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Abstract Remotely sensed hyperspectral image classification is a very challenging task due
to the spatial correlation of the spectral signature and the high cost of true sample labeling.
In light of this, the collective inference paradigm allows us to manage the spatial correlation
between spectral responses of neighboring pixels, as interacting pixels are labeled simulta-
neously. The transductive inference paradigm allows us to reduce the inference error for the
given set of unlabeled data, as sparsely labeled pixels are learned by accounting for both
labeled and unlabeled information. In this paper, both these paradigms contribute to the def-
inition of a spectral-relational classification methodology for imagery data. We propose a
novel algorithm to assign a class to each pixel of a sparsely labeled hyperspectral image. It
integrates the spectral information and the spatial correlation through an ensemble system.
For every pixel of a hyperspectral image, spatial neighborhoods are constructed and used to
build application-specific relational features. Classification is performed with an ensemble
comprising a classifier learned by considering the available spectral information (associated
with the pixel) and the classifiers learned by considering the extracted spatio-relational infor-
mation (associated with the spatial neighborhoods). The more reliable labels predicted by
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the ensemble are fed back to the labeled part of the image. Experimental results highlight
the importance of the spectral-relational strategy for the accurate transductive classification
of hyperspectral images and they validate the proposed algorithm.

Keywords Relational classification · Iterative learning ·Transduction ·Collective inference ·
Ensemble learning

1 Introduction

Remote sensing focuses on collecting and interpreting information about a scene without
having physical contact with the scene. Aircraft and satellites are the common platforms for
remote sensing of the Earth and its natural resources (Goetz et al. 1985). They measure the
electromagnetic radiation which is reflected from the Earth’s surface materials, by producing
measurements of energy in various parts of the electromagnetic spectrum. For applications in
visible or Near Infrared, the spectrum, which can nominally range from 0.4 to 14 microme-
ters (µm)wavelength (20–750THz frequency) is segmented into spectral regions (bands). A
spectral band is a discrete interval (wavelength) of the electromagnetic spectrum in which a
scanning instrument measures both reflectance and absorption of radiation at a specific geo-
graphic location. For example, visible light ranges in a band from 0.4 to 0.8µm. A spectral
signature is a range of contiguous wavelengths in the electromagnetic spectrum. A hyper-
spectral image (also called hyperspectral imagery dataset) is a collection of measurements
taken on a topographic scene in a spectral signaturewith a large number of narrow, contiguous
wavelength bands (see Fig. 1a). For example, the majority of hyperspectral data, collected
through commonly deployed sensing systems (e.g. ROSIS, HySpex 1995; AVIRIS 2007), are
measurements acquired simultaneously in 100–200 contiguous spectral bands at the nominal
spectral resolution of 10 nanometers (Ablin and Sulochana 2013). They are collected over a
few square Kms (from tens to hundreds of thousands of pixels), taken in high resolution (a
few meters) and covering the wavelength region from 0.4 to 2.5µm.

Different kinds of surfaces reflect radiating electromagnetic waves (e.m.) in different
ways, due to the chemical composition, texture, color, roughness and moisture (Ablin and
Sulochana 2013). This means that all the Earth’s surface features, including minerals, veg-
etation, dry soil, water and snow, have unique spectral reflectance signatures. Hence, the
spectral signature of different surfaces (e.g. soil, water, ice, vegetation) can contain informa-

Fig. 1 Hyperspectral imagery dataset. a Hyperspectral image, b imagery matrix, c spectral signature of
p(x, y)
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tion to distinguish the different surface objects. Imaging spectroscopy (Green et al. 1998),
also known as hyperspectral imaging, is concerned with the analysis and interpretation of
spectral signatures of hyperspectral data acquired from a given scene. This kind of analysis
can be used to detect slight changes in vegetation, soil, water and mineral reflectance (Plaza
et al. 2009). Hyperspectral imaging is attracting growing interest in applications such as
urban planning, agriculture, forestry and monitoring (Ablin and Sulochana 2013). In partic-
ular, hyperspectral image classification produces thematic maps from hyperspectral data. A
thematic map represents the Earth’s surface objects. Its construction implies that themes or
categories, selected for the map, are distinguished in the remote sensed image. Classification
assigns a known class (theme) to each pixel (imagery data example). Every pixel is expressed
with a vector space model that represents the spectral signature as a vector of numeric fea-
tures (namely spectral features) and is also associated with a specific position in a uniform
grid, which describes the spatial arrangement of the scene. It is assigned a certain (possibly
unknown) spectral response, i.e. class label.

Methodologically, the automatic classification of hyperspectral data is non-trivial due to
factors such as the spatial correlation of the spectral features, the high cost of labeling the
data and the large number of spectral bands (Plaza et al. 2009). In this paper, we propose
a novel transductive collective classifier for dealing with all these factors in hyperspectral
image classification. Collective inference exploits the spatial correlation between spectral
responses (class labels) of neighboring pixels by simultaneously labeling interacting pixels.
The transductive inference paradigm allows us to reduce the inference error for the given set
of unlabeled data, as sparsely labeled pixels are learned by accounting for both labeled and
unlabeled information.

The paper is organized as follows. The next section clarifies the motivation and the con-
tribution of this paper. Section 3 reports the basics of the presented algorithm. Section 4
illustrates related work. Section 5 presents the proposed algorithm, while Sect. 6 reports the
analysis of the learning complexity. Section 7 describes the datasets, the experimental setup
and reports the results. Finally, in Sect. 8 some conclusions are drawn.

2 Motivation and contributions

The spatial correlation of the spectral signature refers to the relation (or dependence) between
spectral signatures of pixels, due to their spatial proximity. Intuitively, spatial correlation
means that the features for a specific pair of points are more (less) similar than would be
expected for a random pair of points (Legendre 1993). In the case of hyperspectral images
of geographical areas, spatial correlation exists in the positive form, as there is a slowly
progressive spatial variation both in the spectral signature and in the spectral label (Miao
et al. 2014). This means that by picturing the spatial variation of the observed features in a
map, we may observe regions where the distribution of values is smoothly continuous, with
someboundaries possiblymarked by sharp discontinuities. The presence of spatial correlation
violates the independence assumption (i.i.d.) made by most traditional classifications. This
can lead to poor performance in statistical models (LeSage and Pace 2001) and machine
learned models (Neville et al. 2004), although some models are robust to violations of this
assumption (Dundar et al. 2007). In any case, an emerging trend in hyperspectral imaging
is to accommodate spatial correlation into the hyperspectral classification process as this
improves predictive performance (Plaza et al. 2009; Fauvel et al. 2013). This improvement
was also observed by recent machine learning studies in other predictive tasks involving
spatial correlation such as regression, interpolation and forecasting (Stojanova et al. 2013;
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Appice and Malerba 2014; Appice et al. 2014). Further motivation is driven by the recently
emerged perspective on the importance of a relational learning approach in spatial datamining
(Malerba 2008).

Recent research in relational data mining has explored the use of the collective inference
paradigm to exploit data correlation when learning predictive models. According to Jensen
et al. (2004) and Getoor and Taskar (2007), collective inference refers to the combined
classification of a set of correlated instances. In contrast to traditional algorithms which
label data instances individually regardless of correlations among the instances, collective
inference predicts the labels of instances simultaneously and exploits correlations among
the instances. In hyperspectral imagery classification, collective inference offers a unique
opportunity to explicitly account for the spatial variation of the spectral signature, by reducing
the labeling uncertainty that may exist when only spectral information is used and helping to
overcome the salt and pepper appearance of the classification (Fauvel et al. 2013; Chen et al.
2014; Khodadadzadeh et al. 2014b).

The high-dimensionality of spectral data and the small number of ground truth labels can
cause problems such as a reduction in classification accuracy. This behavior is known as
Hughes’ phenomenon (Hughes 1968). In particular, the limited ground-truth samples are not
always sufficient for a reliable estimate of the classifier’s parameters. In fact, if the number of
samples (training set) is too low compared to the number of variables, we risk overfitting the
training data, i.e. we can learn a model that exactly fits the training data without accounting
for a wider generalization (Chang 2007).

Both semi-supervised and transductive learning can help cope with limited labeled data in
high dimensional problems (Shahshahani and Landgrebe 1994). They jointly exploit labeled
and unlabeled data to reduce the impact of overfitting (Seeger 2001). Both settings have
recently attracted an increasing amount of interest in remote sensing (Wang et al. 2014). The
semi-supervised setting is a type of inductive learning, since the learned function is used to
make predictions on any possible example. The transductive setting is less demanding - it
is only interested in reducing the inference error of the given set of unlabeled data, without
trying to improve the overall quality of the learned model. As pointed out by Vapnik (1995),
the idea of transduction (labeling a test set) appears inherently easier than (semi-supervised)
induction (learning a general rule).

This paper proposes spectral and spatio-relational transductive ensemble of classifiers
(S2TEC), that is, a novel hyperspectral imagery transduction classification algorithm to cope
with limited number of labeled examples in the high dimensional spectral space. The proposed
algorithm iteratively constructs various spatio-relational features over spatial neighborhoods
via a collective iterative convergence algorithm. It uses an ensemble system of spectral and
spatio-relational classifiers to determine labels of the imagery pixels and applies transductive
learning to make accurate predictions. Spatio-relational features model the continuity of
neighboring labels. They exploit the likely fact that two neighboring pixels may have the
same label (label spatial correlation). This is somewhat the same principle as the application
of theMarkov randomfields in hyperspectral imaging (Li et al. 2011, 2012, 2013a; Tarabalka
et al. 2010b; Khodadadzadeh et al. 2014b).

Collective inference, transductive learning and ensemble learning have been explored
already in the literature. However, to the best of our knowledge, this is the first study that
combines these three strategies in a single learning framework. This framework, which rep-
resents one of the main contributions of this work, proves effective for the challenging
problem of hyperspectral classification. Another contribution is the investigation of various
application-specific relational operators to define a collective classification setting. We use
both operators to describe the class frequency and operators to describe the class morphol-
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ogy of a hyperspectral image. Although these operators have been already investigated in the
hyperspectral classification literature (Guccione et al. 2015; Khodadadzadeh et al. 2014a;
Pesaresi and Benediktsson 2001; Tan et al. 2014), they have been considered separately. In
this study, inspired by the fact that they convey different kinds of information, we consider
their combined use. Indeed, the frequency information is computed to quantitatively describe
the label structure making a spatial average (a sort of “low-pass” filtering), while the mor-
phology information is computed to qualitatively follow the borders separating land cover
types (a sort of “high-pass” filtering).

We assess the efficacy of the algorithm in a real-world application, made complex by
the presence of spatial information and by the scarceness of labeled information. In this
setting, we claim that performing an iterative construction of application-specific relational
features joined to transductive learning and ensemble classification can lead to accurate final
classifications. This would happen even when starting from a reduced labeled set, since the
combined framework reasonably converges towards a stable solution. In the paper, we justify
this claim by showing empirically this point of view. By following themain streamof research
in hyperspectral image classification, the effectiveness of our contributions is assessed via
an empirical study on three benchmark hyperspectral datasets, corresponding to various
contexts. These datasets are those used in the majority of hyperspectral imaging literature
(e.g. Plaza et al. 2009; Tarabalka et al. 2010a; Khodadadzadeh et al. 2014b; Li et al. 2013a;
Fauvel et al. 2012; Wang et al. 2014; Guccione et al. 2015). We evaluate the accuracy of both
the proposed algorithm and several competitors by computing the metrics (overall accuracy,
average accuracy, Cohen’s kappa coefficient, F-1 score), which are usually considered by the
hyperspectral image classification community and the relational learning community. The
experimental results show that all components of our proposal contribute to its efficacy. The
presented algorithm outperforms several supervised and transductive classifiers defined in
the machine learning literature, as well as to specific competitors defined in the hyperspectral
image analysis literature.

Hence, this work is relevant for the relational learning community as it contributes to
assessing that combining collective classification and relational features can gain improve-
ments over a propopositional/non collective setting. These improvements are shown to be
relevant in an applicative context (remote sensing) that has recently gained importance. This
work is also significant for the hyperspectral image classification community, as it describes
an algorithm that deals with spectral and spatial information by gaining accuracy with respect
to state-of-the-art algorithms.

3 Basics

Let D be a hyperspectral imagery dataset, that is, a set of pixels (examples). Every pixel
represents a region of around a few square meters of the Earth’s surface (i.e. it is a function
of the sensor’s spatial resolution). It is associated with the spatial coordinates XY , as well as
with the m-dimensional vector of spectral features S = S1, S2, . . . , Sm (see Fig. 1c). Every
spectral feature Si is a numeric feature that expresses how much radiation is reflected, on
average, across the pixel region, at the i th band of the considered spectral profile. According
to the general formulation of the transductive setting (Vapnik 1995), pixels ofD are sparsely
labeled according to an unknown target function, whose range is a finite set of classes C =
{C1,C2, . . . ,Ck}. Every class Ci represents a distinct theme (i.e. type of Earth’s surface).
In general, pixels are equally distributed in space over a regular grid, so that a hyperspectral

123



348 Mach Learn (2016) 103:343–375

Fig. 2 Spatial neighborhoods and relational features: a the spatial neighborhood constructed for the pixel p
with radius R = 1 and a square shape; b the relational features constructed for the pixel p over the spatial
neighborhoodN (p, R = 1) with the frequency operator; c the relational features constructed for the pixel p
over the spatial neighborhood N (p, R = 1) with the erosion operator; d the relational features constructed
for the pixel p over the spatial neighborhoodN (p, R = 1) with the dilation operator

dataset canbe represented as amatrix (seeFig. 1b). Thus, the spatial coordinate X is associated
with the row index, while the spatial coordinate Y is associated with the column index of
the matrix. Based on this premise, let p(x, y) be a pixel located at the (x, y) row-column
position of the imagery matrix. A spatial neighborhood is a set of pixels q (task-relevant
pixels) surrounding p (target pixel) in the matrix.

In the imagery analysis literature, spatial neighborhoods frequently have a square shape
(Plaza et al. 2009; Guccione et al. 2015), although alternative shapes like a circle or a cross
can be also considered. Formally, let R be a positive, integer-valued radius, the square-
shaped spatial neighborhood N (p, R) of pixel p (see Fig. 2a) is the set of imagery pixels
q(x + I, y + J ) , so that −R ≤ I, J ≤ +R. The construction of one or more spatial
neighborhoods, coupled with every pixel of a hyperspectral imagery dataset, allows us to
define the actual (spatio-)relational structure of the dataset. This definition of a relational
data structure allows us to pass from a propositional representation of imagery data (spectral
information) to a relational representation (spatial-aware information) of the same data.

In this study, spatio-relational features are constructed by resorting to a collective inference
procedure, in order to express the label of a target pixel depending on the labels of all the
related (task-relevant) neighbors of the target pixel. These features are formed through the
application of the frequency-based operator (Guccione et al. 2015; Khodadadzadeh et al.
2014a) and/or the morphology-based operators (Pesaresi and Benediktsson 2001; Tan et al.
2014). Given a target imagery pixel p and its spatial neighborhoodN (p, R) (with radius R),
the frequency operator constructs k features, one feature for each class label Ci . The value
of the feature is proportional to the pixels within N (p, R) that have label Ci (see Fig. 2b).

On the other hand, themorphological operators construct 4·k features, one feature for each
morphological operator (erosion, dilation, opening and closing) and for each class label Ci .
They use spatial neighborhoods as structuring elements. The erosion and dilation of a class
label destroy (Fig. 3a–d) and enhance (Fig. 3e–h), respectively the structure and the density
of borders separating land cover types present in the structuring element (Benediktsson et al.
2003; Soille 2003). Erosion E(p, R,Ci ) is true if all pixels within N (p, R) have label Ci
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Fig. 3 Erosion (a–d) and dilation (e–h) of a hyperspectral image computedwith square neighborhoods having
radius R = 1

(see Fig. 2c), while dilation D(p, R,Ci ) is true if at least one pixel withinN (p, R) has label
Ci (see Fig. 2d). The opening and closing operators are combinations of erosion and dilation.
Opening is erosion followed by dilation. It recovers most structures of the original image, i.e.
structures that were not removed by the erosion and are bigger than the structuring element.
Closing is dilation followed by erosion. With opening or closing we can obtain objects of the
image which are larger or smaller than the structuring element (Fauvel et al. 2013).

4 Related work

This paper draws on methodological work in relational learning, collective classification and
transductive learning as well as applied work on hyperspectral image classification.

4.1 Relational learning

Relational representations and relational learning algorithms have been investigated in the
literature, in order to deal with spatial correlation in several real-world applications (see
Malerba 2008 for a survey). Relational learning algorithms can be directly applied to various
representations of spatial data, i.e. collections of geo-located entities. They account for spatial
correlation that biases learning in spatial domain. Furthermore, discovered relational patterns
reveal those spatial relationships, which correspond to spatial domains.

Closely related to the application context of this study are relational learning algorithms
investigated to process document images, images from medical domains and images from
one’s daily life. Ceci et al. (2007) have proposed multi-relational data mining algorithms to
account for spatial dimension of page layout when recognizing semantically relevant com-
ponents in the layout extracted from a document image. Mizoguchi et al. (1997) have applied
inductive logic programming to identify glaucomatous eyes from ocular fundus images,
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while Sammut and Zrimec (1998) have applied inductive logic programming to construct
concept descriptions fromX-ray angiograms and classify types of blood vessels. Finally, both
Chechetka et al. (2010) and Antanas et al. (2014) have investigated how spatial relational
representations can be generated from images and defined using a logical background theory
(i.e. a set of Prolog rules, as in relational learning). As an example, we can consider the
relation “close aligned horizontally to the right” and the relation “part of”. This relational
knowledge is then used to recognize higher-level structures in images from daily life.

In contrast to relational approaches that use inductive logic programming, our work
builds on the idea of constructing spatio-relational features of imagery data, which can be
represented in a vector space model. This idea has recently received growing attention in
hyperspectral imaging (Plaza et al. 2009; Benediktsson et al. 2003; Guccione et al. 2015;
Khodadadzadeh et al. 2014a). Themainmotivation for it is that it allows us to easily inject spa-
tial information into efficient, attribute-value algorithms (i.e. propositional learners), which
are effective when learning spectral information (e.g. SVM Plaza et al. 2009). We note that
hyperspectral imaging approaches, which resort to the construction of spatio-relational fea-
tures, belong to the category of propositionalization approaches to relational data mining.

Propositionalization (Srinivasan and King 1999; Zelezný and Lavrac 2006; Ceci and
Appice 2006; Krogel et al. 2003) can be seen as a transformation of relational learning
problems into attribute-value representations amenable for propositional learners. Propo-
sitionalization algorithms are divided into two categories: logic-oriented algorithms and
database-oriented algorithms (Krogel et al. 2003). Logic-oriented algorithms handle com-
plex background knowledge and provide expressive first-order models, in order to generate
attribute-value features. Database-oriented algorithms mainly explore foreign key relation-
ships as a basis for a declarative bias during propositionalization and apply aggregation
functions (e.g.mean,mode, SD, count), which arewidely used in the database area, in order to
generate attribute-value features. The spatio-relational feature construction in hyperspectral
imaging can be considered as a kind of database-oriented propositionalization algorithm. It
explores the spatial neighboring relationship betweenpixels, in order to aggregate information
of sets of neighbor pixels (spatial neighborhoods). Contrary to existing propositionalization
algorithms, application-specific operators (e.g. morphology-based operators Pesaresi and
Benediktsson 2001; Tan et al. 2014 and/or frequency-based operators Guccione et al. 2015;
Khodadadzadeh et al. 2014a) are considered to generate attribute-value features.

4.2 Collective inference

Collective inference is a fundamental approach to classification in relational domains (Jensen
et al. 2004; Getoor and Taskar 2007). Collective classification algorithms predict labels of
related instances simultaneously. These algorithms are grouped into global algorithms and
local algorithms (Sen et al. 2008). Global algorithms train a classifier that seeks to optimize
a global objective function. They are often based on a Markov random field and use loopy
belief (LBP) propagation (Weiss 2001; Taskar et al. 2002; Neville and Jensen 2007; Sen
et al. 2008) or mean-field (MF) relaxation labeling (Weiss 2001; Sen et al. 2008), in order to
avoid the computational complexity of computing marginal probability distributions. Instead
of working with the probability distribution associated with the MRF directly, they both
use a simpler “trial” distribution. Local algorithms employ an iterative process whereby
a local classifier predicts labels for each instance, by using features of the instances and
relational features derived from the related instances. This type of approach involves an
iterative process to update the labels and the relational features of the related instances, e.g.
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iterative convergence-based approaches (ICA) (Neville and Jensen 2000; Getoor 2005) and
gibbs sampling (GS) approaches (Jensen et al. 2004).

Global (MFandLBP) and local (ICAandGS) approaches have been empirically compared
in Sen et al. (2008). This study has revealed that global approaches achieve, in several cases,
a better accuracy than local ones. However, global approaches are also the most difficult to
work with in learning and inference. In particular, choosing the initial weights, so that they
will converge during training, is nontrivial. The most trouble is observed with MF, which
may be unable to converge or, when it does, it may not converge to the global optimum. This
analysis is consistent with previous work (Weiss 2001; Yanover and Weiss 2002) and, as
reported by Sen et al. (2008), it should be taken into consideration when choosing to apply
these algorithms. On the other hand, by focusing attention on local approaches, Sen et al.
(2008) have also concluded that ICA and GS can produce very similar results, but ICA is
much faster than GS. These considerations motivate our preference towards implementing
collective inference through iterative convergence learning.

The iterative convergence approaches are investigated inmany studies (Neville and Jensen
2000; Bilgic et al. 2007; McDowell et al. 2007; Fang et al. 2013). They account for the
correlation of labels and compute the label of an instance depending on the labels of all its
related neighbors. In particular, they express an instance by combining the instance features
and the relational features constructed by using the labels of all the related neighbors of
the instance. The relational features are computed by using an aggregation function over
the neighbors, such as count, mode and proportion. Based on the descriptive features and
the relational features, an algorithm trains a classifier and iteratively updates the predictions
of all instances, by using the predictions for instances with known labels. This process
continues until the algorithm converges. Saha et al. (2012) have recently described an iterative
convergence algorithm to deal with multi-label classification problems. Finally, collective
classification has been recently investigated in combination semi-supervised and transductive
learning (Shi et al. 2011; McDowell and Aha 2012).

4.3 Transductive learning

Transductive learning (Vapnik 1998) is a learning paradigm that exploits a large amount of
unlabeled data when a small amount of labeled data is available. It assumes that the test-
ing data are exactly the unlabeled data. Many transductive learning algorithms have been
proposed in the literature. Joachims (1999) has formulated an optimization algorithm for
learning transductive support vector mfachines (TSVMs). This algorithm exploits the struc-
ture in both training and testing data for better positioning the maximum margin hyperplane.
Subsequently, Sindhwani and Keerthi (2006) have formulated a fast, multi-switch implemen-
tation of the TSVMs, called SVMLin, which is significantly more efficient and scalable than
the previous algorithm. They have exploited data sparsity and linearity of the problem, in
order to provide superior scalability. They have investigated a multiple switching heuristic
that further improves TSVM training by an order of magnitude. In particular, according to the
multi-switch modality, more than one pair of labels may be switched in each iteration. These
speed enhancements turn TSVM into a feasible tool for large-scale applications. In addition,
they adopted deterministic annealing techniques, in order to alleviate the problem of local
minima in the TSVMs. Another family of transductive algorithms is investigated in graph
mining. A graph is defined with the nodes representing both labeled and unlabeled instances,
while the edges reflect the similarity of instances. Graph-based approaches usually assume
label smoothness over the graph. One example is to exploit the structure of the entire data
set in the search for min cuts (Blum and Chawla 2001) or for min average cuts (Joachims
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2003) on the graph. Finally, recent advances include transductive algorithms for multi-label
classifications, to effectively assign a set of multiple labels to each instance (Kong et al.
2013), as well as transductive relational probabilistic classifiers (Taskar et al. 2001; Malerba
et al. 2009; Ceci et al. 2012), to apply transduction in probabilistic relational learning.

4.4 Hyperspectral image classification

Over the last two decades, several supervised machine learning algorithms have been applied
to hyperspectral image classification. Spectral information is processed, in order to train a
classifier with the labeled data samples. The quality of these classification algorithms was
strongly related to the quality and number of training samples under the influence of Hughes’
phenomenon. In this context, support vector machines (SVMs) have been widely used to deal
with Hughes’ phenomenon by addressing large feature spaces and producing solutions from
sparsely labeled data (Melgani andBruzzone 2004;Huang et al. 2002). Recently,multinomial
logistic regression (Li et al. 2011, 2012) has been shown to provide an alternative approach
to deal with ill-posed problems. Finally, multiple classifier systems and classifier ensembles
have been proved successful in several hyperspectral image classification applications (Waske
and Benediktsson 2007; Chan and Paelinckx 2008; Ceamanos et al. 2009).

In any case, a new learning trend has recently emerged in hyperspectral imagery analysis.
It takes advantage of semi-supervised or transductive learning and also integrates spatial
information to reduce the risk of overfitting possibly due to Hughes’ phenomenon. In par-
ticular, transduction, possibly combined with spatial information synthesized through local
neighborhoods, aims at iteratively labeling samples also from the test set. This fact increases
the number of labeled samples, reducing the impact of the overfitting. For example, Bruzzone
et al. (2006) have designed transductive SVMs for hyperspectral image classification. The
algorithm is iterative and gradually searches the optimal discriminant hyperplane in the fea-
ture space. It uses a transductive process that incorporates unlabeled samples in the training
phase. Ratle et al. (2010) have proposed a semi-supervised classification algorithm based
on neural networks. The algorithm consists of adding a flexible embedding regularizer to
the loss function used for training neural networks. Similarly, a plethora of spectral-spatial
classifiers was defined in the hyperspectral imaging literature. Several algorithms, based on
Markov random fields (MRFs), have been quite successful in hyperspectral imaging (Li et al.
2011, 2012, 2013a; Tarabalka et al. 2010b; Khodadadzadeh et al. 2014b). MRFs exploit gen-
eral properties to efficiently describe dependencies between random variables. In this way,
they can arrange the spatial dependency between pixels or regions of the image. In particu-
lar, MRF-based algorithms encourage segmentation and foster solutions in which adjacent
pixels are likely to belong to the same class. In addition, MRFs are a generalization of an
energy model (i.e. Ising model Geman and Geman 1984), so a stable solution (the correct
classification) typically corresponds to the minimization of the image energy function.

On the other hand, Plaza et al. (2009), Bovolo et al. (2006) and Fauvel et al. (2012) have
defined several spectral-spatial kernels, which model the inter-pixel relations as the mean of
the pixel spectral signatures from a pixel’s neighborhood system. This is based on the idea
that the spectral signature of each pixel may be represented by some linear combinations of
its neighboring pixels (spectral spatial correlation). Spatial information is directly included
in the training process as a new constraint for the optimization problem. Tarabalka et al.
(2010a) have investigated the use of a watershed transformation, in order to determine a
segmentation map of the image. They defined a two-stepped classification process according
to which the spectral-based SVM classification is followed by majority voting within the
watershed regions. Huang and He (2012) have investigated the idea of learning SVMs from
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the spectral profile, as well as from two types of spatial profiles of the imagery data. However,
they have extracted spatial information based on the spectral information. Therefore, they
construct spatial features, which do not change during the learning phase. Finally, there are
studies which exploit spatial information in semi-supervised learning algorithms. Camps-
Valls et al. (2007) have presented a semi-supervised graph-based method, designed to exploit
both spectral and spatial information in the images through composite kernels. Wang et al.
(2014) have recently proposed a spectral-spatial label propagation for the semi-supervised
classification of hyperspectral imagery.

5 Spectral and spatio-relational classifier ensemble

This section is devoted to the description of the algorithm S2TEC.

5.1 The transductive classification problem

Let D be a hyperspectral imagery dataset whose pixels are sparsely labeled according to
an unknown target function C and are all described according to the spectral feature vector
model S (details in Sect. 3). The transductive classification problem inputs both a labeled
set L ⊂ D and the projection of the unlabeled set U = D − L on the descriptive space S,
in order to output predictions of the class values of instances in the unlabeled set U , which
are as accurate as possible. The learner receives full information (including labels) on the
instances in L and partial information (without labels) on the instances in U and is required
to predict the class values only of the examples in U .

5.2 Spectral and relational features

The vector of spectral features is input as part of the hyperspectral imagery dataset and used
to populate the spectral data profile S. The relational features are constructed by coupling
imagery pixelswith square-shaped spatial neighborhoods and synthesizing information on the
spatial variation of labels over the imagery pixels of each neighborhood (see details in Sect. 3).
Relational features are then used to populate the spatio-relational data profiles of the dataset.
Two application-specific spatio-relational profiles are constructed (see details in Sect. 3),
namely the frequency data profile F and the morphological data profile M. The frequency
data profile is the vector of the spatio-relational featureswhich are constructed, for every pixel
p, by applying the frequency operator with every class label and every spatial neighborhood
coupled with p. The spatial morphological data profile is the vector of the spatio-relational
features which are constructed, for every pixel p, by applying the morphological operators
(dilation, erosion, opening and closing), with every class label and every spatial neighborhood
coupled with p.

For every pixel p, we construct a set of neighborhoods N (p, R) with growing sides
(R ∈ RSet), in order to capture the space-variant label distribution. In fact, the image
labeling is usually modeled as non-stationary in the spatial domain (Isaaks and Srivastava
1990). This idea of using a range of sizes follows the point of view of Plaza et al. (2009) and
Guccione et al. (2015), who showed how a range of different spatial neighborhoods must be
used as structuring elements, in order to capture the shape or size of all elements present in
an image. In addition, while spectral features do not change during learning, spatio-relational
features can be updated every time predicted labels are changed under the influence of the
transductive learning.
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Algorithm 1 Iterative Convergence Learning
Require: D : imagery data pixels as they are split in L (labeled set) and U ( unlabeled set)
Require: XY : spatial coordinates of imagery pixels of D
Require: S : vector of spectral features
Require: radiusSet : set of radius values used to construct spatial neighborhoods
Require: C : map of ground-truth labels of L
Ensure: C : map of labels of D (ground-truths for L and predicted labels for U ) {initialization phase}
1: classi f ier S ← classifier(L, S,C) {Supervised learning}
2: C ← C ∪ predictions(classi f ier S,S,U) {Classifying unlabeled pixels}
3: N ← spatialNeighborhood(D, XY, RSet) {Constructing the spatial neighborhoods of the imagery

pixels of D with the radius values specified in RSet}
4: F ←computeFrequencyFeatures(D,C,F) {Constructing frequency features}
5: M ←computeMorphologicalFeatures(D,C,M) {Constructing morphological features} {loop phase}
6: repeat
7: classi f ier F ←classifier(L,F,C)
8: classi f ierM ←classifier(L,M,C)
9: classi f ier S ←classifier(L, S,C)
10: ensemble ←ensemble(classi f ier F, classi f ierM, classi f ier S){Defining the ensemble system of

frequency-relational, morphological-relational and spectral classifiers}
11: for p ∈ U do
12: if consensus(ensemble, p) then
13: assign the consensus class to p in C{Using the consensus pattern of the current ensemble system to

select and label definitely pixels moved from U to L}
14: L ← L ∪ {p}
15: U ← U − {p}
16: end if
17: end for
18: F ←computeFrequencyFeatures(D,C,F) {Updating frequency features}
19: M ←computeMorphologicalFeatures(D,C,M) {Updating morphological features}
20: until U = � OR number of pixel transferred from U to L is less than MinTrans f er

5.3 Iterative convergence learning

A top-level description of the iterative convergence learning is given in Algorithm 1. The
algorithm comprises an initialization phase and an iterative phase. Both phases concern an
ensemble system that comprises three classifiers. These classifiers are learned iteratively from
the spectral profile S (classi f ier S), the spatial (-frequency) profile F (classi f ier F) and
the spatial (-morphological) profileM (classi f ierM) of the imagery data, respectively. The
unlabeled part of the image is initially classified according to the classifier (classi f ier S)
learned from the original labeled part L of the image with the features in the spectral profile
S. Both real labels and predicted labels are used to initialize the features of the two spatial
profiles F and M, respectively. At each iteration, pixels of the unlabeled part U , which are
identically predicted by the majority of classifiers in the present ensemble,1 are definitively
classified with the majority class of the ensemble and transferred to the labeled part L of
the dataset. Spatio-relational features of the two spatial profiles are updated accordingly. A
detailed description of the two phases is reported in the following.

The initialization phase (Algorithm 1, lines 1–5) consists of three steps:

1. The pixels of the unlabeled set U are initially labeled (Algorithm 1, lines 1–2), by using
the spectral classifier learned from the labeled set L, as it is originally described in the
image in the space of spectral features S.

1 In this study, the ensemble comprises three classifiers, thus a pixel is considered a consensus pattern if it is
labeled identically by at least two out of three classifiers.
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Fig. 4 Label assignment: starting from a sparsely labeled image, unknown labels are predicted by the spec-
tral classifier (classi f ier S) during the initialization phase (red colored labels). During the iterative phase,
labels that are reliable (blue colored labels) predicted by the iteratively constructed ensemble (classi f ier S,
classi f ier F and classi f ierM) definitively replace labels predicted in the initialization phase. At the end of
the learning process, the image is fully labeled (Color figure online)

2. The spatial neighborhood structure of the imagery data D is constructed (Algorithm 1,
line 3). For each pixel, a set of square-shaped spatial neighborhoods is built and associated
to the pixel. Each neighborhood is constructed with a specified radius. The set of radius
values (radiusSet) is a user-defined parameter.

3. The spatio-relational features are constructed to synthesize the information on the spatial
variation of the class labels over spatial neighborhoods (Algorithm 1, lines 4–5). To
initialize these features, the real labels are associated with the pixels of the labeled set L,
while the labels predicted by the initial spectral classifier (see step 1 of this initialization
phase) are associated with the pixels of the unlabeled set U (see Fig. 4). The constructed
features are used to populate the frequency profile (F) and the morphology profile (M)
of both L and U .
The iterative phase is produced by the main loop (Algorithm 1, lines 6–20) and consists

of three steps:

1. The ensemble of the multiple classifiers (Algorithm 1, line 10) is learned from the cur-
rently labeled set L. This ensemble is composed of: (1) classi f er F (Algorithm 1, line
7), learned from L as it is spanned on the vector of frequency-defined relational features
F; (2) classi f erM (Algorithm 1, line 8), learned from L as it is spanned on the vector of
morphological-defined relational features F; classi f er S (Algorithm 1, line 9), learned
from L as it is spanned on the vector of spectral features S. The ensemble is used to
predict labels of pixels of the currently unlabeled set U .

2. For each pixel in the currently unlabeled set U , each classifier in the ensemble is used to
predict its label. We consider consensus patterns, pixels which are identically labeled by
the majority of classifiers of the ensemble. A consensus pixel is finally labeled with the
consensus label (Algorithm 1, line 13) determined by the ensemble and definitely moved
from U to L (Algorithm 1, lines 14–15, Fig. 4). On the other hand, pixels, which are
left in U , stay still associated with the labels predicted by the spectral classifier learned
during the initialization phase (see Fig. 4).

3. The spatio-relational features of both the frequency profile and the morphological profile
are updated according to the new consensus labels, which have been finally updated in
C (Algorithm 1, lines 18–19).
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This iterative inference stops when the unlabeled set is empty or the number of pixels
definitely transferred from unlabeled set U to labeled set L is less than a threshold denoted
as MinTrans f er . By default, MinTrans f er = 10. The iterative inference procedure is
guaranteed to converge as eventually one of the stopping criteria will be satisfied. If each
iteration transfers more than MinTrans f er pixels from U to L (Algorithm 1, lines 14–15),
then U = ∅ and the first condition is satisfied. Otherwise, if the number of pixels, transferred
fromU toL, at the present iteration, is less thanMinTrans f er , the second stopping condition
is satisfied. In both cases, the imagery data are all fully labeled during the learning process
(see Fig. 4). In fact, if there are still pixels, which have never been transferred during the
iterative phase, they stay assigned to the classes decided by the spectral classifier learned
during the initialization phase.

6 Learning complexity

For this analysis, we assume that NL denotes the number of labeled pixels (NL = |L|),
while NU denotes the number of unlabeled pixels (NU = |U |) of the imagery data D, so
that N = NL + NU . As the pixels are transferred from the labeled set to the unlabeled
set during the iterative convergence learning process, NL(i) (NU(i)) is used to denote the
number of pixels in the labeled set (unlabeled set) at the i th iteration of the iterative process.
k is the number of distinct classes (k = |C |). r is the number of square-shaped neighborhood
objects constructed for each pixel ofD (r = |RSet |). Rmax is the radius of the largest spatial
neighborhoods constructed per pixel (Rmax = maxR∈RSet R), so that ((2Rmax + 1)2 =
4R2

max + 4Rmax + 1 is the maximum number of pixels grouped per square neighborhood.
nI ter is the number of iterations performedwith the iterative convergence learning algorithm.
Λ(|Data|, |FeatureSpace|) denotes the cost of learning a supervised classifier2 from a
training set Data as it is spanned on a feature space FeatureSpace.

The computational complexity of S2TEC depends on the cost of (1) classifying unlabeled
pixels according to the supervised classifier learned from L on S; (2) constructing the neigh-
borhood structure with the radius values collected in RSet ; (3) constructing the relational
features according to both the frequency profile and the morphological profile; (4) construct-
ing the ensemble of classifiers; (5) identifying pixels of U which are identically labeled by
the majority of classifiers in the ensemble and moving these pixels from U to L with their
consensus labels; (6) updating relational features according to the new consensus labels.
Steps (1), (2) and (3) are part of the initialization phase, while steps (4), (5) and (6) are part
of the iterative convergence learning phase, thus they occur nI ter times. The time cost of
learning the spectral classifier from the initial labeled set L is O(Λ(NL,m)). The time cost
for constructing the neighborhood structure of the imagery data is N · (4R2

max +4Rmax +1),
that is, O(N R2

max ). The time cost of constructing the relational features by using both the fre-
quency operator and the morphological operators is 5 ·k ·r · (4R2

max +4Rmax +1) ·N , that is,
O(kr R2

max N ). Therefore, the time complexity of the initialization phase is O(Λ(NL,m) +
N R2

max + kr R2
max N ), that is, O(Λ(NL,m) + (kr + 1)R2

max N ). At the iteration i of the
iterative convergence learning algorithm, the time cost of constructing the ensemble of clas-
sifiers is O(Λ(NL(i), kr

︸︷︷︸

|F|
) + Λ(NL(i), 4kr

︸︷︷︸

|M|
) + Λ(NL(i), m

︸︷︷︸

|S|
)), that is, O(Λ(NL(i), F)),

with F = max {kr, 4kr,m}. The time cost of determining and transferring consensus pixels
from U(i) to L(i) is O(NU(i)), while the time cost of updating the relational features is

2 This cost depends on the algorithm selected as the base classifier.
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O(kr R2
max N )). Therefore, the time complexity of the iterative convergence learning phase is

∑nI ter
i=1 (Λ(NL(i), F) + NU(i) + kr R2

max N ), that is, O(
∑nI ter

i=1 (Λ(NL(i), F) + kr R2
max N ))

as NU(i) ≤ N .

7 Experimental evaluation and discussion

S2TEC, whose implementation is publicly available,3 is written in Java. It integrates the
inductive Support Vector Machine (SVM) 4 (Cortes and Vapnik 1995) as a base classifier
of the transductive ensemble system. This choice is motivated by several studies reported
in the literature (e.g. Plaza et al. 2009; Fauvel et al. 2013; Chen et al. 2014), which show
that inductive SVMs are applied to hyperspectral image classification with great success,
outperforming several other inductive classifiers. As the hyperspectral classification problem
is a multi-class problem, we learn multi-class SVMs with the “one-against-all” strategy.
SVMs are learned with the Gaussian kernel rule, while parameters are optimally selected
according to a grid-searchmethod and a three-fold cross validation of the labeled set. S2TEC is
evaluated on three benchmark hyperspectral images, in order to seek answers to the following
questions:

1. Is the defined transductive schema more accurate than the base inductive learner and the
traditional transductive approaches that do not use collective inference (see Sect. 7.2)?

2. How does the performance (accuracy, learning time, memory usage) of the classification
change by varying the number of performed iterations (see Sect. 7.3)?

3. Is the classification robust to change in the size of the initial labeled set and the size of
the spatial neighborhoods (see Sect. 7.3)?

4. How do the individual components of the transductive schema affect its overall accuracy
(see Sect. 7.4)?

5. How does the schema’s accuracy compare to the state-of-the-art hyperspectral imaging
classifiers (see Sect. 7.5)?

The experiments are run on a Xeon 2.4 Ghz 2 core processor.

7.1 Hyperspectral image datasets

Three real data sets, namely Indian Pines, Pavia University and Salinas Valley (http://
www.grss-ieee.org/community/technical-committees/data-fusion/data-sets/), are used in
this experimental study. In detail, AVIRIS Indian Pines was obtained by the airborne visible
infrared imaging spectrometer (AVIRIS) sensor over the Indian Pines region in Northwestern
Indiana in 1992. The image contains 220 spectral bands, but 20 spectral bands have been
removed due to the noise and water absorption phenomena. The spatial resolution is of 20 m
and the spatial size is 145×145 pixels, which are classified into 16mutually exclusive classes
(see Fig. 5a). This data set represents a very challenging land-cover classification scenario,
in which the primary crops of the area (mainly corn and soybeans) were very early in their
growth cycle, with only about 5% canopy cover (Plaza et al. 2009). Discriminating among
the major crops under these circumstances can be a very difficult task. This scenario is also
made more complex by the imbalanced number of available labeled pixels per class. ROSIS
Pavia Universitywas obtained by the reflective optics system imaging spectrometer (ROSIS)

3 http://www.di.uniba.it/~appice/software/S2TEC/.
4 We use the Java implementation of SVM included in the WEKA toolkit (Witten and Frank 2005).
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Fig. 5 The AVIRIS data of Indian Pines and Salinas Valley, the ROSIS data of Pavia University: ground truths
(a–c), as well as classification maps generated by both S2TEC (d–f) and SVMs (g–i)

sensor during a flight campaign over the Engineering School at the University of Pavia, in
2003.Water absorption bands were removed, and the original 115 bands were reduced to 103
bands. It has a spatial resolution of 1.3m. The image has a spatial size of 610 × 340 pixels,
which are classified into 9 classes (see Fig. 5b). Finally, AVIRIS Salinas Valley was collected
by AVIRIS over Salinas Valley, Southern California, in 1998. It has a spatial resolution of
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3.7m. The area contains a spatial size of 512 × 217 pixels and 206 spectral bands. The 20
water absorption bands are discarded. Pixels are classified into 16 classes (see Fig. 5c).

These data sets are selected for the following reasons: (1) They have a very high spatial
resolution. (2) They contain rich spectral information (100–200 bands) and a high number
of classes (9–16 classes). (3) They correspond to different scenarios. (4) Ground truths are
available for these data.5 Additionally, they are considered in the majority of recent, relevant
works on hyperspectral image classification (e.g Melgani and Bruzzone 2004; Plaza et al.
2009; Li et al. 2011, 2012, 2013a; Tarabalka et al. 2010b; Guccione et al. 2015). In fact,
although the most advanced sensor, namely the AISA system, is currently able to capture
up to 488 bands in the interval 400–970 nm, for an image of 512 or 1024 pixels (details at
http://www.spectralcameras.com/aisa), the use of 100–200 bands in the optical-near infrared
electro magnetic interval with a resolution of a fewmeters, still represents the state-of-the-art
in the sensing literature.

7.2 Comparative analysis

For this study, we consider all the datasets described above.

7.2.1 Experimental set-up

We run S2TEC by setting the percentage of pixels labeled in the image equal to 5%,6 and the
size of spatial neighborhoods equal to 5–10, 15 and 20, respectively. We compare S2TEC to
the inductive SVM, to the Fast Linear tranductive SVM (SVMLin) (Sindhwani and Keerthi
2006) and to the spectral graph transducer (SGT) (Joachims 2003) (see a description in
Sect. 4.3). SVMLin is run with the optimal configuration of parameters identified by Sind-
hwani and Keerthi (2006). SGT is run with the optimal configuration of parameters identified
by Joachims (2003) and with the number of neighbors k ranging between 25, 50 and 100.
The inductive SVM, as well as the transductive SVMLin and SGT are all defined for binary
classification problems. We use the “one-against-all” strategy, already adopted in S2TEC, in
order to adapt these binary transductive classifiers to the multi-class problem.

We evaluate the accuracy of the algorithms in terms of overall accuracy (OA), average
accuracy (AA) and Cohen’s kappa coefficient (κ) (Richards 1993). In addition, we analyze
the F-1 score of predictions performed for each class. For each dataset, the labeled pixels are
randomly selected from the available ground truth of the image by using the stratified random
sampling without replacement;7 the remaining pixels are used as the unlabeled part of the
learning process. Five partitioning trials between labeled and unlabeled sets are generated;
metrics are averaged on these trials.

We use the non-parametric Wilcoxon two-sample paired signed rank test (Orkin and
Drogin 1990), in order to compare the accuracy of the considered algorithms. To perform the
test, we assume that the experimental results of the two algorithms compared are independent
pairs. We test the null hypothesis H0: “no difference in distributions” against the two-sided

5 Although, the data acquisition can be a relatively easy process, the generation of a reliable ground truth is
a very expensive process.
6 This setting is usual in the hyperspectral image classification (Plaza et al. 2009).
7 This is slightly different from the traditional k-fold cross validation, where the data are “partitioned” into
k equally sized folds; the learner is trained on a k − 1 data folds and tested on the hold-out data fold (or
vice-versa). The experimental methodology based on the stratified random sampling is commonly used in the
hyperspectral image classification literature, where it is used to simulate the case of sparsely labeled datasets.
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Table 1 The accuracy performance: OA, AA and κ of S2TEC (size=5, 10, 15, 20), SVM, SVMLin, SGT
(k=25), SGT (k=50) and SGT (k=100)

Algorithm Indian Pines Pavia University Salinas Valley

OA AA κ OA AA κ OA AA κ

S2TEC .945 .876 .937 .992 .988 .989 .980 .988 .977

SVM .739 .626 .700 .931 .912 .909 .925 .957 .916

SVMLin .605 .517 .553 .804 .747 .737 .891 .943 .878

SGT (25) .596 .515 .531 .805 .749 .731 .859 .923 .843

SGT (50) .598 .533 .533 .804 .745 .729 .855 .917 .839

SGT (100) .604 .537 .541 .800 .739 .723 .853 .914 .836

Results are collected on five trials with 5% of labeled pixels. The highest accuracy is in bold

alternative H1: “there is a difference in distributions”. In all experiments reported in this
empirical study, the significance level used in the test is set at 0.05.

7.2.2 Results and discussion

Table 1 shows the average accuracy metrics (OA, AA and κ) of the compared algorithms.
They show that S2TEC is more accurate than the inductive SVM learner and the transduc-
tive competitors in all datasets. In addition, according to a pairwise Wilcoxon signed rank
test, all differences between S2TEC and other algorithms are statistically significant (with
p ≤ .05). Inductive SVMs, generally, perform much better than transductive SVMLins and
SGTs. To interpret these results, let us consider that all these competitors are learned by
using only the spectral information, without accounting for the spatial information. Addi-
tionally, they are actually all defined as binary classifiers, so we use the “one-against-all”
strategy, in order to adapt binary inductive/transductive classifiers to the multi-class problem
formulation. However, S2TEC applies the “one-against-all” strategy every time a multi-class
classifier has to be learned as a set of binary classifiers during the transduction. On the
contrary, SVMLins and SGTs complete a separate transductive learning process with every
binary classifier and apply the “one-against-all” strategy to the binary classifiers finally con-
structed via the transduction. Based on these premises, we can conclude that the transductive
process performed with the binary classifiers without accounting for the spatial information
(which S2TEC does, however), may even lead to less accuracy. To support this conclu-
sion, let us consider that Sect. 7.4 contains the results of two transductive SVMs, namely
T+SVM and selfSVM (see Table 5) learned for the Indian Pines data. They perform trans-
ductive inference of the spectral data by applying the “one-against-all” strategy to every
set of binary classifiers learned during the transduction. We note that, also in this case,
transductive learning, performed without benefiting from collective inference and ensemble
learning, does not outperform the inductive learner, although the observed accuracy gap is
smaller.

Table 2 shows the per-class F-1 score for each classifier. These results show that S2TEC
exhibits high F-1 score (≥ 0.9 per Indian Pines) per class, except for the classes Alfalfa and
Oat in Indian Pines. Both these classes are minority classes (see column 2 of Table 2) in this
image. Competitors also produce predictions with poor accuracy for the same classes. On
the other hand, this analysis per class confirms that both the inductive base learner and the
transductive competitor learners are outperformed by our transductive one in the detection of
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almost all classes. The only exceptions are the classes “Broccoli green weed 1” and “Fallow”
of Salinas Valley where the F-1 score of SVMLin is slightly higher than the F-1 score of
S2TEC (0.996 vs 0.995 for “Broccoli green weed 1” and 0.994 vs 0.991 for “Fallow”), as
well as the class “Fallow rough plow” for Salinas Valley where the F-1 score of SGT (k=100)
is slightly higher than the F-1 score of S2TEC (.994 vs .991).

Table 2 Class by class analysis: percentage of pixels per class (column 2) and F-1 score of S2TEC (column
3, size=5,10,15,20) against SVM (column 4), SVMLin (column 5), SGT (k=25, column 6), SGT (k=50,
column 7) and SGT (k=100, column 8)

Class % S2TEC SVM SVMLin SGT (25) SGT (50) SGT (100)

Indian Pines

Alfalfa 0.45 .612 .254 .198 .120 .256 .259

Corn-N 13.93 .913 .692 .603 .427 .408 .430

Corn-M 8.10 .912 .602 .383 .351 .377 .396

Corn 2.31 .954 .370 .202 .228 .217 .183

Grass/pasture 4.71 .912 .799 .784 .722 .743 .710

Grass/tree 7.12 .972 .879 .860 780 .786 .795

Grass/pasture M 0.27 .626 .419 .163 .681 .629 .616

Hay-W 4.66 .983 .920 .837 .921 .917 .919

Oat 0.20 .156 .092 .040 .008 .064 .049

Soybean-N 9.48 .922 .669 .493 .428 .448 .493

Soybeans-M 23.95 .956 .744 .616 .612 .608 .611

Soybeans-C 5.79 .940 .599 .403 .197 .186 .216

Wheat 2.0 .987 .912 .709 .822 .821 .826

Woods 12.34 .996 .899 .880 .901 .907 .892

Buildings-GT 3.77 .967 .521 .443 .209 .228 .203

Stone-ST 0.91 .987 .875 .213 .918 .917 .959

Pavia University

Asphalt 15.5 .994 .923 .766 .827 .825 .822

Meadow 43.6 .996 .867 .906 .886 .886 .883

Gravel 4.91 .973 .795 .607 .605 .598 .598

Tree 7.16 .984 .947 .843 .845 .846 .838

Metal sheet 3.14 .999 .991 .992 .989 .988 .985

Bare soil 11.76 .993 .895 .653 .362 .356 .337

Bitumen 3.11 .992 .842 .484 .716 .712 .703

Brick 8.61 .978 .865 .609 .701 .698 .696

Shadow 2.21 .994 .998 .959 .983 .978 .975

Salinas Valley

Broccoli w1 3.71 .995 .994 .996 .995 .994 .991

Broccoli w2 6.88 .998 .995 .997 .992 .990 .987

Fallow 3.65 .991 .980 .994 .940 .935 .936

Fallow RP 2.58 .991 .989 .988 .992 .993 .994

Fallow S 4.95 .993 .987 .988 .952 .950 .952

Stubble 7.31 .999 .997 .998 .994 .994 .979
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Table 2 continued

Class % S2TEC SVM SVMLin SGT (25) SGT (50) SGT (100)

Celery 6.61 .998 .996 .991 .988 .988 .988

Grapes U 20.82 .959 .845 .761 .720 .719 .720

Soil V 11.46 .997 .992 .993 .978 .973 .972

Corn SW 6.06 .988 .956 .933 .866 .849 .837

Lettuce 4w 1.97 .990 .959 .971 .942 .915 .907

Lettuce 5w 3.56 .995 .985 .981 .976 .969 .966

Lettuce 6w 1.69 .993 .966 .986 .953 .956 .957

Lettuce 7 week 1.98 .976 .939 .919 .944 .945 .946

Vineyard U 3.34 .940 .947 .634 .529 .527 .523

Vineyard VT 13.43 .992 .986 .988 .973 .969 .963

Results are collected on five trials with 5% of labeled pixels. The highest accuracy is in bold

In general, the analysis of accuracies highlights that, although transductive inference has
been specifically defined to deal with scarce labels (Vapnik 1998), it can be unsatisfactory
for gaining accuracy in the data imagery scenario. On the contrary, coupling transductive
inference with collective inference and ensemble learning can really improve accuracy in
the identification of the pixels belonging to the different classes. The classification of pixels
belonging to minority classes remains a problem, that requires further investigation.

Finally, we illustrate some considerations concerning the spatial distribution of misclas-
sified pixels. We compare the classification maps built by both S2TEC (Fig. 5d–f) and its
inductive SVM counterpart (Fig. 5g–i). These maps show that S2TEC takes advantage of the
presented spectral-relational methodology. It gains accuracy when discriminating objects of
interest on the map, by reducing visibly the salt-and-pepper distribution of pixels misclassi-
fied by the base SVM learner. For example, we can note that S2TEC diminishes visibly the
number of pixels of the class “vineyard untrained” that the base SVM learner wrongly detects
as part of the object “grapes untrained” in the Salinas Valley (see Fig. 5f–i). This result is
in agreement with the F-1 scores reported in Table 2, which show that both the inductive
SVM learner and the transductive competitor learners (SVMLin and SGT) perform poorly
when labeling pixels of the classes “grapes untrained” and “vineyard untrained”. On the
other hand, the pixels misclassified by S2TEC generally fall into the margin bound between
homogeneously, well-classified zones, that is, where enhancing the classification accuracy
with the spatial separability among classes is a more difficult task.

7.3 Sensitivity analysis

For this analysis, we consider the Indian Pines dataset that, according to considerations
formulated by Plaza et al. (2009), is a very challenging classification problem (see details in
Sect. 7.1).

7.3.1 Experimental set-up

Weperforma sensitivity analysis of the performance of S2TECalong the number of iterations,
the size of the initial labeled set and the size of the spatial neighborhoods. Firstly, we consider
the labeled sets sampled with the percentage 5% and we monitor both the performance of
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S2TEC along the dimension of the number of performed iterations. For this analysis, S2TEC
constructs spatial neighborhoods with sizes growing from 5 to 10, 15 and 20. Secondly, we
vary the percentage of pixels which are labeled in the image among 3, 5 and 10%, while we
run S2TEC by constructing spatial neighborhoods with sizes growing from 5, 10, 15 to 20.
Finally, we construct spatial neighborhoods with sizes: 5–10–15, 5–10–15–20 and 5–10–15–
20–25, while we run S2TEC with the initial labeled set sampled with the labeling percentage
equal to 5%.

We evaluate the performance of the compared algorithms in terms of overall accuracy,
average accuracy and Cohen’s kappa coefficient. We also analyze the learning time (in sec-
onds), the maximum number of iterations performed to complete the task and the peak of
memory usage (in MegaBytes) during learning. As five partitioning trials between labeled
and unlabeled sets are generated, the results are always averaged across these trials.

7.3.2 Results and discussion

Number of iterations We start by studying the performance of S2TEC along the dimension
of the number of performed iterations. This analysis is performed by considering the same
samples of the comparative study presented in Sect. 7.2. The accuracy metrics (OA, AA
and κ), the computation time (in s) and the memory usage (in MB) are the plots in Fig. 6a–
c. We observe that accuracy is gained as new iterations are performed. This confirms the
effectiveness of the iterative learning approach.We can also observe that the highest accuracy
gain is obtained in the initial iterations of the learning process, which are also those showing
the highest increment in the usage of the time-memory resources consumed by the process.

Size of the initial labeled set and size of the spatial neighborhoods Then we proceed by
studying the performance of S2TEC as a function of the size of the initial labeled set, as
well as a function of the number and size of the spatial neighborhoods. The average and
the SD of the accuracy metrics, the memory usage peak (MB) and the number of performed
iterations are reported inTable 3.Weobserve that, as expected, the classifier gains accuracy by
augmenting the number of pixels in the originally labeled set (rows 2–4, Table 3). In addition,
the SDof the accuracymetrics decreases as the number of the initially labeled pixels increases
in the experiment. This result is in agreement with the literature (Li et al. 2013b). On the other
hand, the classifier gains accuracy by enlarging the size of the spatial neighborhoods (rows

Fig. 6 Sensitivity study (Indian Pines): the accuracy (Y axis, a), the computation time (Y axis, b), and the
memory usage peak (Y axis, c) are plotted along the dimension of the number of performed iterations (X axis).
S2TEC is run by considering the labeled sets generated by sampling 5% of pixels and by constructing the
relational features over the spatial neighbourhoods with size growing from 5, 10, 15 to 20. Results generated
on five trials are averaged
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Table 3 Sensitivity study (Indian Pines): the accuracy metrics, the memory usage peak and the number of
performed iterations are collected on five trials, the average (SD) of the measures is computed on these trials

Labeled (%) OA AA κ Memory (MB) nIterations

3 .928 (.010) .804 (.039) .918 (.001) 1352.2 (.894) 5.2 (0.399)

5∗ .945 (.010) .876 (.036) .937 (.011) 1352.4 (1.788) 5.4 (0.799)

10 .975 (.006) .927 (.014) .971 (.007) 1352.8 (1.673) 4.4 (.489)

Neighborhood sizes OA AA κ Memory (MB) nIterations

5, 10, 15 .936 (.011) .874 (.031) .927 (.012) 931.8 (1.673) 5.2 (0.399)

5, 10, 15, 20∗ .945 (.036) .876 (.046) .937 (.011) 1352.4 (1.788) 5.4 (0.799)

5, 10, 15, 20, 25 .953 (.014) .884 (.049) .946 (.016) 1959.6 (17.469) 5.2 (0.399)

S2TEC is run by setting the neighborhood sizes equal to 5–10–15–20 when varying the labeled set percentage
between 3, 5 and 10% and by setting the labeled set percentage equal to 5% when varying the neighborhood
sizes between 5–10–15, 5–10–15–20 and 5–10–15–20–25. “*” is used to mark the parameter setup of the
specific configuration used in the comparative study

6–8, Table 3), as in this way we increase the chances of building relational features that better
match the spatial variation of classes, evenwhen classes vary over spacewith different density
and texture. Additionally, the SD of these accuracy metrics, generally, assumes low values.
The learning process is completed in five iterations on average regardless of both the number
and the size of the spatial neighborhoods used to construct the spatio-relational features, as
well as of the size of the initial labeled set. Finally, the memory usage is mainly influenced by
the size and the number of neighborhoods constructed. The higher the number of neighbors
processed through collective inference, the greater the amount of memory consumed by the
learning process. The memory usage is approximately stable with respect to the size of the
initial training set.

7.4 Learning component analysis

For this analysis, we consider the Indian Pines dataset.

7.4.1 Experimental set-up

We investigate how the classification accuracy can be influenced by the several learning
components (i.e. SVM kernels, feature profiles, transductive learning, ensemble learning and
iterative collective inference) that contribute to the definition of S2TEC. By combining these
components differently, we define several learning frameworks, whose characteristics are
summarized in Table 4.

S2TEC-linear is equivalent to algorithm S2TEC with the SVMs learned by considering
the linear kernel in place of the Gaussian kernel.

S2TEC(S+F) is equivalent to algorithm S2TEC with the spectral profile and only the
frequency profile considered for populating the ensemble. S2TEC(S+M) is equivalent to
S2TEC with the spectral profile and only the morphology profile considered for populating
the ensemble. In both frameworks, a pixel is a consensus pixel for the ensemble, if both
classifiers of the ensemble assign the same label to the pixel.

S-SVM adopts a two-level learning schema. In the first level, a classifier is induced from
the labeled set with the spectral features. It is used to predict labels of the unlabeled set. In
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Table 4 Compared learning frameworks

Learning components Framework name

SVM (Gaussian kernel), spectral profile, spatial
(-frequency) profile and spatial (-morphology) profile,
transductive learning, ensemble learning and iterative
collective inference

S2TEC

SVM (Linear kernel), spectral profile, spatial
(-frequency) profile and spatial (-morphology) profile,
transductive classifier, ensemble learning and iterative
transductive collective inference

S2TEC-linear

SVM (Gaussian kernel), spectral profile and spatial
(-frequency) profile, transductive classifier, ensemble
learning and iterative transductive collective inference

S2TEC(S+F)

SVM (Gaussian kernel), spectral profile and spatial
(-morphology) profile, transductive classifier,
ensemble learning and iterative transductive collective
inference

S2TEC(S+M)

SVM (Gaussian kernel), spectral profile, spatial
(-frequency) profile and spatial (-morphology) profile,
inductive classifier and transductive collective
inference

S-SVM

SVM (Gaussian kernel), spectral profile, spatial
(-frequency) profile and spatial (-morphology) profile,
inductive classifier and inductive collective inference

I+C

SVM (Gaussian kernel), spectral profile, spatial
(-frequency) profile and spatial (-morphology) profile,
inductive classifier and iterative transductive
collective inference

I+C+I

SVM (Gaussian kernel), spectral profile, transductive
classifier and iterative inference

T+SVM

SVM (Gaussian kernel), spectral profile, transductive
classifier and self training

selfSVM

the second level, both frequency features and morphological features are constructed for the
entire data set. A new classifier is induced from the labeled set with all these spatial features.
It is used to finally classify the unlabeled part of the image.

I+C is a fully inductive variant of S2TEC. The learning phase is performed by using the
labeled part of the image only. Each classifier is induced from the labeled part of the image;
both the frequency features and the morphological features of the labeled examples are con-
structed through collective inference by considering examples of the labeled set only. Three
classifiers are induced with the features of the three considered profiles (spectral, spatial-
frequency and spatial-morphology). The ensemble of these classifiers is used to classify the
unlabeled set with the majority rule. As unlabeled data are considered neither to learn the
classifiers nor to construct the relational features, the iterative schema is left out of this case.

IvC+I is a version of S2TEC, which learns classifiers in the inductive setting, but performs
collective inference with the iterative schema in the transductive setting. Similarly to I+C,
three classifiers are learned, in the inductive setting. Features of the spatial profiles (frequency
andmorphology) are constructed iteratively by using the entire dataset. Thus, differently from
I+C, new classifiers can be iteratively learned from the spatial data profiles, even staying in
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Table 5 Analysis of learning
components (Indian Pines): the
accuracy metrics are collected on
five trials, the average (SD) of the
measures is computed on these
trials

The neighborhood sizes are equal
to 5, 10, 15, 20, while the labeled
set percentage is equal to 5%.
The compared learning
frameworks are those described
in Table 4

Learning framework OA AA κ

S2TEC .945 (.036) .876 (.046) .927 (.011)

S2TEC-linear .930 (.013) .818 (.027) .921 (.014)

S2TEC(S+F) .887 (.013) .811 (.032) .871 (.015)

S2TEC (S+M) .868 (.010) .776 (.020) .849 (.012)

S-SVM .898 (.028) .769 (.028) .885 (.032)

I+C .876 (.010) .733 (.013) .858 (.011)

I+C+I .940 (.012) .865 (.028) .911 (.013)

T+SVM .723 (.018) .630 (.014) .682 (.021)

selfSVM .739 (.011) .626 (.011) .701 (.013)

the inductive setting, as the spatio-relational features can be updated according to the new
labels assigned by the ensemble to the originally unlabeled pixels. The algorithm stops when
the number of classifications changed by the ensemble is less than a threshold (10 in this
study).

T+SVM considers only spectral information. It performs iterative learning in the trans-
ductive setting. At each iteration, the SVM is learned from the labeled part and used to predict
the unlabeled part of the image. An estimate of the probability of a label is here predicted by
fitting a logistic regression classifier to the SVM classifier (Platt 1999). Unlabeled examples
are sorted in descending order according to the probability of the predicted label. The top-k
unlabeled examples are moved from the unlabeled set to the labeled one for the next iteration.
In this study k = 500. The algorithm stops when all data have beenmoved from the unlabeled
part to the labeled one.

Finally, selfSVM considers only spectral information. It performs iterative learning with
the self training approach described by Li et al. (2008). Initially, the SVM is induced from
the labeled part with the spectral features. This classifier is used to label all the pixels of the
unlabeled set. Subsequently, the training set is the “entire” dataset with real labels associated
with examples of the labeled part and predicted labels associated with examples of the
unlabeled part. Iteratively, the SVM is learned from this training set and used to re-predict
labels of the unlabeled part. The algorithm stops when the number of classifications changed
by the SVM is less than a threshold (10 in this study).

We compare the overall accuracy, average accuracy and Cohen’s kappa coefficient of
these learning frameworks by constructing spatial neighborhoods with size 5, 10, 15, 20 and
considering the initial labeled set sampled with the labeling percentage equal to 5%.

7.4.2 Results and discussion

Table 5 reports the accuracy metrics collected for the alternative learning frameworks
described in Table 4. These results deserve several considerations.

Firstly, the comparison between S2TEC and S2TEC-linear allows us to perform the analy-
sis of the presented algorithm as a function of the kernel considered when learning SVMs.
The results (rows 1–2, Table 5) show that the Gaussian kernels yield more accurate classifi-
cations than the linear kernels. This confirms the general trend described in Bruzzone et al.
(2006), Tarabalka et al. (2010b), Bovolo et al. (2006), Melgani and Bruzzone (2004), Huang
and He (2012) and Li et al. (2012), which usually resorts to SVMs learned with Gaussian

123



Mach Learn (2016) 103:343–375 367

kernels, in order to address the problem of hyperspectral image classification. The higher
accuracy is mainly due to the fact that a Gaussian kernels can capture the intimate nonlinear
nature of the problem better, while a linear kernel leads to the construction of a linear clas-
sifier in high-dimensional spaces of features which can be nonlinearly related to the input
space.

Secondly, the comparison among S2TEC, S2TEC(S+F), S2TEC(M+F), T+SVM and
selfSVM allows us to perform the analysis of the presented algorithm as a function of the
processed feature profiles. In particular, the results (rows 1, 3–4, 8–9, Table 5) show that
the learning frameworks using both spectral and spatial profiles (S2TEC, S2TEC(S+F),
S2TEC(S+M)) yield more accurate classifications than the learning frameworks using the
spectral profile only (T+SVM and selfSVM). This confirms the considerations already
reported in Li et al. (2011, 2012), Tarabalka et al. (2010b), Khodadadzadeh et al. (2014b),
Li et al. (2013a), Plaza et al. (2009), Bovolo et al. (2006), Fauvel et al. (2012), Tara-
balka et al. (2010a), Camps-Valls et al. (2007) and Wang et al. (2014), which inspire the
emerging, recent trend of considering spatial information, in addition to spectral infor-
mation in imagery data. At the same time, by focusing this analysis on the learning
frameworks using the spatial information, the results (rows 1, 3–4, Table 5) show that
the classification accuracy produced with one spectral profile and “two” spatial profiles
(S2TEC) is higher than the classification accuracies produced with one spectral profile
and one spatial profile, i.e. frequency (S2TEC(S+F)) or morphology (S2TEC(S+M)).
This confirms the considerations already reported in Huang and He (2012), which inspire
our idea of considering “various” (and possibly independent) spatial profiles of imagery
data.

Thirdly, the comparison between S2TEC, S-SVM and I+C allows us to evaluate the
contribution of iterative learning in combination with collective inference. In the compared
frameworks, collective inference is performed by learning the relational features constructed
by using the labels of the related neighbors of the instance. Both S-SVM and I+C do not
perform iterative learning, while S2TEC resorts to iterative learning for collective inference.
The results (rows 1, 5–6, Table 5) show that the use of iterative learning really improves
the classification accuracy. This confirms the results of previous studies (Neville and Jensen
2000; Getoor 2005; Bilgic et al. 2007; McDowell et al. 2007; Fang et al. 2013) in collective
inference, which have assessed the effectiveness of iterative learning, in order to account for
the correlation of labels.

Fourthly, the comparison between S2TEC, I+C and I+C+I allows us to perform the
analysis of the presented algorithm as a function of the learning setting adopted (inductive
learning vs transductive learning). We compare classification accuracies produced with clas-
sifiers learned in the inductive setting and collective inference performed in the inductive
setting (I+C), to classification accuracies produced with classifiers learned in the inductive
setting and collective inference performed with iterative learning in the transductive set-
ting (I+C+I). We also compare them to classification accuracies produced with classifiers
learned in the transductive setting and collective inference performed in the transductive set-
ting (S2TEC). The results (rows 2, 6–7, Table 5) show that the highest accuracy is achieved
when the learning process is completed in a purely transductive setting (S2TEC), while the
lowest accuracy is achieved when the learning process is completed in a purely inductive set-
ting (I+C). These results confirm the point of view of Vapnik (1998) that learning classifiers
by accounting for both labeled and unlabeled data contribute to improving accuracy.

Finally, we observe that S2TEC can produce the highest accuracy in Table 5 only by
learning SVMs with Gaussian kernels, using both spectral and multiple spatial profiles, as
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well as performing transductive learning, ensemble learning and iterative collective inference
in the defined learning framework.

7.5 Hyperspectral image processing perspective

Several algorithms, which have been designed in the hyperspectral image classification lit-
erature, have been evaluated by considering Indian Pines, Pavia University and/or Salinas
Valley datasets. In this study, we consider the most recent (and competitive) results pro-
duced by investigating both transductive SVMs and spectro-spatial classifiers in these data
scenarios.

Hyperspectral Trasnsductive SVMsMelgani and Bruzzone (2004) have proposed a transduc-
tive SVM specially designed for hyperspectral image classification, while Plaza et al. (2009)
have evaluated the performance of this classifier by using Indian Pines imagery data and a
semi-supervised experimental setting. In their experiment, from the 16 different land-cover
classes (see Fig. 5a), 7 have been discarded since the authors have judged that an insufficient
number of training samples was available. The remaining 9 classes (corn notill, corn mintill,
grass/pasture, grass/tree, hay-windrowed, soybean notill, soybean mintill, soybean cleantill
and woods) have been used to generate 4757 training samples and 4588 validation samples.
5% of training samples have been sampled to feed the labeled set, while the remaining 95%
of training samples have been used to feed the unlabeled set. The transductive SVM has
been built from both labeled and unlabeled data of the training set and then evaluated on the
validation set. In this study, we perform some experiments by simulating this experimental
setting. We divide data into a training (4757 pixels) and a validation set (4588 pixels). We
sparsely label 5% of training pixels, using the ground truths, for the iterative convergence
learning ensemble. We consider SVMs built from the spectral space at the last iteration of the
ensemble, in order to label the validation test and collect the accuracy metrics. However, we
do not use exactly the same data samples adopted by Plaza et al. (2009), we consider the same
sampling sizes and run S2TEC on several sampling trials. In particular, we perform five ran-
dom partitions between the training set and the validation set and, for each training partition,
we generate five random trials to sample labeled data, for a total of 25 random trials. Results
are averaged on these trials. The results show that, by using this “semi-supervised” setting ,
S2TEC achieves average OA equal to 0.854 (with SD equal to 0.022) and κ equal to 0.828
(with SD equal to 0.026). Both measures greatly outperform OA = 0.762 and κ = 0.710
performed by TSVM in Plaza et al. (2009). This confirms, once again, the ability of our
methodology to outperform existing transductive classifiers.

Spectral-spatial classifiers The classification accuracy performed by several recently defined
algorithms, integrating spectral and spatial information, is analyzed in (Li et al. 2013a,
2011, 2012; Tarabalka et al. 2010b, a; Guccione et al. 2015). Evaluated classifiers include:
LORSAL-MLL that resorts to a multilevel logistic prior encoding the spatial information and
using active learning (Li et al. 2011); MPM-LBP that considers spectral and spatial informa-
tion contained in the original hyperspectral data by using loopy belief propagation and active
learning (Li et al. 2013a); MLRsubMLL that integrates spectral and spatial information in
a Multinomial Logistic Regression (MLR) algorithm and uses Multilevel Logistic Markov-
Gibbs withMarkov random field prior, in order to synthesize the spatial information (Li et al.
2012); SVMMRF that firstly applies a probabilistic support vector machine spectral-based
classification and then refines the classification results by using spatial contextual information
through a Markov random field regularization (Tarabalka et al. 2010b); a spatial-aware SVM
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that learns SVMs after extending the spectral feature space with a spatial-aware morphologi-
cal profile (Plaza et al. 2009; Li et al. 2013a);8 Watershed that uses watershed segmentation,
in order to define information on spatial structures and perform spectral-based SVM classi-
fication, followed by majority voting within the watershed regions (Tarabalka et al. 2010a;
Li et al. 2013a); as well as IRMC that implements two MLR classifiers, which are fed with
spectral features and spatial features, respectively, and work iteratively so that every classifier
exploits the decision of the other one (Guccione et al. 2015).

For Indian Pines, results have been produced in the literature with 5% (IRMC), 6%
(SVMMRF) and 10% (LORSAL-MLL, MPM-LBP, MLRsubMLL and SVMMRC) of the
pixels labeled according to the available ground truths. For Pavia University, results have
been produced in the literature with 5% (IRMC) and 9% (spatial SVM, LORSAL-MLL,
MPM-LBP, MLRsubMLL, SVMMRC andWatershed) of the pixels labeled according to the
available ground truths. For Salinas Valley, results have been produced in the literature with
5% (IRMC) of the pixels labeled according to the available ground truths. In all these datasets,
the remaining pixels have been unlabeled according to the proper transductive setting. Finally,
all the original classes of Indian Pines, Pavia University and Salinas Valley have been used in
the literature to evaluate the competitors considered in this section. The accuracy reported in
Li et al. (2013a, 2011, 2012); Tarabalka et al. (2010b) is achieved by starting from labeled
samples which are different from those considered for this study. Thus, the comparison in
these cases is not properly safe. However, the low SD of the metrics computed for S2TEC
on several trial supports the theory that it should perform equally well if run with the labeled
sets used in Li et al. (2013a, 2011, 2012); Tarabalka et al. (2010b).

Accuracy results are reported in Table 6. The accuracy metrics of all the competitors are
collected with the percentage of the pixels labeled for the learning phase greater than or equal
to 5%. In any case, S2TEC almost always outperforms its competitors with 5% of the pixels
labeled. The only exceptions are observed when MPM-LBP, MLRsubMLL and SVMMRF
are used to classify Indian Pines imagery data. We note that MPM-LB, that uses loopy belief
propagation and active learning, has been evaluated in Li et al. (2013a) with 10% of the pixels
labeled in Indian Pines. Hence, it is reasonable to compare S2TEC andMPM-LB, when both
algorithms are run with 10% of the pixels labeled in Indian Pines. In this case, we observe
that S2TEC achieves higher OA and κ than MPM-LBP, while MPM-LB achieves higher AA
than S2TEC.

Let us now analyze the accuracy of MLRsubMLL and SVMMRF in Indian Pines, both of
which use Markov random fields. Also in this case, the best accuracy of these competitors is
achieved only in association to metric AA. In particular, OA and κ achieved by both MLR-
subMLL (with 10% of the pixels labeled) and SVMMRF (with the 6% of the pixels labeled)
are lower than OA and κ achieved by S2TEC (with both 5 and 10% of the pixels labeled).
In contrast, AA achieved by S2TEC is lower than AA achieved by both MLRsubMLL and
SVMMRF, although differences in AA are smaller when S2TEC is run with 10% of the
pixels labeled. In order to interpret this result, we look at the class-by-class results reported
in Li et al. (2013a) for MPM-LBP, in Li et al. (2012) for MLRsubMLL and in Tarabalka
et al. (2010b) for SVMMRF. We observe that the gain in average accuracy is due to the
ability of these competitors to achieve higher accuracy than S2TEC, when classifying the
pixels belonging to the minority classes “Oat” and “AlfaAlfa”. However, these competitors
are outperformed by S2TEC when considering all the remaining classes.

8 This spatial-aware morphological profile includes opening and closing features, as well as additional spatial
information like size, orientation and local contrast.
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Table 6 Accuracy metrics (± SD) of state-of-art, spatio-spectral, hyperspectral classifiers

Algorithm References Labeled
(%)

OA AA κ

Indian Pines

S2TEC Table 1 5 .945±.010 .876±.036 .937±.011

S2TEC Table 3 10 .975±.006 .927±.014 .971±.007

LORSAL-MLL Li et al. (2011, 2013a) 10 .927 .951 .916

MPM-LBP Li et al. (2013a) 10 .947 .962 .939

MLRsubMLL Li et al. (2012) 10 .936 .939 .926

SVMMRF Tarabalka et al. (2010b) 6 .920 .958 .909

IRMC Guccione et al. (2015) 5 .873±.031 .821±.075 .856±.035

Pavia University

S2TEC Table 1 5 .992±.001 .988±.003 .989±.001

Spatial SVM Plaza et al. (2009) 9 .852 .907 .808

Li et al. (2013a)

LORSAL-MLL Li et al. (2011, 2013a) 9 .855 .925 .818

MPM-LBP Li et al. (2013a) 9 .857 .922 .820

MLRsubMLL Li et al. (2012) 9 .941 .935 .922

SVMMRF Tarabalka et al. (2010b) 9 .976 .945 .959

Watershed Tarabalka et al. (2010a) 9 .854 .913 .813

Li et al. (2013a)

IRMC Guccione et al. (2015) 5 .867±.008 .837±.007 .814±.010

Salinas Valley

S2TEC Table 1 5 .980±.006 .988±.003 .977±.006

IRMC Guccione et al. (2015) 5 .955±.018 .952±.016 .950±.020

8 Conclusion

In this paper, we propose a new transductive hyperspectral image classification algorithm,
that integrates spectral and spatio-relational features into an ensemble system developed
with an iterative convergence algorithm. According to our knowledge, this represents an
innovative contribution in the related field, showing that collective inference can be used with
transductive learning and ensemble learning, in order to enhance the accuracy of traditional
classifiers. In this context, collective inference is used to account for spatial autocorrelation of
labels, transductive learning is considered to deal with sparsely labeled data, while ensemble
learning is aopted to deal with spectral and spatial information. The empirical study proves
that the presented methodology outperforms traditional classifiers, transductive classifiers
and several spatio-spectral algorithms proposed in the hyperspectral image classification
literature. However, it still fails to correctly classify some pixels along the margin bound
between homogeneously, well classified zones.

Some directions for further work are still to be explored. New learning systems, such
as co-training, can be investigated as an alternative to ensemble. At the same time, active
learning solutions can be explored, in order to “intelligently” augment the labeled set along
the iterative process. In addition, we can account for the conclusions suggested by the analysis
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of hyperspectral competitors and try to improve classification accuracy of minority classes
by resorting to Markov random fields. On the other hand, we can also explore the possibility
of performing collective inference through Gibbs sampling (as an alternative to iterative
convergence learning) also in combination withMarkov random fields and/or active learning.
Additionally, it would be interesting to study new ways to adaptively determine both the size
and the shape of spatial neighborhoods. Finally, the algorithm combines principles of both
collective inference and transduction, in order to address a classification task in the relational
setting. Although it is specifically designed for hyperspectral imagery classification, the
algorithm can be considered general-purpose once the schema to determine relational profiles
of data are established. A future piece of work will focus on the definition of a general
schema to determine relational profiles of data with correlation. In this way, we will be able
to investigate the effectiveness of the proposed algorithm in new application environments.
In any case, this is out of the scope of the presented manuscript.
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