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Abstract. When learning from very large databases, the reduction of complexity is extremely important. Two
extremes of making knowledge discovery in databases (KDD) feasible have been put forward. One extreme is to
choose a very simple hypothesis language, thereby being capable of very fast learning on real-world databases.
The opposite extreme is to select a small data set, thereby being able to learn very expressive (first-order logic)
hypotheses. A multistrategy approach allows one to include most of these advantages and exclude most of the
disadvantages. Simpler learning algorithms detect hierarchies which are used to structure the hypothesis space for
a more complex learning algorithm. The better structured the hypothesis space is, the better learning can prune
away uninteresting or losing hypotheses and the faster it becomes.

We have combined inductive logic programming (ILP) directly with a relational database management system.
The ILP algorithm is controlled in a model-driven way by the user and in a data-driven way by structures that are
induced by three simple learning algorithms.
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1. Introduction

Knowledge discovery in databases (KDD) is an application that challenges machine learn-
ing because it has both high efficiency requirements and also high understandability and
reliability requirements. Learning is complicated because the learning task is to find all
interesting, valid and non–redundant rules (rule learning). This learning task is more com-
plex than the concept learning task, as was shown by Uwe Kietz (Kietz, 1996). To make it
even worse, the data sets for learning are very large.

Two extremes of making KDD feasible have been put forward. One extreme is to choose
a very simple hypothesis language which allows one to do very fast learning on real-
world databases. Fast algorithms have been developed that generalize attribute values and
find dependencies between attributes. These algorithms are capable of directly accessing a
database, i.e. the representation languageLE is the language of the database. TheApriori

andAprioriTid algorithms findassociation rules that determine subsets of correlated
attribute values (Agrawal et al., 1996). Attribute values are represented by turning each
attribute value into a Boolean attribute which indicates whether or not the attribute has that
value. Rules are formed that state

If a set of attributes is true, then another set of attributes is also true.
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Table 1.Relational database with two tables: potentialcustomer and marriedto

potentialcustomer:
person age sex income customer

Ann Smith 32 f 10,000 yes
Joan Gray 53 f 1,000,000 yes
Mary Blythe 27 f 20,000 no
Jane Brown 55 f 20,000 yes
Bob Smith 30 m 100,000 yes
Jack Brown 50 m 200,000 yes

marriedto:
husband wife

Jack Brown Jane Brown
Bob Smith Ann Smith

As all combinations of Boolean attributes have to be considered, the time complexity of
the algorithm is exponential in the number of attributes. However, in practice the algorithm
takes only 20 seconds for 100,000 tuples1.

Other fast learning algorithms exploit given hierarchies of attribute values and generalize
by climbing the hierarchy (Michalski, 1983), merging tuples that become identical and
dropping attributes with too many distinct values to be generalized. The result is a set
of rules that characterize all tuples that have a certain value of attributeA in terms of
generalized values of other attributes (Cai et al., 1991). Similarly, theKid3 algorithm
discovers dependencies between values of two attributes using hierarchies from background
knowledge (Piatetsky-Shapiro, 1991). The result is a set of rules of the form

A = a′ → cond(B)
wherea′ is a generalized attribute value (i.e., it covers a set of attribute values) of attribute
A andcond is some condition of attributeB.

It is easy to see that more complex dependencies between several attributes cannot be
expressed (and, hence, cannot be learned) by these fast algorithms. In particular, rela-
tions between different tables cannot be learned, since the universal relation for real-world
databases is far too big to be computed and stored within sensible time and space limits.
Saso Dzeroski has given a nice example to illustrate this (Dˇzeroski, 1996).

For example, from the two tables in Table 1, the fast and simple learning algorithm could
discover the rules:

income(Person) ≥ 100, 000→ customer(Person) = yes
sex(Person) = f & age(Person) ≥ 32→ customer(Person) = yes

Rules like the following cannot be expressed (and therefore not learned) by these algorithms:

(i) married(Person, Spouse) & customer(Person, yes)
→ customer(Spouse, yes)

(ii) married(Person, Spouse) & income(Person,≥ 100, 000)
→ customer(Spouse, yes)

Hence, the fast learning algorithms trade in expressiveness for the ability to deal with
very large data sets.

The other extreme for making KDD feasible is to select a small subset from the data
set (sampling) and learn complex rules. This option is chosen by most inductive logic
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programming (ILP) algorithms which are applied to the KDD problem. The rule learning
task has been stated within the ILP paradigm by Nicolas Helft (Helft, 1987) using the notion
from logic of minimal models of a theoryM+(Th) ⊆M(Th).

Definition. (Minimal model) An interpretationI is a model of a theoryTh,M(Th), if
it is true for every sentence inTh. An interpretationI is aminimal modelof Th, written
M+(Th), if I is a model ofTh and there does not exist an interpretationI ′ that is a model
of Th andI ′ ⊂ I.

Rule learning
Given observationsE in a representation languageLE and background knowledgeB in a
representation languageLB,
find the set of hypothesesH in LH, which is a (restricted) first-order logic, such that

(1) M+(B ∪ E) ⊆M(H) (validity ofH)

(2) for eachh ∈ H there existse ∈ E such thatB, E − {e} 6|= e andB, E − {e}, h |= e
(necessity ofh)

(3) for eachh ∈ LH satisfying (1) and (2), it is true thatH |= h
(completeness ofH)

(4) There is no proper subsetG ofH which is valid and complete
(minimality ofH).

This learning task has been taken up by several ILP researchers, among them
(Kietz & Wrobel, 1992, Flach, 1992, De Raedt & Bruynooghe, 1992). It is more difficult
than the concept learning task.

Concept learning
Given positive and negative examplesE = E+ ∪ E− in a representation languageLE and
background knowledgeB in a representation languageLB,
find a hypothesis H in a representation languageLH, which is a (restricted) first-order logic,
such that

(1) B,H, E+ 6|= 2 (consistency)

(2) B,H |= E+ (completeness of H)

(3) ∀e− ∈ E− : B,H 6|= e− (accuracy of H)

If the negative examples for concept learning are created using the closed world assump-
tion, all hypotheses that satisfy the three conditions of concept learning also satisfy the
first condition of rule learning. Stephen Muggleton and Luc De Raedt have shown this for
hypothesis languages that consist of definite clauses (Muggleton & De Raedt, 1994). For
LH being definite clauses so that there exists a unique minimal modelM+(Th), condition
(2) and (3) of concept learning can be reformulated as:
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(2) all e ∈ E+ are true inM(B ∪H) (completeness ofH)

(3) all e ∈ E− are false inM(B ∪H) (accuracy ofH)

Uwe Kietz has generalized this result and has shown that it is possible that all results
of concept learning could also be found by rule learning, but not vice versa. Hence, rule
learning is more complex than concept learning (Kietz, 1996)2. The difficult rule learning
task of ILP also goes beyond the task of knowledge discovery as stated by Heikki Mannila
(Mannila, 1995):

Knowledge discovery
Given a databaseE and a representation language for hypothesesLH
find interesting characterizations of the dataH ⊆ LH where the interestingness is evaluated
by a predicatep such that

(1) M+(E) ⊆M(H)

(2) p(E ,H) is true.

Background knowledge is not taken into account in Mannila’s definition andLE is set to
databases. However, it is possible to enter background knowledge into the database in the
form of additional tables, if it is restricted to ground facts – a restriction which is common in
ILP approaches. The real difference between the KDD task and the ILP rule learning task
is that Mannila does not demand necessity, completeness and minimality ofH. Instead, he
demands the interestingness ofH. For instance, the predicate in the head of each clause
h ∈ H could be required to correspond to a database attribute that is considered interesting
by the user. ILP algorithms which have a declarative bias can express this condition. The
rule learning task is solved by some systems (e.g.,Rdt (Kietz & Wrobel, 1992),Clau-

dien (De Raedt & Bruynooghe, 1993), andIndex (Flach, 1993)). For the application to
databases the selected tuples are re-represented as (Prolog) ground facts. In general, ILP
algorithms trade in the ability to handle large data sets for increased expressiveness of the
learning result.

Given the trade-off between feasibility and expressiveness, we propose a multistrategy
approach. The idea is to combine different computational strategies for the same inferential
strategy (here: induction)3. The overall learning task is decomposed into a sequence of
learning tasks. Simpler subtasks of learning can then be performed by simpler (and faster)
learning methods. The simpler algorithms induce hierarchies of attributes and attribute
values that structure the hypothesis space for the ILP learner. The ILP learning algorithm
uses this structure for its level-wise refinement strategy. The architecture of our MSL-system
for KDD is shown in Figure 1.

The paper is organized as follows. First,Rdt/db is described. It is shown how dif-
ferent hypothesis languagesLH can be created for the same database.LH determines the
hypothesis space. We analyze the sizes of hypothesis spaces. The analysis shows, where
to restrict hypothesis spaces further in order to make learning from very large data sets fea-
sible. Second, the algorithms that preprocess data forRdt/db are characterized, namely
Fdd, Num Int, Stt. Third, we present the results of some experiments and discuss our
approach with respect to related work.
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Figure 1. A multistrategy architecture for KDD.

2. Applying ILP to Databases

ILP rule learning algorithms are of particular interest in the framework of KDD because
they allow the detection of complex rules such as (i), (ii) presented above. Until now,
however, they have not been applied to commonly-used relational database systems. If a
relational algebra is used, as in the systemMl smart, it is under the control of the learning
system, which creates new tables for intermediate results and stores them in the database
(Bergadano et al., 1991). Data management and the representation language are tailored
for learning. This is particularly appropriate for knowledge acquisition tasks. Since the
demand of KDD is to analyze the databases that are in use, we have now enhancedRdt

to becomeRdt/db, the first ILP rule learner that directly interacts with a commercial
database management system.

2.1. RDT/DB

In order to restrict the hypothesis space,Rdt/db uses a declarative specification of the
hypothesis language, just asRdt does (see for details (Kietz & Wrobel, 1992)). The
specification is given by the user in terms of rule schemata or rule models. A rule schema is
a rule with predicate variables (instead of predicate symbols). In addition, arguments of the
literals can be designated for learning constant values. A simple example of a rule schema
is:

mp two c(C,P1, P2, P3) : P1(X1, C) & P2(Y,X1) & P3(Y,X2)→ P1(X2, C)

Here, the second argument of the conclusion and the second argument of the first premise
literal is a particular constant value that is to be learned. It is indicated in the metapredicate
that one constant,C, is to be learned.
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For hypothesis generation,Rdt/db instantiates the predicate variables and the arguments
that are marked for constant learning. A fully instantiated rule schema is a rule. An
instantiation is, for instance,

(iii) regions(X1, europe) & licensed(Y,X1) & produced(Y,X2)
→ regions(X2, europe)

In the example, it was found that the cars which are licensed within Europe have also
been produced within Europe.

The rule schemata are ordered by generality: For every instantiation of a more general
rule schema there exist more special rules as instantiations of a more special rule schema, if
the more special rule schema can be instantiated at all. Hence, the ordering of rule schemata
reflects the generality ordering of sets of rules. This structure of the hypothesis space is used
while doing breadth-first search for learning. Breadth-first search allows the safe pruning
of branches of sets of hypotheses that already have too little support to be accepted. If a
rule is learned its specializations w.r.t. the generality ordering of rule schemata will not be
tried, since this would result in redundant rules. Hence,Rdt/db delivers most general
rules. The user writes the rule schemata in order to restrict the hypothesis space. The user
also supplies a list of the predicates that can instantiate predicate variables. This list need
not consist of all predicates, but can be a selection.

Another kind of user-given control knowledge is the acceptance criterion. It is used to
test hypotheses. The user can compose an acceptance criterion out of 4 terms:pos(H),
the number of supporting tuples;neg(H), the number of contradicting tuples;concl(H),
the number of all tuples for which the conclusion predicate of the hypothesis holds; and
negconcl(H), the number of all tuples for which the conclusion predicate does not hold,
although it is applicable. The user can use the criterion to enforce different degrees of
reliability of the learning result, or to put it the other way around, to allow different degrees
of noise.

A typical acceptance criterion which is similar to that ofApriori is:

pos(H)
concl(H)

− neg(H)
concl(H)

≥ 0.8

The acceptance criterion can also be written in a Bayesian manner. If there are two classes
for the conclusion predicate (e.g., faulty and not faulty cars), the following criterion is
similar to the requirement that the a posteriori probability must equal or exceed the a priori
probability:

pos(H)
pos(H) + neg(H)

≥ concl(H)
concl(H) + negconcl(H)

ForRdt/db we have developed an interaction model between the learning tool and the
Oracle database system4. The data dictionary of the database system contains infor-
mation about relations and attributes of the database. This information is used in order
to map database relations and attributes automatically to predicates ofRdt’s hypothesis
language. Note that only predicate names and their arity are stored inRdt/db as predicate
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declarations, nota transformed version of the database entries. Hypothesis generation is
then performed by the learning tool, instantiating rule schemata in a top-down, breadth-first
manner. For hypothesis testing,Sql queries are generated by the learning tool and are sent
to the database system5. For instance, the number of supporting tuples,pos(H), for the
rule (iii) above is determined by the following statement:

SELECT COUNT (*)
FROM vehicles veh1, vehicles veh2,

regions reg1, regions reg2
WHERE reg1.place = veh1.produced_at

and veh1.ID = veh2.ID
and veh2.licensed = reg2.place
and reg1.region = ’europe’
and reg2.region = ’europe’;

The number of contradicting tuples,neg(H), is determined by negating the condition
which corresponds to the rule’s conclusion:

SELECT COUNT (*)
FROM vehicles veh1, vehicles veh2,

regions reg1, regions reg2
WHERE reg1.place = veh1.produced_at

and veh1.ID = veh2.ID
and veh2.licensed = reg2.place
and reg2.region = ’europe’
and not reg1.region = ’europe’;

Rule (iii) and theSql queries refer to a database with two relations as given in Table 2.

Table 2.Relational database with two tables: vehicles and regions

vehicles:
ID produced licensed

fin 123 stuttgart ulm
fin 456 kyoto stuttgart
. . . . . . . . .

regions:
place region

ulm europe
stuttgart europe
kyoto asia
. . . . . .

The counts forpos(H), neg(H), concl(H), andnegconcl(H) are used for calculating
the acceptance criterion for fully instantiated rule schemata.

As this example implies,Rdt/db can handle negative examples, butRdt/db is also
capable of learning from positive examples alone. Negative examples are either explicitly
stored in the database6 or are there implicitly and are computed by theSql ‘view’ statement.
In our vehicle application, “negative” facts are, for instance, those cars which do not have
a fault. They are constructed by a view which computes the difference between the table
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with information about all cars and the table with information about cars which have a fault.
Since the result of every view is a “virtual table”, it can be handled in the same way as every
table. It is up to the user to state thatnotfaulty(ID) ∼= not(faulty(ID)). That is, the
user may declare attributes to have opposite meanings. Obviously, negative literals are not
restricted to appear only in the conclusions, but can also appear in the premises of rules.

2.2. Analysis of the Hypothesis Space

The size of the hypothesis space ofRdt/db does not depend on the number of tuples,
but on the number of rule schemata,r, the number of predicates that are available for
instantiations,p, and the maximal number of literals of a rule schema,k. For each literal,
all predicates have to be tried. Without constant learning, the number of hypotheses is
r · pk in the worst case. Ask is usually a small number in order to obtain understandable
results, this polynomial is acceptable. Constants to be learned are very similar to predicates.
For each argument marked for constant learning, all possible values of the argument (the
respective database attribute) must be tried. We writec for the number of constants that are
marked for learning in a rule schema. Leti be the maximal number of possible values of
an argument marked for constant learning; then, the hypothesis spaceHS is limited by:

HS ≤ r · (p · ic)k

Due to the language bias the Vapnik–Chervonenkis Dimension — for first–order logic
infinite — becomes finite:

VCdim(HS) ≤ log2
(
r · (p · ic)k

)
This indicates the expressiveness of the hypothesis language. The run–time behavior of

rule learning using the declarative language bias can be estimated as follows: The size of
the hypothesis space determines the cost of hypothesis generation. For each hypothesis,
two Sql statements have to be executed by the database system. These determine the cost
of hypothesis testing.

The size of the hypothesis space is described in terms of the representationRdt/db uses
for hypothesis generation. The particular figures for given databases depend on the mapping
from Rdt/db’s representation to relations and attributes of the database. Therefore, it is
important to examine carefully the mapping chosen.

An immediate mapping is to let each database relation become a predicate, the attributes
of the relation becoming the predicate’s arguments.

Mapping 1: For each relationR with attributesA1, . . . , An, a predicate
rn(A1, . . . , An) is formed,rn being the string ofR’s name.

For the small database in Table 2, we would have two predicates,
vehicles(ID, Produced, Licensed) and
regions(Place,Region).

If we do not know which of the attributes is relevant, we have to write several rule schemata.
Here is an example:
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mp11(P,Q) : P (Y,X1, X2)→ Q(X1, Z)
mp12(P,Q) : P (Y,X1, X2)→ Q(X2, Z)
mp21(P1, P2, Q) : P1(Y,X1, X2) & P2(X2, Z)→ Q(X1, Z)
mp22(P1, P2, Q) : P1(Y,X1, X2) & P2(X1, Z)→ Q(X2, Z)

Hypotheses look like these:

(iv) vehicles(ID, Produced, P lace)
→ regions(Produced,Region)

(v) vehicles(ID, Produced, P lace) & regions(Place,Region)
→ regions(Produced,Region)

Note, that variables in the conclusion of a rule are universally quantified. If they are not
constrained by its premise (asRegion in (iv)), the rule is very general. It states that one
table determines the other one. It is more likely that rules will be found, where the attribute
Region is a constant to be learned. Hence, when using mapping 1, we most often mark at
least one attribute for constant learning. In our example,c could be at most 5, but normally
one would exclude the keys, which gives us at most 3 constants to be learned in the example
database. All constants in all combinations must be tried. Leti, the number of places, be
2000. Then in our example from Table 2, the hypothesis space has at most4 · (2 · 20003)2

hypotheses.
If we map each attribute of each relation to a predicate, we enlarge the number of predi-

cates, reduce the number of rule schemata, and can easily avoid unconstrained universally
quantified variables.

Mapping 2: For each relationRwith attributesA1, . . . , An,where the attributesAj , . . . , Al
are the primary key, for eachx ∈ [1, . . . , n]\[j, . . . , l]a predicatern AX(Aj , . . . , Al, Ax)

is formed, whereAX is the string of the attribute name.

If the primary key of the relation is a single attribute, we get two–place predicates. In our
example (Table 2), the predicates of the second mapping are
vehicles produced(ID, Produced),
vehicles licensed(ID,Licensed), and
regions region(Place,Region),

whereID andPlace are the keys of the tablesvehicles andregions, respectively. Only
2 rule schemata have to be written in order to learn rules which have a similar – but more
specific – meaning as rules (iv) and (v):
mp1(P,Q) : P (Y,X1)→ Q(X1, Z)
mp2(P1, P2, P3, Q) : P1(X1, Z) & P2(Y,X1) & P3(Y,X2)→ Q(X2, Z)
The number of predicates is bound by the number of relations times the maximal number

of attributes of a relation (without key attributes). Since the number of constants to be
learned cannot exceed the arity of predicates, and since we never mark a key attribute for
constant learning,c will be at mostk. In our example, we have2 · (3 · 20003)4 hypotheses
when applying the second mapping.

A third mapping reduces the expressiveness to propositional logic. Of course, this means
the size of the hypothesis space is reduced.
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Mapping 3: For each attributeAi which is not a primary key and has the valuesa1, . . . , an
a set of predicatesrn AI ai(Aj , . . . , Al) are formed,Aj , . . . , Al being the primary key.

In our example from Table 2 the third mapping delivers these predicates:
vehicles produced stuttgart(ID)
vehicles produced ulm(ID)
. . .
vehicles licensed stuttgart(ID)
vehicles licensed ulm(ID)
. . .
regions region europe(Place)
regions region asia(Place)
. . .
Using this representation, rules like (iii) to (v) cannot be learned. Let the number of

different places be again 2000 and the number of regions be 10; thenp is 4010. There are
no constants to be learned. Hence, the size of the hypothesis space isr · (4010)k. The third
mapping reduces the learning task to findingk–place combinations of constant values.

Using the results ofNum Int (cf. section 3.2), which selects intervals of attribute values,
a fourth mapping can be applied, which has turned out to be quite powerful. In fact, mapping
3 can be seen as a special case of this mapping where all intervals consist of only one value.

Mapping 4: For each attributeAi which is not a primary key and for which intervals
of values have been computed,< a1p, a1q >, . . . , < anp, anq >, a set of predicates
rn AI < a ip, a iq > (Aj , . . . , Al) is formed,Aj , . . . , Al being the primary key.

Consider the tableprices in addition to the tablesvehicles andregions (Table 3).

Table 3.Tableprices

ID costs

fin 123 11
fin 456 100
fin 789 150
. . . . . .

A predicateprices costs <10, 100>(ID) would be mapped on the tableprices, having
the attributesID andcosts. This predicate is true when the values for the attributecosts are
in the range of 10 to 100. The fourth mapping, which works only for numerical attributes,
can be combined with any other mapping for the non-numerical attributes. For instance, the
first mapping for the three tablesvehicles, regions, andprices creates a hypothesis space
of the sizer · (3 · 50004)k, if we assume 5000 different values forcosts in the tableprices.
If we have 5 intervals of costs, combining the first and the fourth mapping reduces the size
to r · (7 · 20003)k, again, 2000 being the number of different places. The fourth mapping
allows for a disjunction of values. This does not increase the difficulty of hypothesis testing
on the database. The reason this is the case is quite simple. In principal, every predicate
in a rule will be mapped onto one table, and all tables will be joined using an equi–join.
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Having this kind of a predicate, we use instead of an equi–join aθ–join with θ being the
expressioncosts ≥ 10 andcosts ≤ 100. Instead of using one comparison, e.g.a = b, the
database system uses two comparisons for predicates of the fourth mapping type. This is
only a small increase in computational time, because the most time consuming part is the
join projection itself.

The user is not obliged to choose among these four mappings. If he wants to, he
can augment the second through fourth mappings with additional attributes in the pred-
icate, moving them closer to the first mapping, e.g.rn AX(Aj , . . . , Al, Ax, Ay) or
rn AI ai(Aj , . . . , Al, Ay).

By choosing a mapping and a set of rule schemata, the hypothesis space is determined.
Rule schemata can be written for all mappings. They restrict the hypothesis space by fixing
k andc, and by enforcing equality of head variables with a selected variable in the premise.
The depth of a variable can be directly seen in the rule schema. These are important factors
of learnability of clauses which are now under control of the user. Whether or not the
variable bindings are determinate, another important factor, depends on the data7.

The systemsMl smart andLinus (Lavrač & Džeroski, 1994), perform a transforma-
tion of first-order logic representation into datalog relations. The mapping there is given
by the system and cannot be modified by the user. In contrast, we start from database rela-
tions and offer the user the opportunity to declare a function-free first-order logic signature.
The mapping from this signature back to the database is then automatically performed by
Rdt/db.

The analysis of the hypothesis space reveals good heuristics for writing rule schemata:
the most general ones should have only one premise literal and the most specific ones not
more than 3, as this keepsk small; there should be as few schemata as possible in order to
keepr small; at most one constant should be marked for learning in order to keepc small
– i, the number of values in an attribute, can only be reduced by the fourth mapping. The
selection of relevant attributes can be done byRdt/db in the second mapping. If there is a
more efficient solution to this problem, thenRdt/db should use mapping 1 where the arity
of predicates is reduced. The rule schemata allow the restriction of the hypothesis space to
those parts considered interesting. The analysis of its size gives a worst-case estimation.
This helps in estimating how long a learning pass may last and in eventually changing the
declarative bias or the mapping.

3. Further Control of Complexity

Even given the declarative syntactic bias in terms of rule schemata, the hypothesis space in
a real-world application can still be very large. This leads to a need to restrict the number
of attributes and attribute values used for learning. Some attributes are of particular interest
for the user of the KDD system. For instance, in an analysis of warranty cases, the attribute
that expresses whether or not an item is a warranty case is the most relevant one. The
user can specify this attribute as the target for learning. However, the user does not know
the attributes that determine a warranty case. It is the task of learning to identify them!
This is the point whereFdd comes into play.Fdd learns a partial generality ordering on
attributes. A sequence ofRdt/db learning passes is started, each pass using only the most
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general unexplored attributes of the attribute hierarchy for characterizing the user-given
target attributes. The sequence is stopped as soon as hypotheses are found that obey the
acceptance criterion. That means that after successfully learning rules in languageLHi , no
new learning pass withLHi+1 is started. Note that the representational bias in terms of the
sequence ofLHi is asemantic declarative bias (as opposed to the syntactic rule schemata
or the language sequences ofClint (De Raedt, 1992)) and is domain-dependent. Using
the output ofFdd, Rdt/db adapts its behavior to new data sets.

Reducing the number of values of an attribute can be done by climbing a hierarchy of
more and more abstract attribute values. If this background knowledge is not available, it
has to be learned. For numerical values,Num Int finds a hierarchy of intervals. Since this
is a learning result in its own right, it is presented to the user, who selects relevant intervals.
These are transformed byRdt/db into predicates that are used instead of the ones that
would have been formed on the basis of the original database attribute values. Hence,p
slightly increases, buti decreases a lot.

For nominal values, any fast learning algorithm that is capable of finding clusters within
the values of one attribute (i.e., that finds sets of attribute values) could be plugged into our
multistrategy framework. The clusters are named and these names become more abstract
attribute values replacing the original values. In our current application (see below), we have
chosen a different approach. Here, we have background knowledge about some different
aspects of the attribute values of a given attributeA in the database. The background
knowledge is used for learning a graph, where the nodes contain attribute values of the
given attributes and the links establish a subset ordering. Since the sets of attribute values
are meaningful for the user, he can select nodes of the graph as pertinent. Each selected
node becomes a binary attribute of the database. The new attributes replace the original
database attributeA in LHi . Again,p increases by the number of selected nodes, buti can
well decrease by almost all values of the attributeA.

3.1. Detecting Functional Dependencies — FDD

In the following we assume some familiarity with definitions of relational database theory
(see, e.g., (Kanellakis, 1990)). Capital letters likeA,B,C denote attributes and letters
like X,Y, Z sets of attributes. A functional dependency (FD)X → Y is valid if every
pair of tuples which agrees in theirX values also agrees in their Y values. According to
Armstrong’s Axioms (Ullman, 1988) and without loss of generality we only regard FDs
with one attribute on the right hand side. The discovery of FDs may be visualized as a search
in semilattices. The nodes are labeled with data dependencies and the edges correspond to
themore general thanrelationship as in (Savnik & Flach, 1993), which implies the partial
ordering.

Definition. (More general FD) Let X and Y be sets of attributes such thatX ⊆ Y , then
the FDX → A is more general than the dependencyY → A, andY → A is more specific
thanX → A.

In contrast to the notion of a minimal cover in database theory, the algorithmFdd

computes amost general cover. For example, the set{A → B,B → C,A → C} is most
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Table 4.A Sql query for the computation of functional dependencies, (B 6∈ {A1 . . . An})

SELECT MAX (COUNT (DISTINCT B))

FROM R

GROUP BY A1, ..., An =:a1

a1 = 1⇒ A1 . . . An → B

general in our sense, but not minimal according to database theory, since the transitivity
rule is applicable. More formally:

Definition. (Most general cover) The set of functional dependencies F of relation R (R |=
F ) is a most general cover, if for every dependencyX → A ∈ F , there does not exist any
Y with Y ⊂ X andY → A ∈ F .

The hypothesis generation is a top–down, breadth–first search through the semilattice
imposed by themore general thanrelationship as in (Mannila & R¨aihä, 1994). Although
the time complexity ofFdd has to be exponential in the worst case (Beeri et al., 1984), in
practice,Fdd successfully learned from several databases of the size of 65 000 tuples in up
to 6 minutes. This fast implementation differs from the one of (Mannila & R¨aihä, 1994) in
four points that are minor but nevertheless contribute to its efficiency. First, null values of
the database are taken into account. Second, the grouping operation of the database system
replaces the learning algorithm’s sorting of tuples. Third, a pretest of whether all attributes
minus one determine this attribute is used for pruning. Fourth, while Mannila and R¨aihä
merely exploit the transitivity of functional dependencies, here functional independencies
are also used (Bell, 1995).

Fdd uses the interaction model that was described above, i.e.Fdd generatesSql queries
(i.e. hypotheses) and the database system computes the answer (i.e. tests the hypothesis).
Table 4 shows an example of this kind of statement and the condition which must hold. The
clue to detecting functional dependencies is the GROUP BY instruction. The computational
costs of this operation are dependent on the database system, but it can be done in time
O(m ∗ log m), wherem is the number of tuples.

We define a hierarchy on the involved attributes of unary FDs in the following way:

Definition. (More general attribute) Given a set of unary functional dependencies F, the
attribute C is more general than A ifA→ C is an element of the transitive closure of F and
C → A is not an element of the transitive closure of F.

We present a simple example to illustrate this. Let the only valid FDs in R be the following:
{A → B,B → C}. Then we will get a hierarchy of attributes, whereC is more general
thanB, andB more general thanA. Since the three attributes are from the same relation
and the FDs hold, there must be at least as many tuples with the same value for C as for B.
This follows immediately from the definition of FDs. The same is true for B with respect
to A. Furthermore, if there are cycles in the transitive closure of these unary FDs, then all
attributes within the cycle are of equal generality. Attributes entering the cycle are more
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specific than the ones within it. Attributes leaving the cycle are more general than attributes
within it.

We exploit thismore generalrelationship on attributes for the development of a sequence
of hypothesis languages. Each stays within the same syntactical structure as given by
the rule schemata, but only has a subset of the attributes. Given, for instance, the FDs
{A→ B,B → C,A→ C}, the first set of predicates inLH1 includesC and neitherA nor
B, LH2 includesB and neitherA norC, andLH3 includesA and neitherB norC. As a
result, we have a level–wise refinement strategy as in (Mannila & Toivonen, 1996), which
means, we start the search with hypotheses consisting of most general attributes. If these
hypotheses are too general, we continue with only more specific attributes.

3.2. Discretization of Numerical Attributes — NUM INT

Numerical values offer an ordering that can be exploited. Hence, these values can be
grouped with less complexity than nominal values, even if no classification is available.
The idea behindNum Int is to order the numbers and to search for “gaps” in the stream of
values. The biggest gap is supposed to be the best point for splitting up the initial interval
[min, max]. The next gaps are taken to continue splitting in a top–down fashion. The result
is a tree with the initial interval [min, max] as the root, split intervals as inner nodes and
unsplit intervals as leaves. The depth of this tree is determined by a parameter (d) which is
set by the user.

The result is obtained by three conceptual steps: first, order the numbers (using the
statement “select. . . order by. . . ” via embeddedSql); second, fetch tuple by tuple (via
embeddedSql), gathering all information needed for splitting; third, build up the tree of
intervals. The complexity of the three steps is as follows: step (1) should beO(m logm),
m being the number of tuples, because we select only one attribute (this is done by the
database system and therefore beyond our control). In step (2) each gap has to be sorted
into an array of depthd, which leads toO(m ·d). Finally, in step (3) we have to insertO(d)
values into an ordered array of depthO(d) resulting in complexity ofO(d2).

Most of the time is consumed by simply fetching the tuples one by one viaSql. We tested
Num Int on a database containing about 750.000 tuples: the algorithm ran 35 minutes on
aSun Sparc 20 for a depth of 100. Of this, 2 minutes were used for ordering, 8 minutes
for internal processing and about 25 minutes for waiting on the database system to deliver
the tuples. This shows that it is essential that we touch each tuple only once and collect all
information (min, max, found intervals, number of tuples in each interval) “on the fly”.

Of course, we are aware of the fact that this “gap”–approach is a quite simple one and
that more sophisticated approaches for learning intervals are known (e.g., (Wittscherek &
Dietterich, 1995)). Pazzani, for instance, presented an iterative improvement approach for
finding discretizations, i.e. intervals, of numeric attributes (Pazzani, 1995). His algorithm
starts with a partition of the input numeric values into a small number of seed intervals with
equal size, and then iteratively uses split or merge operations on the intervals based on error
or misclassification costs. In most cases, an appropriate number of intervals is unknown in
advance, resulting in some loops in the algorithm in which he has to reconsider all values
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of the attribute. In particular, clustering algorithms, although much more elegant, are too
complex to be applicable.

3.3. Forming a hierarchy of nominal attribute values – STT

Background knowledge is most often used in a KDD framework in order to structure sets
of attribute values, that is, the background knowledge offers a hierarchy of more and more
abstract attribute values. However, background material is often unstructured. When this is
so, it needs some structuring before it can be used for learning from the database. For this
task, we useStt, a tool for acquiring taxonomies from facts (Kietz, 1988). First, it looks
at each predicate and forms value sets consisting of the constant values which occur at each
argument position. For instance, the constant valuesa, b, cmay occur at the first position of
predicatep1. Second, it computes equivalence classes between the extensions of arguments.
For instance, if all values occurring as the first argument ofp1 also occur as the second
argument ofp2 and vice versa, an equivalence class for the set of these values is formed
and given a unique name:class1 consists ofext(arg 1(p1)), ext(arg 2(p2)), where the
extension of the two argument positions is equal, namely{a, b, c}. Equivalence classes are
built for all value sets. If a value set occurs uniquely as the argument of one predicate, the
respective class has just one member. For instance, let the extension of the first argument of
predicatep2 occur uniquely: thenclass4 consists ofext(arg 1(p2)) . Finally, the classes
are partially ordered. A classc1 is a subclass of a classc2 if the extension of elements inc1
is a subset of the extension of elements inc2. It may turn out, for instance, that all values
that occur as second argument of a predicatep1 also occur as first argument of predicate
p3, but not the other way around. In this case, the classclass3 : ext(arg 2(p1)) becomes
a subclass ofclass2 : ext(arg 1(p3)). We omit a detailed and formal presentation ofStt

here and refer to chapter 4 in (Morik et al. 1993). The point here is thatStt can effectively
group together attribute values on the basis of background knowledge.

We have represented textual background material about Mercedes car parts as unary
ground facts.Stt forms classes on the basis of the given facts. The resulting semilattice
of classes is interesting in its own right. It can easily be displayed graphically as shown
in Figure 2. For each class, its members and their extension can be displayed, as well. In
Figure 2, the members ofclass 61 (arg 1(f8257), arg 1(p8257201)) are shown together
with their extension (t54486, t54585). The numberst54486, t54585 denote car parts, the
predicatef8257 a functional group of parts and the predicatep8257201 a spatial group of
car parts. Predicates as well as arguments are immediately understandable to the domain
experts. This allows the user to select interesting classes. These are introduced as Boolean
attributes into the database. This increasesp, but decreasesi dramatically, since the classes
are used for learning instead of using several thousands of attribute values in the original
database.
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Figure 2. Part of the sort lattice computed byStt.

4. Experiments

In the course of an on–going project at Daimler Benz AG on the analysis of their data
about vehicles, we have applied our multistrategy learning. The database with all vehicles
of a certain type of Mercedes — among them some cases involving warranty — is of size
2.6 gigabytes. It consists of 40 relations with up to 40 attributes each. The main topic of
interest for the users is to find rules that characterize warranty cases and structure them into
meaningful classes. In a monostrategy approach,Rdt/db could well find rules, among
them ones that are about 100% correct. However, these rules were not interesting, since
they expressed what is known to all mechanics. For instance, it was learned that an engine
variant determines the engine type. This is exactly what is meant byvariant andtype.

(vi) engine variant(V IN, 123)→ engine type(V IN, 456)

More interesting rules could only be found by preprocessing the data and thereby focusing
Rdt/db on interesting parts of the hypothesis space.Fdd selected sets of attributes for a
learning pass.Num int found intervals in the cost attribute of warranty cases. This made
rule learning feasible for a very large database. The introduction of the new attributes on
the basis ofStt’s output led to the learning of more interesting rules. The background
material is the mechanic’s workbook of vehicle parts, classified by functional groups of
parts, spatial groups (a part is close to another part, though possibly belonging to another
functional group), and possible faults or damages of a part. The vehicle parts are numbered.
t54486, for instance, is a certain electric switch within the automatic locking device. The
functional groups of parts are also numerically encoded.f8257, for instance, refers to the
locking device of the vehicle. The factf8257(t54486) says that the switcht54486 belongs to
the locking device. The spatial grouping is given by pictures that show closely related parts.
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The pictures are, again, numerically encoded.p8257201, for instance, refers to a picture
with parts of the electronic locking device that are closely related to the injection complex.
p8257201(t54486) tells that the switch belongs to the spatial group of the injection. Possible
damages or faults depend, of course, on the material of the part rather than on its functional
group. All different types of damages are denoted by different predicates (e.g.,s04 indicates
that the part might leak). The combination of these three aspects has led toStt finding
some surprising classes. Looking at Figure 2, class61 comprises two switches,t54486
andt54585. They are the intersection of three meaningful classes:

class169 : here, several parts of the injection device are clustered. These are parts such
as tubes or gasoline tank. Higher up in the hierarchy, parts of the functional group of
injection and then (class13) parts of gasoline supply in general are clustered.

class12 : here, parts of the dashboard are clustered, among them the display of the locking
device (protection from theft).

class8 : here, operating parts of the engine are clustered that serve the injection function.

The illustration shows that mechanics can easily interpret the clusters of parts, and that
therefore the hierarchy learned byStt is meaningful. The intersection classes are very
selective, whereas classes such as, e.g., class13 cover all parts of a functional group (here:
gasoline supply). Domain experts are particularly interested in finding groups that are one
level below the functional groups that are documented in the mechanic’s workbook.

We have conducted several experiments in order to answer two questions:

• Are the results of a multistrategy approach superior to the results of a rule discovery
tool?

• Can an ILP rule learning algorithm handle the mass of data that is given by real-world
databases; or is statistical sampling a necessary prerequisite?

We made four experiments on a Sparc 20 computer8. The real-world data are characterized
in Table 5. All data are about a class of Mercedes cars which is no longer produced.

The first sample of data is a transformed version of database tuples. This was our first
experiment withRdt and motivated us to developRdt/db. Although the data do not
show the effect of directly accessing the database management system, they are listed here
because they show the effect of multistrategy as opposed to monostrategy learning.

The size of meaningful and relevant samples of the original data is still rather large. For
instance, such samples might include data about warranties of cars with gasoline engine
and automatic gearshift, of cars with gasoline engine and manual gearshift, and of cars with
diesel engine and automatic gearshift. They still consist of 23 database tables with 1 to
3 attributes in each table selected for learning and 111,995 tuples. If we would translate
the database to ground facts, we get the following figures. One observation (or example)
is made of 26 ground facts: The target predicate stating whether it is a case of warranty,
11 facts on the configuration of the car, and up to 14 special equipment statements. For
gasoline engine and manual gearshift, 1500 observations are available. For gasoline engine
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Table 5.Summary of data sets
Meaning of columns:
t — no. of tables
j — max. no. of tables in a join projection
attributes — no. of attributes in each table
i — max. no. of attribute values (excluding keys)
tuples — max. no. of tuples in a table
facts — no. of equiv. facts

Data sets t j attributes i tuples facts

excerpt – – – – – 717
all cars1 1 0 1 700,000 750,000 750,000
all cars within 3 months 7 0 2 – 14 7,869 43,194 771,162
gas, manual 23 3 1 – 3 166 111,995 39,000
gas, autom. 23 3 1 – 3 166 111,995 2,080,000
diesel, autom. 23 3 1 – 3 166 111,995 130,000
car parts – – 604 preds. – – 20,794
gas, manual + 16 8 1 – 9 166 700,000 57,351
all cars 3 3 3 – 9 700,000 750,000 1,500,820

and automatic gearshift, 80,000 observations are available. For diesel engine and automatic
gearshift, 5000 observations are available. This explains how we calculated the number of
facts that are equivalent to the database selection. We have included the maximal number
of tuples in the description of the data, although it is not the size of the attribute on which
we wanted to learn, since it gives an impression of how large the set of tuples is in which
the database system must search for a characterization of warranty cases.

Another feature of the data with respect to the learning tasks is the number of join
projections that are necessary for putting together an observation (or case). This seems
to have considerable influence on the time spent for learning. It does not determine the
complexity of hypothesis generation (the size of the hypothesis space), but it does contribute
to the complexity of hypothesis testing using a given real-world database system.

The results of the first three experiments are shown in Table 6. The first experiment
compares the results ofRdtalone (pass 0) with the results ofRdt in concert withNum int

andFdd (pass 3). The learning passes ofNum int andFdd are also characterized (passes
1 and 2). The columnconclusion predicates needs some explanation. The hypothesis
languageLH can be restricted such that only 1 predicate can instantiate the predicate
variable in the conclusion. To be fair, we indicate how many predicates can instantiate
the conclusion predicate and for how many of these instantiations rules were found. For
instance, 5 of 9 means that 9 predicates were instantiated and for 5 of them rules were
learned. The first experiment shows thatNum int increased the validity of the learned
rules.Fdd contributed by reducing the set of predicates inLH. Hence,Rdt learned more
quickly and also learned more accurate rules.

The second experiment is made of a sequence of learning passes. First,Rdt/db learns
to characterize warranty and non-warranty cases (pass 4). Background knowledge about
special equipment of cars is used in order to make the learning results more interesting. For
instance, the rule
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Table 6.Summary of learning results

(vii) rel niveaureg(V ID)→ faulty(V ID)

states that cars with the special equipment of “niveau regulation” are more likely to
be warranty cases than all other cars taking into account the distribution of cars with this
equipment. Other rules hint at the influence of an engine variant and the number of cylinders.

(viii) motor e type(V ID, Type) & mobr cyl(Type, 6.0)→ faulty(V ID)

The size of the hypothesis space is the same for all three data sets. The mapping used is
also the same. Mapping 1 with selected attributes is used for most of the database tables.
This means the arity of the corresponding predicates has been reduced to relevant ones.
Mapping 3 is used for the regions and classes of car parts. The conclusion predicate is
instantiated and the premise consists of no more than two literals. Fork, the conclusion
literal need not be counted. The size of the hypothesis space, therefore, is4 · (26 · 1661)2.
Although it is the same for the three data sets, the time spent for learning varies considerably.
The reason for this is the different opportunity for pruning which is indicated by the number
of learned rules. We used the Bayes acceptance criterion for two classes, which means
that the a posteriori probability should be greater than or equal to the a priori probability.
The number of learned rules with greater probability is shown in brackets. Within the first
data set it was safe to prune after finding 17 rules. In the second data set, many more rules
could be found with high a posteriori probabilities, i.e., there were many factors to be found
that characterize warranty cases. Hence, learning time increased as well as the number of
learned rules. Pruning again shortened the learning time in the third data set.
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Since the findings on gasoline cars with manual gearshift were not exciting, as a second
step we ranStt on all car parts and found 498 classes that combine functional and spatial
aspects as well as types of damage (pass 5). We selected 9 classes and constructed them as
Boolean attributes in an additional database table. The enhanced data for gasoline cars with
manual gearshift describe 11 configurations of cars, the class of the car part that was faulty,
and up to 4 kinds of special equipment (i.e. we left out that equipment that never occurred
in a learned rule). Background knowledge about the regions of production remained in
the data set. One observation consists of 21 statements about the car and its parts. Since
one car part can be in the extension of several part classes, we get indeterministic variable
bindings.

The third step of the experiment was runningRdt/db again, this time using the results of
the other learning algorithms (pass 6). It used 13 metapredicates with up to 7 literals. Hence,
the size of the hypothesis space was enormous:13 · (21 · 1662)7. This is a challenging size
and we wondered whether learning could be accomplished at all.Rdt/db discovered rules
that characterize 4 of the 9 part classes. Two examples of rules found are the following:

(ix) rel warranty(X1, X2, RB,X4, X5, X6, X7, Config, Part) &
rel warranty gasman(X1, X2, RB,X4, X5, X6, X7, V ID) &
rel motor(V ID, Type, V ariant) & engine perf(Type, V ariant, 236.0)
→ class 15(Config, Part)

(x) rel warranty(X1, X2, RB,X4, X5, X6, X7, Config, Part) &
rel warranty gasman(X1, X2, RB,X4, X5, X6, X7, V ID) &
rel motor type(V ID, 206) & regions italy(RB)
→ class 419(Config, Part)

The first rule states that having difficulties with the tuning of the fuel injection process
(class 15) is a reason for a warranty case particularly for cars with an engine performance
of 236. The second rule states that warranty claims concerning particular parts of the fuel
injection (class 419) are made particularly in Italy and for variant 206 of engines9. The
rules explain under which circumstances members of a set of car parts are more likely to be
faulty than regularly. Because of the appropriate level of granularity that was introduced
by Stt, the rules are interesting for domain experts.

The third experiment with the multistrategy approach combinesRdt/db, Num int and
Stt (pass 7).Fdd selected interesting, non-redundant attributes. The learning task was to
characterize costs of warranty cases in terms of car parts, regions, and car configurations. For
every cost interval found byNum int, all other cost intervals were marked as its negative
counterpart. The car parts grouped together byStt were constructed as Boolean attributes
of an additional table, as before. Again, we have indeterministic variable bindings in the
hypotheses, since a car part can be in the extension of several classes. Since no constant
was marked for learning the size of the hypothesis space is1 · (17 · 700, 0000)3.

One surprising finding was that parts of class 35 are the prominent class in two of the
9 cost intervals. This is an example of a rule that is unlikely to be found by a concept
learner. The rules tell us that parts ofclass 35 make two cost intervals more likely than
they normally are. It is also interesting that three classes could never be found to be a reason
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for a sufficiently great number of warranty cases. For all other intervals, the learned rules
relate a class of parts to just one interval.

(xi) rel warranty(X1, X2, X3, X4, X5, X6, X7, Config, Part) &
class 35(Config, Part)
→ cost < 0 500 > (X1, X2, X3, X4, X5, X6, X7)
a priori prob.:0.84, a posteriori prob.: 0.89

(xii) rel warranty(X1, X2, X3, X4, X5, X6, X7, Config, Part) &
class 35(Config, Part)
→ cost < 1015 4960 > (X1, X2, X3, X4, X5, X6, X7)
a priori prob.:0.05, a posteriori prob.: 0.07

(xiii) rel warranty(X1, X2, X3, X4, X5, X6, X7, Config, Part) &
class 419(Config, Part)
→ cost < 0 500 > (X1, X2, X3, X4, X5, X6, X7)
a priori prob.:0.84, a posteriori prob.: 0.96

The learning time in this experiment is greater than we would expect given the rather
small hypothesis space. We see here a disadvantage of directly coupling the learning
algorithms with the database system. Although the number of tuples needed to verify or
falsify a hypothesis is small, the selection of them within tables of 750,000 tuples takes
time. Learning algorithms that select and prepare the data before learning never report on
the time for preprocessing, which lasts several days. In contrast, all preprocessing is part
of our multistrategy approach and its time is included in the learning time.

The set of experiments shown in Table 6 tends to support positive answers to our two
questions about multistrategy and handling mass data by ILP rule learning. First, the
preprocessing tools introduced new terms into the hypothesis language (classes ofStt and
intervals ofNum int) that enabledRdt/db to learn rules that otherwise could not have
been learned. The results of passes 3, 6, and 7 justify a moderate positive answer to the first
question: the multistrategy approach is superior with respect to the validity of the learned
rules. Second, many observations consisting of many features can be handled by an ILP
rule learning algorithm. With respect to sampling – the most commonly used alternative to
directly accessing the given database – additional experiments would be necessary. Here,
we wanted to show that sampling is not the only way of coping with mass data.

In order to see whether other ILP algorithms can cope with mass data, we have run
Foil (Quinlan, 1990) andProgol (Muggleton, 1995) on large data sets. We generated
artificial data that mimic the real-world data, but are stated in the format required by these
algorithms10. There were a number of ways the task was made simpler. When converting
the tuples from the database to tuples forFoil or ground facts forProgol we used the
learning results obtained byRdt/db in that we did not transform irrelevant attributes into
the representation. For instance, the database sample of all cars with gasoline engine and
automatic gearshift would consist of 2,080,000 ground facts, but we generated 1,300,000
facts for the comparison. This eases the learning task. Moreover, we ran the algorithms on
our best Sparc 20 machine with 128 MB of main memory. Passes ofRdt/db were run
on the Sparc 20 machine which stores the database. This computer has 96 MB of main
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Table 7.Learning passes withFoil andClaudien

Learning data sets concl. no. of learned eval. time spent
algorithms predicates rules

Foil art. gas, 1 139 73.6% cov. 8 h. 5 min.
autom. 39.9% acc.

Foil art. gas, 1 10 5.6% cov. 42 sec.
manual 99.7% acc.

Foil art. diesel, 1 39 99.47% cov. 4 min. 41 sec.
autom. 25% acc.

Foil art. gas, 9 6 78,2% cov. 3 h. 16 min.
manual+ 99,9% acc. 22 sec.

Claudien cars within 1 40 10% a priori 14 h. 10 min
3 months 12% a posteriori

memory. In addition, the learning task ofFoil is the simpler one of concept learning. It
is learning the definition of the conceptwarranty. If the definition is accurate enough,
learning stops. In contrast, the results of rule learning are independent rules. Even if an
appropriate concept definition has been found, learning has to continue in order to look for
more most-general, valid, and non-redundant rules.

Because of these simplifications, the comparison between the rule learning ofRdt/db

and the concept learning ofFoil can only investigate the matter of learning from mass data
(cf. Table 7). The evaluation of theFoil results are given in terms of coverage of positive
examples (i.e. warranty cases) and in terms of accuracy. From the four learning passes,
three are performed more quickly byFoil than byRdt/db, but one is performed more
slowly. This is surprising, since the learning task is less complex. It indicates thatFoil is
sensitive to the number of tuples. In particular, it is dependent on all tuples fitting into main
memory, which was not the case for the data on gasoline engines with automatic gearshift.
Progol was not able to handle this amount of data at all. It broke down after 10 minutes
when trying to learn from the data set of gasoline engines and automatic gearshift. Even
with the smallest data set it could not deliver a learning result within 72 hours.

The comparison with another ILP rule learner may be more appropriate. The system
Claudien (De Raedt & Bruynooghe, 1993) was run by Luc Dehaspe and Hendrik Block-
eel on a selection of all cars within 3 months minus the table concerning special equipment.
The selected data were converted into ground facts. The a priori probability was 10%. The
rules found have an average a posteriori probability of 12%. Hence,Claudien found
valid rules. The run-time of the system on the selection of cars (14 hours) lies within the
same range as the run-time ofRdt/db in concert withNum int, Stt, andFdd when
learning fromall cars.

5. Discussion

In this paper we have presented a multistrategy architecture for learning rules in a re-
stricted first-order logic from very large data sets. The mapping of first-order hypotheses
on databases has been discussed with respect to the size of the resultant hypothesis space.
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This analysis indicates a way in which several additional algorithms can serve a rule learning
algorithm. The attributes of the database are ordered byFdd. The rule learning algorithm
is applied to only one level of this partial ordering. A sequence of learning passes realizes a
stepwise refinement strategy. The values of a database attribute are reduced byNum int,
if they are numerical, and byStt, if unstructured background material is available. The
combination of the four learning algorithms allows one to learn first-order rules from very
large data sets.

Whether the user should select appropriate levels from the learned hierarchies of the “ser-
vice algorithms” is an issue for discussion. We have adopted the position of (Brachman &
Anand, 1996) that the user should be involved in the KDD process. From the point of view
of the algorithm, the selection of one layer as opposed to trying all combinations of all
hierarchies makes learning feasible even in very large databases. From the point of view
of the user, he is interested in preliminary results and wants to have control of the data
mining process. The user is interested in some classes of hypotheses and does not want to
specify this interest precisely as yet another declarative bias. Note, however, that the user
in our framework does not need to implement the interaction between the learning result of
one algorithm and its impact on the other algorithm. This is particularly different from the
Kepler KDD workbench, which offers a variety of learning algorithms together with a
set–oriented layer for data management (Wrobel et al., 1996).Kepler allows the user to
call various learning tools and use the results of one as input to another one. It is a loosely
coupled system, whereas ours is a tightly coupled one.

For the purpose of directly accessing database management systems,Rdt was enhanced
so that hypothesis testing is executed viaSql queries. Database management systems
offer services for mass data that exceed main memory. Since main memory today is rather
huge, this advantage has become less important. Sometimes, the database management
makes the system pay a certain amount of overhead. For instance, the 35 minutes run-time
of Num int consisted of 25 minutes of waiting on the database system. In pass 7 we
also experienced this overhead of the database system. However, the very long duration of
Foil’s learning in the one case where the tuples do not fit into main memory (5 hours longer
than the run-time ofRdt/db) show how much time can be saved by directly accessing a
database. More performance tests are necessary in order to clearly determine under which
conditions the database management system speeds up or slows down the learning process.

Accessing a given database management system directly is very different from employing
a relational algebra for representing observations asMl smart does (Bergadano et al,
1991). The storage of data cannot be influenced when accessing a given database. The
database which has been designed for other needs than learning can only be queried but not
modified. It is possible that the same selection of data or even join projection of tables has
to be calculated over and over again. In contrast,Ml smart takes advantage of its own
data management.Ml smart creates new tables, stores a selection of data as intermediate
result, or stores aggregations of data. In the course of learning, the database is changed.
This reduces the number of tuples during learning11.

Rdt/db bridges the gap between the needs of learning and the given data. It uses
declarations of mappings from database to learning representation. It checks whether a
hypothesis is unsatisfiable. It automatically transforms a declarative bias into database
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terms. This service corresponds to a lot of preprocessing work that is usually done before
running a learning algorithm. Together with the algorithmsNum int, Stt, andFdd most
of the preprocessing is performed by the learning system itself. A true comparison with
other learning systems should consider the time spent for preprocessingand learning.

The rule learning algorithmRdt is particularly well suited for KDD tasks because its
complexity is not bound with respect to the number of tuples, but with respect to the
representation of hypotheses. Its top-down, breadth-first search allows large parts of the
hypothesis space to be safely pruned. The declarative syntactic bias is extremely useful
for restricting the hypothesis space when learning from very large data sets. However,
the syntactic language bias is not enough to applyRdt to real-world databases without
reducing it to the expressiveness of an algorithm such asKid3, for instance. If we want
to keep the ability to do relational learning but also want to learn from all tuples of a large
database, we need more restrictions. These restrictions need to lead to a reduction in the
numberp of predicates or in the maximal numberi of attribute values for an attribute. The
restrictions should be domain–dependent. The task of structuring the set of attributes as
well as the task of structuring sets of attribute values is performed by more specialized
learning algorithms.

Right now, we can state that without using various methods in concert, we achieved valid
but not interesting results. Some types of relations could not at all be learned without pre-
processing by other methods. For instance, no rules involving costs of warranty cases could
be found beforeNum Int delivered the intervals. Without the further concepts found by
Stt, the analysis of reasons for warranty cases would not have been possible.Rdt/db

successfully solved the difficult rule learning task on very large data sets. Together with
the other learning algorithms it could learn from 750,000 tuples and three database rela-
tions. While we are convinced that this work–share between a number of more specialized
algorithms and a more general learning algorithm is a powerful idea, we do not claim that
the algorithms for structuring attribute values are in general the best choice. However, our
architecture allows us to plug in other (better) algorithms, if available.
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Notes

1. In (Agrawal et al., 1996) the authors present a series of experiments with the algorithms and give a lower
bound for finding an association rule.

2. Proofs for the various representation languages used in ILP can be found in (Kietz, 1996).
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3. According to (Michalski, 1994) thecomputational strategymeans the type of knowledge representation and
the associated methods for modifying it in the process of learning. Theinferential strategymeans the primary
type of inference underlying a learning process.

4. A first implementation was presented in (Lindner & Morik, 1995).

5. The learning systemRdt/db and the DBMS Oracle V7 are loosely coupled via a TCP/IP connection.

6. Here, we assume that the user has done this beforehand; we do not generate negative examples by means of
the closed–world assumption.

7. For an overview of learnability results of ILP see (Kietz & Dˇzeroski, 1994).

8. All figures for run-time refer to real time, not CPU time. Since we were not the only users, the time spent for
learning is greater than it would be in single-user mode.

9. The engine performance value in this rule and the variant number in the preceding rule have been changed.

10. The data sets have the same names as their corresponding one with the prefix ’art.’.

11. Whether the data manipulation ofMl smart is in fact superior for learning compared with that of a commercial
database management system is an open question. In (Bergadano et al., 1991), no experiments with large data
sets are reported together with the run-time of the system. The analysis of Michael Pazzani and Dennis Kibler
(Pazzani & Kibler, 1992) states thatMl smart runs in doubly exponential time. Therefore it seems unlikely
that it could be applied to mass data.
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