Skip to main content

Generative Adversarial Network (GAN)

  • Reference work entry
  • First Online:
Computer Vision

Synonyms

Adversarial networks; GAN; GANs

Related Concepts

Definition

Generative adversarial network (GAN) is a framework that was invented for the purpose of creating an artificial distribution that mimics a given target distribution, and it consists of a generator function that produces the imitator distribution from a seed prior and a discriminator function that distinguishes the artificial distribution from the target.

Background

The task of approximating the probability density from empirically collected dataset (i.e., the training dataset)–or, in short, the task of learning a generative model–is a central problem of machine learning. The most straightforward way of carrying out this task is the method of maximum likelihood estimation (MLE). However, a naive application of MLE with arbitrary choice of models won’t suffice. For the learning of a complex probability distribution like...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arjovsky M, Bottou L (2017) Towards principled methods for training generative adversarial networks. In: ICLR

    Google Scholar 

  2. Baram N, Anschel O, Caspi I, Mannor S (2017) End-to-end differentiable adversarial imitation learning. In: International conference on machine learning, pp 390–399

    Google Scholar 

  3. Bińkowski M, Sutherland DJ, Arbel M, Gretton A (2018) Demystifying MMD GANs. arXiv preprint arXiv:1801.01401

    Google Scholar 

  4. Brock A, Donahue J, Simonyan K (2018) Large scale GAN training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096

    Google Scholar 

  5. Fedus W, Rosca M, Lakshminarayanan B, Dai AM, Mohamed S, Goodfellow I (2017) Many paths to equilibrium: GANs do not need to decrease adivergence at every step. arXiv preprint arXiv:1710.08446

    Google Scholar 

  6. Finn C, Christiano P, Abbeel P, Levine S (2016) A connection between generative adversarial networks, inverse reinforcement learning, and energy-based models. arXiv preprint arXiv:1611.03852

    Google Scholar 

  7. Fu J, Luo K, Levine S (2017) Learning robust rewards with adversarial inverse reinforcement learning. arXiv preprint arXiv:1710.11248

    Google Scholar 

  8. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: NIPS, pp 2672–2680

    Google Scholar 

  9. Gutmann MU, Hyvärinen A (2012) Noise-contrastive estimation of unnormalized statistical models, with applications to natural image statistics. J Mach Learn Res 13 : 307–361

    MathSciNet  MATH  Google Scholar 

  10. Heusel M, Ramsauer H, Unterthiner T, Nessler B, Klambauer G, Hochreiter S (2017) GANs trained by a two time-scale update rule converge to a nash equilibrium. arXiv preprint arXiv:1706.08500

    Google Scholar 

  11. Hyvärinen A (2005) Estimation of non-normalized statistical models by score matching. J Mach Learn Res 6 : 695–709

    MathSciNet  MATH  Google Scholar 

  12. Karras T, Aila T, Laine S, Lehtinen J (2017) Progressive growing of GANs for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196

    Google Scholar 

  13. Kingma DP, Welling M (2013) Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114

    Google Scholar 

  14. Larochelle H, Murray I (2011) The neural autoregressive distribution estimator. In: AISTATS, pp 29–37

    Google Scholar 

  15. Li C-L, Chang W-C, Cheng Y, Yang Y, Póczos B (2017) MMD GAN: Towards deeper understanding of moment matching network. In: Advances in neural information processing systems, pp 2203–2213

    Google Scholar 

  16. Li Y, Swersky K, Zemel R (2015) Generative moment matching networks. In: International conference on machine learning, pp 1718–1727

    Google Scholar 

  17. Lucic M, Kurach K, Michalski M, Gelly S, Bousquet O (2018) Are GANs created equal? a large-scale study. In: Advances in neural information processing systems, pp 698–707

    Google Scholar 

  18. Mescheder L, Geiger A, Nowozin S (2018) Which training methods for GANs do actually converge? In: International conference on machine learning, pp 3478–3487

    Google Scholar 

  19. Metz L, Poole B, Pfau D, Sohl-Dickstein J (2016) Unrolled generative adversarial networks. arXiv preprint arXiv:1611.02163

    Google Scholar 

  20. Miyato T, Kataoka T, Koyama M, Yoshida Y (2018) Spectral normalization for generative adversarial networks. In: ICLR

    Google Scholar 

  21. Mohamed S, Lakshminarayanan B (2016) Learning in implicit generative models. arXiv preprint arXiv:1610.03483

    Google Scholar 

  22. Nowozin S, Cseke B, Tomioka R (2016) f-GAN: training generative neural samplers using variational divergence minimization. In: NIPS, pp 271–279

    Google Scholar 

  23. Radford A, Metz L, Chintala S (2016) Unsupervised representation learning with deep convolutional generative adversarial networks. In: ICLR

    Google Scholar 

  24. Rezende DJ, Mohamed S (2015) Variational inference with normalizing flows. arXiv preprint arXiv:1505.05770

    Google Scholar 

  25. Saito M, Saito S (2018) Tganv2: efficient training of large models for video generation with multiple subsampling layers. arXiv preprint arXiv:1811.09245

    Google Scholar 

  26. Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Chen X (2016) Improved techniques for training GANs. In: NIPS, pp 2226–2234

    Google Scholar 

  27. Sriperumbudur BK, Gretton A, Fukumizu K, Schölkopf B, Lanckriet GRG (2010) Hilbert space embeddings and metrics on probability measures. J Mach Learn Res 11 : 1517–1561

    MathSciNet  MATH  Google Scholar 

  28. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: CVPR, pp 1–9

    Google Scholar 

  29. Yamaguchi S, Koyama M (2019) Distributional concavity regularization for GANs. In: International conference on learning representations

    Google Scholar 

  30. Zhu J-Y, Park T, Isola P, Efros AA (2017) Unpaired image-to-image translation using cycle-consistent adversarial networks. arXiv preprint

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeru Miyato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer International Publishing

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Miyato, T., Koyama, M. (2021). Generative Adversarial Network (GAN). In: Ikeuchi, K. (eds) Computer Vision. Springer, Cham. https://doi.org/10.1007/978-3-030-63416-2_860

Download citation

Publish with us

Policies and ethics