM shows 30.5%. This re-
sult demonstrates the effectiveness of the superpixel pooling
layer of SPN.

Comparison to other methods. Our algorithm is compared
with up-to-date weakly supervised approaches. In addition
to our two segmentation networks (Ours:Rnd1, Ours:Rnd2),
we also evaluate SPN as a semantic segmentation network
(Ours:SPN). SPN predicts semantic segmentation in the
same way as it generates initial annotations, but makes use
of its classification scores instead of image labels to ig-
nore irrelevant classes in its segmentation result. Specifi-
cally, SPN disregards object classes whose activation scores
averaged over all superpixels are below 0. We also report
the accuracy of the DecoupledNet trained with all available
ground-truth annotations (Upper-bound) as the upper-bound
of our algorithm.

The segmentation results on PASCAL VOC 2012 valida-
tion set are quantified and compared in Table 1. SPN by
itself outperforms all the previous approaches except MIL
using segmentation proposals (MIL+Seg), which is the best
one among them. Note that segmentation proposals used in
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Figure 3: Analysis of our annotation generation technique on PASCAL VOC 2012 segmentation benchmark. (a) Empirical
justification for our reliability metric. We show the average segmentation accuracy of annotations selected in the decreasing
order of reliability for training images. The average accuracy consistently decreases by increasing the number of selected
annotations, which indicates that the reliability metric is well correlated with the actual quality of annotation. (b) Effects of
the annotation sanitization and reliable subset selection. In both rounds, the accuracy of annotations is enhanced by the
sanitization, and further improved by selecting 300 most reliable annotations per class in training set. (c) Effect of the reliable
subset selection. We trained two networks, one with all of the sanitized annotations and the other with 300 most reliable
annotations per class, and compare their segmentation prediction accuracy in validation set. The network learned with the
reliable subset of annotations was better than its counterpart in both rounds.

Table 1: Accuracy on PASCAL VOC 2012 validation set

Mean Acc.
Ours:SPN 40.0 %
Ours:Rnd1 48.6 %
Ours:Rnd2 50.2 %
CCNN (Pathak, Krähenbühl, and Darrell 2015) 35.3 %
EM-Adapt (Papandreou et al. 2015) 33.8 %
MIL+Spx (Pinheiro and Collobert 2015) 36.6 %
MIL+Seg (Pinheiro and Collobert 2015) 42.0 %
Upper-bound (Hong, Noh, and Han 2015) 67.5 %

MIL+Seg are more expensive and powerful evidences to re-
cover object shapes than superpixels of SPN, and SPN out-
performs MIL when it makes use of superpixels (MIL+Spx)
as SPN does. Also, with only a single round of Decoupled-
Net training, our system outperforms MIL+Seg by a large
margin, and an additional round further improves the perfor-
mance. The same tendency is shown in the results on PAS-
CAL VOC 2012 test set as summarized in Table 2.

Qualitative results on PASCAL VOC 2012 validation set
are presented in Fig. 4, where results of our system (Round1
and Round2) are compared with those of SPN after saniti-
zation (Initial annotation). The figure shows that, over it-
erations, missing parts are recovered and false alarms are
suppressed.

Conclusion
We have proposed a new weakly supervised semantic seg-
mentation algorithm based on Superpixel Pooling Network
(SPN). SPN takes advantage of underlying image structure
by employing a superpixel map as a pooling layout, which
is especially useful for semantic segmentation in a weakly
supervised setting. The segmentation results by SPN is

Table 2: Accuracy on PASCAL VOC 2012 test set

Mean Acc.
Ours:Rnd2 46.9 %
CCNN (Pathak, Krähenbühl, and Darrell 2015) 35.6 %
EM-Adapt (Papandreou et al. 2015) 39.6 %
MIL+Spx (Pinheiro and Collobert 2015) 35.8 %
MIL+Seg (Pinheiro and Collobert 2015) 40.6 %
Upper-bound (Hong, Noh, and Han 2015) 66.6 %

then used as pixel-wise segmentation annotations for learn-
ing DecoupledNet, which learns class-agnostic segmenta-
tion knowledge from the annotations to further improve seg-
mentation results. To alleviate side effects introduced by
noisy and incomplete annotations, we also proposed tech-
niques to sanitize the annotations and measure their relia-
bility. The proposed algorithm demonstrated substantially
improved performance over previous arts on a challenging
benchmark dataset.
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