
DSHARP: Fast d-DNNF Compilation with sharpSAT

Christian Muise1, Sheila A. McIlraith1, J. Christopher Beck2, and Eric Hsu1

1 Department of Computer Science, University of Toronto, Toronto, Canada.
{cjmuise, sheila, eihsu}@cs.toronto.edu

2 Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Canada.
jcb@mie.utoronto.ca

Abstract. Knowledge compilation is a compelling technique for dealing with
the intractability of propositional reasoning. One particularly effective target lan-
guage is Deterministic Decomposable Negation Normal Form (d-DNNF). We
exploit recent advances in #SAT solving in order to produce a new state-of-
the-art CNF → d-DNNF compiler: DSHARP. Empirical results demonstrate that
DSHARP is generally an order of magnitude faster than C2D, the de facto standard
for compiling to d-DNNF, while yielding a representation of comparable size.

1 Introduction

To deal with the intractability of propositional reasoning tasks, one can sometimes com-
pile a propositional theory from a source language into a target language that guarantees
tractability. This compilation process, popularly referred to as knowledge compilation,
has proved to be an effective technique for dealing with many practical reasoning prob-
lems [3]. Here we are interested in Deterministic Decomposable Negation Normal
Form (d-DNNF), a language that supports efficient reasoning for tasks such as consis-
tency checking and model counting. d-DNNF has also been exploited more recently for
a diversity of AI applications including Bayesian reasoning [2], conformant planning
[8], diagnosis [9], and database queries [6].

The de facto standard for CNF → d-DNNF compilation is C2D, a tool developed
and refined by Darwiche and colleagues over a number of years.3 Although C2D is
well designed and optimized, CNF → d-DNNF compilation can still be slow. Knowl-
edge compilation has traditionally been characterized as an off-line process and its pro-
cessing time is rationalized by amortizing it over numerous queries. However, recent
problem specific use of d-DNNF in tasks such as planning and diagnosis challenges
this characterization and emphasizes the need for fast compilation.

We propose a new CNF → d-DNNF compiler, DSHARP.4 Our compiler builds on
the research by Huang and Darwiche showing that d-DNNF can be extracted from the
trace of an exhaustive search of a propositional theory [4]. To this end, we construct our
compiler by appealing to a state-of-the-art #SAT solver, sharpSAT [10]. Our compiler
exploits two significant features of sharpSAT that distinguish it from previous CNF →
d-DNNF compilers: dynamic decomposition and implicit binary constraint propagation.

3 http://reasoning.cs.ucla.edu/c2d/
4 Available online at http://www.haz.ca/research/dsharp/



2

We evaluated the performance of DSHARP on 300 problem instances over eight do-
mains taken from SatLib5 and the Fifth International Planning Competition.6 DSHARP
solved more problem instances than C2D in the time allowed, and showed a significant
improvement in run time. The size of the resulting d-DNNF representation was main-
tained, and was on average five times smaller. We additionally performed an analysis of
the DSHARP components that impact the compiler’s efficiency. Further details on this
experiment and a more in depth analysis of the results can be found in [7].

2 Preliminaries

Darwiche and Marquis proposed the knowledge compilation map, an analysis of a num-
ber of target compilation languages with respect to two key features: succinctness and
the class of queries and transformations that the language supports in polytime [3].
The set of tasks considered includes consistency, validity, clausal entailment, implicant
checking, equivalence, sentential entailment, model counting, and model enumeration.
The most general target language of the map is Negation Normal Form (NNF), a di-
rected acyclic graph in which the label of each leaf node is a literal, TRUE, or FALSE,
and the label of each internal node is a conjunction (∧) or a disjunction (∨). Here we
study compilation to d-DNNF, the subset of NNF satisfying decomposability and de-
terminism. We define NNF to be the family of boolean formulae that are built from
the operators ∨, ∧, and ¬, with the added restriction that all ¬ operators exist only at
the literal level. Decomposable Negation Normal Form (DNNF) is the subset of NNF
formulae whose members additionally have the property that the formula operands of
∧ do not share variables. Finally, d-DNNF is the subset of DNNF whose members
have the additional property that the formula operands of ∨ are logically inconsistent.
d-DNNF permits polytime (in the size of the representation) processing of clausal en-
tailment, model counting, model minimization, model enumeration, and probabilistic
equivalence testing [4]. The conceptualization of d-DNNF as a directed acyclic and-or
graph helps us understand its relation to the DPLL trace.

Exhaustive DPLL Trace To develop a state-of-the-art CNF → d-DNNF compiler,
we use a result of Huang and Darwiche that shows we can extract d-DNNF from the
trace of an exhaustive search of a propositional theory [5]. More specifically, we exploit
the exhaustive search performed by the #SAT solver, sharpSAT [10]. The exhaustive
DPLL algorithm is a modification of DPLL used to find all solutions and, therefore, to
implicitly explore the entire search space. Each node in the search tree corresponds to
a decision in the exhaustive DPLL search (i.e., assigning a variable to either TRUE or
FALSE). Decision nodes correspond to or nodes in the d-DNNF representation. For each
or node, we add and nodes as children, corresponding to the subtrees for the decision
variable’s setting and any variable assignments inferred by unit propagation.

Following this approach, we are left with an and-or tree with the leaf nodes corre-
sponding to literals of the theory. The tree has all of the required properties to qualify
as a representation for the d-DNNF language: it is in negation normal form since the

5 http://www.satlib.org/
6 http://www.ldc.usb.ve/˜bonet/ipc5/



3

negations are at the literal level, it is decomposable because the children of and nodes
are disjoint theories, and it is deterministic since the immediate children of every or
node has both a literal and its negation making the conjunction inconsistent.

3 DSHARP

sharpSAT is a state-of-the-art solver for the problem of #SAT. DSHARP uses the algo-
rithmic components of sharpSAT responsible for its strong performance. Specifically,
we have adapted the following to compute a d-DNNF representation: dynamic decom-
position, implicit binary constraint propagation, conflict analysis, non-chronological
backtracking, pre-processing, and component caching. Here, we describe each compo-
nent and the modifications we made to produce an efficient CNF → d-DNNF compiler.

Dynamic Decomposition A theory in CNF is disjoint if it can be partitioned into sets of
clauses (called components) such that no two sets share variables. We can compile each
component individually and combine the results, a technique called disjoint component
analysis. This technique changes the structure of the d-DNNF representation; we treat
each component as an individual theory and add the d-DNNF for each component as
a child to the and node where the theory was found to be disjoint. Consider Fig. 1.
After the solver decides that x1 = TRUE, the theory decomposes into two components
(corresponding to the parts of the d-DNNF rooted at each or node marked I).

There are two prevailing methods for disjoint component analysis. In static decom-
position, the solver computes the components prior to search while in dynamic de-
composition, the solver computes the components during search. There is a trade-off
between the two methods in terms of simplicity, computational difficulty, and effective-
ness. C2D uses a static decomposition while DSHARP uses dynamic decomposition.

Implicit Binary Constraint Propagation DSHARP employs a simple form of looka-
head during search called implicit binary constraint propagation (IBCP) [10]. In IBCP,
a subset of the unassigned variables are heuristically chosen at a decision node and the
impact of assigning any one of them is evaluated. We test each variable in the chosen
set for both TRUE and FALSE. If either assignment causes unit propagation to derive an
inconsistency, the solver soundly infers the opposite assignment.

IBCP, via unit propagation, may infer the assignment of a number of literals during
the lookahead. Unless the theory becomes inconsistent, these implications should be
ignored since the variable setting will be undone. DSHARP maintains the temporary
implications and includes them permanently only when a variable setting is kept.

Conflict Analysis / Non-Chronological Backtracking Conflict analysis refers to the
use of conflict clauses to reduce search effort. When the solver reaches a dead end in the
search space it records a reason for this conflict in the form of a new clause. We add the
clause to the theory, and subsequently include it in unit propagation and the computation
of heuristics. Non-chronological backtracking (NCB) uses learned conflict clauses to
backtrack past the most recent assignment to the highest decision node possible while
remaining sound. Both conflict analysis and NCB are widely used in a variety of SAT-
solving applications and solvers [1]. The addition of conflict clauses during the solving
procedure does not change the structure of the d-DNNF. When DSHARP uses NCB it



4

I

II

III

:x3

x1 l3
W

:x1

V

W

W

VV

VV

V

V

x2

:l0 l2l1

:l4 :x2l5l4x3 l5

Fig. 1: Example d-DNNF representation as DSHARP may generate.

must step back in the partial d-DNNF to the correct spot before continuing to record,
but this does not affect the structure of the d-DNNF representation either.

Component Caching Component caching is an extension of disjoint component anal-
ysis where the solver stores the d-DNNF result for each component and retrieves it if
DSHARP encounters that component again during search. Caching can have substan-
tial savings when the theory naturally decomposes during search. One way of handling
component caching in the trace would be to duplicate the repeated d-DNNF subtree
when DSHARP re-encounters a component. However, if we relax the assumption that
the d-DNNF representation is an and-or tree, we can simply link to the part of the
d-DNNF corresponding to the repeated component. The d-DNNF representation then
becomes a DAG: a more concise form of representing the d-DNNF. Fig. 1 (II) shows an
example of a d-DNNF when DSHARP reuses a component through component caching.

Pre-processing Finally, pre-processing is a version of IBCP used at the root node to
simplify the starting theory. Pre-processing performs the same lookahead as IBCP, but
on all variables rather than on a heuristically chosen subset. If a setting to a variable
exists such that unit propagation causes the theory to become inconsistent, the solver
soundly infers the opposite setting. If pre-processing finds any variables to set, DSHARP
records these as leaf nodes under a root and node. The search proceeds as usual with the
compiled d-DNNF attached as a child to the root node. Fig. 1 (III) shows an example of
the result of pre-processing with literals ¬l0, l1, and l2 inferred during pre-processing.

4 Experimental Analysis

To evaluate the DSHARP system, we compared both compilation speed and the size
of the output representation to that of C2D. Experiments were conducted on a Linux



5

(a) Run time comparison (b) Size comparison

Fig. 2: Scatter plot of the run time (in seconds) and the number of edges in the generated
d-DNNF for each problem instance using C2D (y-axis) or DSHARP (x-axis). Points
above the line represent problems where DSHARP was better. All axes are log-scale.

desktop with a two-core 3.0GHz processor. Individual runs were limited to a 30-minute
time-out and a 1.5GB memory limit. DSHARP was run with its default settings, and C2D
was run with dt method 4. While there is an extensive range of settings for C2D, we
found that this setting performed consistently well. Similar to [5], we used the number
of edges in the d-DNNF as an indication of the size of the generated result.

We selected the benchmarks to cover a range of problem types: uniform random
3SAT, structured problems encoded as CNF (blocksworld; bounded model checking;
flat graph colouring; and logistics), and conformant planning problems converted to
CNF as described in [8] (emptyroom; grid; and sortnet).

Fig. 2 shows a broad picture of the results for compiler run time and resulting size.
All problems solved by at least one solver are present in Fig. 2a and all problems that
both solved are in Fig. 2b. Points above the y = x line indicate better performance
of DSHARP (i.e., smaller run time and smaller size, respectively). Fig. 2a shows that
DSHARP achieved a lower run time on almost all of the problem instances (274 of the
286 solved by at least one solver) while Fig. 2b demonstrates that the sizes of the output
are comparable, with a few outliers in favour of each solver.

DSHARP solved more instances than C2D in five of the eight domains and an equal
number in the remaining three. Overall, DSHARP solved 286 of the 300 instances
while C2D only solved 275. DSHARP was significantly faster in all but one domain
(blocksworld) and it was 27 times faster on average. When DSHARP was faster, it was
by at least one order of magnitude in all but one domain (empty room). The results for
d-DNNF size are more even: in three domains DSHARP was significantly smaller and
in one domain it was significantly larger. In the remaining domains, the difference in
output size was not statistically significant. When considering problems from all do-
mains, we found that C2D produced d-DNNF representations about 5 times larger than
DSHARP, though this difference was not statistically significant. Further details on the
results and an analysis of the impact of the DSHARP components can be found in [7].



6

5 Concluding Remarks

d-DNNF is proving to be an effective language for a diversity of practical AI reasoning
tasks including Bayesian inference, conformant planning, and diagnosis. Many of these
applications require the CNF → d-DNNF compilation to be performed on a problem-
specific basis, and as such compilation time is included in the measure of performance
of the overall system. CNF → d-DNNF compilers, therefore, need to be fast while
continuing to produce high quality representations. We address this need through the
development of a new state-of-the-art CNF → d-DNNF compiler that builds on #SAT
technology, and in particular on advances found in the solver, sharpSAT. Our system,
DSHARP, exploits the DPLL trace constructed for model counting to construct a d-
DNNF representation of the propositional theory. DSHARP leverages the latest advances
in #SAT technology, including dynamic decomposition, IBCP, conflict analysis, NCB,
component caching, and pre-processing. We tested DSHARP on a variety of problem
sets in SAT solving and planning. DSHARP solved more instances than C2D in the time
allowed, averaging an improvement of 27 times in run time while maintaining the size
of the d-DNNF generated by C2D. In future work, we plan to experiment with further
optimizations of DSHARP and applications to more diverse AI domains.

Acknowledgements
The authors gratefully acknowledge funding from the Ontario Ministry of Innovation
and the Natural Sciences and Engineering Research Council of Canada (NSERC).

References

1. Beame, P., Kautz, H., Sabharwal, A.: Understanding the power of clause learning. In: Inter-
national Joint Conference on Artificial Intelligence. vol. 18, pp. 1194–1201 (2003)

2. Chavira, M., Darwiche, A., Jaeger, M.: Compiling relational bayesian networks for exact
inference. International Journal of Approximate Reasoning 42, 4–20 (2006)

3. Darwiche, A., Marquis, P.: A knowledge compilation map. Journal of Artificial Intelligence
Research 17, 229–264 (2002)

4. Darwiche, A.: New advances in compiling CNF to decomposable negational normal form.
In: Proceedings of European Conference on Artificial Intelligence (2004)

5. Huang, J., Darwiche, A.: DPLL with a trace: from SAT to knowledge compilation. In: Inter-
national Joint Conference On Artificial Intelligence. pp. 156–162 (2005)

6. Jha, A., Suciu, D.: Knowledge compilation meets database theory: compiling queries to de-
cision diagrams. In: Proceedings of the 14th International Conference on Database Theory.
pp. 162–173. ACM (2011)

7. Muise, C., McIlraith, S.A., Beck, J.C., Hsu, E.: Fast d-DNNF compilation with sharpSAT.
In: Workshop on Abstraction, Reformulation, and Approximation (AAAI-10) (2010)

8. Palacios, H., Bonet, B., Darwiche, A., Geffner, H.: Pruning conformant plans by counting
models on compiled d-DNNF representations. In: Proceedings of the 15th International Con-
ference on Automated Planning and Scheduling. pp. 141–150 (2005)

9. Siddiqi, S., Huang, J.: Probabilistic sequential diagnosis by compilation. Tenth International
Symposium on Artificial Intelligence and Mathematics (2008)

10. Thurley, M.: sharpSAT — counting models with advanced component caching and implicit
BCP. In: Ninth International Conference on Theory and Applications of Satisfiability (2006)


