
A Rewriting System for Convex Optimization Problems

Akshay Agrawala, Robin Verschuerenb, Steven Diamonda, and Stephen Boyda

aDepts. of Computer Science and Electrical Engineering, Stanford University, USA;
bInstitut für Mikrosystemtechnik, Albert-Ludwigs-Universität Freiburg, Germany

ARTICLE HISTORY

Updated January 23, 2019; originally published September 15, 2017

ABSTRACT
We describe a modular rewriting system for translating optimization problems writ-
ten in a domain-specific language to forms compatible with low-level solver inter-
faces. Translation is facilitated by reductions, which accept a category of problems
and transform instances of that category to equivalent instances of another category.
Our system proceeds in two key phases: analysis, in which we attempt to find a
suitable solver for a supplied problem, and canonicalization, in which we rewrite the
problem in the selected solver’s standard form. We implement the described system
in version 1.0 of CVXPY, a domain-specific language for mathematical and espe-
cially convex optimization. By treating reductions as first-class objects, our method
makes it easy to match problems to solvers well-suited for them and to support
solvers with a wide variety of standard forms.

KEYWORDS
convex optimization; domain-specific languages; rewriting systems; reductions

1. Introduction

Mathematical optimization centers on the optimization problem. Every optimization
problem has three attributes: a variable whose value is to be assigned, constraints
that the variable must satisfy, and a real-valued objective function that measures the
displeasure or cost incurred by any particular assignment to the variable. To solve an
optimization problem is to find a numerical assignment to the variable that minimizes
the objective function among all choices that satisfy the constraints.

Unfortunately, most optimization problems cannot be solved efficiently (Boyd &
Vandenberghe, 2004, §1.4). There are, however, classes of optimization problems that
can be solved in polynomial time. An important such class contains convex opti-
mization problems — problems where the objective function is convex and where the
constraints are described by a set of equality constraints with affine functions and
inequality constraints with convex functions (Boyd & Vandenberghe, 2004; Nesterov
& Nemirovski, 1994).

Modern convex optimization has its origin in linear programming, which traces back
to the late 1940s, after the Second World War (Dantzig, 1963, §2). Since then, convex

Akshay Agrawal: akshayka@cs.stanford.edu

Robin Verschueren: robin.verschueren@imtek.uni-freiburg.de

Steven Diamond: diamond@cs.stanford.edu

Stephen Boyd: boyd@stanford.edu

ar
X

iv
:1

70
9.

04
49

4v
2

 [
m

at
h.

O
C

]
 2

2
Ja

n
20

19

optimization has been extended to include a much wider variety of problems, and has
found application in machine learning (Hastie, Tibshirani, & Friedman, 2009), control
(Boyd, El Ghaoui, Feron, & Balakrishnan, 1994), and computer science (Bertsekas,
1991; Goemans & Williamson, 1995; Parrilo, 2003), to name just a few of the fields
touched by it. To accommodate the applications of convex optimization, researchers
and practitioners have over the years authored many software packages. We distinguish
between two types of software packages: domain-specific languages, which streamline
the process of specifying optimization problems, and low-level numerical solvers, which
furnish solutions to problem instances.

1.1. Domain-specific languages

A domain-specific language (DSL) is a language that is designed for a particular appli-
cation domain (Mernik, Heering, & Sloane, 2005); familiar examples include MATLAB
and SQL. DSLs for convex optimization are languages designed for specifying convex
optimization problems in natural, human-readable forms, and they obtain solutions
to problems on their users’ behalf by invoking numerical solvers; popular ones include
Yalmip (Löfberg, 2004), CVX (Grant & Boyd, 2014), Convex.jl (Udell et al., 2014),
and CVXPY (Diamond & Boyd, 2016a). These DSLs do support some nonconvex
regimes (e.g., combinatorial optimization), and there also exist DSLs for nonlinear op-
timization (see Boyd & Vandenberghe, 2004, §1.4, for a definition), including GAMS
(Brook, Kendrick, & Meeraus, 1988), AMPL (Fourer, Gay, & Kernighan, 1990), and
JuMP (Dunning, Huchette, & Lubin, 2017); here, however, we limit our discussion to
convexity.

We present below a toy example of an optimization problem written in CVXPY
(version 1.0), a Python-embedded DSL (see Hudak, 1996, for background on embedded
DSLs). The choice of language here is not particularly important, as the code would
look similar if translated to any of the other aforementioned DSLs.

from cvxpy import *

alice = Variable()

bob = Variable()

objective = Minimize(maximum(alice + bob + 2, -alice - bob))

constraints = [alice <= 0, bob == -0.5]

toy = Problem(objective, constraints)

opt = toy.solve()

The CVXPY problem toy has two scalar optimization variables, alice and bob.
Every Variable object has stored in its value field a numeric value, which is unspec-
ified upon creation; alice and bob can hold floating point values. The objective is
to minimize a piecewise-affine function of alice and bob, where the function is rep-
resented with the max atom. Atoms are mathematical functions like square and exp

that operate on CVXPY expressions. CVXPY implements as library functions dozens
of atoms for users to use in constructing problems. The arguments to the max atom
are Expression objects, which encode mathematical expressions. Constraint objects
are created by linking two expressions with a relational operator (<=, >=, or ==). In
the second-to-last line, the CVXPY problem toy is constructed, but not solved. Fi-
nally, an invocation to toy’s solve method solves the problem. A side-effect is that

2

the value fields of the optimization variables present in the problem (alice and bob)
are assigned values that minimize the objective while satisfying the constraints, and
the return value of such a solve is the value of the objective function evaluated at
the variable values. After invoking solve above, we find that alice.value == -0.5,
bob.value == -0.5, and opt == 1.0. These values satisfy the two constraints, and
among all such assigments, yield the smallest value of the objective function.

The solve method cannot solve all problems: Whether or not a problem can be
solved depends on the objective, constraints, and variables present in the problem. In
particular, these entities must be constructed in such a way that CVXPY can detect
that their assemblage is in fact a convex problem. Recognizing convexity in general
can be difficult. Many tricks aid in this task, but their application is sometimes guided
by an intuition that is difficult to codify. Nonetheless, there do exist sufficient, but
not necessary, rulesets for algorithmically detecting convexity. The ruleset employed
by CVXPY, CVX, Convex.jl, and Yalmip is called disciplined convex programming
(DCP) (Grant, 2004). These DSLs require users to express their problems by means
of DCP, and while not all convex problems adhere to DCP, non-DCP convex problems
can in practice be made DCP-compliant with at most a moderate amount of human
effort and expertise. DCP-compliant problems can be verified as convex using a simple
set of rules that are readily automated.

Our CVXPY example does not procedurally describe the method of procuring a
solution. Optimization DSLs are in this sense declarative languages. An optimization
problem is simply a precise articulation of preferences and constraints among the
values of the variables; how the problem is to be solved is another story. This story
is the topic of our next section. But an abridged version is as follows: A subroutine
inspects the problem and invokes a numerical solver capable of solving it, and most
DSLs also allow users to mandate that a specific solver be used to solve any given
problem — in CVXPY, for example, users may select a solver via the solve method’s
keyword argument solver.

1.2. Numerical solvers

A numerical solver is a low-level tool that takes as input an optimization problem
encoded in a rigid format and returns a solution for it. Every solver is tied to one or
more classes of problems, insofar as problems supplied to a solver must be instances of
one of its supported classes. One of the oldest problem classes is least squares, dating
back to works authored by Legendre and Gauss in the late 18th and early 19th cen-
turies (see Stigler, 1981, for a discussion of Legendre and Gauss’ contributions to the
methodology, and Gauss, 1995, for a translation of Gauss’ manuscript on the same).
Other well-studied convex optimization classes include linear programs, popularized
by Dantzig following the Second World War (Dantzig, 1963), and cone programs, intro-
duced in the late 20th century by Nesterov and Nemirovski (Nesterov & Nemirovski,
1992; Nesterov & Nemirovski, 1994, §4.1).

Various classes of convex problems fit into a hierarchy, as depicted in Fig. 1. Every
linear program reduces to a quadratic program (Boyd & Vandenberghe, 2004, §4.4);
every quadratic program reduces to a second-order cone program (Nesterov & Ne-
mirovski, 1994, §6.2.3); every second-order cone program reduces to a semidefinite
program (Vandenberghe & Boyd, 1996); every semidefinite program reduces to a cone
program; and every cone program reduces to a graph form program (Parikh & Boyd,
2014). Problem classes increase in both generality and difficulty as one goes up the

3

LP

QP

SDP

CP

Figure 1. Hierarchy of convex optimization

problems. Rewriting systems should reduce in-

stances of classes higher in the hierarchy to
lower ones, when possible. (LP: linear program,

QP: quadratic program, SOCP: second-order
cone program, SDP: semidefinite program, CP:

cone program, GFP: graph form program.)

canonicalization

p1 pn

...

p0

s1 sn
...

s0

retrieval

solver

Figure 2. Generic representation of a rewriting, capped

with an invocation to a solver. The user-posed problem p0
is canonicalized to a form pn compatible with the targeted
solver via a sequence of n reductions, yielding the interme-

diate problems p1 through pn−1. The solver solves pn and

returns a solution sn for pn; we then retrieve solutions for
the intermediate problems in reverse order, terminating with

a solution s0 for p0.

hierarchy. For example, whereas every second-order cone program is also a semidefinite
program, it is not advisable to solve the second-order cone programs using semidefi-
nite program solvers (Alizadeh & Goldfarb, 2001). This fact motivates the existence of
numerical solvers for different classes of problems — all other things equal, it is better
to use as specific a solver as possible for the problem at hand.

In 1953, Hays and Dantzig developed for the RAND Corporation one of the ear-
liest linear program solvers (Dantzig, 1963, §2.1). The universe of solvers has since
grown in lockstep with the universe of optimization algorithms. There exist today
solvers for many types of convex programs. Examples of solvers specialized to each
class include GLPK (Makhorin, 2016) and CBC (Forrest & Lougee-Heimer, 2005)
for linear programs; qpOASES (Ferreau, Kirches, Potschka, Bock, & Diehl, 2014) and
OSQP (Banjac, Goulart, Stellato, & Boyd, 2017) for quadratic programs; ECOS (Dom-
ahidi, Chu, & Boyd, 2013) and Gurobi (Gurobi Optimizer Reference Manual , 2017)
for second-order cone programs; MOSEK (MOSEK optimization suite, 2017) and Se-
DuMi (Sturm, 1999) for semidefinite programs; SCS (O’Donoghue, Chu, Parikh, &
Boyd, 2016) for more general cone programs; and POGS for graph form programs
(Fougner & Boyd, 2015). Many of the solvers listed also support nonconvex problems
such as mixed-integer and nonlinear programs.

When we say that numerical solvers are low-level tools, we mean that it is onerous
to translate problems to forms acceptable to solvers — even deciding which solver
to use for a particular problem is a skill that requires training. These observations
provide two of the raisons d’être for optimization DSLs.

1.3. Canonicalization

The process of converting an optimization problem encoded in a DSL to a solver-
compatible form — for example, the process by which CVXPY transformed our toy
problem to the above representation — is called canonicalization (Grant, 2004, §4).
Consider once again the toy problem from §1.1, the one transcribed in CVXPY. This
problem can be transformed to an equivalent linear program, i.e., a problem of the

4

form

minimize cTx
subject to Gx ≤ h

Ax = b,

where x is the (vector) variable, the matrices G and A, and vectors c, h, and b, are
constants, and the inequality is component-wise. Upon invoking the solve method,
CVXPY canonicalizes the toy problem to the above standard form to make it compat-
ible with a numerical (linear program) solver. The transformed problem has a variable
x ∈ R3 whose first and second components represent alice and bob, respectively, and
whose third component is an auxiliary variable introduced in the canonicalization. The
problem data are

G =

 1 1 −1
−1 −1 −1
1 0 0

 , A =
[
0 1 0

]
, c =

0
0
1

 , h =

−2
0
0

 , b = −0.5.

This canonical form of our toy problem is the result of applying the transformation
described in §6.5 of Dantzig and Thapa’s 1997 text, and as such it could have easily
been produced manually. Yet as problems of interest grow larger and more complex,
producing canonical forms by hand quickly becomes a tedious, laborious, and error-
prone task. Many users of convex optimization still canonicalize problems manually
— instead of letting optimization DSLs do the work for them — due to reliance on
legacy systems, performance concerns, or in some cases, ignorance of the existence of
DSLs that can automate the task.

Problems written in CVX, Convex.jl, and CVXPY are automatically canonicalized
to conic form, and Yalmip supports other classes of problems as well. For all of these
DSLs, however, the solver selection and canonicalization procedures are implemented
in ad hoc fashions that cannot easily be modified or extended, for instance to target
new problem classes.

1.4. This paper

This paper is about treating canonicalization as a first-class component of the software
ecosystem for convex optimization. We propose a rewriting system that sits between
DSLs and numerical solvers, translating problems expressed in the former to forms
compatible with the latter.

The atomic rewriting unit in our rewriting system is the reduction. A reduction
is a function that converts problems of one form to equivalent problems of another
form. Two problems are equivalent if a solution for one can be readily converted to
a solution for the other (as defined in Boyd & Vandenberghe, 2004, §4.1.3); readers
from computer science will recognize that our definitions are in the same spirit as the
more formal ones from their field (see for example §10.3 of Papadimitriou, 1994, and
§2.2 of Arora & Barak, 2009).

Every canonicalization is a reduction. In many cases, canonicalizations are complex
enough to merit decomposing them into compositions of reductions. For a rewriting
system to be useful, it must retrieve solutions for canonicalized problems to solu-
tions for their provenances; because reductions output equivalent problems, they by
definition support retrieval. The dual processes of canonicalization and retrieval are

5

diagrammed in Fig. 2. Any rewriting that is cast as a composition of reductions is
provably correct: The rewriting will either (a) output an equivalent problem, if the
reductions in the canonicalization are mutually compatible and the first reduction is
applicable to the source problem, or otherwise (b) audibly fail. There are at least
three other benefits enjoyed by placing special emphasis on problem rewritings and
reductions: doing so provides a structured way of preferentially targeting some solvers
over others, simplifies the interfacing of domain-specific languages with new solvers,
and unifies problem transformations and back-end optimizations like presolves within
a single conceptual framework.

The remainder of this paper is structured as follows. In §2, we elaborate upon the
role and structure of rewriting systems; in §3, we list many examples of reductions,
from simple to nuanced; and in §4, we discuss version 1.0 of CVXPY, an open-source
implementation of our proposed rewriting system.

2. An architecture for rewriting systems

2.1. Principles

There are four principles to which all optimization rewriting systems should adhere;
these principles are informed by ones adopted by the software compiler community
(Aho, Lam, Sethi, & Ullman, 2006, §1.4.2).

(1) Every rewriting must yield an equivalent problem that is target-compatible.
(2) For each problem, an effort should be made to select a suitable solver for it.
(3) The rewriting time must be tolerable.
(4) The engineering effort required to maintain the rewriting system and add solvers

to it must be kept manageable.

Adherence to the first three principles is necessary in order for a rewriting system
to be useful, and to faithfully solve the specified problem. The fourth principle expe-
dites not only the work of engineers responsible for rewriting systems but also that
of those developing new solvers: Researchers who interface their solvers to popular
DSLs gain immediate access to a rich ecosystem of problems for testing and tuning
their algorithms. Indeed, the advent of software compilers fundamentally altered the
development cycle of processors — today, compilers are built before processor designs
are finalized, for often a processor is only useful if a compiler can exploit it (Aho et al.,
2006, §1.5.3). The creation of optimization rewriting systems that satisfy the fourth
principle might effect a similar paradigm shift in the design of numerical solvers.

As for how to actually satisfy these principles — the first principle is automatically
satisfied by the use of reductions. One way to satisfy the remaining three principles is
to decompose the rewriting system architecture into three distinct phases.

2.2. Phases

Just as it is natural to decompose software compilers into three phases (Aho et al.,
2006, §1.2), so it is with optimization rewriting systems (Fig. 3). The first and third
phases of both systems are analogous. In the first phase, a front end takes a human-
readable specification of a program and converts it to an intermediate representation;
both compilers and rewriting systems often use abstract syntax trees as their in-
termediate representations (Aho et al., 2006, §2.5.1; Udell et al., 2014, Diamond &

6

p0

DSL Front End Analyzer

LP

QP

SDP

CFP

Back Ends

Si

S2

S1

...
...

Sk

Rewriting System

pn

Solver

Figure 3. Architecture of a three-phase rewriting system. The system takes as input a problem p0 written

in a DSL. A front end specific to that DSL takes p0 and encodes it in some intermediate representation,

e.g., mathematical expression trees. The analyzer reads the intermediate representation, discovers what it can
about the problem’s structure, and then selects a target, or solver; the analyzer may itself produce further

intermediate representations of the problem via reductions. A back end takes the intermediate representation

produced by the analyzer and reduces it to a form pn that is compatible with the target.

Boyd, 2016b). In the third phase, a back end takes an intermediate representation and
translates it to a target-compatible form; targets for software compilers are processor
architectures, while targets for optimization rewriting systems are numerical solvers.
Our front end does not make use of reductions, as the problem of constructing a syntax
tree is one of parsing, but our back ends most certainly do — in fact, our back ends
are nothing more than sequences of reductions. In other words, each of the back ends
supported by the rewriting system is a different canonicalization procedure.

Whereas the second phase of a compiler optimizes programs (Aho et al., 2006,
§1.2.5), the second phase of our rewriting system analyzes problems, selecting for each
a suitable target; an imperfect analogy might compare our analysis phase to a static
analysis tool like Frama-C (Kirchner, Kosmatov, Prevosto, Signoles, & Yakobowski,
2015). Compilers like the GNU Compiler Collection (Stallman & GCC Developer
Community, 2017) can translate a given source program to any of their targeted archi-
tectures, since every architecture is Turing complete (Sipser, 1996). Rewriting systems
provide no such guarantees — solvers are specific to particular classes of problem, i.e.,
a given optimization problem might be compatible with but a subset of the solvers
targeted by a rewriting system, hence the need for analysis. A sensible analysis policy
is to identify the most specific class to which a problem belongs and choose a tar-
get supporting that class (see Fig. 1). Solver selection might also reflect desiderata
like accuracy, scalability, and speed. For example, first-order solvers like SCS scale to
larger problems than interior-point methods like ECOS, though the latter typically
provide more accurate solutions than do the former. Analysis may of course fail to
find a target that can handle a particular problem. When this happens, the rewriting
system should abort with a descriptive error code or message.

This three-phase architecture satisfies principles two through four listed in §2.1. The
existence of an analysis phase satisfies the second principle, a best-effort implementa-
tion of the analysis phase will satisfy the third principle, and the separation of back
ends from front ends, together with the use of reductions as modular rewriting units,
satisfies the fourth principle.

7

3. Reductions

In this section, we list several examples of reductions. Some of the listed reductions
might be used to perform routine operations common among canonicalizations, while
other more involved ones might be used to reduce problems to instances of simpler
classes.

Notation. In all of the following examples, the variable x denotes the optimization vari-
able wherever it appears, which may be a scalar or a vector. If we refer to the variables,
plural, of an optimization problem, we mean to refer to the individual components of
x. An equality constraint is one of the form f(x) = g(x). An inequality constraint is
one of the form f(x) ≤ g(x), where f and g are (real) vector-valued functions and the
inequality is component-wise; the constraint function of a constraint is f −g. Equality
constraints are convex if the constraint function is affine, and inequality constraints
are convex if the function on the left (f) is convex and the function on the right (g)
is concave.

3.1. Simple reductions

In this section, we present some simple but useful reductions.

Flipping objectives. The action of inverting a maximization objective to a minimization
is a reduction: Maximizing a function f over its domain is equivalent to minimizing
−f , as solutions to the two problems are related by an inversion of sign. No work is
required to retrieve a solution from the reduced-to problem, as the optimal sets of
both problems are the same. (The optimal value of the problem must be negated.)

Moving expressions to the left of a relation. Subtracting the right-hand side of each
constraint of a problem from both sides yields an equivalent problem in which all
constraints have zero-valued right-hand sides. As in the case of the previous reduction,
solution retrieval requires no work.

Eliminating general linear inequality constraints. Linear inequality constraints (i.e.,
those with f and g both affine) can be replaced with equality constraints by intro-
ducing nonnegative variables. To wit, the constraint f(x) ≤ g(x) holds if and only if
f(x) + s = g(x), for some s ≥ 0; the auxiliary variable s is called a slack variable (see
Dantzig, 1963, §4.3). Applying this reduction gives an equivalent problem in which
every linear constraint is either an equality constraint or a nonnegativity constraint
on a slack variable. A solution for the original problem may be retrieved from a
solution for the transformed problem by simply fetching the value of x and discarding
the slack variables.

Monotone transformations of objective and constraints. Composing any monotone in-
creasing function with the objective function of a problem yields an equivalent problem;
so does transforming any number of constraints by applying any monotone increasing
function to both sides. The retrieval method for this reduction is essentially a no-op,
as the feasible and optimal sets for the two problems are identical. This reduction
has been employed for centuries — squaring the Euclidean norm when it appears
as an objective function to render it differentiable is, at least historically, standard

8

mathematical practice.
Stated in the opposite direction, if the objective function of a convex problem is

monotone increasing, then the problem given by replacing the objective function
with a composition of its inverse and itself (and similarly for the constraints) is an
equivalent convex problem. This reduction might be used to eliminate exponentials
and logarithms from a problem, which in turn might make the problem amenable to
more solvers.

Changing variables. Let φ be any one-to-one function whose image covers the problem
domain. Replacing the optimization variable x wherever it appears with φ(z) is a
reduction, yielding an equivalent problem with optimization variable z. To retrieve a
solution for the original problem from one for the transformed problem, simply take
x? = φ(z?), where x? denotes an optimal point for the original problem and z? an
optimal point for the transformed problem.

Changing variables can convert nonconvex problems to equivalent convex problems.
A classic example is the technique for convexifying geometric programs; this technique
both changes variables and transforms the objective and constraints. A geometric
program is an optimization problem of the form

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, . . . ,m

hi(x) = 1, i = 1, . . . , p,

where the functions fi are posynomials and the functions hi are monomials. A mono-
mial is a function f : Rn → R over the nonnegative orthant defined as

f(x) = cxa1

1 x
a2

2 · · ·x
an
n ,

where c > 0 and ai ∈ R, and a posynomial is a sum of monomials. Performing a
change of variables with xi = exp(zi) and taking logarithms of both the objective
and constraints results in a convex problem. In fact, if the fi are all monomials,
then the resulting problem is a linear program. For a brief introduction to geometric
programming, see (Boyd & Vandenberghe, 2004, §4.5); for a longer survey, see (Boyd,
Kim, Vandenberghe, & Hassibi, 2007).

Eliminating complex numbers. It is possible to reduce an optimization problem over
a complex domain to one over a real domain. (While such a problem has complex
variables and expressions, the constraint and objective functions must all be real-
valued.)

We provide here a partial specification of the reduction. Absolute values of complex
numbers reduce to Euclidean norms of their concatenated real and imaginary parts,
sums of complex numbers reduce to sums of their real and imaginary parts, and equal-
ity constraints between two complex numbers reduce to equality constraints on the
implicated expressions’ real and imaginary parts. Perhaps more interesting, positive
semidefinite constraints on Hermitian matrices reduce to positive semidefinite con-
straints on real symmetric matrices. As presented in (Goemans & Williamson, 2004),
a Hermitian matrix X is positive semidefinite if and only if the real symmetric matrix

9

T (X) is positive semidefinite, where the mapping T is defined as

T (X) =

[
ReX − ImX
ImX ReX

]
.

As this reduction expands the optimization variable into its real and imaginary
parts, retrieving a solution for the complex-domain problem from a solution for the
real-domain problem requires but a bit of book-keeping to map variable values from
the latter solution to the real and imaginary parts of the original variable.

3.2. Presolves

A presolve is any reduction that is meant to decrease the computational cost in-
curred when solving a problem. Presolves are typically performed immediately before
problems are solved, with some but not all numerical solvers subjecting problems to
a battery of presolves prior to solving them. Many presolves are applicable across
solvers, i.e., a presolve that helps one solver is likely to help many others. This moti-
vates folding presolves into rewriting systems and excising them from numerical solvers
whenever possible. As recommended by G. Bradley, Brown, and Graves (1983), one
might even treat the application of presolves as a fixed point iteration, cyclically apply-
ing presolves until the problem cannot be further simplified. This approach resembles
the multiple passes an optimizing software compiler may make over an intermediate
code representation (Aho et al., 2006, §8 and §9).

There is substantial literature on presolves. Andersen and Andersen (1995) cast
presolves as reductions, listing many examples for linear programs together with
methods for retrieving their solutions. Earlier surveys of linear programming presolves
include (Brearley, Mitra, & Williams, 1975), (G. Bradley et al., 1983), and (L. Tomlin
& Welch, 1986). J. Tomlin (1975) discusses the problem of scaling data matrices to
coax faster performance out of the simplex algorithm, while A. M. Bradley (2010)
provides a more modern perspective on scaling for a wider class of algorithms. Here,
we present a sample of some of the presolves covered by these and other references.

Eliminating fixed variables. Any variable that is constrained to be a constant is called
a fixed variable; replacing every occurrence of it with the value of the constant yields
an equivalent problem. In the software compilers literature, this technique is called
constant propagation (Aho et al., 2006, §9.4). Solution retrieval simply requires setting
the values of the fixed variables to their respective constant values and copying all
other variable values.

Eliminating free variables. Any variable that does not have upper and lower bounds
is called a free variable; replacing every occurrence of it with the difference of two
auxiliary nonnegative variables yields an equivalent problem for which a solution can
be retrieved in the obvious way (Dantzig, 1963, §4.3). In the setting of cone programs,
free variables are those that are not restricted to lie in a cone (other than Rn). There
are a number of ways to exploit free variables in cone programs, some of which are
outlined by Anjos and Burer (2008).

Eliminating redundant constraints. Any constraint whose removal leaves the feasible
region unchanged is redundant; deleting such constraints yields an equivalent problem.
For example, any equation in a linear system that is a linear combination of the others

10

is redundant (Dantzig & Thapa, 1997, §B.2). As another example, if it is required
that x ≤ b and x ≤ c, and moreover if it is known that b ≤ c, then the constraint
x ≤ c is redundant. Solution retrieval for this reduction is a no-op.

Scaling. Scaling both sides of a constraint by a positive constant is a presolve; this
presolve is an instance of monotonically transforming constraints (see §3.1). It has
long been known that scaling matrices (i.e., scaling constraints of the form Ax ≤ b or
Ax = b) can by lowering the condition numbers of these matrices dramatically affect
the performance of first-order methods for convex optimization (see, e.g., J. Tom-
lin, 1975). One scaling technique, called diagonal preconditioning, premultiplies such
constraints by diagonal matrices and also changes variables by premultiplying the op-
timization variable by another diagonal matrix (Kelley, 1995, §2.5; Pock & Chambolle,
2011; Takapoui & Javadi, 2016). A popular instantiation of this technique is matrix
equilibration, which chooses the diagonal matrices so that all rows of the scaled data
matrix have one p-norm and all columns have another, with the two equal for square
matrices. The literature on equilibration spans decades — see, for example, (Sluis,
1969), (A. M. Bradley, 2010), (Diamond & Boyd, 2016c) and the references therein.

3.3. Conic canonicalization of DCP programs

The embedded languages CVX, Convex.jl, CVXPY, and YALMIP canonicalize
problems to a form compatible with cone program solvers; in particular, the canon-
icalized objective function is affine and all constraints are conic, imposed only on
affine expressions of the optimization variable. These tools canonicalize problems in
the same fashion, and the methodology shared among them is the subject of this
section. The methodology — which is a reduction if the problem operated upon is
DCP-compliant — proceeds in three steps: first, the problem is lifted into a higher
dimension via its Smith form, making affine the arguments of each atom; second,
the lifted problem is relaxed to a convex problem; and third, every nonlinear atom is
replaced with conic constraints that encode its graph implementation. Our exposition
in this section draws from work by Smith (1996), who introduced Smith form,
Grant and Boyd (2008), who introduced graph implementations, and Chu, Parikh,
Domahidi, and Boyd (2013), who illustrated these three steps with a clear example.

Smith form. It is natural to view an optimization problem as composed of a forest
of mathematical expression trees, with one tree for the objective function and two
trees for every constraint, one for each side of the constraint. The inner nodes of an
expression tree represent mathematical functions, or atoms, and the leaves represent
variables and constants. Every inner node is evaluated at its children, i.e., the children
of an atom are its arguments. For example, the expression f(x) + c, in which f is an
atom and c a constant, parses into a tree where the summation atom is the root, f
and c are the children of the root, and x is the child of f .

Converting an optimization problem to Smith form requires making a single
pass over every expression tree present in the problem. Recursively, beginning with
the root, each subexpression is replaced with an auxiliary variable, and equality
constraints are introduced between the auxiliary variables and the subexpressions
they replaced. The resulting problem is said to be in Smith form, a key property
of which is that the arguments of each atom within the problem are affine (indeed,
they are unadorned variables). Transforming a problem to Smith form is always a

11

reduction. This reduction does not however preserve convexity, as any convex function
present in the original problem will appear as the constraint function of an equality
constraint in the transformed problem.

Relaxed Smith form. If the original problem is DCP-compliant, then its Smith form
can be relaxed to an equivalent convex problem. In particular, relaxing in the correct
direction the nonconvex equality constraints between the auxiliary variables and
their associated atoms is in this case a reduction, in the following sense: if (x?, t?)
is optimal for the relaxed problem, t a vector of the auxiliary variables and x the
original variable, then x? is optimal for the original problem.

Graph implementations. The final step in this reduction replaces every constraint in
which a nonlinear convex atom appears with conic constraints that encode the atom’s
epigraph. The epigraph of a function is defined as the set of points that lie above its
graph: For a function f , its epigraph is defined as the set of points {(x, y) | f(x) ≤ y}.
As a simple example of such a replacement, the epigraph of the function |x| is the
set {(x, y) | x ≤ y,−x ≤ y}; accordingly, the constraint |t1| ≤ t2 would be replaced
with the constraints t1 ≤ t2 and −t1 ≤ t2. Constraints encoding the epigraph of an
atom are called the graph implementation of the atom, coined in (Grant, 2004), though
such constraints might more aptly be referred to as an epigraph implementation; the
action of replacing a nonlinear atom with its graph implementation is called a graph
expansion.

Graph implementations are useful outside of conic canonicalization as well. For
example, one might choose to only perform graph expansions for piecewise-linear atoms
such as abs, max, and sum k largest, which sums the k largest entries of a vector or
matrix. This process of eliminating piecewise-linear atoms is itself a reduction if the
problem to which it is applied is DCP-compliant.

3.4. Other reductions

The reductions presented are somewhat subtle and problem specific, examples of the
kinds of experimental reductions one might include in a rewriting system.

Decomposing second-order cone constraints. A second-order cone constraint on a
block vector (x, t) is a constraint of the form ‖x‖2 ≤ t, where x ∈ Rn is a vector
and t is a scalar. The dimension of such a second-order cone constraint is n+ 1. Any
second-order constraint of dimension n + 1, n ≥ 2, can be reduced to n − 1 three-
dimensional second-order cone constraints by the following chain of observations: The
constraint ‖x‖2 ≤ t holds if and only if x2

1 + x2
2 + · · · + x2

n ≤ t2 and t ≥ 0, which in
turn holds if and only if x2

2 + · · · + x2
n ≤ u2, u2 ≤ t2 − x2

1, and u, t ≥ 0, where u is a
scalar variable, i.e., if and only if (x2, . . . , xn, u) and (x1, u, t) are in the second-order
cone. The result follows by recursing on (x2, . . . , xn, u).

Decomposing semidefinite constraints. A semidefinite program is a convex optimization
problem of the form

minimize tr(CX)
subject to tr(AiX) = bi, i = 1, . . . , p

X ∈ Sn
+,

12

where the constraint X ∈ Sn
+ requires X to be an n× n positive semidefinite matrix.

Semidefinite programs can become significantly harder to solve as the size of the
matrices involved increases, motivating reductions that decompose the matrices into
smaller ones.

A semidefinite program that exhibits a chordal aggregate sparsity pattern can often
be reduced to a program involving smaller matrices. The sparsity pattern of an n× n
matrix is a set E of pairs (i, j), i, j ∈ {1, 2, . . . , n}, such that Aij = 0 if (i, j) 6∈ E and
i 6= j; the aggregate sparsity pattern of a semidefinite program is the union of the edge
sets of the sparsity patterns of C and A1, A2, . . . , Ap. A sparsity pattern is chordal if
the induced graph (with vertices V = {1, 2, . . . , n} and edges E) is chordal, i.e., if
every cycle of length greater than three contains an edge between two non-consecutive
vertices, called a chord.

The reduction in question replaces the optimization variable with smaller matrix
variables, one for each clique in the graph induced by the aggregate sparsity pattern,
rewriting the objective and equality constraints in terms of these new variables and
adding equality constraints to preserve the semantics of the original problem. The
particulars of this reduction (and related ones) can be found in Fukuda, Kojima,
Murota, and Nakata (2001), whose authors were among the first to exploit chordal
sparsity patterns to decompose large semidefinite programs, and (Vandenberghe &
Andersen, 2015, §14.2), which thoroughly surveys the topic of chordal graphs as they
relate to semidefinite optimization.

Relaxing convex equality constraints. Consider an optimization problem with a convex
objective, convex inequality constraints, and a single convex equality constraint. This
problem is not convex; however, it can in certain cases be coerced into a convex form.
Letting x be the problem variable, if there is an index r such that the objective is
monotonically increasing in xr, each inequality constraint function is nondecreasing
in xr, and the equality constraint function is monotonically decreasing in xr, then
relaxing the equality constraint to a nonpositive inequality constraint produces an
equivalent convex problem, i.e., the relaxation is tight (Boyd & Vandenberghe, 2004,
exercise 4.6).

3.5. An example

We address in this section the following quite practical question: What types of convex
programs reduce to quadratic programs?

A quadratic program is an optimization problem in which the objective function is a
convex quadratic and the constraint functions are affine (Boyd & Vandenberghe, 2004,
§4.4); quadratic programs have been studied since the 1950s. Evidently, a problem
in which every inequality constraint function is piecewise-linear and every equality
constraint function is affine can be reduced to a problem in which every constraint
function is affine (by eliminating the piecewise-linear atoms via graph expansions, as
described in §3.3).

Describing acceptable objective functions requires more work; we will specify accept-
able objective functions via their expression trees, and we will specify an acceptable
expression tree by providing regular expressions (Aho et al., 2006, §3.3.3) for paths
beginning at the root and terminating at (the ancestor of) a leaf. Letting A denote an
affine atom, P a piecewise-linear atom, and Q a quadratic atom, it is clear that any ob-
jective function whose root-to-leaf paths satisfy the regular expression A∗ QA∗ |P+

13

q0start

q1

q2

q3

A

Q

P

A

Q

P

P

Figure 4. A finite-state machine for the example in §3.5. Any DCP-compliant problem in which the root-

to-leaf paths of the objective function’s expression tree are accepted by this state machine can be reduced to

a quadratic program, provided that the equality constraint functions are affine and the inequality constraint
functions piecewise-linear. Above, A represents affine atoms, Q represents quadratic atoms, and P represents

piecewise-linear atoms.

can be canonicalized to a quadratic by eliminating the piecewise-linear atoms — this
is evident because the Hessian of such a function is constant almost everywhere.

Barring nonlinear transformations (e.g., squaring a norm), one might reasonably
assume that the class of problems reducible to quadratic problem cannot be further
generalized, for the regular expression does after all capture both linear programs and
quadratic programs. But such an assumption would be incorrect. In fact, any DCP-
compliant problem (with acceptable constraints) whose objective function’s root-to-
leaf paths satisfy the regular expression A∗ QP∗ |P+ can be reduced to a quadratic
program (Fig. 4 renders the regular expression as a finite-state machine). The corre-
sponding reduction eliminates the piecewise-linear atoms using graph expansions and
then massages the objective into a quadratic.

As an example, the following problem can be canonicalized to a quadratic program:

minimize (max(x, 0) + max(x− 1, 0))2.

Note that unlike the simpler class of problems we described, this problem does not
have a constant Hessian — its second derivative is 0 when x < 0, 2 when 0 < x < 1,
and 8 when x > 1. It is nonetheless reducible to a quadratic program, i.e., a problem
whose objective function has a constant Hessian.

4. Implementation

We have implemented a number of the reductions from §3 in version 1.0 of CVXPY, an
open-source implementation of our proposed three-phase rewriting system, available
at

http://www.cvxpy.org/.

All problem rewriting is facilitated by Reduction objects, and every reduction im-
plements three methods: accepts, apply, and retrieve. The accepts method takes

14

as input a problem and returns a boolean indicating whether or not the reduction can
be applied to the problem, the apply method takes as input a problem and returns a
new equivalent problem, and the retrieve method takes a solution for the problem
returned by an invocation of apply and retrieves from it a solution for its problem of
provenance. Some of the tasks carried out by reductions in our system include flipping
objectives (§3.1), eliminating piecewise-linear atoms (§3.3), canonicalizing problems
to cone programs, (§3.3), and canonicalizing problems to quadratic programs (§3.5).
Sequences of reductions are represented by Chain objects, which are themselves re-
ductions, and solver back ends are implemented with Chain objects.

Creating expressions and constraints in CVXPY invokes behind-the-scenes a front
end that parses them into expression trees; this functionality is not new (see Diamond
& Boyd, 2016a). What is new is the method by which solvers are chosen for problems
and the methods by which problems are canonicalized to their standard forms. In
CVXPY 1.0, invoking the solve method of a problem triggers an analyzer, phase
two of our rewriting system. The analyzer determines the most specific class to which
the problem belongs by checking which back ends accept the problem; back ends are
checked in order of decreasing specificity, and the analysis is short-circuited as soon
as a suitable back end is found. Analysis may itself apply simple reductions to the
problem. Any such reductions are prepended to the back end to create a Chain object
that encapsulates the entire rewriting process, and the problem is solved by applying
the chained reduction, invoking a solver, and using the chained reduction to retrieve a
solution. For example, if a user specifies a problem that is recognizably reducible to a
quadratic program, and if a quadratic solver is installed on the user’s device, CVXPY
1.0 will automatically target it.

Acknowledgments

We extend many thanks to Enzo Busseti, for significant contributions to the quadratic
program canonicalization procedure, and Yifan Lu, for fruitful conversations about
the analogy between our rewriting system and software compilers.

References

Aho, A., Lam, M., Sethi, R., & Ullman, J. (2006). Compilers: Principles, techniques, and tools
(2nd edition). Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

Alizadeh, F., & Goldfarb, D. (2001). Second-order cone programming. Mathematical Pro-
gramming , 95 , 3–51.

Andersen, E., & Andersen, K. (1995). Presolving in linear programming. Mathematical
Programming , 71 (2), 221–245.

Anjos, M., & Burer, S. (2008). On handling free variables in interior-point methods for conic
linear optimization. SIAM Journal on Optimization, 18 (4), 1310-1325.

Arora, S., & Barak, B. (2009). Computational complexity: A modern approach (1st ed.). New
York, NY, USA: Cambridge University Press.

Banjac, G., Goulart, P., Stellato, B., & Boyd, S. (2017). Infeasibility detection in the al-
ternating direction method of multipliers for convex optimization. Optimization Online.
Retrieved from http://www.optimization-online.org/DB HTML/2017/06/6058.html

Bertsekas, D. (1991). Linear network optimization: Algorithms and codes. Cambridge, MA,
USA: MIT Press.

15

Boyd, S., El Ghaoui, L., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in
system and control theory. Society for Industrial and Applied Mathematics.

Boyd, S., Kim, S.-J., Vandenberghe, L., & Hassibi, A. (2007). A tutorial on geometric pro-
gramming. Optimization and engineering , 8 (1), 67.

Boyd, S., & Vandenberghe, L. (2004). Convex optimization. New York, NY, USA: Cambridge
University Press.

Bradley, A. M. (2010). Algorithms for the equilibration of matrices and their application
to limited-memory quasi-newton methods (Unpublished doctoral dissertation). Stanford
University.

Bradley, G., Brown, G., & Graves, G. (1983). Structural redundancy in large-scale optimization
models. In Redundancy in mathematical programming: A state-of-the-art survey (pp. 145–
169). Berlin, Heidelberg: Springer Berlin Heidelberg.

Brearley, A., Mitra, G., & Williams, H. (1975). Analysis of mathematical programming
problems prior to applying the simplex algorithm. Mathematical Programming , 8 (1), 54–
83.

Brook, A., Kendrick, D., & Meeraus, A. (1988). GAMS, a user’s guide. SIGNUM Newsl.,
23 (3-4), 10–11.

Chu, E., Parikh, N., Domahidi, A., & Boyd, S. (2013). Code generation for embedded second-
order cone programming. In Proceedings of the European Control Conference (pp. 1547–
1552).

Dantzig, G. (1963). Linear programming and extensions (Tech. Rep. No. R-366-PR). Santa
Monica, California, USA: RAND Corporation.

Dantzig, G., & Thapa, M. (1997). Linear programming 1: Introduction. Secaucus, NJ, USA:
Springer-Verlag New York, Inc.

Diamond, S., & Boyd, S. (2016a). CVXPY: A Python-embedded modeling language for convex
optimization. Journal of Machine Learning Research, 17 (83), 1–5.

Diamond, S., & Boyd, S. (2016b). Matrix-free convex optimization modeling. In B. Goldengorin
(Ed.), Optimization and its applications in control and data sciences (Vol. 115, pp. 221–264).
Springer.

Diamond, S., & Boyd, S. (2016c). Stochastic matrix-free equilibration. Journal of Optimization
Theory and Applications, 172 (2), 436–454.

Domahidi, A., Chu, E., & Boyd, S. (2013). ECOS: An SOCP solver for embedded systems.
In Proceedings of the European Control Conference (pp. 3071–3076).

Dunning, I., Huchette, J., & Lubin, M. (2017). JuMP: A modeling language for mathematical
optimization. SIAM Review , 59 (2), 295-320.

Ferreau, H., Kirches, C., Potschka, A., Bock, H., & Diehl, M. (2014). qpOASES: A parametric
active-set algorithm for quadratic programming. Mathematical Programming Computation,
6 (4), 327–363.

Forrest, J., & Lougee-Heimer, R. (2005). CBC user guide. In Emerging theory, methods, and
applications (pp. 257–277). INFORMS.

Fougner, C., & Boyd, S. (2015). Parameter selection and pre-conditioning for a graph form
solver. arXiv preprint arXiv:1503.08366 .

Fourer, R., Gay, D., & Kernighan, B. (1990). A modeling language for mathematical pro-
gramming. Management Science, 36 (5), 519–554.

Fukuda, M., Kojima, M., Murota, K., & Nakata, K. (2001). Exploiting sparsity in semidefinite
programming via matrix completion i: General framework. SIAM Journal on Optimization,
11 (3), 647-674.

Gauss, C. (1995). Theory of the combination of observations least subject to errors. Society
for Industrial and Applied Mathematics. (Translated from original 1820 manuscript by G.
W. Stewart.)

Goemans, M., & Williamson, D. (1995). Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming. Journal of the ACM , 42 (6),
1115–1145.

Goemans, M., & Williamson, D. (2004). Approximation algorithms for MAX-3-CUT and other

16

problems via complex semidefinite programming. Journal of Computer System Sciences,
68 (2), 442–470.

Grant, M. (2004). Disciplined convex programming (Unpublished doctoral dissertation). Stan-
ford University.

Grant, M., & Boyd, S. (2008). Graph implementations for nonsmooth convex programs. In
V. Blondel, S. Boyd, & H. Kimura (Eds.), Recent advances in learning and control (pp.
95–110). Springer.

Grant, M., & Boyd, S. (2014). CVX: Matlab software for disciplined convex programming,
version 2.1. http://cvxr.com/cvx.

Gurobi optimizer reference manual. (2017). https://gurobi.com/documentation/7.5/refman.pdf.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data
mining, inference, and prediction. Springer.

Hudak, P. (1996). Building domain-specific embedded languages. ACM Computing Surveys,
28 (4es).

Kelley, C. (1995). Iterative methods for linear and nonlinear equations. Society for Industrial
and Applied Mathematics.

Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., & Yakobowski, B. (2015). Frama-c: A
software analysis perspective. Formal Aspects of Computing , 27 (3), 573–609.

Löfberg, J. (2004). YALMIP: A toolbox for modeling and optimization in MATLAB. In
Proceedings of the CACSD Conference. Taipei, Taiwan.

Makhorin, A. (2016). GNU Linear Programming Kit v4.60.
http://www.gnu.org/software/glpk/.

Mernik, M., Heering, J., & Sloane, A. M. (2005). When and how to develop domain-specific
languages. ACM Computing Surveys, 37 (4), 316–344.

MOSEK optimization suite. (2017). http://docs.mosek.com/8.0/intro.pdf.
Nesterov, Y., & Nemirovski, A. (1992). Conic formulation of a convex programming problem

and duality. Optimization Methods and Software, 1 (2), 95–115.
Nesterov, Y., & Nemirovski, A. (1994). Interior-point polynomial algorithms in convex pro-

gramming. Society for Industrial and Applied Mathematics.
O’Donoghue, B., Chu, E., Parikh, N., & Boyd, S. (2016). Conic optimization via opera-

tor splitting and homogeneous self-dual embedding. Journal of Optimization Theory and
Applications, 169 (3), 1042–1068.

Papadimitriou, C. (1994). Computational complexity. Reading, Massachusetts: Addison-
Wesley.

Parikh, N., & Boyd, S. (2014). Block splitting for distributed optimization. Mathematical
Programming Computation, 6 (1), 77–102.

Parrilo, P. (2003). Semidefinite programming relaxations for semialgebraic problems. Mathe-
matical Programming , 96 (2), 293–320.

Pock, T., & Chambolle, A. (2011). Diagonal preconditioning for first order primal-dual al-
gorithms in convex optimization. In Proceedings of the 2011 International Conference on
Computer Vision (pp. 1762–1769). Washington, DC, USA: IEEE Computer Society.

Sipser, M. (1996). Introduction to the theory of computation (1st ed.). International Thomson
Publishing.

Sluis, A. (1969). Condition numbers and equilibration of matrices. Numer. Math., 14 (1),
14–23.

Smith, E. M. d. B. (1996). On the optimal design of continuous processes (Unpublished
doctoral dissertation). Imperial College London (University of London).

Stallman, R. M., & GCC Developer Community. (2017). Using the GNU compiler collection:
A GNU manual for GCC version 7.2.0. Boston, MA: GNU Press.

Stigler, S. (1981). Gauss and the invention of least squares. The Annals of Statistics., 9 (3),
465–474.

Sturm, J. (1999). Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric
cones. Optimization Methods and Software, 11 (1-4), 625–653.

17

Takapoui, R., & Javadi, H. (2016). Preconditioning via diagonal scaling. arXiv preprint
arXiv:1610.03871 .

Tomlin, J. (1975). On scaling linear programming problems. In M. Balinski & E. Heller-
man (Eds.), Computational practice in mathematical programming (pp. 146–166). Berlin,
Heidelberg: Springer Berlin Heidelberg.

Tomlin, L., & Welch, J. (1986). Finding duplicate rows in a linear programming model. Oper.
Res. Lett., 5 (1), 7–11.

Udell, M., Mohan, K., Zeng, D., Hong, J., Diamond, S., & Boyd, S. (2014). Convex opti-
mization in Julia. SC14 Workshop on High Performance Technical Computing in Dynamic
Languages.

Vandenberghe, L., & Andersen, M. (2015). Chordal graphs and semidefinite optimization.
Foundations and Trends in Optimization, 1 (4), 241–433.

Vandenberghe, L., & Boyd, S. (1996). Semidefinite programming. SIAM review , 38 (1), 49–95.

18

