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The reporting interval of infectious diseases is often determined as a time unit in the calendar
regardless of the epidemiological characteristics of the disease. No guidelines have been pro-
posed to choose the reporting interval of infectious diseases. The present study aims at
translating coarsely reported epidemic data into the reproduction number and clarifying
the ideal reporting interval to offer detailed insights into the time course of an epidemic.
We briefly revisit the dispersibility ratio, i.e. ratio of cases in successive reporting intervals,
proposed by Clare Oswald Stallybrass, detecting technical flaws in the historical studies.
We derive a corrected expression for this quantity and propose simple algorithms to estimate
the effective reproduction number as a function of time, adjusting the reporting interval
to the generation time of a disease and demonstrating a clear relationship among the
generation-time distribution, reporting interval and growth rate of an epidemic. Our
exercise suggests that an ideal reporting interval is the mean generation time, so that the
ratio of cases in successive intervals can yield the reproduction number. When it is impra-
ctical to report observations every mean generation time, we also present an alternative
method that enables us to obtain straightforward estimates of the reproduction number
for any reporting interval that suits the practical purpose of infection control.

Keywords: disease outbreaks; infectious disease reporting; infection;
statistical model; smallpox; influenza

1. INTRODUCTION

Notifications of infectious diseases occur in regular time
intervals to inform infectious disease epidemiologists
and public health officials about the magnitude of epi-
demics (Giesecke 2002). Case notification also gives
information about (i) the time trends of infection, i.e.
whether the time course of an epidemic is in the
upward or downward direction, (ii) an indication of
how steep the rise and fall elements are, and (iii) some-
times about the impact of intervention measures, e.g. if
the introduction of mass vaccination results in a
reduction in the number of infections (Chorba 2001).
However, in many instances, the observed data do not
permit capturing such a change in the epidemiological
time course because the reporting interval is often
defined as a time unit in the calendar (e.g. week,
month or year) for practical convenience. Guidelines
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for choosing a specific reporting interval to understand
the epidemiological dynamics of infectious diseases are
currently lacking.

A statistical method to determine the reporting
interval is density estimation, which may suggest a bin
width to plot the histogram of case reports (Silverman
1986; Scott 1992). However, we expect that the epidemic
curve spikes when successive waves of infections result in
successive waves of reported cases, and in this sense,
using bin width as recommended by density estimation
(i.e. the reporting interval informed by the smoothing
method) could suggest too coarse bins that smooth out
several generations of cases occurring in a single report-
ing interval. To interpret the time course of an epidemic,
case notifications are used to estimate a key variable that
characterizes transmissibility with time. The effective
reproduction number at time ¢, R, defined as the
average number of secondary cases per primary case at
time ¢ (for ¢t>0), is a useful measure to inform about
the transmission potential of a disease and indications
of the expected number of secondary transmissions
and of control efforts required to curb the epidemic
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(Ferguson et al. 2001, 2005; Haydon et al. 2003; Wallinga
& Teunis 2004; Cauchemez et al. 2006a,b; Fraser 2007;
Garske et al. 2007; White & Pagano 2008a,b). There
are algorithms for transforming epidemic curves into
the time course of R; (Wallinga & Teunis 2004;
Cauchemez et al. 2006a), but these require symptom
onsets in fine time scale. Although the most precise
reporting interval (e.g. reporting in a continuous time
scale) would certainly yield the most ideal interpretation
of the transmission dynamics, it is often impractical to
report cases on an hourly or daily basis.

The present study proposes guidelines for selecting
optimal reporting intervals, demonstrating that the
ideal bin width should be determined by the distri-
bution of the generation time, which is defined as the
time from infection of a primary case to infection of a
secondary case infected by the primary case (Svensson
2007). When it is impractical to report observations
every mean generation time, we introduce an alterna-
tive simple algorithm to deal with interval censoring.
In all cases, we show that the observed data permit
obtaining straightforward estimates of the effective
reproduction number that are useful for epidemic con-
trol. To understand the implications associated with
the number of cases in a defined reporting interval,
we start our discussion with a brief historical note on
the earliest concept of R; proposed by Clare Oswald
Stallybrass (1881-1951).

2. STALLYBRASS’S DISPERSIBILITY

We first discuss a historical theory by Stallybrass who
wrote one of the earliest epidemiologic textbooks,
Principles of FEpidemiology, in 1931 (Stallybrass
1931), proposing ‘dispersibility’ as one of the epidemio-
logical markers (see electronic supplementary material
for detailed historical account of Stallybrass). Dispersi-
bility was defined as a measurement of the ‘total effect
of factors affecting the spread of any specific infection at
a given time and place’ (Stallybrass 1931), the factors of
which he discussed include ‘sometimes intrinsic but
more often depending upon either external or secondary
factors’. Stallybrass calculated the ‘dispersibility ratio’
using epidemic data given in terms of the number of
cases by reporting interval as follows:

case in period A

ratio of dispersibility = (2.1)

case in period B’
where the reporting interval A follows the preceding
interval B of identical length (e.g. week or month).
That is, taking the ratio of the numbers of cases in suc-
cessive reporting intervals, he attempted to measure the
transmissibility of a disease with time. Figure 1 shows
the original (uncorrected) ratio of dispersibility using
monthly reports of cases of pandemic influenza from
1918 to 1919 in the French army (Delater 1923) and
equation (2.1). From the relative change of ratios with
respect to time, he suggested that it is possible to
roughly assess the time course of an epidemic.
Nevertheless, the ratios did not highlight epidemio-
logical characteristics (e.g. generation time) of the
disease, not allowing the comparison of ratios obtained
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Figure 1. Stallybrass’s dispersibility ratio for the monthly inci-
dence of pandemic influenza in the French army from 1918 to
1919 (N =192 286). Taking ratios of the reported numbers of
cases (bars) in successive reporting intervals, the dispersibility
ratios were calculated (Stallybrass 1931). This figure was
reproduced by the authors with reference to the original
data (Delater 1923). Bars, cases; filled circles, dispersibility.

for different diseases. To address this issue, Stallybrass
introduced a ‘correcting factor’, i.e.

length of successive periods in days

correcting factor = - - —
mean incubation period in days

(2.2)

where the numerator on the right-hand side corresponds
to the reporting interval. It seems likely that he
intended to make an adjustment of the dispersibility
ratio by using a correction ratio of the reporting interval
to an average interval between successive generations of
cases. As examples, Stallybrass discussed the estimates
of correcting factors for measles and influenza for
weekly reported data; assuming that the mean incu-
bation periods of measles and influenza are 11 and 2
days, respectively, he suggested the use of correcting
factors of 7/11=0.63 and 7/2=3.5. A corrected
dispersibility ratio was calculated as

case in period A

x correcting factor. (2.3)

case in period B
Unfortunately, the reason for multiplying the crude dis-
persibility with the correcting factor was not explained.
Moreover, his arguments were missing an epidemiological
interpretation of the absolute value of the ratio.

3. CORRECTING THE DISPERSIBILITY
RATIO

As a prelude to the estimation of R; using coarsely
reported data, here we correct the dispersibility ratio
in the light of the relationship between the reproduction
number and generation time (Roberts & Heesterbeek
2007; Wallinga & Lipsitch 2007) and show that this
relationship enables us to adjust the reporting interval
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with respect to the mean generation time. The second
earliest concept of the effective reproduction number
was proposed by Nold (1979) who defined R; using
the mean generation time, w, as follows:

C(t, t+ )

i—ay (3.1)

Ru(t) =
where C(#, t) denotes the number of cases observed
during the time interval between t¢; and ¢. It should
be noted that equation (3.1) implicitly assumes that
the generation-time distribution g¢(7) of length 7 is
given by a delta function (i.e. g(7) equals 1 if 7=p
and 0 otherwise); see electronic supplementary material
for further details of the definition of R; by Nold. Con-
sidering a special case of an epidemic where a number of
infected individuals experience geometric growth with a
constant reproduction number R and a mean gener-
ation time w (Lotz 1880; Nishiura et al. 2006), the
expected number of cases in generations 0, 1, 2,..., ¢
follows

a,aR, aR? -, aR’, (3.2)

where a denotes the number of index cases. Supposing
that the reporting interval, At, is exactly a multiple of
the mean generation time (i.e. At= un, where n is a
positive integer), the numbers of cases in kth and
(k+1)th reports, J;, and J;y, are

Jr=a+ @R+ aR +---+ R =q

and

Jk+1 _ aoRn 4 aORnJrl + aoRnJrQ RS aORQn—l

2n—1

n—1
:%ZRZZ%RHZRZ7
=n 1=0

respectively, where qq is the initial number of cases of
the first generation in the kth reporting interval. Inspec-
tion of equations (3.3) and (3.4) suggests that the
incidence ratio, Ji,1/J;, yields R". Using the following
n as an alternative correcting factor, i.e.

(3.4)

At length of reporting interval
n—=—=—

; (3.5)

w mean generation time

an estimator of the reproduction number, R, is given by

R _ Jk+1 1/n
Jk .

Two technical flaws in the Stallybrass dispersibility
ratio were corrected. First, the generation time instead
of the incubation period must be used as the denomi-
nator of the correcting factor. Second, in the light
of geometric increase in infected individuals, instead of
multiplying the correcting factor, the (1/n)th root of
the ratio should have been taken to yield an estimate
of the reproduction number, which is assumed constant
over time. It should be noted that the above-mentioned
linear arguments are appropriate only during the early
phase of an epidemic or in an endemic situation

(ie. R=1).

(3.6)
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Even in situations when the reporting interval is not
exactly a multiple of the mean generation time, the
relationship between R and u can be derived. Assuming
exponential growth of cases with the intrinsic growth
rate r, the ratio of cases in successive reports is given
by Jii1/Jp = exp(rAt) (appendix A 3). If we further
assume that the generation-time distribution follows
a delta function with mean u, R is given by
exp(ur) (Wallinga & Lipsitch 2007), which results
in the relationship shown in equation (3.6) where n,
in this assumption, is a positive real number given by
equation (3.5).

4. ESTIMATION OF R AND IDEAL
REPORTING INTERVAL

4.1. Approzximating the epidemic curve

A constant R is limited to the case when exponential (or
geometric) growth of cases is continuously observed
over time or in an endemic state situation. Nevertheless,
only with a slight extension of the model, the ratio of
cases in successive reporting intervals would be extre-
mely useful in offering an interpretation of the course
of an epidemic, especially when the denominator of
the ratio is sufficiently large. Our strategy is illustrated
in figure 2. Even when we do not have access to data in
fine time scale, the effective reproduction numbers, R,
in each reporting interval can be estimated, assuming
exponential (or geometric) increase in infected individ-
uals in each interval. Assuming different growth rates
by reporting interval, this offers an approximated
epidemic curve.

Here we extend and correct the theory of the disper-
sibility ratio, examining two different historical
datasets, i.e. epidemics of smallpox and influenza. For
the case of smallpox, we examine monthly incidence
of smallpox for the entire Netherlands from 1870
to 1873 (Ministerie van Binnenlandsche Zaken, The
Netherlands, 1875). The epidemic of variola major
started in January 1870 with 20 575 cases reported
over a period of 48 months. The original data are
available from the electronic supplementary material.
The influenza dataset is the daily incidence of the
fall wave of the Spanish influenza pandemic in
San Francisco from 23 September to 24 November
1918, which was revisited previously (Department of
Hygiene 1922; Chowell et al. 2007). A total of 28 310
influenza cases were reported during an observation
period of 63 days. We selected these datasets to
illustrate two different new methods in the following.

4.2. Smallpox: geometric approximation

Suppose that smallpox cases are reported only monthly.
Because the generation time of smallpox is approxi-
mately half a month (Lotz 1880; Nishiura & Eichner
2007), it is difficult to estimate R; by generation using
monthly reports alone. Nevertheless, assuming that
the reproduction numbers of two generations in a
single reporting interval are identical, it is feasible to
approximate R; for each reporting interval. Let the
effective reproduction numbers in reporting intervals k
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Figure 2. Approximation of an epidemic curve. Grey bars rep-
resent the reported number of cases in each reporting interval
(i.e. weekly number of cases). The solid line represents our
approximated epidemic curve assuming exponential (or geo-
metric) increase in cases in each interval. It should be noted
that the exponential growth rate (or the approximated
constant reproduction number) in each interval differs by
reporting interval.

and k+ 1 be R;, and R; 1, respectively. We assume geo-
metric growth of cases with a constant growth factor in
each reporting interval. In a heterogeneously mixing
population, R is interpreted as the average number of
secondary cases generated by a typical primary case
in the reporting interval k, which is given by the domi-
nant eigenvalue of the next-generation matrix in that
reporting interval (Diekmann & Heesterbeek 2000).
Given an observation of J, cases in interval k, the
expected number of cases in the next interval k+1,
E(Jy1] Ji), is given by

(1= Rp)(1 = RYyy)

Z‘]kn
0 Re)( - B

E(Jis1l i) =

(4.1)

where n is the number of generations included in each
reporting interval as expressed in equation (3.5)
(appendix A 2). We employed a Poisson distribution
to derive the maximum-likelihood estimate and uncer-
tainty bound of Rj; using the above-mentioned
conditional expectation (4.1) (appendix A 2).

Assuming a mean generation time of 15 days for small-
pox, we have exactly two generations (i.e. n = 2) for each
monthly report. Applying equation (4.1) to the observed
monthly smallpox incidence in The Netherlands, R can
be estimated (figure 3). As R, is estimated by the simple
ratio of cases in equation (4.1), the model perfectly
predicts the coarsely reported number of cases in each
interval. The approximated R, represents the increase
and decrease in cases with time (figure 3b). The 95 per
cent confidence interval (CI) is derived from the profile
likelihood (appendix A 2). As the precision of the estimate
is influenced by the observed number of cases (especially,
by the denominator of the ratio in equation (4.1)), wide
95 per cent Cls are observed during the early and later
stages of the epidemic.

J. R. Soc. Interface (2010)

It should be noted that when both R, and Ry, are
close to 1, equation (4.1) results in our correction of R
in Stallybrass’s dispersibility (i.e. equation (3.6)). More-
over, if n=1 (i.e. if each reporting interval contains
exactly one generation), equation (4.1) is reduced to

E(Ji1|Jx) = RiJs. (4.2)

That is, if the reporting interval exactly corresponds to
the mean generation time, the ratio of cases in succes-
sive reporting intervals, k and (k+ 1), most reasonably
estimates Ry,

To assess the approximation, i.e. if we can suggest
the mean generation time as the reporting interval,
the following condition representing the relationship
between variance-to-mean ratio, o/, of the gener-
ation-time distribution and intrinsic growth rate, 7y,
of an epidemic is useful (appendix A 1):

o’ 2( 2 )
—<<—=—t],
s ) In2

where 4 is the doubling time of a disease (i.e. the time
required for infected individuals to double in size).
Given that this condition is met, the mean generation
time can be regarded as the ideal length of reporting
interval to obtain reasonable estimates of the reproduction
number.

(4.3)

4.3. Influenza: exponential approrimation

The above discussed strategy for smallpox only applies
when the reporting interval is an integer multiple of the
generation time. When such a strategy is difficult to be
applied, we instead assume exponential growth in each
reporting interval using different growth rates for each
interval. Let the exponential growth rates in intervals
k and k+1 be r, and r4,;. Given the number of cases
in interval k, J;, the expected number of cases in the
next interval k+ 1, E(Jpq| Jp), is

7y, exp (1 At) <exp(rk+1At) -1

Bkl i) = exp(rAt) — 1

)Jk, (4.4)

where At is the length of the reporting interval (appen-
dix A 3). Using the maximum-likelihood method
(again employing a Poisson distribution), the growth
rates 75, are estimated for each reporting interval k.
Subsequently, R, in each interval k is estimated as

_
M(=r)’

Tk+1

R = (4.5)
where M(—ry) is the moment-generating function of the
generation-time distribution, given the growth rate, 7,
which follows from the relationship between R and
the intrinsic growth rate, r (Dublin & Lotka 1925;
Wallinga & Lipsitch 2007). Similar to equation (4.1),
the exponential growth with constant 7, in a given
reporting interval k is interpreted as an identical
growth rate between subpopulations in a heteroge-
neously mixing population (i.e. the exponential
growth rate 7y, is shared among the subpopulations).
Figure 4a shows the estimated R using the daily
incidence of the Spanish influenza pandemic in
San Francisco. Although there is not yet a consensus
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Figure 3. Monthly number of smallpox cases and the corresponding effective reproduction numbers. (a) Monthly number of
smallpox cases for the entire Netherlands from 1870 to 1873 (Ministerie van Binnenlandsche Zaken, The Netherlands, 1875).
(b) Time variation in the effective reproduction number (the number of secondary cases generated per primary case) with the
corresponding 95 per cent CI (dashed lines) assuming there are exactly two generations in each reporting interval. The
95 per cent CI for R; was derived from the profile likelihood. The generation time was assumed to be 15 days (Lotz 1880).
The horizontal line represents the threshold value, R;= 1, below which the epidemic will decline to extinction. Months are
counted from January 1870 onwards; see electronic supplementary material for the original data.

on the generation time of influenza, with estimates ran-
ging from 2.6 to 5.3 days (Fraser 2007), here we assume
for simplicity that the mean w is 3 days following recent
studies (Carrat et al. 2008; White & Pagano 2008a). If
we further assume that the generation-time distribution
is given by a delta function, we can calculate R;,=
exp(ury), and make a comparison between our approxi-
mate R, and another approximate R; by each
generation time (i.e. equation (4.2)). Again, we observe
wide uncertainty bounds for Rj, where there are only a
small number of cases. Nevertheless, even when we only
have weekly reports of influenza in hand (figure 4b),
figure 4 ¢ visually confirms overall a good approximation
of R, to R;. Note that R, is drawn according to the cor-
responding reporting interval k. Although the precision
of Ry, is limited for the coarsely reported data (see
below), Rj, based on weekly reports (or the prediction
based on equation (4.4)) perfectly predicts the observed
weekly data. It should be noted that the approximate
R, is still useful to observe the threshold condition
(where R, < 1), enabling us to understand the time
course of an epidemic. It should also be noted that we
get R, >1 for the fifth week of the epidemic
(figure 4c), even though the number of cases in the
next interval (i.e. sixth week) was smaller; this reflects
dependency between adjacent reporting intervals (i.e.
equation (4.4)). If we assume random mixing of individ-
uals, 1 — 1/R; suggests a required control effort to
contain an epidemic (e.g. required coverage of mass
vaccination in a given interval). Although homo-
geneous mixing is often not the case in reality,
figure 4d would inform public health experts about an
estimate of required effort and allow an assessment of
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control measures. Figure 4e shows time variations in
the estimated reproduction numbers obtained from
weekly data, assuming three different mean generation
times (i.e. 2, 3 and 4 days). When R, > 1, the longer
the generation time, the higher the R; we get; i.e. our
analytical understanding in equation (4.5) is main-
tained even when the observation is coarsely reported.
The relationship between the generation time and R,
is reversed when R < 1.

Figure 5a compares the approximated epidemic
curves with the observed Spanish influenza cases in
San Francisco in 1918 (Department of Hygiene,
Japanese Ministry of Interior 1922). As the reporting
interval increases, the quality of the approximation is
diminished. Figure 5b measures the deviation of
approximated curves from observed data as a function
of reporting interval. The saturated model, which is
useful when the number of parameters equals the
number of data points, is employed, allowing compari-
son of the deviance (i.e. lack of fit) between different
reporting intervals. Although a more explicit test of sig-
nificance cannot be employed, figure 5b shows that a
reporting interval whose length is two or three times
the mean generation time still approximates well the
crude picture of the epidemic curve; e.g. a reporting
interval of 7 days yields smaller deviance (x* = 889.8)
than that of 5 days (x> = 3436.4). However, when the
interval is too long compared with generation time,
the deviance is too large, and it is certainly difficult
to capture the observed epidemic pattern. Furthermore,
it should be noted that the prediction of weekly reports
based on our algorithms is not influenced by the true
length of generation time; as can be seen from equation
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Figure 4. Epidemic curve of influenza and the corresponding effective reproduction numbers. (a) Daily number of Spanish influenza
cases in San Francisco during the autumn wave in 1918 (Department of Hygiene, Japanese Ministry of Interior 1922; Chowell et al.,
2007). (b) Weekly number of influenza cases that were aggregated from the original daily data. (¢) Time variation in the effective
reproduction number (the number of secondary cases generated per primary case by generation) assuming that the mean generation
time is 3 days. Approximated reproduction numbers by week (black) and reproduction numbers assuming a generation time of 3 days
(grey) are comparatively shown. For the weekly report, Ry, is drawn for the corresponding interval k. The horizontal line represents the
threshold value, R; = 1, below which the epidemic will decline to extinction. The 95 per cent CI for R, was derived from the profile
likelihood. Dotted line, 95 per cent CI (generation time); dashed line, 95 per cent CI (weekly data). (d) Required control effort (e.g.
coverage of mass vaccination) to contain an epidemic given by 1-1/R;. Following the expected values in (c¢), estimates by week (black)
and 3 days (generation time; grey) are comparatively shown. (€) Comparison of the effective reproduction number based on weekly
reports with different mean generation times. Expected values of the effective reproduction number are shown with a mean generation
time of 2 (dotted line), 3 (solid line) and 4 (dashed line). The horizontal line again represents the threshold value, R, = 1, below which
the epidemic will decline to extinction. Days are counted from 23 September 1918 onwards (Department of Hygiene 1922).
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1922), using the proposed algorithm for R; estimation, assuming three different reporting intervals: the mean generation time
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t, and p is the number of parameters estimated.

(4.4), the linear approximation to the observed epi-
demic curve is independent of the generation-time dis-
tribution. The precision of approximating R, using a
fixed reporting interval is influenced by the length of
generation time. Reporting intervals that are shorter
or close to the mean generation time yield more precise
R, than longer reporting intervals (§5).

5. DISCUSSION

The present study recommends that the reporting inter-
val for case notifications should be taken equal to the
mean generation time. This permits estimation of R,
by taking the ratio of cases in successive reporting inter-
vals. If the mean generation time is short, and it is
impractical to report observations in every generation
time, our alternative algorithm (i.e. equation (4.4)) per-
mits an explicit adjustment of the ratio of cases in
successive reports to yield R; The method suffers
from wide uncertainty when there is only a small
number of cases (e.g. during early and late stages of
an epidemic), but our approach greatly improves pre-
vious similar intent (Honhold et al. 2004) in that our
method can yield a strictly interpretable quantity, R,
to understand the epidemiological pattern of spread.
To the best of our knowledge, this study is the first to
estimate the effective reproduction numbers from coar-
sely reported data by adjusting the reporting interval
based on the generation time and discussing the ideal
length of reporting intervals in relation to the epidemio-
logical characteristics of a disease. Although the
interval of case notification may frequently be
influenced by administrative factors, we believe that
the present study provides a basis to choose the report-
ing interval, thereby offering a practical guide for the
relevant considerations.

With historical reference to Stallybrass’s dispersibil-
ity ratio (Stallybrass 1931), we have shown that the

J. R. Soc. Interface (2010)

ratio of cases in successive reporting intervals is an
interpretable measure in a special case (i.e. constant
R over time), clarifying technical flaws in the original
descriptions by Stallybrass. Moreover, explicitly
adjusting the reporting interval to mean generation
time, we extended Stallybrass’s dispersibility ratio to
estimate R; approximating the observed epidemic
curve by assuming constant growth rates in each
reporting interval. Approximating R; can still capture
thresholds and suggest required control efforts, helping
public health experts understand the time course
explicitly.

Our second algorithm (equation (4.4)) is particu-
larly useful when the reporting interval is shorter
than the mean generation time (i.e. At < u, or equiva-
lently, n <1 where n, in this assumption, is a positive
real number). When a single reporting interval does
not include several different generations, a short
reporting interval with n<<1 can more precisely
reflect the transmissibility with time, because n <1
indicates that infection of cases observed in an inter-
val more likely had happened in previous intervals
(not within the same interval) than the case for n >
1, allowing us to precisely capture R, Both of our
proposed algorithms assume linear growth in each
interval, by considering the corresponding interval as
separate from its adjacent intervals. Theoretically, it
is certainly better to have more precise data (e.g.
observation in a continuous time scale) than coarsely
reported data in order to fully capture the dependency
of infected individuals between adjacent time periods.
Considering that only the ratio can account for the
dependency between infected individuals in our
approaches, we get a straightforward conclusion for
our second algorithm: the smaller n is and the smaller
the variance-to-mean ratio of the generation-time
distribution is, the more precise the estimates of Ry
that are obtained.
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As a technical note, our method is not suitable for
infectious diseases with extremely long generation
times (compared with the reporting interval, e.g. in
HIV/AIDS). This technical limitation is identical to
that of the method given previously (Wallinga &
Teunis 2004), and therefore a different approach has
to be employed for slowly progressing diseases (Gran
et al. 2008). Moreover, the distribution of generation
times has to be carefully interpreted for approximation,
especially when the distribution is right skewed.
Although the mean generation time, w, is used to calcu-
late the correcting factor, the variance-to-mean ratio
needs to be examined in relation to the doubling time
to precisely suggest the length of the reporting interval
(appendix A 1). When the generation-time distribution
is skewed, our second algorithm should be used to
estimate R, because equation (4.5) translates the expo-
nential growth rates in each reporting interval to R,
highlighting the skewed nature of the generation-time
distribution. The estimate of R, is obtained without
too apparent deviations from the observed data when
the reporting interval is two or three times the mean
generation time, but the approximation is worsened
as the interval becomes much longer than the mean
generation time.

To use our algorithm in various practical settings, it
should be noted that our estimation procedures made
the following assumptions.

(i) We are dealing with epidemics where demo-
graphic stochasticity (i.e. variation in the
numbers of secondary transmissions by chance)
is negligible. In other words, we have an
unbiased estimator of the growth rate r;, or the
reproduction number R;.

(ii) Deterministic exponential (or geometric) growth
of cases is assumed in each reporting inter-
val. The growth rate is the same for all
subpopulations.

(iii) The number of cases in each interval is measured
with perfect accuracy (i.e. no underreporting and
no reporting delay).

Although we can do only little to address point (iii),
technical discussions with respect to (i) and (ii) are
needed. With regard to (i), we did not explicitly high-
light stochasticity in the transmission process. A
recent study suggested the use of an analytical solution
of a stochastic epidemic model to address this issue
(Cauchemez & Ferguson 2008), which also partly
addressed point (iii). The reporting delay is extremely
important in that the most recent estimates of the
reproduction number could be biased downwards to
zero without accounting for the delay (Cauchemez &
Ferguson 2008). Moreover, adjustment of the time vari-
ations in the underreporting and reporting delay
requires substantial effort in modelling approaches,
and this task often necessitates having further empirical
data and employing additional model assumptions.
When the observed epidemic is not in large scale, it is
particularly important to explicitly account for this
point, and thus a more rigorous method using a sto-
chastic approach is desirable. Point (ii) becomes our
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technical concern when the ratio of reporting interval
to generation time (n in equation (3.5)) is particularly
large. For example, monthly influenza reports
(figure 1) may well include n> 10 generations per
interval (assuming that u < 3 days) where our linear
approximation may no longer be useful for interpreting
the observed epidemic curve. When n is too large, a
nonlinear approximation, e.g. accounting for the
depletion of susceptibles, might be needed. In addition,
other strategies of approximation (e.g. power law
approximation) for infection process could be conceived
(Finkenstadt & Grenfell 2000; Bjornstad et al. 2002)
when the motivation of analysis is not to interpret the
epidemic time series with an explicit measure of trans-
missibility. Point (iii), as well as heterogeneous patterns
in transmission, is a common concern for real-time epi-
demic modelling (Wallinga & Teunis 2004; Cauchemez
et al. 2006a; Fraser 2007) that has to be addressed as
more detailed data become available (e.g. cases with
time and place and with the length of reporting
delay). For instance, in addition to a full clarification
of the impact of reporting delay on the estimation
framework of R; improvements in the observation and
reporting are needed (rather than adding mechanistic
model assumptions). If one keeps these points in
mind, we believe our simple algorithms (equations
(4.1) and (4.4)) provide useful tools, yielding reasonable
estimates of R, and enabling an assessment of the
epidemic curve.

Whereas we have shown that the distribution of the
generation time plays a key role in interpreting the epi-
demiological time course of an epidemic, it should be
noted that the methods for estimating the generation
time have yet to be fully established (e.g. clarification
of the most useful field data that lead to an estimate
of generation time, and thus are useful for estimating
R). In particular, the generation time in heteroge-
neously mixing population in relation to our condition
(4.3) is a topic of future research. Moreover, it is imposs-
ible to know the generation time of a newly emerging
infectious disease in a population. Therefore, besides
the need to develop statistical methods for quantifying
the generation-time distribution from empirical obser-
vation, it is suggested that notification of emerging
infectious diseases needs to be reported as precisely as
the public health authority can achieve. Moreover,
when it is difficult to fully quantify the generation-
time distribution, our study emphasizes the importance
of quantifying, at least, the mean generation time so
that we can understand the epidemiological time
course.

Reporting cases in a fine time scale is crucial for
many purposes, but it is often impractical in the
public health field to collect and report disease data
in very precise time intervals owing to financial, logistic
and technical constraints. From our exercise, we showed
that the use of the mean generation time as the ideal
reference length for the reporting interval of surveil-
lance would be extremely useful to estimate the effective
reproduction number. To obtain a quick view of the
time course of an epidemic, reporting cases every
mean generation time would allow the estimation
simply by using a ratio of cases in adjacent reporting
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intervals, yet saving the cost of reporting in a very short
interval. Calculation of the ratio does not require
difficult computations. Thus, for example, if the current
reporting interval of a disease is close to the mean gen-
eration time, one may revise the interval to the mean
generation time and estimate the effective reproduction
number without spending much additional effort.

This work was supported by The Netherlands Organisation
for Scientific Research (NWO grant ID: 918.56.620 and
851.40.074). G.C. received funding from the College of
Liberal Arts and Sciences of Arizona State University.

APPENDIX A

A.1. An ideal length of the reporting interval

To suggest a condition in which the mean generation
time can be reasonably used as a reporting interval,
we consider the relationship between the generation-
time distribution (with mean u and variance o?),
reporting interval, A¢, and the intrinsic growth rate of
an epidemic, ry (Keyfitz 1968). Following the classic
mathematical definition of the length of generation in
demography by Lotka (Keyfitz 1968), it is deemed
ideal if the reporting interval At satisfies the following
relationship (i.e. if At itself exactly corresponds to the
length of generation):

exp(rpAt) = Ry, (A1)

where R is the basic reproduction number that satisfies
equation (4.5) in the main text, i.e. Ry = 1/M(—ry). Let
K(—71) be the cumulant-generating function of
generation time (i.e. K(—1y) =In{M(—1p)}), then we
can expand the cumulant-generating function as

’l"g Ko — (A 2)

K(—’f‘o) = —ToK1 + = TOK3 + -

3!
where {k;} are the cumulants of the generation-time dis-
tribution (e.g. k; = u and k, = o). Thus, the ideal At
that satisfies equation (A 1) is approx1mated as

At — IHR() ~ ToK1 —

(U%%mzﬂ_%&m.(Aw

7o 70

When p >>0%r/2, equation (A 3) suggests that At
should be approximated by the mean generation time
w. This condition results in equation (4.3) in the main
text (note that f3=1n2/ry). When the variance-to-
mean ratio, 0'2/ 1, of the generation time is large, the
ideal length of the reporting interval, At should be
derived directly from equation (A 3).

Figure 6a,b shows sensitivity of At to the different
0'2/ pn and 1y for the plausible parameter space of
human influenza (u =3 days and ry = 0.14 per day;
Ferguson et al. 2005; Chowell et al. 2007; White &
Pagano 2008a). When o°/u is 0 (ie. o>=0), At
would be exactly the same as the mean generation
time (figure 6a), which is certainly expected from
equation (A 1). At is in general slightly shorter than the
mean generation time for o > 0. Especially, when the
distribution is extremely skewed (e.g. o/ =3.0),
the mean generation time is apparently longer than
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At. The tendency of observing shorter At than w is
more pronounced when the intrinsic growth rate ry is
large (figure 6b), especially for a skewed generation-
time distribution. These figures highlight the critical
importance in empirically investigating both the
generation-time distribution and the intrinsic growth rate.

A.2. Geometric approximation of R;

We assume that the reporting interval At is a multiple
of the mean generation time w and denote the ratio of
At to w by n (where n, in this assumption, is a positive
integer given by equation (3.5) in the main text). Sup-
posing that the effective reproduction numbers in kth
and (k+1)th reports are R; and Ry, respectively,
the numbers of cases in kth and (k+1)th reports, J
and Ji,q, are

and (A4)

n—1

Jpp1 = %Rk Z Rk+17

where g is the initial number of cases of the first gener-
ation in the kth reporting interval. Thus, assuming that
the expected numbers of cases in each reporting interval
are sufficient to characterize Poisson distributions, the
conditional distribution of J;,; given Jj, is

n—1
RZ
Jp+1|Jy ~ Poisson %J
i Ry

(1— Ry)(1 - R, )RY
(1= Ree)(1 = RY)

Lal )

= Poisson {

For observation of cases from reporting interval 1 to K,
the likelihood of estimating Ry is given by

(1—Ry)(1— Ry Ry 17
= t.
= const. X H [ = RH])(l — R Jk

u—Rwa—Rﬁo%J}
- R - B

X exp [— (A6)
Maximum-likelihood estimates of R, were obtained by
minimizing the negative logarithm of equation (A 6).
The 95 per cent CI for Rj was derived from the profile
likelihood. It should be noted that the Poisson approxi-
mation is an ad hoc assumption, and the variance of Ry,
would be biased when the number of cases is small (see
the main text about the wide uncertainty bound with
small denominator). Alternatively, it is also possible
to employ a bootstrap method to quantify the uncer-
tainty bounds of R, (and the method is particularly
useful as the sampling distribution of R; is not
simple), but the bootstrap method can only capture
the sampling error and does not account for stochasti-
city (as similar to the likelihood employing a Poisson
distribution). To fully account for both sampling error
and stochasticity, pure birth process may be called for
(Bailey 1964). It should be noted, however, that the
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Figure 6. The relationship between the ideal reporting interval, variance-to-mean ratio of the generation-time distribution and
the intrinsic growth rate. Sensitivity of ideal reporting interval to different variance-to-mean ratio and the intrinsic growth
rate is examined for plausible ranges of the parameters for human influenza (Ferguson et al. 2005; Chowell et al. 2007; White &
Pagano 2008a). (a) The ideal reporting interval as a function of variance-to-mean ratio of the generation-time distribution.
The intrinsic growth rate is fixed at 0.14 per day. Three different mean generation times (i.e. 2, 3 and 4 days) are examined:
dotted line, 2 days; solid line, 3 days; dashed line, 4 days. (b) The ideal reporting interval as a function of the intrinsic
growth rate. The mean generation time is fixed at 3 days. Three different variance-to-mean ratios (0.5, 1.0 and 2.0) of the
generation-time distribution are examined: dotted line, 0.5; solid line, 1.0; dashed line, 2.0.

variance of Ry (or growth rate ;) greatly depends on an
appropriateness of our linear approximation to the
empirical observation within each reporting interval.
Because of variations in linear approximation between
different lengths of reporting interval, the estimated
variance with a given length of reporting interval is
not comparable with those based on different lengths
of reporting interval.

When R is constant over time (=R), equation (A 5)
results in an interpretation of the corrected Stallybrass
dispersibility ratio, i.e. equation (3.6) in the main text.
Moreover, when n=1 (i.e. when the reporting interval
is exactly the mean generation time), the likelihood
function (A 6) is reduced to

K-1
L=const. x [[(ReJi)"" exp(—RiJi). (A7)
k=1

A.3. Exponential approximation of R,

Let 7, and ry,q, respectively, be exponential growth
rates in reporting intervals k£ and k+ 1. We assume
that the intervals k and k+ 1 correspond to periods
(to, to+ At) and (t+ At, ty+ 2At), respectively, in
calendar time scale, where At is the length of the report-
ing interval. We denote the incidence (i.e. number of
newly infected individuals) at time ¢ by I(¢) and
assume that [(ty) = m, where m is constant. Following
the exponential growth, we get I(ty + t) = mexp(r;t)
(=mI(t)) in interval k& and I(ty+ At+t) = I({+
At)exp(ryt) (=I(ty + At)L1(t)) in interval &+ 1.
Accordingly, J;, and J;., 1 are given by

fo+At At
Ji = J I(#)dt = mJ L(H)dt
to 0

- T—TZ{exp(rkAt) —1} (A8)
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and
to+2At At
Jri1 = J I(t)dt = I(ty + At)J I ()dt
to+At 0
At
= mexp(rkAt)J I (2)dt
0
_ MDA Al — 1}, (A9)
Tk+1

Taking the ratio of Ji.; to J;, we get equation (4.4) in
the main text. Maximum-likelihood estimates of r;, were
obtained similarly as in equation (A 6). As is done
using equation (A 6), the 95 per cent CI for R; was
computed by the profile likelihood. It should be noted
that when 7, is constant over time (=r), this results
in Jy1/Jy = exp(rAt) as discussed in the main text,
offering an interpretation of Stallybrass’s dispersibility
ratio (Stallybrass 1931).
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