
Journal of Artificial Intelligence Research 54 (2015) 1-57 Submitted 09/14; published 09/15

Knowledge-Based Textual Inference via
Parse-Tree Transformations

Roy Bar-Haim barhair@gmail.com

Ido Dagan dagan@cs.biu.ac.il
Computer Science Department, Bar-Ilan University
Ramat-Gan 52900, Israel

Jonathan Berant yonatan@cs.stanford.edu

Computer Science Department, Stanford University

Abstract

Textual inference is an important component in many applications for understanding
natural language. Classical approaches to textual inference rely on logical representations
for meaning, which may be regarded as “external” to the natural language itself. However,
practical applications usually adopt shallower lexical or lexical-syntactic representations,
which correspond closely to language structure. In many cases, such approaches lack a prin-
cipled meaning representation and inference framework. We describe an inference formalism
that operates directly on language-based structures, particularly syntactic parse trees. New
trees are generated by applying inference rules, which provide a unified representation for
varying types of inferences. We use manual and automatic methods to generate these rules,
which cover generic linguistic structures as well as specific lexical-based inferences. We also
present a novel packed data-structure and a corresponding inference algorithm that allows
efficient implementation of this formalism. We proved the correctness of the new algorithm
and established its efficiency analytically and empirically. The utility of our approach was
illustrated on two tasks: unsupervised relation extraction from a large corpus, and the
Recognizing Textual Entailment (RTE) benchmarks.

1. Introduction

Textual inference in Natural Language Processing (NLP) is concerned with deriving target
meanings from texts. In the textual entailment framework (Dagan, Roth, Sammons, &
Zanzotto, 2013), this is reduced to inferring a textual statement (the hypothesis h) from
a source text (t). Traditional approaches in formal semantics perform such inferences over
logical forms derived from the text. By contrast, most practical NLP applications avoid the
complexities of logical interpretation. Instead, they operate over shallower representations
such as parse trees, possibly supplemented with limited semantic information about named
entities, semantic roles, and so forth. This was clearly demonstrated in the recent PASCAL
Recognizing Textual Entailment (RTE) Challenges (Dagan, Glickman, & Magnini, 2006b;
Bar-Haim, Dagan, Dolan, Ferro, Giampiccolo, Magnini, & Szpektor, 2006; Giampiccolo,
Magnini, Dagan, & Dolan, 2007; Giampiccolo, Trang Dang, Magnini, Dagan, & Dolan,
2008; Bentivogli, Dagan, Dang, Giampiccolo, & Magnini, 2009; Bentivogli, Clark, Dagan,

c©2015 AI Access Foundation. All rights reserved.

Bar-Haim, Dagan & Berant

Dang, & Giampiccolo, 2010), a popular framework for evaluating application-independent
semantic inference.1

Inference over such representations is commonly made by applying transformations or
substitutions to the tree or graph representing the text. These transformations are based on
available knowledge about paraphrases, lexical relations such as synonyms and hyponyms,
syntactic variations, and more (de Salvo Braz, Girju, Punyakanok, Roth, & Sammons,
2005; Haghighi, Ng, & Manning, 2005; Kouylekov & Magnini, 2005; Harmeling, 2009).
Such transformations may be generally viewed as inference rules. Some of the available se-
mantic knowledge bases were composed manually, either by experts, for example WordNet
(Fellbaum, 1998), or by a large community of contributors, such as the Wikipedia-based
DBPedia resource (Lehmann et al., 2009). Other knowledge bases were learned automat-
ically through distributional and pattern-based methods, or by using aligned monolingual
or bilingual parallel texts (Lin & Pantel, 2001; Shinyama, Sekine, Sudo, & Grishman,
2002; Szpektor, Tanev, Dagan, & Coppola, 2004; Chklovski & Pantel, 2004; Bhagat &
Ravichandran, 2008; Ganitkevitch, Van Durme, & Callison-Burch, 2013). Overall, applied
knowledge-based inference is a prominent line of research that has gained much interest. Re-
cent examples include the series of workshops on Knowledge and Reasoning for Answering
Questions (Saint-Dizier & Mehta-Melkar, 2011) and the evaluation of knowledge resources
in the recent Recognizing Textual Entailment challenges (Bentivogli et al., 2010).

While many applied systems use semantic knowledge through such inference rules, their
use is typically limited, application-specific, and somewhat heuristic. Formalizing these
practices is important for textual inference research, analogous to the role of well-formalized
models in parsing and machine translation. We take a step in this direction by introducing
a generic inference formalism over parse trees. Our formalism uses inference rules to capture
a wide variety of inference knowledge in a simple and uniform manner, and specifies a small
set of operations that suffice to broadly utilize such knowledge.

In our formalism, applying an inference rule has a clear, intuitive interpretation of gen-
erating a new sentence parse (a consequent), semantically entailed by the source sentence.
The inferred consequent may be subject to further rule applications, and so on. Rule ap-
plications may be independent of each other, modifying disjoint parts of the source tree, or
may specify mutually-exclusive alternatives (e.g., different synonyms for the same source
word). Deriving the hypothesis from the text is analogous to proof search in logic, where
the propositions are parse trees and deduction steps correspond to rule applications.

A näıve implementation of the formalism would generate each consequent explicitly as
a separate tree. However, as we discuss further in Section 5, such implementation raises
severe efficiency issues, since the number of consequents may grow exponentially in the
number of possible rule applications. Previous work proposed only partial solutions to this
problem (cf. Section 8). In this work we present a novel data-structure, termed compact
forest, for packed representation of entailed consequents, and a corresponding inference
algorithm. We prove that the new algorithm is a valid implementation of the formalism,
and establish its efficiency both analytically, showing typical exponential-to-linear reduction,
and empirically, showing improvement by orders of magnitude. Together, our formalism and

1. See, for instance, the listing of techniques per submission that was provided by the organizers of the first
three challenges (Dagan et al., 2006b; Bar-Haim et al., 2006; Giampiccolo et al., 2007).

2

Knowledge-Based Textual Inference via Parse-Tree Transformations

its novel efficient inference algorithm open the way for large-scale rule application within a
well-formalized framework.

Based on our formalism and inference algorithm, we built an inference engine that
incorporates a variety of semantic and syntactic knowledge bases (cf. Section 6). We
evaluated the inference engine on the following tasks:

1. Unsupervised relation extraction from a large corpus. This setting allows evaluation
of knowledge-based inferences over a real-world distribution of texts.

2. Recognizing textual entailment (RTE). To cope with the more complex RTE exam-
ples, we complemented our knowledge-based inference engine with a machine-learning-
based entailment classifier, which provides necessary approximate matching capabili-
ties.

The inference engine was shown to have a substantial contribution to both tasks, illustrating
the utility of our approach.

Bar-Haim, Dagan, Greental, and Shnarch (2007) and Bar-Haim, Berant, and Dagan
(2009) described earlier versions of the inference framework and the algorithm for its ef-
ficient implementation, respectively. The current article includes major enhancements to
both of these contributions. The formalism is presented in more detail, including further
examples and pseudo-code for its algorithms. We present several extensions to the formal-
ism, including treatment of co-reference, traces and long-range dependencies, and enhanced
modeling of polarity. The efficient inference algorithm is also presented in more detail,
including its pseudo-code. In addition, we provide complete proofs for the theorems, which
establish the correctness of this algorithm. Finally, the article contains an extended analysis
of the inference component in our RTE system, in terms of applicability, coverage, and the
correctness of rule applications.

2. Background

In this section, we provide background on textual entailment. We then survey the various
approaches applied to the task of Recognizing Textual Entailment (RTE). In particular, we
focus on the use of semantic knowledge within current RTE systems.

2.1 Textual Entailment

Many semantic applications need to identify that the same meaning is expressed by, or can
be inferred from, various language expressions. For example, Question-Answering systems
need to verify that the retrieved passage text entails the selected answer. Given the question
“Who is John Lennon’s widow?”, the text “Yoko Ono unveiled a bronze statue of her late
husband, John Lennon, to complete the official renaming of England’s Liverpool Airport as
Liverpool John Lennon Airport.” entails the expected answer “Yoko Ono is John Lennon’s
widow”2. Similarly, Information Extraction systems need to validate that the given text
indeed entails the semantic relation that is expected to hold between the extracted slot fillers
(e.g., ‘X works for Y’). Information Retrieval queries such as “Alzheimer’s drug treatment”3

2. The example is taken from the RTE-2 dataset (Bar-Haim et al., 2006).
3. This was one of the topics in the TREC-6 IR benchmark (Voorhees & Harman, 1997).

3

Bar-Haim, Dagan & Berant

can be rephrased as propositions (e.g., “Alzheimer’s disease is treated using drugs”), which
are expected to be entailed from relevant documents. When selecting sentences to be
included in the summary, multi-document summarization systems should verify that the
meaning of the candidate sentence is not entailed by sentences already in the summary, to
avoid redundancy.

This observation led Dagan and Glickman to propose a unifying framework for modeling
language variability, termed Textual Entailment (TE) (Dagan & Glickman, 2004). Dagan
et al. (2006b) define TE as follows:

“We say that t entails h if, typically, a human reading t would infer that h is most
likely true. This somewhat informal definition is based on (and assumes) com-
mon human understanding of language as well as common background knowl-
edge.”

Dagan et al. (2013) further discuss TE definition and its relation to classical semantic
entailment in linguistics literature. The Recognizing Textual Entailment Challenges (RTE),
which have been held annually since 2004 (Dagan et al., 2006b; Bar-Haim et al., 2006;
Giampiccolo et al., 2007, 2008; Bentivogli et al., 2009, 2010), have formed a growing research
community around this task.

The holy grail of TE research is the development of entailment engines, to be used
as generic modules within different semantic applications, similar to the current use of
syntactic parsers and morphological analyzers. Since textual entailment is defined as a
relation between surface texts, it is not bound to a particular semantic representation.
This allows a “black-box” view of the entailment engine, where the input/output interface
is independent from the internal implementation, which may employ different types of
semantic representations and inference methods.

2.2 Determining Entailment

Consider the following (t,h) pair4:

t The oddest thing about the UAE is that only 500,000 of the 2 million
people living in the country are UAE citizens.

h The population of the United Arab Emirates is 2 million.

Understanding that t ⇒ h involves several inference steps. First, we infer from the
reduced relative clause in “2 million people living in the country” the proposition:

(1) 2 million people live in the country.

Next, we observe that “the country” refers to “the UAE”, so we can rewrite (1) as

(2) 2 million people live in the UAE.

Knowing that “UAE” is an acronym for “United Arab Emirates”, we further obtain:

(3) 2 million people live in the United Arab Emirates.

4. Taken from the RTE1 test set (Dagan et al., 2006b).

4

Knowledge-Based Textual Inference via Parse-Tree Transformations

We finally paraphrase this to obtain h:

(4) The population of the United Arab Emirates is 2 million.

In general, textual inference involves diverse linguistic and world knowledge, including
knowledge of relevant syntactic phenomena (e.g., relative clauses), paraphrasing (‘X people
live in Y→ the population of Y is X ’), lexical knowledge (‘UAE→ United Arab Emirates’),
and so on. It may also require co-reference resolution, for example, substituting “the coun-
try” with “UAE”. We may think of all these types of knowledge as representing inference
rules that define derivation of new entailed propositions or consequents. In this work we
introduce a formal inference framework based on inference rule application. For the current
discussion, however, an informal notion of inference rules would suffice.

The above example illustrates the derivation of h from t through a sequence of inference
rule applications, a procedure generally known as forward chaining. Finding the sequence
of rule applications that would get us from t to h (or as close as possible) is thus a search
problem, defined over the space of all possible rule application chains.

Ideally, we would like to base our entailment engine solely on trusted knowledge-based
inferences. In practice, however, available knowledge is incomplete, and full derivation of h
from t is often not feasible. Therefore, requiring strict knowledge-based “proofs” is likely
to yield limited recall. Alternatively, we may back off to a more heuristic approximate
entailment classification.

The next two sections survey these two complementary inference types: knowledge-
based inference, which is the focus of this research, and approximate entailment matching
and classification.

2.3 Knowledge-Based Inference

In this section, we describe some of the common resources for inference rules (2.3.1), and
their use in textual entailment systems (2.3.2).

2.3.1 Semantic Knowledge Resources

Lexical Knowledge Lexical-semantic relations between words or phrases play an impor-
tant role in textual inference. The most prominent lexical resource is WordNet (Fellbaum,
1998), a manually composed wide-coverage lexical-semantic database. The following Word-
Net relations are typically used for inference: synonyms (‘buy ↔ purchase’), antonyms (‘win
↔ lose’), hypernyms/hyponyms (“is-a” relations, ‘violin→ musical instrument ’), meronyms
(“part-of” relations, ‘Provence→ France’) and derivations such as ‘meeting→ meet ’.

Many researchers aimed at deriving lexical relations automatically, using diverse meth-
ods and sources. Much of this automatically-extracted knowledge is complementary to
WordNet, however, it is typically less accurate. Snow, Jurafsky, and Ng (2006a) presented
a method for automatically expanding WordNet with new synsets, achieving high precision.
Lin’s thesaurus (Lin, 1998) is based on distributional similarity. Recently, several works
aimed to extract lexical-semantic knowledge from Wikipedia, using its metadata, as well as
textual definitions (Kazama & Torisawa, 2007; Ponzetto & Strube, 2007; Shnarch, Barak,
& Dagan, 2009; Lehmann et al., 2009, and others). For a recent empirical study on the

5

Bar-Haim, Dagan & Berant

inferential utility of common lexical resources, see the work of Mirkin, Dagan, and Shnarch
(2009).

Paraphrases and Lexical-Syntactic Inference Rules These rules typically represent
entailment or equivalence between predicates, including the correct mapping between their
arguments (e.g., ‘acquisition of Y by X → X purchase Y ’). Much work has been dedicated
to unsupervised learning of such relations from comparable corpora (Barzilay & McKe-
own, 2001; Barzilay & Lee, 2003; Pang, Knight, & Marcu, 2003), by querying the Web
(Ravichandran & Hovy, 2002; Szpektor et al., 2004), or from a local corpus (Lin & Pantel,
2001; Glickman & Dagan, 2003; Bhagat & Ravichandran, 2008; Szpektor & Dagan, 2008;
Yates & Etzioni, 2009). In particular, textual entailment systems have widely used the
DIRT resource of Lin and Pantel. The common idea underlying these algorithms, is that
predicates sharing the same argument instantiations are likely to be semantically related.

NomLex-Plus (Meyers, Reeves, Macleod, Szekeley, Zielinska, & Young, 2004) is a lex-
icon containing mostly nominalizations of verbs, with allowed argument structures (e.g.,
‘X’s acquisition of Y’/‘Y’s acquisition by X’ etc.). Argument-mapped WordNet (AmWN)
(Szpektor & Dagan, 2009) is a resource for inference rules between verbal and nominal pred-
icates, including their argument mapping. It is based on WordNet and NomLex-Plus, and
was verified statistically through intersection with the unary-DIRT algorithm (Szpektor &
Dagan, 2008).

Syntactic Transformations Textual entailment often involves inference over generic
syntactic phenomena such as passive/active transformations, appositions, conjunctions, etc.,
as illustrated in the following examples:

• John smiled and laughed ⇒ John laughed (conjunction)

• My neighbor, John, came in ⇒ John is my neighbor (apposition)

• The paper that I’m reading is interesting ⇒ I’m reading a paper (relative clause).

Syntactic transformations have been addressed to some extent by de Salvo Braz et al.
(2005) and Romano, Kouylekov, Szpektor, Dagan, and Lavelli (2006). We describe a novel
syntactic rule base for entailment, based on a survey of relevant linguistic literature, as well
as on extensive data analysis (Sections 6.1–6.2).

2.3.2 The Use of Semantic Knowledge in Textual Entailment Systems

Following our description of common knowledge sources for textual inference, we now discuss
the use of such knowledge in textual entailment systems.

Textual entailment systems usually represent t and h as trees or graphs, based on their
syntactic parse, predicate-argument structure, and various semantic relations. Entailment
is then determined by measuring how well h is matched (or embedded) in t, or by estimating
the distance between t and h, commonly defined as the cost of transforming t into h. In
the next section, we briefly cover various methods that have been proposed for approximate
matching and heuristic transformations of graphs and trees. The role of semantic knowledge
in this general scheme is to bridge the gaps between t and h that stem from language
variability. For example, applying the lexical-semantic rule ‘purchase→ buy ’ to t allows the
matching of the word buy appearing in h with the word purchase appearing in t.

6

Knowledge-Based Textual Inference via Parse-Tree Transformations

Most RTE systems restrict both the type of allowed inference rules and the search space.
Systems based on lexical (word-based or phrase-based) matching of h in t (Haghighi et al.,
2005; MacCartney, Galley, & Manning, 2008) or on heuristic transformation of t into h
(Kouylekov & Magnini, 2005; Harmeling, 2009) typically apply only lexical rules (without
variables), where both sides of the rule are matched directly in t and h.

Hickl (2008) derived from a given (t, h) pair a small set of consequents that he terms
discourse commitments. The commitments were generated by several different tools and
techniques, based on syntax (conjunctions, appositions, relative clauses, etc.), co-reference,
predicate-argument structure, the extraction of certain relations, and paraphrase acquisition
from the Web. Pairs of commitments derived from t and h were fed into the next stages
of the RTE system – lexical alignment and entailment classification. Prior to commitment
generation, several linguistic preprocessing modules were applied to the text, including
syntactic dependency parsing, semantic dependency parsing, named entity recognition, and
co-reference resolution. Hickl employed a probabilistic finite-state transducer (FST)-based
extraction framework for commitment generation, and extraction rules were modeled as a
series of weighted regular expressions. The commitments in their textual form were fed
back into the system, until no additional commitments were generated.

De Salvo Braz et al. (2005) were the first to incorporate syntactic and semantic inference
rules in a comprehensive entailment system. In their system, inference rules are applied over
hybrid syntactic-semantic structures called concept graphs. When the left hand side (LHS)
of a rule is matched in the concept graph, the graph is augmented with an instantiation
of the right hand side (RHS) of the rule. After several iterations of rule application, their
system attempts to embed the hypothesis in the augmented graph. Other types of semantic
knowledge, such as verb normalization and lexical substitutions, are applied either before
rule application (at preprocessing time) or after rule application, as part of hypothesis
subsumption (embedding).

Several entailment systems are based on logical inference. Bos and Markert (2005, 2006)
represented t and h as DRS structures used in Discourse Representation Theory (Kamp &
Reyle, 1993), which were then translated into first-order logic. Background knowledge
(BK) was encoded as axioms, and comprised lexical relations from WordNet, geographical
knowledge, and a small set of manually composed axioms encoding generic knowledge.
Bos and Markert used a logic theorem prover to find a proof that t entails h (alone or
together with the background knowledge BK), or that h and t are inconsistent with each
other (implying non-entailment) or with the background knowledge. The logic prover was
complemented by a model builder that aimed to find counter-examples (e.g., a model where
t ∧ ¬h holds). The logical inference system suffered from low coverage, due to the limited
background knowledge available, and was able to find proofs only for a small fraction of the
RTE2 dataset. Therefore, the RTE system of Bos and Markert combined logical inference
with a shallow approximate matching method, based mainly on word overlap.

LCC’s logic-based entailment system (Tatu & Moldovan, 2006) was one of the top per-
formers in RTE2 and RTE3 (Tatu, Iles, Slavick, Novischi, & Moldovan, 2006; Tatu &
Moldovan, 2007). It was based on proprietary tools for deriving rich semantic represen-
tations, and on extensive knowledge engineering. The syntactic parses of t and h were
transformed into logic forms (Moldovan & Rus, 2001), and this representation was enriched
with a variety of relations extracted by a semantic parser, as well as named entities and

7

Bar-Haim, Dagan & Berant

temporal relations. Inference knowledge included on-demand axioms based on extended
WordNet lexical chains, WordNet glosses, and NLP rewrite rules. Additional knowledge
types included several hundreds of world knowledge axioms, temporal axioms, and seman-
tic composition axioms (e.g., encoding the transitivity of the kinship relation). Based on
the rich semantic representation and the extensive set of axioms, a theorem prover aimed
to prove by refutation that t entails h. If the proof failed, h was repeatedly simplified until
a proof was found, reducing the proof score with each simplification.

2.4 Approximate Entailment Classification

Semantic knowledge is always incomplete. Therefore, in most cases, knowledge-based in-
ference must be complemented with approximate, heuristic methods for determining en-
tailment. Most RTE systems employ only a limited amount of semantic knowledge, and
focus on methods for approximate entailment classification. A common architecture for
RTE systems (Hickl, Bensley, Williams, Roberts, Rink, & Shi, 2006; Snow, Vanderwende,
& Menezes, 2006b; MacCartney, Grenager, de Marneffe, Cer, & Manning, 2006) comprises
the following stages:

1. Linguistic processing : Includes syntactic (and possibly semantic) parsing, named-
entity recognition, co-reference resolution, etc. Often, t and h are represented as trees
or graphs, where nodes correspond to words and edges represent relations between
words.

2. Alignment : Find the best mapping from h nodes to t nodes, taking into account both
node and edge matching.

3. Entailment classification: Based on the alignment found, a set of features is extracted
and passed to a classifier for determining entailment. These features measure the
alignment quality, and also try to detect cues for false entailment. For example, if a
node in h is negated but its aligned node in t is not negated, it may indicate false
entailment.

An alternative approach aims to transform the text into the hypothesis, rather than
aligning them. Kouylekov and Magnini (2005) applied a tree edit distance algorithm for
textual entailment. Each edit operation (node insertion/deletion/substitution) is assigned a
cost. The algorithm aims to find the minimum-cost sequence of operations that transform
t into h. Mehdad and Magnini (2009b) proposed a method for estimating the cost of
each edit operation based on Particle Swarm Optimization. Wang and Manning (2010)
presented a probabilistic tree-edit approach that models edit operations using structured
latent variables. Tree edits are represented as state transitions in a Finite-State Machine
(FSM), and the model is parameterized as a Conditional Random Field (CRF). Harmeling
(2009) developed a probabilistic transformation-based approach. He defined a fixed set of
operations, including syntactic transformations, WordNet-based substitutions, and more
heuristic transformations such as adding/removing a verb or a noun. The probability of
each transformation was estimated from the development set. Similarly, Heilman and Smith
(2010) classify entailment based on the sequence of edits transforming t to h. They employ
more generic edit operations and a greedy search heuristic, which is guided by a cost function
that measures the remaining distance from h using a tree kernel.

8

Knowledge-Based Textual Inference via Parse-Tree Transformations

Zanzotto, Pennacchiotti, and Moschitti (2009) aimed to classify a given (t, h) pair by
analogy to similar pairs in the training set. Their method is based on finding intra-pair
alignment (i.e., between t and h) for capturing the transformation from t to h, and inter-
pair alignment, capturing the analogy between the new pair (t, h) and a previously seen
pair (t′, h′). A cross-pair similarity kernel is then computed, based on tree kernel similarity
applied to the aligned texts and the aligned hypotheses. Another cross-pair similarity kernel
was proposed by Wang and Neumann (2007). They extracted tree skeletons from t and h,
consisting of left and right spines, defined as unlexicalized paths starting at the root. They
then found sections where t and h spines differ and compared these sections across pairs
using a subsequence kernel.

3. Research Goal

The goal of textual entailment research is to develop entailment engines that can be used as
generic inference components within various text-understanding applications. Logic-based
entailment systems provide a formalized and expressive framework for textual inference.
However, deriving logic representations from text is a complex task, and available tools do
not match the accuracy and robustness of current syntactic parsers (which is often the basis
for semantic parsing). Furthermore, interpretation into logic forms is often unnecessary, as
many of the common inferences can be modeled with shallower representations.

It follows that most textual entailment systems (and text-understanding applications
in general) operate over lexical-syntactic representations, possibly supplemented with some
partial semantic annotation. However, unlike logic-based approaches, most of these systems
lack a clear, unified formalism for knowledge representation and inference; instead they
employ multiple representations and inference mechanisms. A notable exception is the
natural logic framework of MacCartney and Manning (2009), which has a rather different
focus than the current work. We discuss this further in Section 8.

In this work, we develop a well-formalized entailment approach for the lexical-syntactic
level. Our formalism models a wide variety of inference rules and their composition, based
on a unified representation and a small set of inference operations. Moreover, we present
an efficient implementation of this formalism using a novel data structure and algorithm
that allow compact representation of the proof search space.

We see the contribution of this work as both practical and theoretical. From a practical
(or “engineering”) perspective, our formalism may simplify the development of entailment
systems, as the number of representations and inference mechanisms that need to be dealt
with is minimal. Furthermore, our efficient implementation may allow entailment engines to
explore much larger search spaces. From a theoretical perspective, concise, formal modeling
leads to better insight into the phenomenon under investigation. In particular, having a
formal model of an entailment engine makes it possible to apply formal methods for investi-
gating its properties. This enabled us to prove the correctness of the efficient implementation
of our formalism (cf. Appendix A). We next present our inference formalism.

9

Bar-Haim, Dagan & Berant

Rule
Type

Sources Examples

Syntactic Manually-composed Passive/active, apposition, relative
clause, conjunctions

Lexical Learned with unsupervised algo-
rithms (DIRT, TEASE), and

X’s wife, Y → X is married to Y

-
Syntactic

derived automatically by integrat-
ing information from WordNet and
Nomlex, verified using corpus

X bought Y → Y was sold to X

statistics (AmWN) X is a maker of Y → X produces Y

Lexical WordNet, Wikipedia steal→take, Albanian→Albania
Janis Joplin→singer
Amazon→South America

Table 1: Representing diverse knowledge types as inference rules

4. An Inference Formalism over Parse Trees

The previous sections highlighted the need for a more principled, well-formalized approach
for textual inference at the lexical-syntactic level. In this section, we propose a step towards
filling this gap, by defining a formalism for textual inference over parse-based representa-
tions. All semantic knowledge required for inference is represented as inference rules, which
encode parse tree transformations. Each rule application generates a new consequent sen-
tence (represented as a parse tree) from a source tree. Figure 1b shows a sample inference
rule, representing a passive-to-active transformation.

From a knowledge representation and usage perspective, inference rules provide a simple
unifying formalism for representing and applying a very broad range of inference knowledge.
Some examples of this breadth are illustrated in Table 1. From a knowledge acquisition
perspective, representing inference rules at the lexical-syntactic level allows easy incorpo-
ration of rules learned by unsupervised methods, which is important for scaling inference
systems. Interpretation into stipulated semantic representations, which is often difficult and
is inherently a supervised semantic task for learning, is circumvented altogether. From a
historical machine translation perspective, our approach is similar to transfer-based transla-
tion, as contrasted with semantic interpretation into Interlingua. Our overall research goal
is to explore the reach of such an inference approach, and to identify the scope in which
semantic interpretation may not be needed.

Given a syntactically parsed source text and a set of inference rules, our formalism
defines the set of consequents derivable from the text using the rules. Each consequent is
obtained through a sequence of rule applications, each generating an intermediate parse
tree, similar to a proof process in logic. In addition, new consequents may be inferred based
on co-reference relations and identified traces. Our formalism also includes annotation rules
that add features to existing trees. According to the formalism, a text t entails a hypothesis
h if h is a consequent of t.

In the rest of this section, we define and illustrate each of the formalism components:
sentence representation (Section 4.1), inference rules and their application (Sections 4.2–
4.3), inference based on co-reference relations and traces (Section 4.4), and annotation

10

Knowledge-Based Textual Inference via Parse-Tree Transformations

Input: a source tree s ; a rule E : L→ R
Output: a set D of derived trees

M ← the set of all matches of L in s
D ← ∅
for each f ∈M do

l← the subtree matched by L in s according to match f

// R instantiation
r ← a copy of R
for each variable v ∈ r do

Instantiate v with f(v)
for each aligned pair of nodes uL ∈ l and uR ∈ r do

for each daughter m of uL such that m /∈ l do
Copy the subtree of s rooted in m under uR in r, with the same dependency relation

// Derived tree generation
if substitution rule then

d← s copy with l (and the descendants of its nodes) replaced by r
else // introduction rule

d← r

add d to D

Algorithm 1: Applying a rule to a tree

rules (Section 4.5). These components form an inference process that specifies the set of
inferable consequents for a given text and a set of rules (Section 4.6). Section 4.7 extends
the hypothesis definition, allowing h to be a template rather than a proposition. Finally,
Section 4.8 discusses limitations and possible extensions of our formalism.

4.1 Sentence Representation

We assume that sentences are represented by some form of parse trees. In this work, we focus
on dependency tree representation, which is often preferred to directly capture predicate-
argument relations. Two dependency trees are shown in Figure 1a. Nodes represent words
and hold a set of features and their values. These features include the word lemma and
part-of-speech, and additional features that may be added during the inference process.
Edges are annotated with dependency relations.

4.2 Inference Rules

An entailment (or inference) rule ‘L → R’ is primarily composed of two templates, left-
hand-side (LHS) L and right-hand-side (RHS) R. Templates are dependency subtrees,
which may contain POS-tagged variables, matching any lemma. Figure 1 shows a passive-
to-active transformation rule, and illustrates its application.

The rule application procedure is given in Algorithm 1. Rule application generates a set
D of derived trees (consequents) from a source tree s through the steps described below.

11

Bar-Haim, Dagan & Berant

root
i ��

rain VERB
expletive

rr
wha

,,
it OTHER when ADJ

i ��
see VERB

obj

qq berr by−subj��
mod

,,
Mary NOUN

mod ��

be VERB by PREP

pcomp−n��

yesterday NOUN

little ADJ John NOUN

Source: It rained when little Mary was seen by John yesterday.

root
i ��

rain VERB
expletive

rr
wha

,,
it OTHER when ADJ

i ��
see VERB

subj

rr obj��
mod

,,
John NOUN Mary NOUN

mod ��

yesterday NOUN

little ADJ

Derived: It rained when John saw little Mary yesterday.

(a) Passive-to-active tree transformation

L

V VERB

obj

uu
be
��

by−subj
))

⇒

R

V VERB

subj

uu
obj

))
N1 NOUN be VERB by PREP

pcomp−n
��

N2 NOUN N1 NOUN

N2 NOUN

(b) Passive to active substitution rule.

Figure 1: Application of an inference rule. POS and relation labels are based on Minipar
(Lin, 1998). N1, N2 and V are variables, whose instances in L and R are implicitly aligned.
The by-subj dependency relation indicates a passive sentence.

12

Knowledge-Based Textual Inference via Parse-Tree Transformations

L

root
i ��

R

root
i ��

V1 VERB

wha ��

⇒ V2 VERB

when ADJ

i ��
V2 VERB

Figure 2: Temporal clausal modifier extraction (introduction rule)

4.2.1 L Matching

First, matches of L in the source tree s are sought. L is matched in s if there exists a
one-to-one node mapping function f from L to s, such that:

1. For each node u in L, f(u) has the same features and feature values as u. Variables
match any lemma value in f(u).

2. For each edge u→ v in L, there is an edge f(u)→ f(v) in s, with the same dependency
relation.

If matching fails, the rule is not applicable to s. In our example, the variable V is matched
in the verb see, N1 is matched in Mary and N2 is matched in John. If matching succeeds,
then the following is performed for each match found.

4.2.2 R Instantiation

a copy of R is generated and its variables are instantiated according to their matching node
in L. In addition, a rule may specify alignments, defined as a partial function from L nodes
to R nodes. An alignment indicates that for each modifier m of the source node that is not
part of the rule structure, the subtree rooted at m should also be copied as a modifier of the
target node. In addition to explicitly defining alignments, each variable in L is implicitly
aligned to its counterpart in R. In our example, the alignment between the V nodes implies
that yesterday (modifying see) should be copied to the generated sentence, and similarly
little (modifying Mary) is copied for N1.

4.2.3 Derived Tree Generation

Let r be the instantiated R, along with its descendants copied from L through alignment,
and l be the subtree matched by L. The formalism has two methods for generating the
derived tree d: substitution and introduction, as specified by the rule type. Substitution
rules specify modification of a subtree of s, leaving the rest of s unchanged. Thus, d is
formed by copying s while replacing l (and the descendants of l’s nodes) with r. This is
the case for the passive rule, as well as for lexical rules such as ‘buy → purchase’. By
contrast, introduction rules are used to make inferences from a subtree of s, while the other
parts of s are ignored and do not affect d. A typical example is inferring a proposition
embedded as a relative clause in s. In this case, the derived tree d is simply taken to be

13

Bar-Haim, Dagan & Berant

root

i
��

buy VERB

subj

vv
obj

((
John NOUN books NOUN

root

i
��

purchase VERB

subj

vv
obj

((
John NOUN books NOUN

John bought books. John purchased books.

L buy VERB ⇒ Rpurchase VERB

Figure 3: Application of a lexical substitution rule. The dotted arc represents explicit
alignment.

r. Figure 2 presents such a rule, which enables deriving propositions that are embedded
within temporal modifiers. Note that the derived tree does not depend on the main clause.
Applying this rule to the right part of Figure 1a yields the proposition “John saw little
Mary yesterday”.

4.3 Further Examples for Rule Application

In this section we further illustrate rule representation and application through additional
examples.

4.3.1 Lexical Substitution Rule with Explicit Alignment

Figure 3 shows the derivation of the consequent “John purchased books” from the sentence
“John bought books” using the lexical substitution rule ‘buy → purchase’. This example
illustrates the role of explicit alignment: since buy and purchase are not variables, they are
not implicitly aligned. However, they need to be aligned explicitly, otherwise the daughters
of buy would not be copied under purchase.

4.3.2 Lexical-Syntactic Introduction Rule

Figure 4 illustrates the application of a lexical-syntactic rule, which derives the sentence
“Her husband died” from “I knew her late husband”. It is defined as introduction rule, since
the resulting tree is derived based solely on the phrase “Her late husband”, while ignoring
the rest of the source tree. This example illustrates that a leaf variable in L (variable
at a leaf node) may become a non-leaf in R and vice versa. The alignment between the
instances of variable N (matched in husband) allows copying of its modifier, her (recall that
such alignments are defined implicitly by the formalism). We note here that the correctness
of rule application may depend on the context in which it is applied. For instance, the
rule in our example is correct only if late has the meaning of “no longer alive” in the given
context. We discuss context-sensitivity of rule application in Section 4.8.

14

Knowledge-Based Textual Inference via Parse-Tree Transformations

root

i
��

know VERB

subj

vv
obj

((
I NOUN husband NOUN

gen

vv
mod

((
her NOUN late ADJ

root

i
��

die VERB

subj
��

husband NOUN

gen
��

her NOUN

I knew her late husband. Her husband died.

root
i ��

L

N NOUN

mod ��

⇒
R

die VERB

subj ��
late ADJ N NOUN

Figure 4: Application of a lexical-syntactic introduction rule

4.4 Co-Reference and Trace-Based Inference

Aside from the primary inference mechanism of rule application, our formalism also allows
inference based on co-reference relations and long-distance dependencies. We view co-
reference as an equivalence relation between complete subtrees, either within the same tree
or in different trees, which are linked by a co-reference chain. In practice, such relations are
obtained from an external co-reference resolution tool, as part of the text pre-processing.
The co-reference substitution operation is similar to the application of a substitution rule.
Given a pair of co-referring subtrees, t1 and t2, the derived tree is generated by copying
the tree containing t1, while replacing t1 with t2; the same operation is symmetrically
applicable for t2.5 For example, given the sentences “[My brother] is a musician. [He] plays
the drums”, we can infer that “My brother plays the drums”.

Long-distance dependencies are another type of useful relation for inference, as illus-
trated by the following examples:

(1) Relative clause: The boyi whom [I saw ti] went home.
(⇒ I saw the boy.)

(2) Control verbs: Johni managed to [ti open the door].
(⇒ John opened the door.)

5. The view of co-referring expressions as substitutional can also be found in the seminal paper of van
Deemter and Kibble (2000), where noun phrases are shown to be non-substitutable as evidence that
they are not co-referring.

15

Bar-Haim, Dagan & Berant

(3) Verbal conjunction: [Johni sang] and [ti danced].
(⇒ John danced.)

Some parsers including Minipar, which we use in the current work, recognize and annotate
such long distance dependencies. For instance, Minipar generates a node representing the
trace (ti in the examples), which holds a pointer to its antecedent (e.g., Johni in (2)). As
shown in these examples, inference from such sentences may involve resolving long- distance
dependencies, where traces are substituted with their antecedent. Thus, we can generalize
co-reference substitution to operate over trace-antecedent pairs, as well. This mechanism
works together with inference rule application. For instance, after substituting the trace
with its antecedent in (2) we obtain “John managed to [John opened the door]”. We then
apply the introduction rule ‘N managed to S → S’ to extract the embedded clause “John
opened the door”.

4.5 Polarity Annotation Rules

In addition to inference rules, our formalism implementation includes a mechanism for
adding semantic features to parse tree nodes. However, in many cases there is no natural
way to define semantic features or classes. Hence, it is often difficult to agree on the “right”
set of semantic annotations (a common example is the definition of word senses). With
our approach, we aim to keep semantic annotation to a minimum, while sticking to lexical-
syntactic representation, for which widely-agreed schemes do exist.

Consequently, the only semantic annotation we employ is predicate polarity. This feature
marks the truth of a predicate, and may take one of the following values: positive(+),
negative(-) or unknown(?). Some examples of polarity annotation are shown below:

(4) John called[+] Mary.

(5) John hasn’t called[−] Mary yet.

(6) John forgot to call[−] Mary.

(7) John might have called[?] Mary.

(8) John wanted to call[?] Mary.

Sentences (5) and (6) both entail “John didn’t call Mary”, hence the negative annotation of
call. By contrast, the truth of “John called Mary” cannot be determined from (7) and (8),
therefore the predicate call is marked as unknown. In general, the polarity of predicates
may be affected by the existence of modals, negation, conditionals, certain verbs, etc.

Technically, annotation rules do not have a right-hand-side R, but rather each node of L
may contain annotation features. If L is matched in a tree, then the annotations it contains
are copied to the matched nodes. Figure 5 shows an example of annotation rule application.

Predicates are assumed to have positive polarity by default. The polarity rules are used
to mark negative or unknown polarity. If more than one rule applies to the same predicate
(as with the sentence “John forgot not to call Mary”), they may be applied in any order,
and the following simple calculus is employed to combine current polarity with new polarity:

16

Knowledge-Based Textual Inference via Parse-Tree Transformations

L

V[−]
VERB

be
��

be VERB

neg
��

not ADJ

root

i
��

listen[−]
VERB

subj

vv
be

((
John NOUN be VERB

neg
��

not ADJ

John is not listening[−].
(a) Annotation rule (b) Annotated sentence

Figure 5: Application of the annotation rule (a), marking the predicate listen with negative
polarity (b)

Current polarity New polarity Result

+ − −
− − +
? − ?

+/− /? ? ?

Annotation rules are used for detecting polarity mismatches between the text and the hy-
pothesis. Incompatible polarity would block the hypothesis from being matched in the text.
In the case of approximate entailment classification, polarity mismatches detected by the
annotation rules are used as features for the classifier, as we discuss further in Section 7.3. In
addition, the existence of polarity annotation features may prevent inappropriate inference
rule applications, by blocking their L matching. We discuss this further in Section 6.1.

4.6 The Inference Process

Let T be a set of dependency trees representing the text, along with co-reference and
trace information. Let h be the dependency tree representing the hypothesis, and let R
be a collection of inference rules (including both inference and polarity rules). Based on
the previously defined components of our inference framework, we next give a procedural
definition for the set of trees inferable from T using R, denoted I(T,R). The inference
process comprises the following steps:

1. Initialize I(T,R) with T .

2. Apply all matching polarity rules in R to each of the trees in I(T,R) (cf. Section 4.5).

3. Replace all the trace nodes with a copy of their antecedent subtree (cf. Section 4.4).

4. Add to I(T,R) all the trees derivable by co-reference substitution (cf. Section 4.4).

17

Bar-Haim, Dagan & Berant

5. Apply all matching inference rules in R to the trees in I(T,R) (cf. Section 4.2), and
add the derived trees to I(T,R). Repeat this step iteratively for the newly added
trees, until no new trees are added.

Steps 2 and 3 are performed for h as well.6 h is inferable from T using R if h ∈ I(T,R).
Since I(T,R) may be infinite or very large, practical implementation of this process must
limit the search space, for example by restricting the number of iterations and the applied
rules at each iteration.

When an inference rule is applied, polarity annotation is propagated from the source
tree s to the derived tree d as follows. First, nodes copied from s to d retain their original
polarity. Second, a node in d gets the polarity of its aligned node in s.

4.7 Template Hypotheses

For many applications it is useful to allow the hypothesis h to be a template rather than a
proposition, that is, to contain variables. The variables in this case are existentially quan-
tified: t entails h if there exists a proposition h′, obtained from h by variable instantiation,
so that t entails h′. Each variable X is instantiated (replaced) with a subtree SX . If X
has modifiers in h (i.e., X is not a leaf), they become modifiers of SX ’s root. The obtained
variable instantiations may stand for answers sought in questions or slots to be filled in rela-
tion extraction. For example, applying this framework in a question-answering setting, the
question Who killed Kennedy? may be transformed into the hypothesis X killed Kennedy.
A successful proof of h from the sentence “The assassination of Kennedy by Oswald shook
the nation” would instantiate X with Oswald, providing the sought answer.

4.8 Limitations and Possible Extensions

We conclude this section by discussing some limitations of the presented inference formalism,
as well as possible extensions to address these limitations. First, our inference rules match
only a single subtree, and therefore are less expressive than the logic axioms used by Bos
and Markert (2005) and Tatu and Moldovan (2006), which may combine several predicates
originating from the text representation as well as from the background knowledge. This
allows logic-based systems to make inferences that combine multiple pieces of information.
For instance, if the text says that a person X lives in a city Y , and the background knowledge
tells us that the city Y is in country Z, we can infer that X lives in country Z, using a
rule such as “person(X) ∧ location(Y) ∧ location(Z) ∧ live(X,Y) ∧ in(Y,Z) → live(X,Z)” .
Schoenmackers, Etzioni, Weld, and Davis (2010) describe a system that acquires such rules
(first-order horn clauses) from Web text. Allowing our rules to match multiple subtrees in
t, as well as information in the background knowledge, seems a plausible future extension
to our formalism.

Another limitation of the formalism is the lack of context disambiguation. Word sense
mismatch is a potential cause for incorrect rule applications. For example, the rule ‘hit →
score’ is applied correctly in (9) but not in (10):

6. Step 4 is not applied to h since the hypothesis is typically a short, simple sentence that usually does not
include co-referring NPs. Moreover, in the presented formalism h is a single tree. Applying co-reference-
based inference would have resulted in additional trees inferred from h, and thus would have required
extending the formalism accordingly.

18

Knowledge-Based Textual Inference via Parse-Tree Transformations

(9) The team hit a home run. ⇒ The team scored a home run.

(10) The car hit a tree. ; The car scored a tree.

Several works over the past years addressed the problem of context-dependent rule appli-
cation (Dagan, Glickman, Gliozzo, Marmorshtein, & Strapparava, 2006a; Pantel, Bhagat,
Coppola, Chklovski, & Hovy, 2007; Connor & Roth, 2007; Szpektor, Dagan, Bar-Haim, &
Goldberger, 2008; Dinu & Lapata, 2010; Ritter, Mausam, & Etzioni, 2010; Berant, Dagan,
& Goldberger, 2011; Melamud, Berant, Dagan, Goldberger, & Szpektor, 2013). Szpektor
et al. (2008) proposed a comprehensive framework for modeling context matching, termed
Contextual Preferences (CP). Given a text t, a hypothesis h (possibly a template hypoth-
esis) and an inference rule r bridging between t and h, each of these objects is annotated
with two context components: (a) global (“topical”) context, and (b) preferences and con-
straints on the instantiation of the object’s variables (for r and template h). CP requires
that h and r are matched in t, and h is matched in r7, where each context component
is matched to its counterpart. Szpektor et al. also proposed concrete implementations for
each of these components. In the above example, we could model the global context of t and
r as the sets of their content words, and compute the semantic relatedness between these
two sets, using methods such as Latent Semantic Analysis (LSA) (Deerwester, Dumais,
Furnas, Landauer, & Harshman, 1990), or Explicit Semantic Analysis (ESA) (Gabrilovich
& Markovitch, 2007). We would expect that the semantic relatedness between {score} and
{team, home run} will be much higher than between {score} and {car, tree}, which would
permit inference in (9) but not in (10).

In most RTE systems (including our system in the RTE experiments, described in
Section 7.3) lexicalized rules bridge between t and h directly, so that the rule’s LHS and
RHS are matched in t and h, respectively. Since in the RTE benchmarks t and h tend to
have the same semantic context, this setting alleviates context matching problems to some
extent. However, our analysis, presented later in this work (Subsection 7.5.2), shows that
context matching remains an issue even in this setting, and is expected to become even more
important when chaining of lexicalized rules is attempted. Adding contextual preferences
to our formalism is an important direction for future work.

The validity of rule application also depends on the monotonicity properties of its ap-
plication site. For instance, the hypernym rule poodle → dog is applicable only in upward
monotone contexts. Monotonicity may be affected by the presence of quantifiers, nega-
tion, and certain verbs such as implicatives and counterfactives (Nairn, Condoravdi, &
Karttunen, 2006). As common with textual entailment systems, we assume upward mono-
tonicity anywhere. While this assumption usually holds true, in some cases it may lead to
incorrect inferences. The following examples show correct applications of the above rule in
upward monotone contexts ((11),(14)), and incorrect applications in downward monotone
contexts ((12),(13),(15)):

(11) She bought a poodle. ⇒ She bought a dog.

(12) She didn’t buy a poodle ; she didn’t buy a dog

(13) Poodles are smart. ; Dogs are smart.

7. Context matching, like textual entailment, is a directional relation.

19

Bar-Haim, Dagan & Berant

(14) She failed to avoid buying a poodle ⇒ She failed to avoid buying a dog.

(15) She did not fail to avoid buying a poodle ; She did not fail to avoid buying a dog.

MacCartney and Manning (2009) address monotonicity as well as other semantic relations
such as exclusion, in a Natural Logic framework based on syntactic representation. We
discuss their work in more detail in Section 8.

Finally, since our polarity annotation rules are applied locally, they may fail in complex
cases, such as computing the polarity of buying in sentences (14) and (15), in which polarity
information need to be propagated along the syntactic structure of the sentence. The
TruthTeller system (Lotan, Stern, & Dagan, 2013), computes predicate polarity (truth
value) by a combination of annotation rules and a global polarity propagation algorithm,
extending previous work by Nairn et al. (2006) and MacCartney and Manning (2009).

4.9 Summary

In this section, we presented a well-formalized approach for textual inference over parse-
based representations, which is the core of this paper. In our framework, semantic knowledge
is represented uniformly as inference rules specifying tree transformations. We provided
detailed definitions for the representation of these rules as well as the inference mechanisms
that apply them. Our formalism also models inferences based on co-reference relations and
traces. In addition, it includes annotation rules that are used to detect contexts affecting
the polarity of predicates. In the next section we present an efficient implementation of this
formalism.

5. A Compact Forest for Scalable Inference

According to our formalism, each rule application generates a new sentence parse (a con-
sequent), semantically entailed by the source sentence. Each inferred consequent may be
subject to further rule applications, and so on. A straightforward implementation of this
formalism would generate each consequent as a separate tree. Unfortunately, this näıve
approach raises severe efficiency issues, since the number of consequents may grow expo-
nentially in the number of rule applications. Consider, for example, the sentence “Children
are fond of candies”, and the following rules: ‘children→kids’, ‘candies→sweets’, and ‘X is
fond of Y→X likes Y’. The number of derivable sentences, including the source sentence,
would be 23 (the power set size), as each rule can either be applied or not, independently. We
found that this exponential explosion leads to poor scalability of the näıve implementation
approach in practice.

Intuitively, we would like for each rule application to add just the entailed part of the rule
(e.g., kids) to a packed sentence representation. Yet, we still want the resulting structure
to represent a set of entailed sentences, rather than a mixture of sentence fragments with
unclear semantics. As discussed in Section 8, previous work proposed only partial solutions
to this problem.

In this section, we introduce a novel data structure, termed compact forest, and a corre-
sponding inference algorithm, which efficiently generate and represent all consequents while
preserving the identity of each individual one. This data structure allows compact repre-
sentation of a large set of inferred trees. Each rule application generates explicitly only the

20

Knowledge-Based Textual Inference via Parse-Tree Transformations

nodes of the rule’s right-hand-side. The rest of the consequent tree is shared with the source
sentence, which also reduces the number of redundant rule applications, as explained later
in this section. We show that this representation is based primarily on disjunction edges,
an extension of dependency edges that specify a set of alternative edges of multiple trees.

Since we follow a well-defined inference formalism, we are able to prove that all inference
operations in our formalism are equivalently applied over the compact forest. We compare
inference cost over compact forests to explicit consequent generation both theoretically,
illustrating an exponential-to-linear complexity ratio, and empirically, showing improvement
by orders of magnitude (empirical results are reported in Section 7.2).

5.1 The Compact Forest Data Structure

A compact forest F represents a set of dependency trees. Figure 6d shows an example of a
compact forest containing trees for the sentences “Little Mary was seen by John yesterday”
and “John saw little Mary yesterday”. We first define a more general data structure for
directed graphs, and then narrow the definition to the case of trees.

A Compact Directed Graph (cDG) is a pair G = (V, E) where V is a set of nodes and E
is a set of disjunction edges (d-edges). Let D be a set of dependency relations. A d-edge
d is a triple (Sd, reld, Td), where Sd and Td are disjoint sets of source nodes and target
nodes; reld : Sd → D is a function specifying the dependency relation that corresponds to
each source node. Graphically, d-edges are shown as point nodes, with incoming edges from
source nodes and outgoing edges to target nodes. For instance, let d be the bottommost
d-edge in Figure 7. Then Sd = {of, like}, Td = {candy, sweet}, rel(of) = pcomp-n, and
rel(like) = obj .

A d-edge represents, for each si ∈ Sd, a set of alternative directed edges {(si, tj) : tj ∈
Td}, all of which are labeled with the same relation given by reld(si). Each of these edges,
termed embedded edge (e-edge), would correspond to a different graph represented in G.

In the previous example, the e-edges are like
obj−−→candy, like

obj−−→sweet, of
pcomp−n−−−−−−→candy and

of
pcomp−n−−−−−−→sweet (the definition implies that all source nodes in Sd have the same set of

alternative target nodes Td). The d-edge d is called an outgoing d-edge of a node v if v ∈ Sd

and an incoming d-edge of v if v ∈ Td. A Compact Directed Acyclic Graph (cDAG) is a
cDG that contains no cycles of e-edges.

A DAG G rooted in a node v ∈ V of a cDAG G is embedded in G if it can be derived
as follows: we initialize G with v alone; then, we expand v by choosing exactly one target
node t ∈ Td from each outgoing d-edge d of v, and adding t and the corresponding e-edge
(v, t) to G. This expansion process is repeated recursively for each new node added to G.

Each such set of choices results in a different DAG with v as its only root. In Figure 6d,
we may choose to connect the root either to the left see, resulting in the source passive
sentence, or to the right see, resulting in the derived active sentence.

A Compact Forest F is a cDAG with a single root r (i.e., r has no incoming d-edges)
where all the embedded DAGs rooted in r are trees. This set of trees, termed embedded
trees, and denoted T (F) comprise the set of trees represented by F .

Figure 7 shows another example of a compact forest efficiently representing the 23 sen-
tences resulting from the three independently applied rules presented at the beginning of
this section.

21

Bar-Haim, Dagan & Berant

ROOT

i

John

see

by-subj obj be mod

by

pcomp-n

little

Mary

mod

be yesterday

V

(a) Right-hand-side generation

ROOT

i

John

see

by-subj obj be mod

by

pcomp-n

little

Mary

mod

be yesterday

see

(b) Variable instantiation

ROOT

i

John

see

by-subj obj be mod

by

pcomp-n

little

Mary

mod

be yesterday

see

mod

(c) Alignment sharing

ROOT

i

John

see

by-subj objbe mod

by

pcomp-n

little

Mary

mod

be yesterday

see

subj

objmod

(d) Dual-leaf variable sharing

Figure 6: Step-by-step construction of the compact forest containing both the source sen-
tence “Little Mary was seen by John yesterday” and the sentence “John saw little Mary
yesterday” derived from it via the application of the passive rule of Figure 1b. Parts of
speech are omitted.

5.2 The Inference Process

We next describe the algorithm implementing the inference process described in Section 4.6
over the compact forest (henceforth, compact inference), illustrated by Figures 1b (the
passive-to-active rule) and 6.

22

Knowledge-Based Textual Inference via Parse-Tree Transformations

ROOT

i

child

be

pred

fond

subjmod

of

pcomp-n

candy

like

subj

obj

kid

sweet

Figure 7: A compact forest representing the 23 sentences derivable from the sentence “Chil-
dren are fond of candies” using the following three rules: ‘children→kids’, ‘candies→sweets’,
and ‘X is fond of Y→X likes Y’.

5.2.1 Forest Initialization

F is initialized with the set of dependency trees representing the text sentences, with their
roots connected under the forest root as the target nodes of a single d-edge. Dependency
edges are transformed trivially to d-edges with a single source and target. Annotation
rules are applied at this stage to the initial F . Figure 6a, without the node labeled “V”
and its incoming edge, corresponds to the initial forest (containing a single sentence in our
example).

5.2.2 Inference Rule Application

Inference rule application comprises the steps described below, which are summarized in
Algorithm 2.

L Matching We first find all the matches of the rule’s LHS L in the forest F (line 1). For
the sake of brevity, we omitted the technical details of the L matching implementation from
the pseudocode of Algorithm 2. The following is a high-level description of the matching
procedure, focusing on the key algorithmic points.

L is matched in F if there exists an embedded tree t in F such that L is matched in
t, as in Section 4.2. We denote by l the subtree of t in which L was matched (line 3).

23

Bar-Haim, Dagan & Berant

Input: a compact forest F ; an inference rule E : L→ R
Output: A modified F , denoted F ′, such that T (F ′) = T (F) ∪D, where D is the set of trees derived by

applying E for any subset of L’s matches in each of the trees in T (F)

1: M ← the set of all matches of L in F

2: for each match f ∈M do
3: l← the subtree of F in which L is matched according to f

4: // Right-hand-side generation
5: SR ← copy of R excluding dual leaf variable nodes
6: Add SR to F
7: SL ← l excluding dual leaf variable nodes
8: rR ← root(SR)
9: rL ← root(l)

10: if E is a substitution rule then
11: d← the incoming d-edge of rL // will set SR as an alternative to SL

12: else // introduction rule
13: d← the outgoing d-edge of root(F) // will set SR as an alternative to other trees in T (F)
14: Add rR to Td

15: // Variable instantiation
16: for each variable X held in node xR ∈ SR do // R’s variables excluding dual leaves
17: if X is not a leaf in L then
18: xL ← f(X) // the node in SL matched by X
19: (xR.lemma, xR.polarity) ← (xL.lemma, xL.polarity)

20: else // X is a leaf in L so it is matched in the whole target node set
21: (xR.lemma, xR.polarity) ← (n.lemma, n.polarity) for some node n ∈ f(X)
22: for each n′ ∈ f(X);n′ 6= n do
23: generate a substitution rule n→ n′ where n and n′ are aligned, and apply it to xR

24: x′
R ← the instantiation of n′

25: for each u ∈ SL such that u is aligned to xR do
26: add alignment from u to x′

R

27: // Alignment sharing
28: for each aligned pair of nodes nL ∈ SL and nR ∈ SR do
29: nR.polarity ← nL.polarity
30: for each outgoing d-edge d of nL whose e-edges are not part of SL do
31: Add nR to Sd

32: reld(nR)← reld(nL)

33: // Dual leaf variable sharing
34: for each dual-leaf variable X matched in a node v ∈ l do
35: d← the incoming d-edge of v
36: p← parent node of X in SR

37: // go over p and alternatives for p generated during variable instantiation
38: P ← set of target nodes of p’s incoming d-edge
39: for each p′ ∈ P do
40: Add p′ to Sd

41: reld(p′)← the relation between X and p

Algorithm 2: Applying an inference rule to a compact forest

24

Knowledge-Based Textual Inference via Parse-Tree Transformations

This subtree may be shared by multiple trees represented in F , in which case the rule is
applied simultaneously to all of these trees. As in Section 4.2, the match in our example
is (V,N1, N2)=(see, Mary, John). This definition does not allow l to be scattered over
multiple embedded trees. Matches are constructed incrementally, aiming to add L’s nodes
one by one to the partial matches constructed so far, while verifying for each candidate node
in F that both node content and the corresponding edge labels match. It is also verified
that the match does not contain more than one e-edge from each d-edge. The nodes in F
are indexed using a hash table to enable fast lookup.

As the target nodes of a d-edge specify alternatives for the same position in the tree, their
parts-of-speech are expected to be substitutable. We further assume that all target nodes of
the same d-edge have the same part-of-speech8 and polarity. Consequently, variables that
are leaves in L and may match a certain target node of a d-edge d are mapped to the whole
set of target nodes Td rather than to a single node. This yields a compact representation of
multiple matches, and prevents redundant rule applications. For instance, given a compact
representation of ‘{Children/kids} are fond of {candies/sweets}’ (cf. Figure 7), the rule ‘X
is fond of Y→X likes Y’ will be matched and applied only once, rather than four times (for
each combination of matching X and Y).

Right-Hand-Side Generation Given an inference rule L → R, we define a dual-leaf
variable as a variable that is a leaf of both L and R. In our example, both N1 and N2
are dual-leaf variables in the passive-to-active rule of Figure 1b. Variables that are the
only node in R (and hence are both the root and a leaf), and variables with additional
alignments (other than the implicit alignment between their occurrences in L and R) are
not considered dual-leaves. As explained below, the instantiations of dual leaf variables are
shared between the source and the target trees.

In the right-hand-side generation step, a template SR (line 5), consisting of R while
excluding dual-leaf variables, is generated and inserted into F (line 6). In our example,
SR only includes the node V out of the passive rule’s RHS. Similarly, we define SL as l
excluding dual-leaf variables (line 7).

In the case of a substitution rule (as in our example), SR is set as an alternative to SL

by adding SR’s root to Td, where d is the incoming d-edge of SL’s root (line 11). In case
of an introduction rule, it is set as an alternative to the other trees in the forest by adding
SR’s root to the target node set of the forest root’s outgoing d-edge (line 13). Figure 6a
illustrates the results of this step for our example. SR is the gray node labeled with the
variable V , and it becomes an additional target node of the d-edge entering the original
(left) see.

Variable Instantiation Each variable in SR (i.e., a non dual-leaf) is instantiated (lines
16-26) according to its match in L (as in Section 4.2). In our example, V is instantiated
with see (Figure 6b, lines 17-19). As specified above, if a variable in SR is a leaf in L (which
is not the case in our example) then it is matched in a set of nodes, and each of them
should be instantiated in SR (lines 20-26). This is decomposed into a sequence of simpler
operations: first, SR is instantiated with a representative from the set (line 21). We then
apply ad-hoc lexical substitution rules for creating a new node for each additional node in

8. This is the case in our current implementation, which is based on the coarse tag-set of Minipar.

25

Bar-Haim, Dagan & Berant

the set (line 22-26). These nodes, in addition to the usual alignment with their source nodes
in SL (lines 25-26), share the same daughters in SR (due to the alignment between n and
n′, defined in line 23).

Alignment Sharing Modifiers of aligned nodes are shared (rather than copied) as follows.
Given a node nL in SL aligned to a node nR in SR, and an outgoing d-edge d of nL

which is not part of l, we share d between nL and nR by adding nR to Sd and setting
reld(nR) = reld(nL) (lines 28-32). In our example (Figure 6c), the aligned nodes nL and
nR are the left and right see nodes, respectively, and the shared modifier is yesterday. The
dependency relation mod is copied for the right see node. We also copy polarity annotation
from nL to nR (line 29).

We note at this point that the instantiation of variables that are not dual leaves cannot
be shared because they typically have different modifiers at the two sides of the rule. Yet,
their modifiers, which are not part of the rule, are shared through the alignment operation
(recall that common variables are always considered aligned). Dual leaf variables, on the
other hand, might be shared, as described next, since the rule doesn’t specify any modifiers
for them.

Dual Leaf Variable Sharing This final step (lines 34-41) is performed similarly to
alignment sharing. Suppose that a dual leaf variable X is matched in a node v in l whose
incoming d-edge is d. Then we simply add the parent p of X in SR to Sd and set reld(p) to
the relation between p and X (in R). Since v itself is shared, its modifiers become shared as
well, implicitly implementing the alignment operation. The subtrees little Mary and John
are shared this way for variables N1 and N2 (Figure 6d). If ad-hoc substitution rules were
applied to p at the variable instantiation phase, the generated nodes serve as alternative
parents of X, thus the sharing procedure applied to p should be repeated for each of them.

Applying the rule in our example added only a single node and linked it to four d-edges,
compared to duplicating the whole tree in explicit inference.

5.2.3 Co-reference Substitution

In Section 4.4 we defined co-reference substitution, an inference operation that allows replac-
ing a subtree t1 with a co-referring subtree t2. This operation is implemented by generating
on-the-fly a substitution rule t1 → t2 and applying it to t1. In our implementation, the
initial compact forest is annotated with co-reference relations obtained from an external
co-reference resolution tool, and all substitutions are performed prior to rule applications.
Substitutions where t2 is a pronoun are ignored, as they are usually not useful.

5.3 Correctness

In this section, we present two theorems proving that the inference process presented is a
valid implementation of the inference formalism. We provide the full proofs in Appendix A.

In Theorem 1, we argue that applying a rule to a compact forest results in a compact
forest. Since we begin with a valid compact forest created by the initialization step, it follows
by induction that for any sequence of rule applications the result of the inference process
is a compact forest. The fact that the embedded DAGs generated during the inference
process are indeed trees is not trivial, since nodes generally have many incoming e-edges

26

Knowledge-Based Textual Inference via Parse-Tree Transformations

from many nodes. However, we show that any pair of these parent nodes cannot be part
of the same embedded DAG. For example, in Figure 7, the node ’candy’ has an incoming
e-edge from both the node ’like’ and the node ’of ’. However, the nodes ’like’ and ’of ’ are
not part of the same embedded DAG. This is because the d-edge emanating from the root
forces us to choose between the node ’like’ and the node ’be’. Thus, we see that the reason
for correctness is not local: the two incoming e-edges into the leaf node ’candies’ cannot be
in the same embedded DAG because of a rule applied at the root of the tree. We now turn
to the theorem and its proof scheme:

Theorem 1 Applying a rule to a compact forest results in a compact forest.

Proof scheme We prove that if applying a rule to a compact forest creates a cycle or an
embedded DAG that is not a tree, then such a cycle or a non-tree DAG already existed
prior to rule application. This contradicts the assumption that the original structure is a
compact forest. A crucial observation for this proof is that for any directed path from a
node u to a node v that passes through SR, where u and v are outside SR, there is also an
analogous path from u to v that passes through SL instead.

The next theorem is the main result. We argue that the inference process over a compact
forest is complete and sound, that is, it generates exactly the set of consequents derivable
from a text according to the inference formalism.

Theorem 2 Given a rule base R and a set of initial trees T , a tree t is represented by a
compact forest derivable from T by the inference process ⇔ t is a consequent of T according
to the inference formalism.

Proof scheme We first show completeness by induction on the number of explicit rule
applications. Let tn+1 be a tree derived from a tree tn using the rule rn according to the
inference formalism. The inductive assumption determines that tn is embedded in some
derivable compact forest F . It is easy to verify that applying rn on F will yield a compact
forest F ′ in which tn+1 is embedded.

Next, we show soundness by induction on the number of rule applications over the
compact forest. Let tn+1 be a tree represented in some derived compact forest Fn+1 (tn+1 ∈
T (Fn+1)). Fn+1 was derived from the compact forest Fn, using the rule rn. The inductive
assertion states that all the trees in T (Fn) are consequents of T according to the formalism.
Hence, if tn+1 is already in T (Fn) then it is a consequent of T . Otherwise, it can be shown
that there exists a tree tn ∈ T (Fn) such that applying rn to tn will yield tn+1 according to
the formalism. tn is a consequent of T according to the inductive assertion and therefore
tn+1 is a consequent of T as well.

These two theorems guarantee that the compact inference process is valid, that is, it
yields a compact forest that represents exactly the set of consequents derivable from a given
text by a given rule set.

27

Bar-Haim, Dagan & Berant

5.4 Complexity

In this section, we explain why compact inference exponentially reduces the time and space
complexity in typical scenarios.

We consider a set of rule matches in a tree T independent if their matched left-hand-
sides (excluding dual-leaf variables) do not overlap in T , and their application over T can
be chained in any order. For example, the three rule matches presented in Figure 7 are
independent.

Let us consider explicit inference first. Assume we start with a single tree T with k
independent rules matched. Applying k rules will yield 2k trees, since any subset of the
rules might be applied to T . Therefore, the time and space complexity of applying k
independent rule matches is Ω(2k). Applying more rules on the newly derived consequents
behaves in a similar manner.

Next, we examine compact inference. Applying a rule using compact inference adds
the right-hand-side of the rule and shares with it existing d-edges. Since the size of the
right-hand-side and the number of outgoing d-edges per node are practically bounded by
low constants, applying k rules on a tree T yields a linear increase in the size of the forest.
Thus, the resulting size is O(|T |+ k), as we can see from Figure 7.

The time complexity of rule application is composed of matching the rule in the forest
and applying the matched rule. Applying a matched rule is linear in its size. Matching
a rule of size r in a forest F takes O(|F|r) time even when performing an exhaustive
search for matches in the forest. Since r tends to be quite small and can be bounded by
a low constant9, this already gives polynomial time complexity. Furthermore, matches are
constructed incrementally, where at each step we aim to extend the partial matches found.
Due to the typical low connectivity of the forest, as well as the various constraints imposed
by the rule (lemma, POS, and dependency relation), the number of candidates for extending
the matches at each step << |F|, and these candidates can be retrieved efficiently using
proper indexing. Thus, the matching procedure is very fast in practice, as illustrated in the
empirical evaluation described in Section 7.2.

5.5 Related Work on Packed Representations

Packed representations in various NLP tasks share common principles, which also underlie
our compact forest: factoring out common substructures and representing choice as local
disjunctions. Applying this general scheme to individual problems typically requires spe-
cific representations and algorithms, depending on the type of alternatives that should be
represented and the specified operations for creating them. We create alternatives by rule
application, where a newly derived subtree is set as an alternative to existing subtrees.
Alternatives are specified locally using d-edges.

Packed chart representations for parse forests were introduced in classical parsing al-
gorithms such as CYK and Earley (Jurafsky & Martin, 2008), and were extended in later
work for various purposes (Maxwell III & Kaplan, 1991; Kay, 1996). Alternatives in the
parse chart stem from syntactic ambiguities, and are specified locally as the possible de-
compositions of each phrase into its sub-phrases.

9. In our RTE system, the average rule LHS size was found to be 2 nodes, and the maximal size was 7
nodes, for the experimental setting described in Section 7.2.2, applied to the RTE3 test set.

28

Knowledge-Based Textual Inference via Parse-Tree Transformations

Packed representations have also been utilized in transfer-based machine translation.
Emele and Dorna (1998) translated packed source language representation to packed target
language representation while avoiding unnecessary unpacking during transfer. Unlike our
rule application, in their work transfer rules preserve ambiguity stemming from source
language, rather than generating new alternatives. Mi et al. (2008) applied statistical
machine translation to a source language parse forest, rather than to the 1-best parse.
Their transfer rules are tree-to-string, contrary to our tree-to-tree rules, and chaining is not
attempted (rules are applied in a single top-down pass over the source forest). Thus, their
representation and algorithms are quite different from ours.

6. Incorporated Knowledge Bases

In this section, we describe the various knowledge bases used by our inference engine. We
first describe a novel rule base addressing generic linguistic structures. This rule base was
composed manually, based on our formalism, and includes both inference rules (Section 6.1)
and polarity annotation rules (Section 6.2). In addition, we derived inference rules from
several large scale semantic resources (Section 6.3). Overall, this variety illustrates the
suitability of our formalism for representing diverse types of inference knowledge.

6.1 Inference Rules for Generic Linguistic Phenomena

These rules capture inferences associated with common syntactic structures, which are
summarized in Table 2. The rules have three major functions:

1. Simplification and canonization of the source tree (categories 6 and 7 in Table 2).

2. Extracting embedded propositions (categories 1, 2, 3).

3. Inferring propositions from non-propositional subtrees of the source tree (category 4).

Inference rules that merely extract a subtree out of the source tree without changing its
structure (such as the relative clause rule) are useful for exact inference that aims to generate
the hypothesis, and were used in the evaluation of such inferences (cf. Section 7.1). How-
ever, the currently implemented approximate classification features are focused on matching
substructures of the hypothesis in the forest (as described in Section 7.3), hence they do
not take advantage of such extractions. Therefore, these rules were excluded from the rest
of the experiments, reported in Sections 7.2–7.3.

The rules in categories 1-7 depend solely on syntactic structure and closed-class words,
and are referred to as generic rules. By contrast, verb complement extraction rules (category
8) are considered lexicalized rules, since they are specific to certain verbs: if we replace forced
with advised in the example, the entailment would not hold. We extracted from the PARC
polarity lexicon (Nairn et al., 2006) a list of verbs that allow such inference when appearing
in positive polarity contexts, and generated inference rules for these verbs. The list was
complemented with a few reporting verbs, such as say and announce, since information in
the news domain, in which these rules were applied in our experiments (cf. Section 7.1) is
often given in reported speech, while the speaker is usually considered reliable.

We sidestep the issue of polarity propagation by applying these rules only at the main
clause, which is implemented by including the tree root node in the rule LHS. When the

29

Bar-Haim, Dagan & Berant

Category Example: source Example: derived
1 Conjunctions Helena’s very experienced

and has played a long time
on the tour.

⇒ Helena has played a long
time on the tour.

2 Clausal ex-
traction from
connectives

But celebrations were muted
as many Iranians observed a
Shi’ite mourning month.

⇒ Many Iranians observed a
Shi’ite mourning month.

3 Relative
clauses

The assailants fired six bul-
lets at the car, which carried
Vladimir Skobtsov.

⇒ The car carried Vladimir
Skobtsov.

4 Appositives Frank Robinson, a one-
time manager of the In-
dians, has the distinction for
the NL.

⇒ Frank Robinson is a one-
time manager of the Indians.

5 Determiner
Canonization

The plaintiffs filed their law-
suit last year in U.S. District
Court in Miami.

⇒ The plaintiffs filed a law-
suit last year in U.S. District
Court in Miami.

6 Passive We have been approached
by the investment banker.

⇒ The investment banker ap-
proached us.

7 Genitive
modifier

Malaysia’s crude palm oil
output is estimated to have
risen by up to six percent.

⇒ The crude palm oil out-
put of Malaysia is estimated
to have risen by up to six per-
cent.

8 Verb comple-
ment clause
extraction

Yadav was forced to resign. ⇒ Yadav resigned.

Table 2: Inference rules for generic linguistic structures

embedded clause is extracted, it becomes the main clause in the derived tree, and these rules
can then extract its own embedded clauses. The polarity of the verb is detected by applying
annotation rules, as described next. If the verb was annotated with negative or unknown
polarity, matching of complement extraction rules fails. For example, if the last sentence in
Table 2 was “Yadav was not forced to resign”, then forced would be annotated with negative
polarity, and consequently the matching of the corresponding complement extraction rule
would fail, and “Yadav resigned” would not be entailed. Hence, annotation rules may block
erroneous inference rule applications. While polarity is important for correct application of
such rules, this is not the case for other rule types, such as passive-to-active transformation.
We therefore checked polarity matching for rule application only in the exact inference
experiment (Section 7.1), where the verb complement extraction rules were used. We leave
further analysis of polarity-dependence of our rules to future work.

6.2 Polarity Annotation Rules

We use annotation rules to mark negative and unknown polarity of predicates (cf. Sec-
tion 4.5). Table 3 summarizes the polarity-inducing contexts that we address. Like in-
ference rules, annotation rules also comprise generic rules (categories 1-4) and lexicalized

30

Knowledge-Based Textual Inference via Parse-Tree Transformations

Category Example

1 Explicit Negation What we’ve never seen[−] is actual costs come
down.

2 Implied Negation No one stayed[−] for the last lecture.

3 Modal Auxiliaries I could eat[?] a whale now!

4 Overt Conditionals if Venus wins[?] this game, she will meet[?] Sarena
in the finals.

5 Verb complements I pretend that I know[−] calculus.

6 Adjectives It is impossible that he survived[−] such a fall.

7 Adverbs She probably danced[?] all night.

Table 3: Polarity annotation rules

rules (categories 5-7). When a verb complement embedded clause has negative or unknown
polarity, it is not extracted, however, its polarity is annotated (category 5; compare with
category 8 in Table 2). This list of verbs that imply negative/unknown polarity for their
clausal complements was taken from the PARC lexicon, as well as from VerbNet (Kipper,
2005).

6.3 Lexical and Lexical-Syntactic Rules

In addition to the manually-composed generic rules, the system integrates inference knowl-
edge from a variety of large-scale semantic resources, introduced in Section 2.3. The in-
formation derived from these resources is represented uniformly as inference rules in our
formalism. Some examples for such rules were shown in Table 1. The following resources
were used:

WordNet: We extracted from WordNet (Fellbaum, 1998) lexical rules based on the syn-
onym, hyponym (a word is entailed by its hyponym, e.g., ‘dog→ animal ’), instance
hyponym10 and derivation relations.

Wikipedia: We used the lexical rulebase of Shnarch et al. (2009), who extracted rules
such as ‘Janis Joplin → singer’ from Wikipedia based on both its metadata (e.g.,
links and redirects) and text definitions, using patterns such as ‘X is a Y ’.11

DIRT: The DIRT algorithm (Lin & Pantel, 2001) learns from a corpus inference rules
between binary predicates, for example, ‘X is fond of Y→X likes Y’. We used a
version that learns canonical rule forms (Szpektor & Dagan, 2007).

Argument-Mapped WordNet (AmWN): A resource for inference rules between pred-
icates, covering both verbal and nominal forms (Szpektor & Dagan, 2009), includ-

10. According to the WordNet glossary, an instance is a proper noun that refers to a particular, unique
referent (as distinguished from nouns that refer to classes). This is a specific form of hyponym. For
example, Ganges is an instance of river.

11. In addition to the extraction methods described by Shnarch et al. (2009), we employed two additional
methods. First, extraction of entailments among terms that are redirected to the same page. Second,
generalization of rules with the same RHS and common LHS head, but different modifiers. For instance,
the rules ‘Ferrari F430→ car ’ and ‘Ferrari Ascari→ car ’ are generalized into ‘Ferrari→ car ’.

31

Bar-Haim, Dagan & Berant

ing their argument mapping. It is based on WordNet and NomLex-plus (Meyers
et al., 2004), verified statistically through intersection with the unary-DIRT algo-
rithm (Szpektor & Dagan, 2008). AmWN rules are defined between unary templates,
for example, ‘kill X→X die’

These automatically-extracted inference rules lack two attributes defined in our for-
malism: rule type (substitution/introduction) and explicit alignments (beyond alignments
between R’s variables and their L counterparts, which are defined by default). These at-
tributes are added automatically using the following heuristics:

1. If the roots of L and R have the same part-of-speech, then it is a substitution rule
(e.g., ‘X buy Y→ Y was sold to X ’). Otherwise (e.g., ‘Y’s acquisition by X→ Y was
sold to X ’), it is an introduction rule.

2. The roots of L and R are assumed to be aligned.

Note that application of some of the above rules, (e.g., WordNet derivations and some
of the rules learned by DIRT), does not result in a valid parse tree. These rules should
not be used when aiming for exact derivation of h from t. However, they may be useful
when the inference engine is used together with an approximate matching component, as
in our RTE system. Our approximate matcher (described in Section 7.3) employs features
such as the coverage of words and subtrees in h by F , and therefore can benefit from such
inferences. These rules should preferably be applied only as the last step of the inference
process, to avoid cascading errors.

7. Evaluation

In this section, we present an empirical evaluation of our entailment system as a whole, as
well as evaluation of its individual components. We evaluate both the quality of the system’s
output (in terms of accuracy, precision, and recall) and its computational efficiency (in terms
of running time and space, using various application settings.

We first evaluate the knowledge-based inference engine. In Section 7.1, we describe an
experiment in which the engine aims to prove simple template hypotheses, representing
binary predicates, from texts sampled from a large corpus. Next, in Section 7.2 we evaluate
the efficiency of our engine implementation using the compact forest data structure. We then
evaluate the complete entailment system, including the approximate entailment classifier
(Section 7.3). Finally, in Sections 7.4–7.5 we provide an in-depth analysis of the performance
of the inference component on RTE data.

7.1 Proof System Evaluation

In this experiment, we evaluate the inference engine on finding strict proofs. That is,
the inference process must derive precisely the target hypothesis (or an instantiation of
it, in the case of template hypotheses, which contain variables as defined in Section 4.7).
Thus, we should evaluate its precision over text-hypothesis pairs for which a complete proof
chain is found, using the available rules. We note that the PASCAL RTE datasets are not
suitable for this purpose. These rather small datasets include many text-hypothesis pairs for

32

Knowledge-Based Textual Inference via Parse-Tree Transformations

which available inference rules would not suffice for deriving complete proofs. Furthermore,
since the focus of this research is applied textual inference, the inference engine should
be evaluated in an NLP application setting where the texts represent realistic distribution
of linguistic phenomena. Manually-composed benchmarks such as the FraCas test suite
(Cooper et al., 1996), which contains synthetic examples for specific semantic phenomena,
are clearly not suitable for such an evaluation.

As an alternative, we chose a Relation Extraction (RE) setting, for which complete
proofs can be achieved for a large number of corpus sentences. In this setting, the system
needs to identify pairs of arguments in sentences for a target semantic relation (e.g., ‘X buy
Y’).

7.1.1 System Configuration

In this experiment, which was first reported by Bar-Haim et al. (2007), we used an earlier
version of the engine and the rule bases. The engine in this experiment does not make use
of the compact forest, but rather generates each consequent explicitly. Polarity annotations
are not propagated from source to derived trees. Instead, polarity annotation rules are
applied to the original text t, and to each inferred consequent, prior to application of any
inference rule. The following rule bases were used in this experiment:

Generic Linguistic Rules We used the generic rule base presented in Section 6, includ-
ing both inference and the polarity annotation rules. This early version did not include the
lexicalized polarity rules derived from VerbNet and from the PARC lexicon (category 5 in
Table 3).

Lexical-Syntactic Rules Nominalization rules: inference rules such as ‘X’s acquisition
of Y → X acquired Y ’ capture the relations between verbs and their nominalizations.
These rules were derived automatically (Ron, 2006) from Nomlex, a hand-coded database
of English nominalizations (Macleod, Grishman, Meyers, Barrett, & Reeves, 1998), and
from WordNet.

Automatically Learned Rules: we used the DIRT paraphrase collection, as well the
output of TEASE (Szpektor et al., 2004), another unsupervised algorithm for learning
lexical-syntactic rules. TEASE acquires entailment relations from the Web for a given
input template I by identifying characteristic variable instantiations shared by I and other
templates. Both algorithms provide a ranked list of output templates for a given input
template. Some of the learned rules are linguistic paraphrases, (e.g., ‘X confirm Y → X
approve Y ’), while others capture world knowledge, (e.g., ‘X buy Y → X own Y ’). These
algorithms do not learn the entailment direction of the rule, which reduces their accuracy
when applied in any given direction. For each system, we considered the top 15 bi-directional
rules learned for each template.

Generic Default Rules These rules are used to define default behavior, in situations
where no case-by-case rules are available. We used one default rule that allows removal
of any modifiers from nodes. Ideally, this rule would be replaced in future work by more
specific rules for removing modifiers.

33

Bar-Haim, Dagan & Berant

7.1.2 Evaluation Process

We use a sample of test template hypotheses that correspond to typical RE relations, such as
‘X approve Y’. We then identify in a large test corpus, sentences from which an instantiation
of the test hypothesis is proved. For example, the sentence “the budget was approved by
the parliament” is found to prove the instantiated hypothesis “parliament approve budget”
(via the passive-to-active inference rule). Finally, a sample of such candidate sentences-
hypothesis pairs is judged manually for true entailment. We repeated the process to compare
different system configurations.

Since the publicly available sample output of TEASE is much smaller than the other
resources12 we randomly selected from this resource 9 transitive verbs that may correspond
to typical RE predicates13. We formed test templates by adding subject and object vari-

able nodes. For example, for the verb accuse we constructed the template ‘XNOUN

subj←−−
accuseVERB

obj−−→ YNOUN’.

For each test template h we identify sentences in the corpus from which the template
can be proved by our system. To efficiently find proof chains that generate h from corpus
sentences we combine forward and backward (Breadth-First) searches over the available
rules. First, we use a backward search over the lexical-syntactic rules, starting with rules
whose right-hand-side is identical to the test template. The process of backward chaining
the DIRT/TEASE and nominalization rules generates a set of templates ti, all of them
proving (deriving) h. For example, for the hypothesis ‘X approve Y’ we may generate
the template ‘X confirm Y’, through backward application of a DIRT/TEASE rule, and
then further generate the template ‘confirmation of Y by X’, through a nominalization rule.
Since the templates ti are generated by lexical-syntactic rules, which modify open-class
lexical items, they may be considered “lexical expansions” of h.

Next, for each specific ti we generate a search engine query composed of the open-class
words in ti. This query fetches candidate sentences from the corpus, from which ti might
be proven using the generic linguistic rules (recall that these rules do not modify open-
class words). To that end, we use a forward search that applies the generic rules, starting
from a candidate sentence s and trying to derive ti by a sequence of rule applications. If
successful, the variables in ti are instantiated (cf. Section 4.7). Consequently, we know that
under these variable instantiations, h can be proven from s (since s derives ti which in turn
derives h).

We performed the above search for sentences that prove each test template over the
Reuters RCV1 corpus, CD#2, applying Minipar for parsing. Through random sampling,
we obtained 30 sentences that prove (according to the tested system configuration) each of
the 9 test templates, yielding a total of 270 pairs of a sentence, and an instantiated hypoth-
esis, for each of the four tested configurations, described below (1080 pairs overall). These
pairs were split for entailment judgment between two human annotators (graduate students
at the Bar-Ilan NLP group). The annotators achieved, on a sample of 100 shared exam-

12. The output of TEASE and DIRT, as well as many other knowledge resources, is available from the RTE
knowledge resources page:
http://aclweb.org/aclwiki/index.php?title=RTE_Knowledge_Resources

13. The verbs are approach, approve, consult, lead, observe, play, seek, sign, strike.

34

Knowledge-Based Textual Inference via Parse-Tree Transformations

Configuration Precision Yield

1 Baseline (embed h anywhere in s) 67.0% 2,414
2 Proof (embed h at the root of s) 78.5% 1,426
3 Proof + Generic 74.8% 2,967
4 Proof + Generic + Lexical-Syntactic 23.6% 18,809

Table 4: Proof system evaluation

ples, an agreement level of 87%, and a Kappa value of 0.71 (corresponding to “substantial
agreement”).

7.1.3 Results

We tested four configurations of the proof system:

1. Baseline: The baseline configuration follows the prominent approach in graph-based
entailment systems: the system tries to embed the given hypothesis anywhere in the
candidate sentence tree s, while only negative or unknown polarity (detected by the
annotation rules) may block embedding.

2. Proof: In this configuration h has to be strictly generated from the candidate sen-
tence s. The only inference rule available is the default rule for removing modifiers
(polarity annotation rules are active as in Baseline). This configuration is equivalent
to embedding h in s with the root of h matched at the root of s, since modifiers that
are not part of the match can be removed from s by the default rule. However, if
h is embedded elsewhere in s it will not be extracted, as opposed to the Baseline
configuration.

3. Proof + Generic: As Proof, plus generic linguistic rules.

4. Proof + Generic + Lexical-Syntactic: As the previous configuration, plus
lexical-syntactic rules.

For each system configuration we measure precision, the percentage of examples judged
as correct (entailing), and average extrapolated yield, which is the expected number of
truly entailing sentences in the corpus that would be proven as such by the system. The
extrapolated yield for a specific template is calculated as the number of sample sentences
judged as entailing, multiplied by the sampling proportion. The average is calculated over
all test templates. We note that, similar to IR evaluations, it is not possible to compute
true recall in our setting since the total number of entailing sentences in the corpus is not
known (recall is equal to the yield divided by this total). However, it is straightforward to
measure relative recall differences among different configurations based on the yield. Thus,
using these two measures estimated from a large corpus it is possible to conduct robust
comparison between different configurations, and reliably estimate the impact of different
rule types. Such analysis is not possible with the RTE datasets, which are rather small, and
their hand-picked examples do not represent the actual distribution of linguistic phenomena.

35

Bar-Haim, Dagan & Berant

The results are reported in Table 4. First, comparing the results for Proof with the
results for Baseline, we observe that the requirement for matching h at the root of s (i.e.,
at the main clause of s), rather than allowing it to be matched anywhere in s, improves the
precision considerably over the baseline (by 11.5%), while reducing the yield by nearly 40%.
The Proof configuration avoids errors resulting from improper extraction of embedded
clauses.

Remarkably, using the generic inference rules, our system is able to gain back the lost
yield in Proof and further surpass the yield of the baseline configuration. In addition,
we obtain a higher precision than the baseline (a 7.8% difference), which is statistically
significant at a p < 0.05 level, using z test for proportions. This demonstrates that our
principled proof approach appears to be superior to the more heuristic baseline embedding
approach, and exemplifies the contribution of our generic rule base. Overall, generic rules
were used in 46% of the proofs.

Adding the lexical-syntactic rules increased the yield by a factor of six. This shows
the importance of acquiring lexical-syntactic variability patterns. However, the precision of
DIRT and TEASE is currently quite low, causing overall low precision. Manual filtering of
rules learned by these systems is currently required to obtain reasonable precision.

Error analysis revealed that for the third configuration Proof + Generic rules, a
significant 65% of the errors are due to parsing errors, most notably incorrect dependency
relation assignment, incorrect POS assignment, incorrect argument selection, incorrect anal-
ysis of complex verbs (e.g., play down in the text vs. play in the hypothesis) and ungram-
matical sentence fragments. Another 30% of the errors represent conditionals, negation,
and modality phenomena, most of which could be handled by additional rules, some mak-
ing use of more elaborate syntactic information such as verb tense. The remaining, and
rather small, 5% of the errors represent truly ambiguous sentences which would require
considerable world knowledge for successful analysis.

7.2 Compact Forest Efficiency Evaluation

Next, we evaluate the efficiency of compact inference (cf. Section 5) in the setting of recog-
nizing textual entailment, using the RTE-3 and RTE-4 datasets (Giampiccolo et al., 2007,
2008). These datasets consist of (text, hypothesis) pairs, which need to be classified as
entailing/non entailing. Our first experiment, using the generic inference rule set, shows
that compact inference outperforms explicit inference (efficiency-wise) by orders of magni-
tude (Section 7.2.1). The second experiment shows that compact inference scales well to
a full-blown RTE setting with several large-scale rule bases, where up to hundreds of rules
are applied per text (Section 7.2.2).

7.2.1 Compact vs. Explicit Inference

To compare explicit and compact inference we randomly sampled 100 pairs from the RTE-3
development set, and parsed the text in each pair using Minipar (Lin, 1998). To avoid
memory overflow for explicit inference, we applied to these sentences only the subset of
generic inference rules described in Section 6.1. For a fair comparison, we aimed to make the
explicit inference implementation reasonably efficient, for example by preventing multiple
generations of the same tree by different permutations of the same rule applications. Both

36

Knowledge-Based Textual Inference via Parse-Tree Transformations

Compact Explicit Ratio
Time (msec) 61 24,184 396
Rule applications 12 123 10
Node count 69 5,901 86
Edge endpoints 141 11,552 82

Table 5: Compact vs. explicit inference, using generic rules. Results are averaged per
text-hypothesis pair.

configurations perform rule application iteratively, until no new matches are found. In each
iteration, we first find all rule matches and then apply all matching rules. We compare run
time, number of rule applications, and the overall generated size of nodes and edges, where
edge size is represented by the sum of its endpoints (2 for a regular edge, |Sd| + |Td| for a
d-edge).

The results are summarized in Table 5. As expected, the results show that compact
inference is by orders of magnitude more efficient than explicit inference. To avoid memory
overflow, inference was terminated after reaching 100,000 nodes. Three out of the 100 test
texts reached that limit with explicit inference, while the maximal node count for compact
inference was only 268. The number of rule applications is reduced due to the sharing
of common subtrees in the compact forest, by which a single rule application operates
simultaneously over a large number of embedded trees. The results suggest that scaling to
larger rule bases and longer inference chains would be feasible for compact inference, but
prohibitive for explicit inference.

7.2.2 Application to an RTE System

The goal of the second experiment was to test if compact inference scales well for broad
inference rule bases. In this experiment we used the Bar-Ilan RTE system (Bar-Haim et al.,
2008). The system operates in two primary stages:

Inference: inference rules are first applied to the initial compact forest F , aiming to bring
it closer to the hypothesis h. In this experiment, we use all the knowledge bases
described in Section 6. Overall, these rule bases contain millions of rules.

In the current system we implemented a simple search strategy, in the spirit of
(de Salvo Braz et al., 2005): first, we applied three exhaustive iterations of generic
rules. Since these rules have low fan-out (few possible right-hand-sides for a given
left-hand-side), it is affordable to apply and chain them more freely. At each iteration
we first find all rule matches, and then apply all matched rules. To avoid repeated
identical rule applications, we mark newly added nodes at each iteration, and in the
next iteration consider only matches containing new nodes. We then perform a single
iteration of all other lexical and lexical-syntactic rules, applying them only if their L
part was matched in F and their R part was matched in h. Further investigation of
effective search heuristics over our representation is left for future research.

Classification: Following inference, a set of features is extracted from the resulting F and
from h and fed into an SVM classifier, which determines entailment. We describe the

37

Bar-Haim, Dagan & Berant

RTE3-Dev RTE4
Avg. Max. Avg. Max.

Rule applications 14 275 15 110
Node count 71 606 80 357
Edge endpoints 155 1,741 173 1,062

Table 6: Application of compact inference to the RTE-3 Dev. and RTE-4 datasets, using
all rule types

classification stage in more detail in the next section, which discusses the performance
of our RTE system.

Table 6 provides statistics on rule applications using all rule bases, over the RTE-3
development set and the RTE-4 dataset14. Overall, the primary result is that the compact
forest indeed accommodates well extensive rule applications from large-scale rule bases. The
resulting forest size is kept small, even in the maximal cases which were causing memory
overflow for explicit inference.

7.3 Complete RTE System Evaluation

In the previous sections, we evaluated our knowledge-based inference engine (the proof sys-
tem) with respect to the quality of its output (precision, recall) as well as its computational
efficiency (time, space). We now evaluate the complete RTE system, which combines the
inference engine with an approximate classification module.

The classification setting and its features are quite typical for the RTE literature. Fea-
tures can be broadly categorized into two subsets: (a) lexical features that solely depend on
the lexical items in F and h, and (b) lexical-syntactic features that also take into account
the syntactic structures and dependency relations in F and h. Below is a brief description
of the features. A complete description appears in our RTE system report (Bar-Haim et al.,
2008).

Lexical features: Coverage features check if the words in h are present (covered) in F .
We assume that a high degree of lexical coverage correlates with entailment. These
features measure the proportion of uncovered content words, verbs, nouns, adjectives
and adverbs, named entities and numbers. Polarity mismatch features detect cases
where nouns or verbs in h are only matched in F with incompatible polarity. These
features are assumed to indicate non-entailment.

Edge coverage features: We say that an edge in h is matched in F if there is an edge
in F with matching relation, source node and target node. We say an edge in h is
loosely-matched if there is some path in F from a matching source node to a matching
target node. Based on these definitions we extract two features: the proportion of h
edges matched/loosely matched in F .15

14. Running time is not included since most of it was dedicated to rule fetching, which was rather slow for
our available implementation of some resources. The elapsed time was a few seconds per (t, h) pair.

15. We only look at a subset of the edges labeled with relevant dependency relations.

38

Knowledge-Based Textual Inference via Parse-Tree Transformations

Predicate-argument features: If F entails h, then the predicates in h should be matched
in F along with their arguments. Predicates include verbs (except for the verb “be”)
or subject complements in copular sentences, For example, smart in Joseph is smart.
Arguments are the daughters of the predicate node in h.16 Four features are computed
for each F , h pair. We categorize every predicate in h that has a match in F to one
or more of four possible categories:

1. complete match - a matching predicate exists in F with matching arguments and
dependency relations.

2. partial match - a matching predicate exists in F with some matching arguments
and dependency relations.

3. opposite match - a matching predicate exists in F with some matching arguments
but incorrect dependency relations.

4. no match - no matching predicate in F has any matching arguments.

If a predicate is categorized as a complete match it will not be in any other category.
Finally, we compute the four features for the F , h pair: the proportion of predicates
in h that have a complete match in F , and three binary features, checking if there
is any predicate in h categorized as a partial match/opposite match/no match. Since
the subject and object arguments are crucial for textual entailment, we compute four
similar features only for the subset of predicates that have these arguments (ignoring
other arguments).

A global lexical-syntactic feature: This feature measures how well the subtrees in h
are covered by F , weighted according to the proximity to the root of h. This feature
is somewhat similar to the dependency tree kernel of Collins and Duffy (2001), which
measures the similarity between two dependency trees by counting their common
subtrees. However, our measure has several distinct properties which makes it suitable
for our needs: (a) It’s a directional measure, estimating the coverage of h by F , but
not vice versa (b) It operates on a compact forest and a tree, rather than on a pair of
trees. (c) It takes into account the distance from the root of h, assuming that nodes
closer to the root are more important.

The system was trained on the RTE-3 development set, and was tested on the RTE3 and
RTE-4 test sets (no development set was released for RTE-4). Co-reference substitution was
disabled due to the insufficient accuracy of the co-reference resolution tool we used. We
first report its overall performance, and then provide some analysis of the inference module,
which is our focus in this work.

The accuracies obtained in this experiment are shown in Table 7 (under the “inference”
column). The results on RTE-3 are quite competitive: compared to our 66.4%, only 3 teams
out of the 26 who participated in RTE-3 scored higher than 67%, and three more systems
scored between 66% and 67%. The results for RTE4 rank 9-10 out of 26, with only 6 teams
scoring higher by more than 1%. Overall, these results show that our system is well-situated
in the state of the art for the RTE task.

Table 8 provides a more detailed view of our system’s performance. Precision, recall, and
F1 results are given for both entailing and non-entailing pairs, as well as the overall accuracy.

16. When the dependent is a preposition or a clause we take the complement of the preposition or the head
of the clause respectively as the dependent.

39

Bar-Haim, Dagan & Berant

The table also shows the results per task (IE, IR, QA and SUM). Overall, our system tends
to predict entailment more often than non-entailment. The recall for entailing pairs is much
higher than the recall for non-entailing pairs, while the precision for non-entailing pairs is
much higher than for entailing pairs. Performance varies considerably among different tasks.
Our RTE3 accuracy results for QA and IR are considerably higher than the average results
achieved by RTE3 submissions, as reported by the organizers (Giampiccolo et al., 2007)
(0.71 and 0.66, respectively), while for IE and SUM, our results are a bit above the average
(0.52 and 0.58). Our RTE4 results are better for IR and SUM, which seem to be the easier
tasks in RTE4 (Giampiccolo et al., 2008).17

7.4 Usage and Contribution of Knowledge Bases

To evaluate the accuracy gain from knowledge-based inference, we ran the system with the
inference module disabled, so that entailment classification is applied directly to the initial
parse tree of the text. The results are shown under the “no inference” column of Table 7.
Comparing these results to the full system accuracy (“inference”), we see that applying the
inference module resulted in higher accuracy on both test sets. The contribution was more
prominent for the RTE-4 dataset. These results illustrate a typical contribution of current
knowledge sources for current RTE systems. This contribution is likely to increase with
current and near future research, on topics such as extending and improving knowledge
resources, applying them only in semantically suitable contexts, improved classification
features, and broader search strategies.

Tables 9 and 10 illustrate the usage and contribution of individual rule bases. Table 9
shows the distribution of rule applications over the various rule bases. Table 10 presents
ablation study showing the marginal accuracy gain for each rule base. These results show
that each of the rule bases is applicable for a large portion of the pairs, and contributes
to the overall accuracy. We note that the results are highly dependent on the search
strategy. For instance, chaining of lexical rules is expected to increase the number of lexical
rule applications, but reduce their accuracy. We provide a more detailed analysis of rule
applications in our system in the next section.

7.5 Manual Analysis

We conclude the evaluation with two manual analyses of the inference component within the
RTE system. The first analysis (Subsection 7.5.1) assesses the applicability of our inference
framework to the RTE task as well as the actual coverage of the current system. It also
categorizes the cases in which our formalism falls short. We then (Subsection 7.5.2) assess
the correctness of the applied rules, and analyze the various causes for incorrect applications.
The analyses were done by one of the authors on randomly sampled subsets of the RTE-3
test set.

17. According to the RTE4 organizers, the IE task appeared to be the most difficult task, while SUM and
IR seemed to be the easier tasks. However, they did not report the average accuracy per task.

40

Knowledge-Based Textual Inference via Parse-Tree Transformations

Accuracy Lexical Best RTE
Test set No inference Inference ∆ Overlap Result
RTE3 64.6% 66.4% 1.8 % 62.4% 80.0%
RTE4 57.5% 60.6% *3.1% 56.6% 74.6%

Table 7: Inference contribution to RTE performance. The system was trained on the RTE-
3 development set. * indicates statistically significant difference (at level p < 0.02, using
McNemar’s test). The best results achieved in the RTE3 and RTE4 challenges (Hickl &
Bensley, 2007; Bensley & Hickl, 2008), as well as lexical overlap baseline results (Mehdad
& Magnini, 2009a), are also given for reference. Mehdad and Magnini have tested eight
configurations of lexical overlap baselines, and chose the one that performs best on average
over the RTE1-4 test sets.

Non-Entailing Pairs Entailing Pairs
Task Precision Recall F1 Precision Recall F1 Accuracy

RTE3 IE 0.500 0.095 0.159 0.527 0.914 0.669 0.525
IR 0.764 0.743 0.753 0.678 0.701 0.689 0.725
QA 0.822 0.787 0.804 0.818 0.849 0.833 0.820
SUM 0.545 0.341 0.420 0.600 0.777 0.677 0.585
All 0.722 0.505 0.594 0.634 0.815 0.713 0.664

RTE4 IE 0.596 0.187 0.284 0.518 0.873 0.650 0.530
IR 0.721 0.587 0.647 0.652 0.773 0.707 0.680
QA 0.636 0.210 0.316 0.527 0.880 0.659 0.545
SUM 0.685 0.630 0.656 0.657 0.710 0.683 0.670
All 0.680 0.400 0.504 0.575 0.812 0.673 0.606

Table 8: RTE results breakdown by task and pair type

Rule base RTE3-Dev RTE4
Rules App Rules App

WordNet 0.6 1.2 0.6 1.1
AmWN 0.3 0.4 0.3 0.4
Wikipedia 0.6 1.7 0.6 1.3
DIRT 0.5 0.7 0.5 1.0
Generic 4.7 10.4 5.4 11.5
Polarity 0.2 0.2 0.2 0.2

Table 9: Average number of rule applications per (t, h) pair, for each rule base. App counts
each rule application, while Rules ignores multiple matches of the same rule in the same
iteration.

7.5.1 Applicability and Coverage

This analysis assesses the ability of the inference framework to derive complete proofs for
RTE (t,h) pairs in an idealized setting where perfect knowledge bases and co-reference
resolution are available. This provides an upper bound to the coverage of our inference

41

Bar-Haim, Dagan & Berant

Rule base ∆Accuracy (RTE4)
WordNet 0.8%
AmWN 0.7%
Wikipedia 1.0%
DIRT 0.9%
Generic 0.4%
Polarity 0.9%

Table 10: Contribution of various rule bases. Results show accuracy loss on RTE-4, obtained
when removing each rule base (ablation tests).

engine. A similar analysis was previously done by Bar-Haim, Szpektor, and Glickman
(2005) on a subset of the RTE-1 dataset. However, here we go further and (a) assess the
actual coverage of the required inferences by the implemented RTE system, and (b) present
classification of uncovered cases into different categories.

We carried out the analysis as follows: 80 positive (entailing) pairs were randomly
sampled from the RTE-3 test set. For each pair we aimed to manually derive a proof
comprising inference steps that are expressible in our formalism, similar to the example
in Section 2.2. If a complete proof could be derived, the pair was classified as inferable.
Otherwise, it was classified into one of the following categories:

Discourse references: Complete proof requires incorporating pieces of information from
the discourse, including event co-reference and bridging (Mirkin et al., 2010). Nom-
inal co-reference substitution was not included, as it is covered in our formalism.
For instance, in the text “The Titanic’s sinking after hitting an iceberg on April 14,
1912. . . ”, the year 1912 is not explicitly specified as the time of the Titanic’s sinking,
and this relation should be derived from the discourse in order to infer the hypothesis
“The Titanic sank in 1912”.

Non-decomposable: The inference cannot be reasonably decomposed to a sequence of
local rewrites. This is the case, for example, with the text “The black plague lasted
four years and killed about one-third of the population of Europe, or approximately 20
million people” and the hypothesis “Black plague swept Europe”.

Other: A few other cases that did not fall into the above categories.

The distribution of these categories is shown in Table 11. We found that 60% of the
pairs could be proven by our formalism given appropriate inference rules and co-reference
information, which demonstrates the utility of our approach. The results are somewhat
higher than the 50% reported by Bar-Haim et al. (2005), which may be attributed to the
fact that RTE1 is considered a more difficult dataset, and entailment systems consistently
perform better on RTE3.

Out of the remaining 40% pairs, our analysis highlights the significance of discourse
references, which occur in 16.3% of the pairs. While previous analysis of discourse references
in textual entailment was applied to the RTE-5 search task, where the text sentences are
interpreted in the context of their full discourse (Mirkin et al., 2010), our analysis shows

42

Knowledge-Based Textual Inference via Parse-Tree Transformations

Category Count %
Inferable 48 60.0%
Non-decomposable 14 17.5%
Discourse references 13 16.3%
Other 5 6.3%

Table 11: Applicability of our inference framework to the RTE task. 80 randomly selected
entailing pairs from the RTE-3 test set were analyzed.

the significance of discourse references even for short, self-contained texts, of which RTE-
3 is composed. Mirkin et al. show how our framework, and similar methods based on
tree transformations, can be extended to utilize discourse references. Several works over
the last few years targeted implied predicate-argument relationships, the most notable of
which is the SemEval-2010 Task “Linking Events and Their Participants in Discourse”
(Ruppenhofer, Sporleder, Morante, Baker, & Palmer, 2009). In particular, Stern and Dagan
(2014) recently showed that identifying such relations improves the performance of their
RTE system. Finally, the entailment in 17.5% of the pairs could not be established by a
sequence of local rewrites, thus these cases are likely to require deeper methods for semantic
analysis and inference.

The manually-derived proofs for the 48 inferable pairs included a total of 79 rule appli-
cations, an average of 1.65 rule applications per pair.18 The maximal number of rules per
pair was 3. 28 of these rules (35.4%) were applied in our system. 21% of the proofs for
the inferable pairs were fully derived by our RTE system. Partial proofs were derived for
additional 25% of the pairs. For the remaining 54% of the pairs, our system did not apply
any of the rules in the manual proof. The results demonstrate the utility of the inference
mechanisms and rule bases in our system, but on the other hand suggest that there is still
much room for improvement in the coverage of the existing rule bases.

7.5.2 Correctness of Applied Rules

We next assess the correctness of rules applied by the inference engine. We focus on the
four lexical and lexical-syntactic rule bases described in Section 6.3: WordNet, Wikipedia,
DIRT, and Argument-Mapped WordNet (AmWN). Except for WordNet, these rule bases
were generated automatically, therefore their accuracy is more of an issue than the accuracy
of the manually-composed generic inference rules and polarity annotation rules. Further-
more, lexicalized rules are often context sensitive, which is an additional potential source
of incorrect rule applications.

For this evaluation we randomly sampled 75 pairs from the RTE-3 test set, and analyzed
all lexical and lexical-syntactic rule applications performed by the system for these pairs, a
total of 201 rule applications. We define two levels of rule application correctness:

18. As previously mentioned, the RTE system does not apply rules that merely extract a subtree from a
given source tree. Accordingly, such rules were ignored in this analysis as well.

43

Bar-Haim, Dagan & Berant

Propositional: The derived tree resulting from the rule application is both grammatical
and entailed from the source tree. This is the level of correctness assumed by our
formalism.

Referential: In case the propositional correctness does not hold, we turn to the weaker cri-
terion of Referential Correctness, following the notion of Lexical Reference (Glickman,
Shnarch, & Dagan, 2006; Shnarch et al., 2009), which we extend here to the case of
template-based rules with variables. Let rule E : L→ R be an inference rule matched
in a source tree s. Let l and r be the instantiations of L and R respectively, according
to the variable matching of L in s. We say that referential correctness holds if l gen-
erates a reference in s to a possible meaning of r. Some examples for such rules found
in our analyzed sample are: pope→papal, Turkish→Turkey and fishermen→fishing.
While these rule applications do not result in a valid entailed tree, they are still useful
in the context of an RTE system that applies approximate matching (as previously
discussed at the end of Section 6).

Incorrect rule applications were classified into one of the following categories:

1. Bad rule: The rule is a-priori incorrect (e.g., Wales→year).

2. Bad context: The rule is incorrect in the context of the source sentence. For example,
the WordNet rule strike→create corresponds to the rare sense of strike defined as
“produce by ignition or a blow” (as in “strike fire from the flint stone”).

3. Bad match: The rule was applied due to incorrect matching of the left-hand-side,
resulting from incorrect parse of the source tree.

The results are summarized in Table 12. Overall, 52.7% of the rule applications are correct.
Interestingly, there are more referential (29.4%) than propositional (23.4%) rule applica-
tions. Unsurprisingly, the most accurate knowledge resource is the manually composed
WordNet (75.9% correct applications), followed by the AmWN (57.9%) and Wikipedia
(57.4%) rule bases, which were derived automatically from human-generated resources. The
least accurate resource is DIRT (21.4%), which makes no use of human knowledge engineer-
ing, but rather was learned automatically based on corpus statistics. The accuracy of DIRT
is considerably lower than the accuracy of the other resources, substantially decreasing the
overall accuracy as well. Most of the errors for DIRT and Wikipedia are due to bad rules.
This is also the overall dominant cause for incorrect applications, while for WordNet and
AmWN the a-priori rule quality is very high and most of the errors are due to bad con-
text. Wikipedia rules did not suffer from bad context, which can be explained by the fact
that their left-hand-side was often an unambiguous named entity (Madrid, Antelope Valley
Freeway, Microsoft Office). The analysis highlights the need for improving the accuracy
of automatically-generated rule bases, whose quality is still far below human generated re-
sources. The analysis also shows that context-sensitivity of lexicalized rules is still an issue
even when these rules are applied conservatively as in our experiment (no chaining, both L
and R were matched in F and h). This should be addressed in future research.

44

Knowledge-Based Textual Inference via Parse-Tree Transformations

DIRT AmWN Wikipedia WordNet All
% out of rule applications 27.9% 9.5% 33.8% 28.9% 100.0%

Propositional 17.9% 21.1% 19.1% 34.5% 23.4%
Referential 3.6% 36.8% 38.2% 41.4% 29.4%
Correct 21.4% 57.9% 57.4% 75.9% 52.7%

Bad rule 58.9% 5.3% 42.6% 0.0% 31.3%
Bad context 7.1% 31.6% 0.0% 17.2% 10.0%
Bad matching 12.5% 5.3% 0.0% 6.9% 6.0%
Incorrect 78.6% 42.1% 42.6% 24.1% 47.3%

Table 12: Analysis of lexical and lexical-syntactic rule applications

8. Discussion: Comparison to Related Approaches

In this section, we compare our work to several closely-related inference methods, most of
which were described in Section 2.3.2.

The discourse commitments derived by Hickl (2008) are quite similar to the kind of con-
sequents we generate by applying our syntactic, lexical-syntactic, and co-reference substi-
tution rules. However, our work differs from Hickl’s in several respects. First and foremost,
Hickl’s work does not fully describe a knowledge representation and inference framework,
which is the main focus of our work. Hickl briefly mentions that the commitments were
generated using a probabilistic FST-based extraction framework, but no further explana-
tions or examples are given in the paper. Second, our framework allows unified modeling of
a variety of inference types that are addressed by various tools and components in Hickl’s
system (FST, relation extraction, paraphrase acquisition, etc.). In addition, our system
operates over lexical-syntactic representations, and does not rely on semantic parsing. Fi-
nally, the consequents generated in our formalism are packed in an efficient data structure,
whereas Hickl’s commitments are generated explicitly and he does not discuss commitment
generation efficiency. It should be noted, however, that while explicit generation of com-
mitments restricts the search space, it may simplify approximate matching (e.g., finding
alignment between h and a given consequent vs. aligning h with the whole compact forest).

De Salvo Braz et al. (2005) presented a semantic inference framework that “augments”
the text representation with only the right-hand-side of an applied rule, and in this respect
is similar to ours. However, in their work, both rule application and the semantics of
the resulting “augmented” structure were not fully specified. In particular, the distinction
between individual consequents was lost in the augmented graph. By contrast, our compact
inference is fully formalized and is proved to be equivalent to an expressive, well-defined
formalism operating over individual trees, where each inferred consequent can be recovered
from the compact forest.

MacCartney and Manning (2009) proposed a model of natural language inference which,
similar to our framework, operates directly on parse-based representations. Their work ex-
tends previous work on natural logic (Valencia, 1991), which focused on semantic contain-
ment and monotonicity, by incorporating semantic exclusion and implicativity. They model
the inference of h from t as a sequence of atomic edits; each can be thought of as generating
an intermediate premise. Their calculus computes the semantic relation between the source

45

Bar-Haim, Dagan & Berant

and the derived premise by propagating the semantic relation from the local edit upward
through the parse tree according to the properties of intermediate nodes. For example, it
can correctly infer that “Some first-year students arrived ⇒ Some students arrived”, but
“Every first-year student arrived ⇐ Every student arrived”. The composition of these se-
mantic relations along the inference chain yields the semantic relation holding between t
and h. Their contribution is complementary to ours. In both approaches, the inference of
h from t is modeled as a sequence of atomic steps (rule applications or edits). The focus
of our framework is the representation and application of diverse types of transformations
needed for textual inference, as well as efficient representation of possible inference chains.
Application of an inference rule is assumed to always generate an entailed consequent, and
polarity rules may be used to detect situations where this assumption does not hold and
block rule application. By comparison, the formalism of MacCartney and Manning assumes
rather simple edit operations, and is focused on precise predication of the semantic relation
between t and h for a given sequence of edits that transform t into h. Thus, combining
these two complementary approaches is a natural direction for future research.

9. Conclusion

The subject of this work was the representation and use of semantic knowledge for textual
inference at the lexical-syntactic level. We defined a novel inference framework over parse
trees, which represents diverse semantic knowledge as inference rules. The proof process
aims to transform the source text into the target hypothesis through a sequence of rule
applications, each generating an intermediate parse tree. A complementary contribution of
this work is a novel data structure and an associated rule application algorithm, which are
proved to be a valid implementation of the inference formalism. We illustrated inference
efficiency both analytically and empirically.

Our approach has several advantageous properties. First, the ability to represent and
apply a wide variety of inferences and combine them through rule chaining makes our frame-
work more expressive than most of the previous RTE architectures. Second, this expressive
power is obtained by a well-formalized and compact framework, based on unified knowledge
representation and inference mechanisms. Finally, as shown by our RTE experiments, the
compact forest data structure allows our approach to scale well to practical settings that
involve very large rule bases and hundreds of rule applications per text-hypothesis pair.

We demonstrated the utility of our approach in two different semantic tasks. Experi-
ments with unsupervised relation extraction showed that our exact proofs outperform the
more heuristic common practice of hypothesis embedding. We also achieved competitive
results on RTE benchmarks, by adding a simple approximate matching module to our
inference engine. The contribution of semantic knowledge was illustrated on both tasks.

Limitations and possible extensions for our formalism were discussed in Section 4.8.
Manual analysis of the inference engine’s performance on the relation extraction and RTE
tasks further suggested promising directions for future research, as discussed in Subsections
7.1.3 and 7.5. Two additional major areas for further research are the approximate matching
heuristics and the proof search strategy. Stern and Dagan (2011) and Stern, Stern, Dagan,
and Felner (2012) extended our work to address these two aspects, respectively.

46

Knowledge-Based Textual Inference via Parse-Tree Transformations

Acknowledgments

This article is based on the doctoral dissertation of the first author, which was completed
under the guidance of the second author at Bar-Ilan University (Bar-Haim, 2010). This
work was partially supported by Israel Science Foundation grants 1095/05 and 1112/08,
the IST Programme of the European Community under the PASCAL Network of Excel-
lence IST-2002-506778, the PASCAL-2 Network of Excellence of the European Community
FP7-ICT-2007-1-216886, the Israel Internet Association (ISOC-IL), grant 9022, and the
FBK-irst/Bar-Ilan University collaboration. The third author is grateful to the Azrieli
Foundation for the award of an Azrieli Fellowship. The authors wish to thank Cleo Condo-
ravdi for making the polarity lexicon developed at PARC available for this research. We are
grateful to Eyal Shnarch for his help in implementing the experimental setup described in
Section 7.1. We also thank Iddo Greental for his collaboration on developing the generic rule
base. Finally, we would like to thank Dan Roth, Idan Szpektor, Yonatan Aumann, Marco
Pennacchiotti, Marc Dymetman and the anonymous reviewers for their valuable feedback
on this work.

Appendix A: Compact Forest Complete Proofs

In this section, we provide complete proofs for the correctness of the compact inference
algorithm presented in Section 5. We start with a few definitions.

Definition Let L → R be a rule matched and applied to a compact forest F . As in Sec-
tion 5.2, let l be a subtree of some represented tree t ∈ T (F), in which L is matched. Recall
that SL was defined as l excluding nodes matched by dual-leaf variables, and similarly SR

was defined as a copy of R without its dual-leaf variables that is generated and inserted into
F as part of rule application. The roots of SL and SR are denoted rL and rR respectively.
We say that a node s ∈ SR is tied to a node s′ ∈ SL, if s is set as a source node for one of
the outgoing d-edges of s′, due to alignment sharing or dual leaf variable sharing.

The graph operations performed when applying a rule L → R to a compact forest F
can be summarized as follows:

1. Adding the subtree SR to F .

2. Setting rR as a target node of a d-edge in F .

3. Setting nodes in SR that are tied to nodes in SL as source nodes for d-edges in F ,
according to the rules of variable sharing and dual leaf variable sharing. Recall that
these d-edges are not part of SL.

First, we show a simple property of cDGs generated by the inference process:

Lemma 1 Every node in a cDG generated by the inference process has at most one incom-
ing d-edge.

47

Bar-Haim, Dagan & Berant

Proof By construction, in the initial forest each node has at most one incoming d-edge.
Each rule application adds a subtree SR, whose nodes have at most one incoming d-edge.
Last, the root rR, which initially has no incoming edges, is set as a target for a single
d-edge during rule application (the incoming d-edge of rL). Therefore, the lemma follows
by induction on the number of rule applications.

Using the following theorem we show that the inference process generates a compact
forest:

Theorem 1 Applying a rule to a compact forest results in a compact forest.

Proof Let F ′ be the cDG generated by applying the rule L → R to a compact forest F .
We show that F ′ is a compact forest, that is, a cDAG with a single root r where all the
embedded DAGs rooted in r are trees. First, we show that F ′ is a cDAG, (i.e., it does not
contain a cycle of e-edges).

Assume by contradiction that F ′ contains a simple cycle of e-edges C. Applying the
rule L→ R did not add any e-edges between nodes in F . Therefore, C must pass through
rR, the root of SR and contain an e-edge (p, rR). Since SR is a tree, C must also leave SR

through an e-edge (u, v) (u ∈ SR and v /∈ SR). The cycle can be written as p→ rR → ...→
u → v → ... → p. Notice that the path from v to p is fully contained in F since the cycle
C is simple and entering SR is possible only through rR.

L → R must be a substitution rule, otherwise p would be the root of F . This is
impossible, since the root has no incoming d-edges. Therefore, rR and rL have the same
single incoming d-edge, and the e-edge (p, rL) exists in F . In addition, u was added as a
source node of a d-edge d in F since it is tied to some u′ ∈ SL, which is also a source node of d.
Therefore, the path rL → ...→ u′ → v exists in F . Finally, we know that the path from v to
p is fully contained in F , therefore we can construct a cycle p→ rL → ...→ u′ → v → ...→ p
in F , in contradiction to our assumption that F is a compact forest.

We have shown that F ′ is a cDAG. Next, we define a generalization for embedded DAGs,
which will help us show that all embedded DAGs in F ′ rooted in r are trees.

Definition An embedded partial DAG G = (V,E) in a cDAG G rooted in a node v ∈ V is
similar to an embedded DAG and is generated using the following process:

1. Initialize G with v alone

2. Repeat any number of iterations:

(a) choose a node s ∈ V

(b) choose an outgoing d-edge d of s that was not already chosen by s in a previous
iteration. If all d-edges have been chosen - halt.

(c) choose a target node t ∈ Td and add the e-edge (s, t)d to G.

We now show that all embedded partial DAGs in F ′ rooted in any node are trees. Since
an embedded DAG is also an embedded partial DAG, this proves that all embedded DAGs
in F ′ rooted in r are trees. Assume by contradiction that after applying L→ R there is an

48

Knowledge-Based Textual Inference via Parse-Tree Transformations

embedded partial DAG T ′ rooted at a node n that is not a tree. We can assume that n is
not in SR, otherwise, we can extend T ′ by adding a path p → rR → ... → n, where p is a
node outside SR that is a source node of the incoming edge of rR.

Since T ′ is not a tree, there are two simple paths P1 and P2 from n that reach some
node z from two different e-edges. z cannot be in SR, since any two paths that meet in the
subtree SR, must first meet in its root rR entering its incoming d-edge. However, we could
then construct in F the same two paths, only selecting rL instead of rR, in contradiction
with the assumption that F is a compact forest. Clearly, either P1 or P2 must pass through
the new subtree SR, otherwise the two paths already existed in F .

We first handle the case where, without loss of generality, P1 passes through SR and
P2 does not. P1 passes through SR and contains an e-edge (p, rR). Since z /∈ SR, it
also contains an e-edge (u, v) such that u ∈ SR and v /∈ SR. So P1 can be written as
n → ... → p → rR → ... → u → v → ... → z. The paths from n to p and from v to z
are in F , because the only way to enter SR is through rR and P1 is simple. We can now
incrementally construct in F the following embedded partial DAG T : First, we construct
P2 and the section in P1 from n to p as in T ′. Next, we expand p with the e-edge (p, rL)
instead of (p, rR). We would like to expand T from rL and reach z if possible.

As previously explained, u is tied to a node u′ ∈ SL and therefore the e-edge (u′, v) exists
in F . Therefore, there is a path P ′ in SL, from rL through (u′, v) to z. However, it is not
guaranteed that the whole P ′ can be added to T . We try to expand T incrementally with
P ′, at each step adding the next e-edge in the path. If we succeed, then T is an embedded
graph in F with two paths to z, a contradiction. If we fail, this can only be due to an e-edge
(z′, t) ∈ P ′ we cannot add. Thus, z′ must already be in P2, and is a node for which there
are two distinct paths in the embedded graph T , a contradiction. The path constructed is
indeed different from P2 since it contains the e-edge (p, rL) that cannot be part of P2, since
P1 contains the disjoint edge (p, rR).

In the remaining case, both P1 and P2 pass through SR and reach a node z /∈ SR. P1

can be written as n → ... → u1 → v1 → ... → z and P2 as n → ... → u2 → v2 → ... → z,
where u1, u2 ∈ SR, and v1, v2 /∈ SR. Assume first that the e-edges (u1, v1) and (u2, v2)
originate from the same d-edge d. Then u1 6= u2, otherwise (u1, v1) and (u2, v2) could not
be both in the same embedded partial DAG. u1,u2 are tied to the nodes u′1, u′2 ∈ SL.

We show that u′1 6= u′2: Assume by contradiction that u′1 = u′2 = u′. u′ is tied to u1

and u2 due to alignment sharing or dual leaf variable sharing. u′ cannot be tied to both u1

and u2 due to alignment sharing since alignment is a function from nodes in SL to nodes in
SR. It cannot be tied to both due to dual leaf variable sharing, since any variable appears
only once in R. Finally, if u′ is tied to u1 (without loss of generality) due to dual leaf
variable sharing, then the d-edge d is part of l. Therefore, u2 will not include d as an
aligned modifier, and thus u2 will not be tied to u′ due to alignment.

We can now construct an embedded graph T rooted at rL in F : Because SL is part of
the match of L in F , we can construct an embedded graph rooted at rL with a path to
any node in SL, in particular with paths to u′1 and u′2. Since u′1 6= u′2, and both u′1 and
u′2 are source nodes of d, which is not part of SL, we can expand these two paths with the
e-edges (u′1, v1) and (u′2, v1) of d and get an embedded graph in Gn that is not a tree, a
contradiction.

49

Bar-Haim, Dagan & Berant

Suppose that the e-edges (u1, v1) and (u2, v2) originate from different d-edges d1 and
d2 respectively. u1 and u2 are tied to u′1 and u′2. Therefore, if v1 6= v2 we can construct
the following embedded graph T rooted at rL: as in the previous case, we can expand the
paths in SL from rL to u′1 and u′2. Next, we add the e-edges (u′1, v1) of d1 and (u′2, v2) of
d2. Recall that d1 and d2 are not in SL and can therefore be used for expansion. We try
to expand this embedded graph to include the paths from v1 and v2 to z. If we succeed,
we have two paths in T leading to z. If we fail we have two paths in Tn meeting at some
other node z′, as explained above. Last, if v1 = v2 = v, then v is a node in F that has two
incoming d-edges, contradicting Lemma 1.

The case of an introduction rule is quite similar but simpler. If P1 passes through SR

and P2 does not, then n must be the root of the compact forest (the only node with a path
to rR). However, in this case n has a single outgoing d-edge, and therefore all its outgoing
e-edges are disjoint (i.e. cannot be part of the same embedded DAG). Thus, P2 must also
pass through rR - a contradiction. If both P1 and P2 pass through SR, the proof is identical
to the case of a substitution rule.

We have shown that F ′ is a cDAG whose embedded DAGs rooted in r are trees. F ′
also has a single root because all new nodes added when applying L→ R have an incoming
edge. Hence, F ′ is a compact forest.

Corollary 1 The inference process generates a compact forest.

Proof It is easy to verify that initialization generates a compact forest. Since applying
a rule to a compact forest results in a compact forest, the inference process generates a
compact forest by induction on the number of rule applications.

Theorem 2 Given a rule base R and a set of initial trees T , a tree t is represented by a
compact forest derivable from T by the inference process ⇔ t is a consequent of T according
to the inference formalism.

Proof (⇐) We first show completeness by induction on the number of rule applications n.
If n = 0 then t is one of the initial trees and is represented by the initial compact forest.
Let tn+1 be a tree derived in the formalism by applying a sequence of n+ 1 rules. We show
that tn+1 is represented in a derivable compact forest. tn+1 was derived by applying the
rule L → R to the tree tn. According to the inductive assumption, tn is represented in a
compact forest F derivable by the inference process. Therefore, the rule L → R can be
matched and applied in F . We assume L → R is a substitution rule since the case of an
introduction rule is similar. tn+1 is almost identical to tn except it contains the subtree
R instead of L with instantiated variables and aligned modifiers. It is easy to verify that
after application of L→ R on F resulting in F ′, F ′ will contain an embedded tree t that is
almost identical to tn, except that the root of SR, rR, will be chosen instead of the root of
SL, rL, and the rest of SR can also be chosen with the appropriate instantiated variables
and modifiers. Therefore, tn+1 = t is contained in F ′ as required. t is guaranteed to be a
tree according to Corollary 1.

(⇒) Next, we prove soundness by induction on the number of rule applications in the
forest. At initialization, all of the initial trees are consequents. Let Fn+1 be a compact
forest derived by n + 1 rule applications (Corollary 1 guarantees that Fn+1 is indeed a

50

Knowledge-Based Textual Inference via Parse-Tree Transformations

compact forest). Given a tree tn+1 represented by Fn+1, we show that tn+1 is a consequent
in the formalism.

If tn+1 was already represented by the compact forest after n rule applications, then
according to the assumption of the induction it is a consequent in the formalism. If not,
then tn+1 is a new embedded tree created after the application of the rule L→ R. Therefore,
tn+1 contains the entire subtree SR. We now incrementally construct an embedded tree tn
represented by Fn such that tn+1 is the result of applying L→ R to tn.

For a substitution rule, we first construct the part of tn+1 that does not include the
subtree rooted at rR. For an introduction rule, we take any path from the forest’s root to
rL. Next, we construct SL through rL instead of SR through rR. This is possible since
according to Corollary 1 all embedded graphs are trees, therefore the nodes of SL are not
already in tn. We then look at the set of e-edges (s, t) ∈ tn+1 such that s ∈ SR and t /∈ SR.
Let (s, z) be such an edge originating from a d-edge d and Sz be the subtree rooted at z in
tn+1. Notice that Sz was already part of Fn. s is tied to s′ ∈ SL and therefore s′ is a source
node of d. We can expand tn to include the edge (s′, z) and Sz if s′ is not already used
with the d-edge d in tn. This is guaranteed because d is not part of SL (only d-edges that
are not part of SL are shared). Finally, we complete the construction of tn by arbitrarily
expanding any unused outgoing d-edge of tn’s nodes, until we obtain a complete embedded
tree.

We constructed an embedded tree tn in Fn. Therefore, according to the inductive
assumption, tn is a consequent in the formalism. tn contains SL and an instantiation of the
dual leaf variables. Therefore, it is matched by L and the rule L→ R can be applied. It is
easy to verify that an application of the rule on tn will yield tn+1, as required. Thus, tn+1

is also a consequent in the formalism.

For the sake of simplicity, the above proofs ignored the case where one or more leaf
variables in L that match multiple target nodes in l appear in R as non-leaves. As described
in Section 5.2, in this case the matched target nodes are inserted to SR as alternatives (with
proper sharing of their modifiers). Consequently, SR becomes a compact forest containing
multiple trees. Similarly, SL is a compact forest, whose represented trees correspond to the
possible choices of matching the leaf variables. The mapping between the nodes matched
by the leaf variables in SL and the nodes generated for them in SR defines a one-to-one
mapping between the trees in SL and SR.

The above proofs can be easily adapted to handle this case, as follows. First, the proof of
Lemma 1 need not change. In Theorem 1, the proof that a rule application does not create
cycles still holds if the underlying graph of SR is a DAG rather than a tree. To prove that
each embedded partial DAG T ′ is a tree, we observe that exactly one of the trees embedded
in SR is part of T ′. Thus, we can consider only that tree in SR and its corresponding tree
in SL, while ignoring the rest of SR and SL, and proceed with the original proof. Similarly,
to prove completeness in Theorem 2, we refer to the tree represented in SL, which is part of
tn, and the corresponding tree in SR. To prove soundness, we consider each of the subtrees
in SR and their corresponding tree in SL.

51

Bar-Haim, Dagan & Berant

References

Bar-Haim, R. (2010). Semantic Inference at the Lexical-Syntactic Level. Ph.D. thesis,
Department of Computer Science, Bar-Ilan University, Ramat-Gan, Israel.

Bar-Haim, R., Berant, J., & Dagan, I. (2009). A compact forest for scalable inference over
entailment and paraphrase rules. In Proceedings of EMNLP.

Bar-Haim, R., Berant, J., Dagan, I., Greental, I., Mirkin, S., Shnarch, E., & Szpektor, I.
(2008). Efficient semantic deduction and approximate matching over compact parse
forests. In Proceedings of the TAC 2008 Workshop.

Bar-Haim, R., Dagan, I., Dolan, B., Ferro, L., Giampiccolo, D., Magnini, B., & Szpektor,
I. (2006). The Second PASCAL Recognising Textual Entailment Challenge. In The
Second PASCAL Challenges Workshop on Recognizing Textual Entailment.

Bar-Haim, R., Dagan, I., Greental, I., & Shnarch, E. (2007). Semantic inference at the
lexical-syntactic level. In Proceedings of AAAI.

Bar-Haim, R., Szpektor, I., & Glickman, O. (2005). Definition and analysis of intermediate
entailment levels. In Proceedings of the ACL Workshop on Empirical Modeling of
Semantic Equivalence and Entailment.

Barzilay, R., & Lee, L. (2003). Learning to paraphrase: An unsupervised approach using
multiple-sequence alignment. In Proceedings of HLT-NAACL.

Barzilay, R., & McKeown, K. R. (2001). Extracting paraphrases from a parallel corpus. In
Proceedings of ACL.

Bensley, J., & Hickl, A. (2008). Workshop: Application of LCC’s GROUNDHOG system
for RTE-4. In Proceedings of the TAC 2008 Workshop.

Bentivogli, L., Clark, P., Dagan, I., Dang, H. T., & Giampiccolo, D. (2010). The Sixth
PASCAL Recognizing Textual Entailment Challenge. In Proceedings of the TAC 2010
Workshop.

Bentivogli, L., Dagan, I., Dang, H. T., Giampiccolo, D., & Magnini, B. (2009). The Fifth
PASCAL Recognizing Textual Entailment Challenge. In Proceedings of the TAC 2009
Workshop.

Berant, J., Dagan, I., & Goldberger, J. (2011). Global learning of typed entailment rules.
In Proceedings of ACL.

Bhagat, R., & Ravichandran, D. (2008). Large scale acquisition of paraphrases for learning
surface patterns. In Proceedings of ACL-08: HLT.

Bos, J., & Markert, K. (2005). Recognising textual entailment with logical inference tech-
niques. In Proceedings of EMNLP.

Bos, J., & Markert, K. (2006). When logical inference helps determining textual entailment
(and when it doesn’t). In Proceedings of The Second PASCAL Recognising Textual
Entailment Challenge.

Chklovski, T., & Pantel, P. (2004). VerbOcean: Mining the web for fine-grained semantic
verb relations. In Proceedings of EMNLP.

52

Knowledge-Based Textual Inference via Parse-Tree Transformations

Collins, M., & Duffy, N. (2001). Convolution kernels for natural language. In Advances in
Neural Information Processing Systems 14.

Connor, M., & Roth, D. (2007). Context sensitive paraphrasing with a single unsupervised
classifier. In ECML.

Cooper, R., Crouch, R., van Eijck, J., Fox, C., van Genabith, J., Jaspars, J., Kamp, H.,
Pinkal, M., Milward, D., Poesio, M., Pulman, S., Briscoe, T., Maier, H., & Konrad, K.
(1996). Using the framework. Tech. rep., FraCaS: A Framework for Computational
Semantics.

Dagan, I., & Glickman, O. (2004). Probabilistic textual entailment: Generic applied mod-
eling of language variability. PASCAL workshop on Text Understanding and Mining.

Dagan, I., Glickman, O., Gliozzo, A., Marmorshtein, E., & Strapparava, C. (2006a). Direct
word sense matching for lexical substitution. In Proceedings of COLING-ACL.

Dagan, I., Glickman, O., & Magnini, B. (2006b). The PASCAL Recognising Textual Entail-
ment Challenge. In Quiñonero-Candela, J., Dagan, I., Magnini, B., & d’Alché Buc, F.
(Eds.), Machine Learning Challenges. Lecture Notes in Computer Science, Vol. 3944,
pp. 177–190. Springer.

Dagan, I., Roth, D., Sammons, M., & Zanzotto, F. M. (2013). Recognizing Textual Entail-
ment: Models and Applications. Synthesis Lectures on Human Language Technologies.
Morgan & Claypool Publishers.

de Salvo Braz, R., Girju, R., Punyakanok, V., Roth, D., & Sammons, M. (2005). An inference
model for semantic entailment in natural language.. In Proceedings of AAAI.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990).
Indexing by latent semantic analysis. Journal of the American Society of Information
Science, 41 (6), 391–407.

Dinu, G., & Lapata, M. (2010). Topic models for meaning similarity in context. In Pro-
ceedings of Coling 2010: Posters.

Emele, M. C., & Dorna, M. (1998). Ambiguity preserving machine translation using packed
representations. In Proceedings of COLING-ACL.

Fellbaum, C. (Ed.). (1998). WordNet: An Electronic Lexical Database. Language, Speech
and Communication. MIT Press.

Gabrilovich, E., & Markovitch, S. (2007). Computing semantic relatedness using Wikipedia-
based Explicit Semantic Analysis. In Proceedings of IJCAI.

Ganitkevitch, J., Van Durme, B., & Callison-Burch, C. (2013). PPDB: The paraphrase
database. In Proceedings of HLT-NAACL.

Giampiccolo, D., Magnini, B., Dagan, I., & Dolan, B. (2007). The Third PASCAL Recog-
nizing Textual Entailment Challenge. In Proceedings of the ACL-PASCAL Workshop
on Textual Entailment and Paraphrasing.

Giampiccolo, D., Trang Dang, H., Magnini, B., Dagan, I., & Dolan, B. (2008). The Fourth
PASCAL Recognizing Textual Entailment Challenge. In Proceedings of the TAC 2008
Workshop.

53

Bar-Haim, Dagan & Berant

Glickman, O., & Dagan, I. (2003). Identifying lexical paraphrases from a single corpus: a
case study for verbs. In Proceedings of RANLP.

Glickman, O., Shnarch, E., & Dagan, I. (2006). Lexical reference: A semantic matching
subtask. In Proceedings of EMNLP.

Haghighi, A. D., Ng, A. Y., & Manning, C. D. (2005). Robust textual inference via graph
matching. In Proceedings of EMNLP.

Harmeling, S. (2009). Inferring textual entailment with a probabilistically sound calculus.
Natural Language Engineering, 15 (4), 459–477.

Heilman, M., & Smith, N. A. (2010). Tree edit models for recognizing textual entailments,
paraphrases, and answers to questions. In Proceedings of HLT-NAACL.

Hickl, A. (2008). Using discourse commitments to recognize textual entailment. In Proceed-
ings of COLING.

Hickl, A., & Bensley, J. (2007). A discourse commitment-based framework for recogniz-
ing textual entailment. In Proceedings of the ACL-PASCAL Workshop on Textual
Entailment and Paraphrasing.

Hickl, A., Bensley, J., Williams, J., Roberts, K., Rink, B., & Shi, Y. (2006). Recogniz-
ing textual entailment with LCC’s GROUNDHOG system. In The Second PASCAL
Challenges Workshop on Recognizing Textual Entailment.

Jurafsky, D., & Martin, J. H. (2008). Speech and Language Processing: An Introduction
to Natural Language Processing, Computational Linguistics and Speech Recognition
(Second edition). Prentice Hall.

Kamp, H., & Reyle, U. (1993). From Discourse to Logic. Introduction to Modeltheoretic
Semantics of Natural Language, Formal Logic and Discourse Representation Theory.
Kluwer Academic Publishers, Dordrecht.

Kay, M. (1996). Chart generation. In Proceedings of ACL.

Kazama, J., & Torisawa, K. (2007). Exploiting Wikipedia as external knowledge for named
entity recognition. In Proceedings of EMNLP-CoNLL.

Kipper, K. (2005). VerbNet: A broad-coverage, comprehensive verb lexicon. Ph.D. thesis,
University of Pennsylvania.

Kouylekov, M., & Magnini, B. (2005). Tree edit distance for textual entailment. In Pro-
ceedings of RANLP.

Lehmann, J., Bizer, C., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., & Hellmann,
S. (2009). DBpedia - a crystallization point for the web of data. Journal of Web
Semantics.

Lin, D. (1998). Dependency-based evaluation of minipar. In Proceedings of the Workshop
on Evaluation of Parsing Systems at LREC.

Lin, D., & Pantel, P. (2001). Discovery of inference rules for question answering. Natural
Language Engineering, 7 (4), 343–360.

Lotan, A., Stern, A., & Dagan, I. (2013). TruthTeller: Annotating predicate truth. In
Proceedings of HLT-NAACL.

54

Knowledge-Based Textual Inference via Parse-Tree Transformations

MacCartney, B., Galley, M., & Manning, C. D. (2008). A phrase-based alignment model
for natural language inference. In Proceedings of EMNLP.

MacCartney, B., Grenager, T., de Marneffe, M.-C., Cer, D., & Manning, C. D. (2006).
Learning to recognize features of valid textual entailments. In Proceedings of HLT-
NAACL.

MacCartney, B., & Manning, C. D. (2009). An extended model of natural logic. In Pro-
ceedings of IWCS-8.

Macleod, C., Grishman, R., Meyers, A., Barrett, L., & Reeves, R. (1998). Nomlex: A lexicon
of nominalizations. In Proceedings of Euralex98.

Maxwell III, J. T., & Kaplan, R. M. (1991). A method for disjunctive constraint satisfac-
tion. In Tomita, M. (Ed.), Current Issues in Parsing Technology. Kluwer Academic
Publishers.

Mehdad, Y., & Magnini, B. (2009a). A word overlap baseline for the recognizing textual
entailment task. Unpublished manuscript.

Mehdad, Y., & Magnini, B. (2009b). Optimizing textual entailment recognition using par-
ticle swarm optimization. In Proceedings of the 2009 Workshop on Applied Textual
Inference.

Melamud, O., Berant, J., Dagan, I., Goldberger, J., & Szpektor, I. (2013). A two level
model for context sensitive inference rules. In Proceedings of ACL.

Meyers, A., Reeves, R., Macleod, C., Szekeley, R., Zielinska, V., & Young, B. (2004). The
cross-breeding of dictionaries. In Proceedings of LREC.

Mi, H., Huang, L., & Liu, Q. (2008). Forest-based translation. In Proceedings of ACL-08:
HLT.

Mirkin, S., Dagan, I., & Pado, S. (2010). Assessing the role of discourse references in
entailment inference. In Proceedings of ACL.

Mirkin, S., Dagan, I., & Shnarch, E. (2009). Evaluating the inferential utility of lexical-
semantic resources. In Proceedings of EACL.

Moldovan, D. I., & Rus, V. (2001). Logic form transformation of WordNet and its applica-
bility to question answering. In Proceedings of ACL.

Nairn, R., Condoravdi, C., & Karttunen, L. (2006). Computing relative polarity for textual
inference. In Proceedings of International workshop on Inference in Computational
Semantics (ICoS-5).

Pang, B., Knight, K., & Marcu, D. (2003). Syntax-based alignment of multiple translations:
Extracting paraphrases and generating new sentences. In Proceedings of HLT-NAACL.

Pantel, P., Bhagat, R., Coppola, B., Chklovski, T., & Hovy, E. (2007). ISP: Learning
inferential selectional preferences. In Proceedings of HLT-NAACL.

Ponzetto, S. P., & Strube, M. (2007). Deriving a large-scale taxonomy from wikipedia. In
Proceedings of AAAI.

Ravichandran, D., & Hovy, E. (2002). Learning surface text patterns for a question answer-
ing system. In Proceedings of ACL.

55

Bar-Haim, Dagan & Berant

Ritter, A., Mausam, & Etzioni, O. (2010). A latent dirichlet allocation method for selectional
preferences. In Proceedings of ACL.

Romano, L., Kouylekov, M., Szpektor, I., Dagan, I., & Lavelli, A. (2006). Investigating a
generic paraphrase-based approach for relation extraction. In Proceedings of EACL.

Ron, T. (2006). Generating entailment rules based on online lexical resources. Master’s
thesis, Computer Science Department, Bar-Ilan University.

Ruppenhofer, J., Sporleder, C., Morante, R., Baker, C., & Palmer, M. (2009). Semeval-
2010 task 10: Linking events and their participants in discourse. In Proceedings of
the Workshop on Semantic Evaluations: Recent Achievements and Future Directions
(SEW-2009).

Saint-Dizier, P., & Mehta-Melkar, R. (Eds.). (2011). Proceedings of the Joint Work-
shop FAM-LbR/KRAQ’11. Learning by Reading and its Applications in Intelligent
Question-Answering.

Schoenmackers, S., Etzioni, O., Weld, D. S., & Davis, J. (2010). Learning first-order horn
clauses from web text. In Proceedings of EMNLP.

Shinyama, Y., Sekine, S., Sudo, K., & Grishman, R. (2002). Automatic paraphrase acqui-
sition from news articles. In Proceedings of HLT.

Shnarch, E., Barak, L., & Dagan, I. (2009). Extracting lexical reference rules from
Wikipedia. In Proceedings of ACL-IJCNLP.

Snow, R., Jurafsky, D., & Ng, A. Y. (2006a). Semantic taxonomy induction from heteroge-
nous evidence. In Proceedings of COLING-ACL.

Snow, R., Vanderwende, L., & Menezes, A. (2006b). Effectively using syntax for recognizing
false entailment. In Proceedings of HLT-NAACL.

Stern, A., & Dagan, I. (2011). A confidence model for syntactically-motivated entailment
proofs. In Proceedings of RANLP.

Stern, A., & Dagan, I. (2014). Recognizing implied predicate-argument relationships in
textual inference. In Proceedings of ACL.

Stern, A., Stern, R., Dagan, I., & Felner, A. (2012). Efficient search for transformation-based
inference. In Proceedings of ACL.

Szpektor, I., & Dagan, I. (2007). Learning canonical forms of entailment rules. In Proceedings
of RANLP.

Szpektor, I., & Dagan, I. (2008). Learning entailment rules for unary templates. In Pro-
ceedings of COLING.

Szpektor, I., & Dagan, I. (2009). Augmenting WordNet-based inference with argument
mapping. In Proceedings of ACL-IJCNLP Workshop on Applied Textual Inference
(TextInfer).

Szpektor, I., Dagan, I., Bar-Haim, R., & Goldberger, J. (2008). Contextual preferences. In
Proceedings of ACL-08: HLT.

Szpektor, I., Tanev, H., Dagan, I., & Coppola, B. (2004). Scaling web based acquisition of
entailment patterns. In Proceedings of EMNLP.

56

Knowledge-Based Textual Inference via Parse-Tree Transformations

Tatu, M., Iles, B., Slavick, J., Novischi, A., & Moldovan, D. (2006). COGEX at the Sec-
ond Recognizing Textual Entailment Challenge. In The Second PASCAL Challenges
Workshop on Recognizing Textual Entailment.

Tatu, M., & Moldovan, D. (2006). A logic-based semantic approach to recognizing textual
entailment. In Proceedings of COLING-ACL.

Tatu, M., & Moldovan, D. (2007). COGEX at RTE3. In Proceedings of the ACL-PASCAL
Workshop on Textual Entailment and Paraphrasing.

Valencia, V. S. (1991). Studies on Natural Logic and Categorial Grammar. Ph.D. thesis,
University of Amsterdam.

van Deemter, K., & Kibble, R. (2000). On coreferring: Coreference in MUC and related
annotation schemes. Computational Linguistics, 26 (4), 629–637.

Voorhees, E. M., & Harman, D. (1997). Overview of the sixth Text REtrieval Conference
(TREC-6). In Proceedings of TREC.

Wang, M., & Manning, C. (2010). Probabilistic tree-edit models with structured latent
variables for textual entailment and question answering. In Proceedings of COLING.

Wang, R., & Neumann, G. (2007). Recognizing textual entailment using a subsequence
kernel method. In Proceedings of AAAI.

Yates, A., & Etzioni, O. (2009). Unsupervised methods for determining object and relation
synonyms on the web. Journal of Artificial Intelligence Research (JAIR), 34, 255–296.

Zanzotto, F. m., Pennacchiotti, M., & Moschitti, A. (2009). A machine learning approach
to textual entailment recognition. Natural Language Engineering, 15 (4), 551–582.

57

