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Abstract

The recent progress on image recognition and language mod-
eling is making automatic description of image content a re-
ality. However, stylized, non-factual aspects of the written
description are missing from the current systems. One such
style is descriptions with emotions, which is commonplace
in everyday communication, and influences decision-making
and interpersonal relationships. We design a system to de-
scribe an image with emotions, and present a model that au-
tomatically generates captions with positive or negative sen-
timents. We propose a novel switching recurrent neural net-
work with word-level regularization, which is able to pro-
duce emotional image captions using only 2000+ training
sentences containing sentiments. We evaluate the captions
with different automatic and crowd-sourcing metrics. Our
model compares favourably in common quality metrics for
image captioning. In 84.6% of cases the generated positive
captions were judged as being at least as descriptive as the
factual captions. Of these positive captions 88% were con-
firmed by the crowd-sourced workers as having the appropri-
ate sentiment.

1 Introduction

Automatically describing an image by generating a coher-
ent sentence unifies two core challenges in artificial intel-
ligence — vision and language. Despite being a difficult
problem, the research community has recently made head-
way into this area, thanks to large labeled datasets, and pro-
gresses in learning expressive neural network models. In ad-
dition to composing a factual description about the objects,
scene, and their interactions in an image, there are richer
variations in language, often referred to as styles (Crystal
and Davy 1969). Take emotion, for example, it is such a
common phenomena in our day-to-day communications that
over half of text accompanying online pictures contains an
emoji (a graphical alphabet for emotions) (Instagram 2015).
How well emotions are expressed and understood influences
decision-making (Lerner et al. 2015) — from the mundane
(e.g., making a restaurant menu appealing) to major (e.g.,
choosing a political leader in elections). Recognizing sen-
timent and opinions from written communications has been
an active research topic for the past decade (Pang and Lee
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This is a dog resting on a computer.
A white shaggy beautiful dog laying its
head on top of a computer keyboard.

A motorcycle parked behind a truck
on a green field.

A beat up, rusty motorcycle on
unmowed grass by a truck and trailer.

Figure 1: Example images with neural, positive ( )
and negative (red) captions, by crowd workers in MSCOCO
dataset (Chen et al. 2015) and this work (Section 4).

2008; Socher et al. 2013), the synthesis of text with senti-
ment that is relevant to a given image is still an open prob-
lem. In Figure 1, each image is described with a factual
caption, and with positive or negative emotion, respectively.
One may argue that the descriptions with sentiments are
more likely to pique interest about the subject being pictured
(the dog and the motocycle), or about their background set-
tings (interaction with the dog at home, or how the motocy-
cle came about).

In this paper, we describe a method, called SentiCap, to
generate image captions with sentiments. We build upon
the CNN+RNN (Convolution Neural Network + Recurrent
Neural Network) recipe that has seen many recent suc-
cesses (Donahue et al. 2015; Karpathy and Fei-Fei 2015;
Mao et al. 2015; Vinyals et al. 2015; Xu et al. 2015a). In
particular, we propose a switching Recurrent Neural Net-
work (RNN) model to represent sentiments. This model
consists of two parallel RNNs — one represents a general
background language model; another specialises in descrip-
tions with sentiments. We design a novel word-level regular-
izer, so as to emphasize the sentiment words during training
and to optimally combine the two RNN streams (Section 3).
We have gathered a new dataset of several thousand captions
with positive and negative sentiments by re-writing factual
descriptions (Section 4). Trained on 2000+ sentimental cap-
tions and 413K neutral captions, our switching RNN out-
performs a range of heuristic and learned baselines in the
number of emotional captions generated, and in a number
of caption evaluation metrics. In particular SentiCap has the
highest number of success in placing at least one sentiment



word into the caption, 88% positive (or 72% negative) cap-
tions are perceived by crowd workers as more positive (or
negative) than the factual caption, with a similar descrip-
tiveness rating.

2 Related Work

Recent advances in visual recognition have made “an image
is a thousand words” much closer to reality, largely due to
the advances in Convolutional Neural Networks (CNN) (Si-
monyan and Zisserman 2015; Szegedy et al. 2015). A
related topic also advancing rapidly is image captioning,
where most early systems were based on similarity retrieval
using objects and attributes (Farhadi et al. 2010; Kulka-
i et al. 2011; Hodosh, Young, and Hockenmaier 2013;
Gupta, Verma, and Jawahar 2012), and assembling sentence
fragments such as object-action-scene (Farhadi et al. 2010),
subject-verb-object (Rohrbach et al. 2013), object-attribute-
prepositions (Kulkarni et al. 2011) or global image proper-
ties such as scene and lighting (Nwogu, Zhou, and Brown
2011). Recent systems model richer language structure,
such as formulating a integer linear program to map visual
elements to the parse tree of a sentence (Kuznetsova et al.
2014), or embedding (Xu et al. 2015b) video and composi-
tional semantics into a joint space.

Word-level language models such as RNNs (Mikolov
et al. 2011; Sutskever, Martens, and Hinton 2011) and
maximum-entropy (max-ent) language models (Mikolov et
al. 2011) have improved with the aid of significantly larger
datasets and more computing power. Several research teams
independently proposed image captioning systems that com-
bine CNN-based image representation and such language
models. Fang et al. (2015) used a cascade of word de-
tectors from images and a max-ent model. The Show
and Tell (Vinyals et al. 2015) system used an RNN as the
language model, seeded by CNN image features. Xu et
al. (2015a) estimated spatial attention as a latent variable,
to make the Show and Tell system aware of local image in-
formation. Karpathy and Li (2015) used an RNN to gen-
erate a sentence from the alignment between objects and
words. Other work has employed multi-layer RNNs (Chen
and Zitnick 2015; Donahue et al. 2015) for image caption-
ing. Most RNN-based multimodal language models use the
Long Short Term Memory (LSTM) unit that preserves long-
term information and prevents overfitting (Hochreiter and
Schmidhuber 1997). We adopt one of the competitive sys-
tems (Vinyals et al. 2015) — CNN+RNN with LSTM units
as our basic multimodal sentence generation engine, due to
its simplicity and computational efficiency.

Researchers have modeled how an image is presented,
and what kind of response it is likely to elicit from view-
ers, such as analyzing the aesthetics and emotion in im-
ages (Murray, Marchesotti, and Perronnin 2012; Joshi et al.
2011). More recently, the Visual SentiBank (Borth et al.
2013) system constructed a catalogue of Adjective-Noun-
Pairs (ANPs) that are frequently used to describe online im-
ages. We build upon Visual SentiBank to construct senti-
ment vocabulary, but to the best of our knowledge, no ex-
isting work tries to compose image descriptions with de-
sired sentiments. Identifying sentiment in text is an ac-
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tive area of research (Pang and Lee 2008; Socher et al.
2013). Several teams (Nakagawa, Inui, and Kurohashi 2010;
Tackstrom and McDonald 2011) designed sentence models
with latent variables representing the sentiment. Our work
focuses on generating sentences and not explicitly modelling
sentiment using hidden variables.

3 Describing an Image with Sentiments

Given an image [ and its D,-dimensional visual feature
x € RP=, our goal is to generate a sequence of words
(i.e. acaption) Y = {y1,---,yr} to describe the image
with a specific style, such as expressing sentiment. Here
y: € {0,1}V is 1-of-V encoded indicator vector for the ¢
word; V is the size of the vocabulary; and 7' is the length of
the caption.

We assume the sentence generation involves two under-
lying mechanisms, one of which focuses on the factual de-
scription of the image while the other describes the image
content with sentiments. We formulate such caption genera-
tion process using a switching multi-modal language model,
which sequentially generates words in a sentence. Formally,
we introduce a binary sentiment variable s; € {0, 1} for ev-
ery word y; to indicate which mechanism is used. At each
time step ¢, our model produces the probability of y; and the
current sentiment variable s; given the image feature x and
the previous words yi.;—1, denoted by p(y:, s¢|X, y1.4—1)-
We generate the word probability by marginalizing over the
sentiment variable s;:

p(Yt|X7 Y1;t—1) = ZP(Yt\SuXaY1:t71)p(St|X7 yiz—1) (1)

St

Here p(y:|st, -) is the caption model conditioned on the sen-
timent variable and p(s;|-) is the probability of the word sen-
timent. The rest of this section will introduce these compo-
nents and model learning in detail.

3.1 Switching RNNs for Sentiment Captions

We adopt a joint CNN+RNN architecture (Vinyals et al.
2015) in the conditional caption model. Our full model com-
bines two CNN+RNNs running in parallel: one capturing
the factual word generation (referred to as the background
language model), the other specializing in words with sen-
timent. The full model is a switching RNN, in which the
variable s; functions as a switching gate. This model design
aims to learn sentiments well, despite data sparsity — using
only a small dataset of image description with sentiments
(Section 4), with the help from millions of image-sentence
pairs that factually describe pictures (Chen et al. 2015).

Each RNN stream consists of a series of LSTM units.
Formally, we denote the D-dimensional hidden state of an
LSTM as h; € RP, its memory cell as ¢; € RP, the in-
put, output, forget gates as i;, o, f; € RP, respectively.
Let k indicate which RNN stream it is, the LSTM can be
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Figure 2: Illustration of the switching RNN model for cap-
tions with sentiment. Lines with diamonds denote projec-
tions with learned weights. LSTM cells are described in
Eq 2. 79 and 4} are probabilities of sentiment switch defined
in Eq (6) and act as gating functions for the two streams.

implemented as:
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Here o(x) is the sigmoid function 1/(1 + e™X); tanh is
the hyperbolic tangent function; T* € R4P*2P jg a set of
learned weights; gf € RP is the input to the memory cell;
EF € RP*V is alearned embedding matrix in model &, and
EFy, is the embedding vector of the word y;.

To incorporate image information, we use an image rep-
resentation X = W, x as the word embedding Ey, when
t = 1, where x is a high-dimensional image feature ex-
tracted from a convolutional neural network (Simonyan and
Zisserman 2015), and W, is a learned embedding matrix.
Note that the LSTM hidden state hf summarizes y.;_1 and
x. The conditional probability of the output caption words
depends on the hidden state of the corresponding LSTM,

p(Yt|5t =k, X, y1:t-1) exp(Wg’jhf) 3)

where W% € RP*V is a set of learned output weights.

The sentiment switching model generates the probability
of switching between the two RNN streams at each time ¢,
with a single layer network taking the hidden states of both
RNNss as input:

p(se = 11X, y1:0-1) = U(Ws[hg5h“) “

where W is the weight matrix for the hidden states.

An illustration of this sentiment switching model is in
Figure 2. In summary, the parameter set for each RNN
(k ={0,1})is ©F = {T" W} E* ' WE}, and that of the
switching RNN is © = ©° U ©! U W,. We have tried in-
cluding x for learning p(s;|x,y1.+—1) but found no benefit.

3.2 Learning the Switching RNN Model

One of the key challenges is to design a learning scheme for
p(8t|%,y1:t—1) and two CNN+RNN components. We take
a two-stage learning approach to estimate the parameters ©
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in our switching RNN model based on a large dataset with
factual captions and a small set with sentiment captions.
Learning a background multi-modal RNN. We first train
a CNN+RNN with a large dataset of image and caption
pairs, denoted as D° = {(x{,y})}Y,. ©° are learned by
minimizing the negative log-likelihood of the caption words
given images,

L2(©°,D%) = = ) “logp(yh sls: = 0,x0, ¥ 1.4-1)- (5)
it

Learning from captions with sentiments. Based on the
pre-trained CNN+RNN in Eq (5), we then learn the switch-
ing RNN using a small image caption dataset with a spe-
cific sentiment polarity, denoted as D = {(x*,y*,7%)} M,
M < N. Here n{ € [0,1] is the sentiment strength of the
t'" word in the i-th training sentence, being either positive
or negative as specified in the training data.

We design a new training objective function to use word-
level sentiment information for learning ©' and the switch-
ing weights W, while keeping the pre-learned ©° fixed.
For clarity, we denote the sentiment probability as:

(6)

and the log likelihood of generating a new word y; given
image and word histories (x,y1..—1) as L;(0, x,y), which
can be written as (cf. Eq (1)),

v =p(se = 0%, y14-1), 5 =1-1%;

Lt(@»XaY) = logp(yt|xa Y1:t—1) = (7)
log[v{p(yelse = 0,%,y—1) + v p(yelse = 1,x,y-4)]-
The overall learning objective function for incorporating
word sentiment is a combination of a weighted log likeli-
hood and the cross-entropy between ~; and 7,

£(6,D) = =3 > (14 Agm)[L(O,x,y) ®)

+ Ay (i log v, " + (1 — nj)log4")] + R(©),

R©) =2 [0! ~ & ©
where A\, and A, are weight parameters, and R(O) is the
regularization term with weight parameter \g. Intuitively,
when 7, > 0, i.e. the training sentence encounters a
sentiment word, the likelihood weighting factor \,n; in-
creases the importance of L; in the overall likelihood; at
the same time, the cross-entropy term ., (7; log 4 (1 -
i) log ") encourage switching variable ;' to be > 0, em-
phasizing the new model. The regularized training finds a
trade-off between the data likelihood and L2 difference be-
tween the current and base RNN, and is one of the most
competitive approaches in domain transfer (Schweikert et
al. 2008).

Settings for model learning. We use stochastic gradient de-
scent with backpropagation on mini-batches to optimize the
RNNs. We apply dropout to the input of each step, which is
either the image embedding X for ¢ = 1 or the word embed-
ding EFy; ; and the hidden output h¥ ; from time # — 1,
for both the background and sentiment streams k£ = 0, 1.



We learn models for positive and negative sentiments sep-
arately, due to the observation that either sentiment could
be valid for the majority of images (Section 4). We initial-
ize ©! as O and use the following gradient of to minimize
L(0, D) with respect to ©! and W, holding ©° fixed.

o _ oL

N 504
n Oyt | 1—m 0y IR(©)
A y . 10
+ ’Y<'Ytl’l o0 ,Yto,i 00 )] + 90 ( )
Here 2L 970" and 92" are computed through differen-
20 96 26 puted through differen

tiating across Equations (1)—(6). During training, we set
n: = 1 when word y; is part of an ANP with the target
sentiment polarity, otherwise 77, = 0. We also include a de-
fault L2-norm regularization for neural network tuning |© |
with a small weight (10~%). We automatically search for
the hyperparameters A\g, A, and A, on a validation set using
Whetlab (Snoek, Larochelle, and Adams 2012).

4 An Image Caption Dataset with Sentiments

In order to learn the association between images and cap-
tions with sentiments, we build a novel dataset of image-
caption pairs where the caption both describes an image,
and also convey the desired sentiment. We summarize the
new dataset, and the crowd-sourcing task to collect image-
sentiment caption data. More details of the data collection
process are included in the suplementary’.

There are many ways a photo could evoke emotions. In
this work, we focus on creating a collection and learning
sentiments from an objective viewer who does not know the
back story outside of the photo — a setting also used by recent
collections of objectively descriptive image captions (Chen
et al. 2015; Hodosh, Young, and Hockenmaier 2013).
Dataset construction. We design a crowd-sourcing task to
collect such objectively described emotional image captions.
This is done in a caption re-writing task based upon objec-
tive captions from MSCOCO (Chen et al. 2015) by asking
Amazon Mechanical Turk (AMT) workers to choose among
ANPs of the desired sentiment, and incorporate one or more
of them into any one of the five existing captions. Detailed
design of the AMT task is in the appendix’.

The set of candidate ANPs required for this task is col-
lected from the captions for a large sets of online images.
We expand the Visual SentiBank (Borth et al. 2013) vo-
cabulary with a set of ANPs from the YFCC100M image
captions (Thomee et al. 2015) as the overlap between the
original SentiBank ANPs and the MSCOCO images is in-
suffcient. We keep ANPs with non-trival frequency and a
clear positive or negative sentiment, when rated in the same
way as SentiBank. This gives us 1,027 ANPs with a positive
emotion, 436 with negative emotions. We collect at least
3 positive and 3 negative captions per image. Figure 3(a)
contains one example image and its respective positive and
negative caption written by AMT workers. We release the
list of ANPs and the captions in the online appendix'.

"http://users.cecs.anu.edu.au/~u4534172/senticap.html
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Quality validation. We validate the quality of the resulting
captions with another two-question AMT task as detailed
in the suppliment'. This validation is done on 124 images
with 3 neutral captions from MSCOCO, and images with 3
positive and 3 negative captions from our dataset. We first
ask AMT workers to rate the descriptiveness of a caption
for a given image on a four-point scale (Hodosh, Young,
and Hockenmaier 2013; Vinyals et al. 2015). The descrip-
tiveness column in Figure 3(b), shows that the measure for
objective descriptiveness tend to decrease when the caption
contains additional sentiment. Ratings for the positive cap-
tions (POS) have a small decrease (by 0.08, or one-tenth of
the standard deviation), while those for the negative captions
(NEG) have a significant decrease (by 0.73), likely because
the notion of negativity is diverse.

We also ask whether the sentiment of the sentence
matches the image. Each rating task is completed by 3
different AMT workers. In the correct sentiment column
of Figure 3(b), we record the number of votes each cap-
tion received for bearing a sentiment that matches the im-
age. We can see that the vast majority of the captions are
unanimously considered emotionally appropriate (94%, or
315/335 for Pos; 82%, or 250/305 for NEG). Among the
captions with less than unanimous votes received, most of
them (20 for Pos and 49 for NEG) still have majority agree-
ment for having the correct sentiment, which is on par with
the level of noise (16 for COCO captions).

5 [Experiments

Implementation details. We implement RNNs with LSTM
units using the Theano package (Bastien et al. 2012). Our
implementation of CNN+RNN reproduces caption gener-
ation performance in recent work (Karpathy and Fei-Fei
2015). The visual input to the switching RNN is 4096-
dimensional feature vector from the second last layer of the
Oxford VGG CNN (Simonyan and Zisserman 2015). These
features are linearly embedded into a D = 512 dimensional
space. Our word embeddings Ey are 512 dimensions and
the hidden state h and memory cell ¢ of the LSTM mod-
ule also have 512 dimensions. The size of our vocabulary
for generating sentences is 8,787, and becomes 8,811 after
including additional sentiment words.

We train the model using Stochastic Gradient Descent
(SGD) with mini-batching and the momentum update rule.
Mini-batches of size 128 are used with a fixed momentum of
0.99 and a fixed learning rate of 0.001. Gradients are clipped
to the range [—5, 5] for all weights during back-propagation.
We use perplexity as our stopping criteria. The entire sys-
tem has about 48 million parameters, and learning them on
the sentiment dataset with our implementation takes about
20 minutes at 113 image-sentence pairs per second, while
the original model on the MSCOCO dataset takes around 24
hours at 352 image-sentence pairs per second. Given a new
image, we predict the best caption by doing a beam-search
with beam-size 5 for the best words at each position. We
implementd the system on a multicore workstation with an
Nvidia K40 GPU.

Dataset setup. The background RNN is learned on the
MSCOCO training set (Chen et al. 2015) of 413K+ sen-



(b)

#imgs #sente descrip- Correct sentiment: #votes
nce tiveness 3 5 | 0
Coco 124 372 3.42+0.81 355 16 1 0
Pos 124 335 3.34+0.79 315 20 0 0
The painted train drives through a lovely city with country charm. NEG 123 305 2.69+1.11 250 49 6 0

The abandoned trains sits alone in the gloomy countryside.

Figure 3: (a) One example image with both positive and negative captions written by AMT workers. (b) Summary of quality
validation for sentiment captions. The rows are MSCOCO (2015), and captions with Positive and NEGative sentiments,
respectively. Descriptiveness £ standard deviation is rated as 1-4 and averaged across different AMT workers, higher is better.
The Correct sentiment column records the number of captions receiving 3, 2, 1, 0 votes for having a sentiment that matches the

image, from three different AMT workers.

| SEN% | B-1 B-2 B-3 B-4 ROUGE; METEOR CIDE, | SENTI DESC DESCCMP
CNN+RNN 1.0 487 28.1 17.0 107 36.6 15.3 55.6 — 2.90+0.90 -
Pos  ANP-Replace 90.3 482 27.8 164 10.1 36.6 16.5 55.2 84.8% 2.894+0.92 95.0%
ANP-Scoring 90.3 483 279 166 10.1 36.5 16.6 55.4 84.8% 2.861+0.96 95.3%
RNN-Transfer | 86.5 493 295 179 109 372 17.0 54.1 84.2% 2.731+0.96 76.2%
SentiCap 93.2 49.1 29.1 175 10.8 36.5 16.8 54.4 88.4% 2.861+0.97 84.6%
CNN+RNN 0.8 476 275 163 9.8 36.1 15.0 54.6 - 2.81+0.94 -
NEG ANP-Replace 85.5 48.1 28.8 177 109 36.3 16.0 56.5 61.4% 2.514+0.93 73.7%
ANP-Scoring 85.5 479 287 1777 11.1 36.2 16.0 57.1 64.5% 2.5240.94 76.0%
RNN-Transfer | 73.4 478 29.0 187 12.1 36.7 16.2 55.9 68.1% 2.5240.96 70.3%
SentiCap 97.4 50.0 312 203 13.1 379 16.8 61.8 72.5% 2.401+0.89 65.0%

Table 1: Summary of evaluations on captions with sentiment. Columns: SEN% is the percentage of output sentences with at
least one ANP; B-1 ... CIDER, are automatic metrics as described in Section 5; where B-N corresponds to the BLEU-N metric
measuring the co-occurrences of n-grams. SENTI is the fraction of images for which at least two AMT workers agree that it
is the more positive/negative sentence; DESC contains the mean and std of the 4-point descriptiveness score, larger is better.
DESCCMP is the percentage of times the method was judged as descriptive or more descriptive than the CNN+RNN baseline.

tences on 82K+ images. We construct an additional set of
caption with sentiments as described in Section 4 using im-
ages from the MSCOCO validation partition. The POS sub-
set contains 2,873 positive sentences and 998 images for
training, and another 2,019 sentences over 673 images for
testing. The NEG subset contains 2,468 negative sentences
and 997 images for training, and another 1,509 sentences
over 503 images for testing. Each of the test images has
three positive and/or three negative captions.

Systems for comparison. The starting point of our model
is the RNN with LSTM units and CNN input (Vinyals et al.
2015) learned on the MS COCO training set only, denoted as
CNN+RNN. Two simple baselines ANP-Replace and ANP-
Scoring use sentences generated by CNN+RNN and then add
an adjective with strong sentiment to a random noun. ANP-
Replace adds the most common adjective, in the sentiment
captions for the chosen noun. ANP-Scoring uses multi-class
logistic regression to select the most likely adjective for the
chosen noun, given the Oxford VGG features. The next
model, denoted as RNN-Transfer, learns a fine-tuned RNN
on the sentiment dataset with additional regularization from
CNN+RNN (Schweikert et al. 2008), as in R(©) (cf. Eq (9)).
We name the full switching RNN system as SentiCap, which
jointly learns the RNN and the switching probability with
word-level sentiments from Equation (8).
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Evaluation metrics. We evaluate our system both with
automatic metrics and with crowd-sourced judgements
through Amazon Mechanical Turk. Automatic evaluation
uses the BLEU, ROUGE},, METEOR, CIDE,. metrics from the
Microsoft COCO evaluation software (Chen et al. 2015).

In our crowd-sourced evaluation task AMT workers are
given an image and two automatically generated sentences
displayed in a random order (example provided in supple-
ment'). One sentence is from the CNN+RNN model without
sentiment, while the other sentence is from SentiCap or one
of the systems being compared. AMT workers are asked
to rate the descriptiveness of each image from 1-4 and se-
lect the more positive or more negative image caption. A
process for filtering out noisy ratings is described in the sup-
plement'. Each pair of sentences is rated by three different
AMT workers; at least two must agree that a sentence is
more positive/negative for it to be counted as such. The de-
scriptiveness score uses mean aggregation.

Results. Table 1 summarizes the automatic and crowd-
sourced evaluations. We can see that CNN+RNN presents al-
most no sentiment ANPs as it is trained only on MSCOCO.
SentiCap contains significantly more sentences with senti-
ment words than any of the three baseline methods, which
is expected when the word-level regularization has taken ef-
fect. That SentiCap has more sentiment words than the two
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Figure 4: Example results from sentiment caption generation. Columns a+b: positive captions; columns c+d:
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captions.

Background color indicate the probability of the switching variable v} = p(s,|-): [da i it v} > 0.75; [med fum| if v} > 0.5;
lig ht if v} > 0.25. Row 1 and 2 contain generally successful examples. Row 3 contains examples with various amounts of
error in either semantics or sentiment, at times with amusing effects. See Section 5 for discussions.

insertion baselines ANP-Replace and ANP-Scoring shows
that SentiCap actively drives the flow of the sentence to-
wards using sentimental ANPs. Sentences from SentiCap
are, on average, judged by crowd sourced workers to have
stronger sentiment than any of the three baselines. For posi-
tive SentiCap, 88.4% are judged to have a more positive sen-
timent than the CNN+RNN baseline. These gains are made
with only a small reduction in the descriptiveness — yet this
decrease is due to a minority of failure cases, since 84.6% of
captions ranked favorably in the pair-wise descriptiveness
comparison. SentiCap negative sentences are judged to have
more negative sentiment 72.5% of the time. On the auto-
matic metrics SentiCap generating negative captions outper-
forms all three baselines by a margin. This improvement is
likely due to negative SentiCap being able to learn more reli-
able statistics for the new words that only appear in negative
ANPs.

SentiCap sentences with positive sentiment were judged
by AMT workers as more interesting than those without
sentiment in 66.4% of cases, which shows that our method
improves the expressiveness of the image captions. On the
other hand, negative sentences were judged to be less inter-
esting than those without sentiment in 63.2% of cases. This
is mostly due to that negativity in the sentence naturally con-
tradicts with being interesting, a positive sentiment.

It has been noted by (Vinyals et al. 2015), that RNN cap-
tioning methods tend to exactly reproduce sentences from
the training set. Our SENTICAP method produces a larger
fraction of novel sentences than an RNN trained on a single
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caption domain. A sentence is novel if there is no match in
the MSCOCO training set or the sentiment caption dataset.
Overall, SENTICAP produces 95.7% novel captions; while
CNN+RNN, which was trained only on MSCOCO, pro-
duces 38.2% novel captions — higher than the 20% observed
by (Vinyals et al. 2015).

Figure 4 contains a number of examples with generated
sentiment captions — the left half are positive, the right half
negative. We can see that the switch variable captures almost
all sentiment phrases, and some of the surrounding words
(e.g. train station, plate). Examples in the first two rows are
generally descriptive and accurate such as delicious piece of
cake (2a), ugly car and abandoned buildings (1c). Results
for the other examples contain more or less inappropriate-
ness in either the content description or sentiment, or both.
(3b) captures the happy spirit correctly, but the semantic of
a child in playground is mistaken with that of a man on a
skateboard due to very high visual resemblance. (3d) inter-
estingly juxtaposed the positive ANP clever trick and neg-
ative ANP dead man, creating an impossible yet amusing
caption.

6 Conclusion

We proposed SentiCap, a switching RNN model for gener-
ating image captions with sentiments. One novel feature of
this model is a specialized word-level supervision scheme
to effectively make use of a small amount of training data
with sentiments. We also designed a crowd-sourced cap-
tion re-writing task to generate sentimental yet descriptive



captions. We demonstrate the effectiveness of the proposed
model using both automatic and crowd-sourced evaluations,
with the SentiCap model able to generate an emotional cap-
tion for over 90% of the images, and the vast majority of the
generated captions are rated as having the appropriate sen-
timent by crowd workers. Future work can include unified
model for positive and negative sentiment; models for lin-
guistic styles (including sentiments) beyond the word level,
and designing generative models for a richer set of emotions
such as pride, shame, anger.
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