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Abstract

In nature, group behaviours such as flocking as well as cross-
species symbiotic partnerships are observed in vastly dif-
ferent forms and circumstances. We hypothesize that such
strategies can arise in response to generic predator-prey pres-
sures in a spatial environment with range-limited sensation
and action. We evaluate whether these forms of coordina-
tion can emerge by independent multi-agent reinforcement
learning in simple multiple-species ecosystems. In contrast to
prior work, we avoid hand-crafted shaping rewards, specific
actions, or dynamics that would directly encourage coordi-
nation across agents. Instead we test whether coordination
emerges as a consequence of adaptation without encouraging
these specific forms of coordination, which only has indirect
benefit. Our simulated ecosystems consist of a generic food
chain involving three trophic levels: apex predator, mid-level
predator, and prey. We conduct experiments on two differ-
ent platforms, a 3D physics engine with tens of agents as
well as in a 2D grid world with up to thousands. The re-
sults clearly confirm our hypothesis and show substantial co-
ordination both within and across species. To obtain these
results, we leverage and adapt recent advances in deep re-
inforcement learning within an ecosystem training protocol
featuring homogeneous groups of independent agents from
different species (sets of policies), acting in many different
random combinations in parallel habitats. The policies uti-
lize neural network architectures that are invariant to agent
individuality but not type (species) and that generalize across
varying numbers of observed other agents. While the emer-
gence of complexity in artificial ecosystems have long been
studied in the artificial life community, the focus has been
more on individual complexity and genetic algorithms or ex-
plicit modelling, and less on group complexity and reinforce-
ment learning emphasized in this article. Unlike what the
name and intuition suggests, reinforcement learning adapts
over evolutionary history rather than a life-time and is here
addressing the sequential optimization of fitness that is usu-
ally approached by genetic algorithms in the artificial life
community. We utilize a shift from procedures to objectives,
allowing us to bring new powerful machinery to bare, and
we see emergence of complex behaviour from a sequence of
simple optimization problems.

Introduction
Our natural world is the ultimate example of a self-
organizing system (Ashby, 1947). Species and individuals

adapt to each other in competition and cooperation, often
as predators and prey in food chains. One ubiquitous ex-
ample of cooperative group behavior is flocking, which can
be found on land, sea and air, and numerous benefits from
flocking for both predators and prey have been discussed in
the literature (Handegard et al., 2012; Ruxton, 2012). For
instance, if predators are sparse, a flocked group of prey is
not much more likely to be detected than any single indi-
vidual. Thus, if the predator eliminates at most one individ-
ual per detection, it follows that fewer prey will be eaten if
they stick together. Further, if the prey are collectively more
likely to detect the predator and thus to avoid predation, this
improves individual survival chances. Flocking is not only
used by prey species but also by predators: it can enable
predators to cut off escape routes for a group of prey (e.g.
seatrout hunting juvenile gulf menhaden) (Handegard et al.,
2012); enable species to jointly capture larger prey, e.g. hu-
mans hunting whales (Alvard, 2003); or reduce individual
nutritional variability by sharing captures. A second exam-
ple of group behavior are symbiotic partnerships between
species, for example humming bird nests are safer from jay
predation when a hawk, which threatens the jays, is situated
on top of the same tree (Greeney et al., 2015).

We hypothesize that group strategies like flocking and
symbiosis can result in response to very generic predator-
prey pressures and opportunities in a spatial environment
with range-limited sensation and action, and we test this
hypothesis experimentally by deploying independent rein-
forcement learning (RL) agents in generic simulated ecosys-
tems. RL agents, like e.g. genetic algorithms, learn across
the full (evolutionary) history and not primarily during
episodes (life-times) and is primarily here viewed as a pow-
erful way to optimizing the sequence of optimization prob-
lems posed by the ecosystem including the policies of the
other species at the relevant times.

Our environments have three trophic levels (prey, preda-
tors and apex predators) and thus enable the emergence of
partnerships within and across species. Further, unlike prior
work (Morihiro et al., 2006; Hung, 2015; Yang et al., 2018)
we do not shape the dynamics, actions or rewards to specif-
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ically encourage or facilitate particular group behaviors, In-
stead we show that such behaviors can emerge in simple
general contexts. We use two simulation platforms for this
study, to highlight the generality of the findings and show
that implementation details are not important. First, the
Mujoco physics engine (Todorov et al., 2012) in which RL
agents control a spherical body with continuous steer and
roll actions, which sense the position and velocity of nearby
others and their own physical state. These agents are re-
warded (or penalized) according to their proximity to prey
(or predator) agents. Second, we use a 2D gridworld with
partial observations (agents locally sense a window of pix-
els around themselves) as used in Leibo et al. (2017). The
former environment allows richer movement patterns while
being more challenging to learn in, while the latter allows
for very large numbers of agents.

One choice to make in both platforms is the population
size at each trophic level. We believe that flocking is more
likely when there is a spatial concentration of the predators
and/or prey of the species in question. For a species to seek
protection from an apex predator we believe it must be hard
to escape from its predators because of its density or abil-
ities. Due to these considerations, we opt for a relatively
large middle population while a few individual agents at the
bottom level represent a large amount of food (e.g. a group
of individuals). The apex predators will be the fewest in
numbers but have the most impact (on reward).

We find that the agents of the middle trophic level learn
a coordinated hunting (flocking) strategy that makes them
more successful at hunting their prey. There are at least two
benefits from collective hunting; reducing the set of escape
trajectories for the prey and collective navigation including
information gathering. Cross species collaboration patterns
are one of the new possibilities that arise with more than
two trophic levels. We observe this in both the 3D physics
simulation and the 2D gridworld. The agents at the bottom
of the food chain learn to seek out the top apex predator
(the hawk) for protection (from jays) and even form a sort of
“partnership”.

Further, to investigate if at a large scale, like Yang et al.
(2018), we also see population dynamics of a form that
in some ways resemble nature (e.g. oscillations around a
mean), we introduce a variation with spawning and van-
ishing (from predation) agents. This enables the population
levels to reflect the success of the species (policy). We ob-
serve several learning phases with lasting equilibria in be-
tween quicker changes when superior strategies are discov-
ered. Within each episode, population levels fluctuate reg-
ularly around the average, which changes between episodes
as all agents learn. Further, we are able to see the aforemen-
tioned group behaviours playing a pivotal role. Most inter-
estingly, we see first the failure and then success of group
defence without direct individual reward, and it is strength-
ened by a partnership.

In summary, in our food chain simulations we observe
several instances of sophisticated spatial coordination strate-
gies emerging without having shaped the environment dy-
namics or rewards. For example, we see flocking strategies
for predators. While this kind of pattern was also seen re-
cently by Yang et al. (2018) in a grid world, they relied on
an explicit ”join group” action and introduce prey explicitly
requiring sufficiently large groups to hunt.

Related work
Besides the prior work that has been reviewed above, we
here review further relevant literature in Reinforcement
Learning, Ecology and Artificial Life.

Predator-Prey dynamics have been widely studied (Levin,
2009), both through data gathering in nature and with math-
ematical modelling and simulation (Harfoot et al., 2014).
Often these models are defined at the population level and
deal primarily with numbers or densities in an area. Also,
research generally focuses on two trophic levels, a predator
species (e.g. foxes) and its prey species (e.g. rabbits). A
more intricate line of work (Fretwell, 1987) has considered
three or more trophic levels, which permit trophic cascade
effects. All of the above are explicit mathematical models
and do not involve agents that learn.

A famous example of a trophic cascade is the green world
hypothesis (Hairston et al., 1960), which explains the rich-
ness of plant life on earth as resulting from predation keep-
ing herbivore population size in check. A more recently
discovered example (Greeney et al., 2015) is the aforemen-
tioned partnership between humming birds and hawks. The
natural world contains a tremendous diversity of other intel-
ligent group strategies, including how ants search for food,
which has inspired the ant colony optimization class of al-
gorithms (Dorigo, 1992). Flocking has also inspired a long
line of work for robot navigation (Reynolds, 1987) enabling
drones with weak individual sensors to reach their target
more robustly together. Other work has replaced the explicit
flocking model with reinforcement learning in an MDP con-
structed so as to learn flocking (Morihiro et al., 2006), e.g. to
fly a group of UAVs in formation to a location (Hung, 2015).

Artificial ecosystems have been studied for a long time
(Conrad and Pattee, 1970; Packard, 1987; Ray, 1991; Hraber
et al., 1994; Yaeger, 1993; Adami and Brown, 1994). Many
of these do not contain an element of spatial navigation.
Polyworld developed in Yaeger (1993) is the clearest exam-
ple that does contain navigation in two dimensions. How-
ever, none of these works have reported the emergence of
flocking behaviour. Although symbiosis has been a possi-
bility from the earliest models (Conrad and Pattee, 1970),
interactions between individuals has not been a main con-
cern (Pachepsky et al., 2002). In their continuation, such as
Lenski et al. (2003); Yaeger (2009), these lines of work fo-
cused more on the evolution of individual complexity. In the
area of artificial life, work on swarm intelligence (Bonabeau
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et al., 1999) usually involves explicit models as reviewed
above. Further, in this area as in this article, work has also
focused on generic ecosystems aiming to capture essentials
and not biological specifics (Bedau, 2007). Many of these
works focus on genetic algorithms due to them being in-
spired by genetic evolution, while we shift the attention to
the sequence of optimization problems addressed by those
procedures, and deploy state-of-the-art deep reinforcement
learning that have seen much recent success.

Simple predator-prey inspired environments have also
been used as test problems for multi-agent reinforcement
learning, but not in the same way as explored here. For ex-
ample, Lowe et al. (2017) model two trophic levels and do
not closely investigate the solution strategies, instead com-
paring algorithms based on accumulated reward.

Reinforcement Learning in Ecosystems

As is common in RL (Sutton and Barto, 1998), we rely on an
agent-environment framework (Russell and Norvig, 2010)
where an agent interacts sequentially with an environment
over a sequence of time steps. The agent selects actions
and the environment returns observations and rewards. The
agent’s performance is measured by cumulative reward, pos-
sibly using a discount to encode a preference for the near-
term. Multi-agent reinforcement learning (MARL) models
a collection of agents interacting with an environment and
learning, from these interactions, to optimize individual cu-
mulative reward. MARL is typically modelled as a Markov
game (Littman, 1994). The special case of a Markov game
with one agent is a partially-observed Markov decision pro-
cess (POMDP) (Sutton and Barto, 1998).

The 3D-physics based environment proposed here, fea-
tures continuous actions, but discrete time. The environ-
ment has underlying smooth (classical physics) dynamics
with continuous time. 3D physics and continuous control of
forces, provide a rich world allowing for more realistic and
explicit behaviours, but can be more difficult to learn. For
example, it requires a long sequence of actions to perform
an apparently simple maneuver.

Ecosystem training We use an ecosystem training (Fig-
ure 1) approach where we keep three species (sets of poli-
cies), one set each for prey, the predators and apex preda-
tor, and for each episode we create a habitat by sampling
one policy from each species and use it for all the rele-
vant players. We do this in many parallel threads. Hence,
at all times experience is gathered for each policy in many
different combinations and for several instances of itself in
each ongoing episode. The experiences are gathered and
sampled from for each policy, which is learned indepen-
dently through updates performed to its network weights
using state-of-the-art RL algorithms; Maximum a-posteriori
Policy Optimization (MPO) (Abdolmaleki et al., 2018) for
the continuous case and Impala (Espeholt et al., 2018).

Figure 1: Simple example of ecosystem training: Sampling
from two species (blue and red) of three policies (here cir-
cles) each, to be placed in habitats (here row of three rectan-
gles) for two identical blue and one red.

A Physics-Based Food Chain Environment
We introduce a physics based food chain environment (see
Figures 2 and 4) and describe its observations and rewards,
as well as how agents process these and learn in an ecosys-
tem training framework with three species. We base our en-
vironment on the MuJoCo physics engine (Todorov et al.,
2012), utilized in much recent continuous reinforcement
learning work including Brockman et al. (2016); Heess et al.
(2017); Bansal et al. (2017); Abdolmaleki et al. (2018). In
this environment, each agent controls a sphere with a two di-
mensional action space; acceleration forward/backward and
rotational to steer. We have three different roles in the envi-
ronment; apex predator, predator and prey, so we have three
agent types or species. For visualization we render each
agent type with different colors; green(prey), blue(predator)
and red(apex predator). These spheres travel on a square
floor bounded by walls on each side. The environment fur-
ther contains two large square blocks which serve as physi-
cal barriers and introduce additional structure in the environ-
ment. The predators always spawn randomly within a large
square in the middle. The apex predator and prey spawns
according to two equally likely patterns. In the first they
spawn in the same central square as the predator, or they
each spawn independently in (a square in) a uniformly ran-
dom corner. Both spawn patterns are displayed in accompa-
nying videos1 and are simply chosen to force the learning of
varied behaviours, but are not designed to generate any spe-
cific outcome. In one, the predators (and the apex predator)
has to start with searching, in the other the prey has to start
with escaping.

Proximity based rewards The agents receive rewards
based on proximity to other agents. Predators receive pos-
itive reward for being near prey while prey agents receive
negative reward. Similarly, the apex predator receives a pos-
itive reward when it is sufficiently close to a predator agent
which receives a negative reward in turn. The reward func-
tion is only dependent on distance between the agents and

1https://docs.google.com/presentation/d/1u86oapziZ35MfphcrIC3zbMMg9It-
Bhf6fJEqyoeBwg/edit?usp=sharing
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Figure 2: Physics based ecosystem environment. Left: An
example of close red-green partnership in the middle of a
large floor. Right: An illustration of two predators (blue)
with a larger conspecific radius and a smaller by which it
can see the prey (green).

we choose a sigmoid with a cut-off threshold. We define,

φ(d) =

{
1− tanh (0.5d) if d < radius

0 otherwise
(1)

and if di is the distance (at time t) from a certain predator
agent to the prey agent i, and if ej is the distance to the
apex predator agent j, then this predator agent receives the
instantaneous reward

∑
i φ(di) − 2.5

∑
j φ(ej). The factor

2.5 for the term that represents being predated on by the apex
predator, is to not make being close to one or two prey more
important then avoiding the predator. A prey agent’s reward
only depends on its distance to the predator agents, and if
the distance to the predator agent l is dl, then its instanta-
neous reward is −∑

l φ(dl). An apex predators agent’s re-
ward only depends on its distance to the predator agents, and
if the distance to the predator agent l is el, then its instanta-
neous reward is

∑
l φ(el).

Observations Every agent observes their own position,
velocity and accelerometer information as well as the vector
to each corner of the two blocks that can be seen in the fig-
ure. Each agent further observes egocentrically represented
positions and velocities of other agents within its sensor ra-
dius. Next, we introduce how the agents process these ob-
servations and map onto actions.

Perception Network As is common with swarm agents,
motivated by both biological inspiration as well as learn-
ing complexity, we only want our agents to take the species
of another agent into account and not individual identity.
Further, we let each agent in the environment of the same
species have the same policy. We want agents to have the
capacity to generalize across different numbers of sensed
other agents and potentially scale to very large numbers. We
achieve this, as shown in Figure 3, by first applying a two
layer feed forward neural network to every other agent’s po-
sition and velocity (within the focal agent’s sensor radius),
and then we can combine these for each agent type by ei-
ther summing or computing the mean, with similarity to

Figure 3: Diagram showing how the perception network first
process the different parts of an observation separately and
then combines the resulting representations.

Hüttenrauch et al. (2017).
Policy Network The policy that produces the continuous

action vector is constructed as follows. The network that en-
codes the position and velocity of each other agent within
the relevant sensor radius, is a two-layer feed forward net-
work with 8 hidden units in each layer. For the predator
agents (as many as 40 in the physics based experiments), we
combine these representations by computing their mean. For
the prey and apex predator agents, which are few (5 and 1),
we use the sum to distinguish different numbers of agents
in the same place. After this, we concatenate the result for
the three types of other agents as well as the agent’s own
proprioception and the vectors to the corners of the boxes
on the floor. The resulting total representation is first pro-
cessed by a two layer feedforward network with 128 and 64
units (with tanh activation) and then a recurrent network, an
LSTM (Hochreiter and Schmidhuber, 1997) with 32 units.
The final layer produces Gaussian distributed actions. Note
that while parameters are shared between agents of the same
type within an episode, agents are entirely independent in
terms of action selection.

Locally observed grid worlds
In this section, we introduce a grid world ecosystem that
is similar to the 3D physics based world, in the abstract
ecological sense. The agents environment is a square map
and they can rotate 90 degrees left or right, step forward
or backward, or launch a yellow beam that represents pre-
dation. The predation beam is a difference to the physical
3D simulation where an agent only has to be near its prey
to predate. In the grid world the agent has to be near and
directed towards the prey, and choose this action, which is
supplied by the platform Leibo et al. (2017). It is our strat-
egy to only make as minimal and obvious design choices on
top of the generic platforms as possible. However, it also
comes with new possibilities including the possibility of en-
abling defense against predation and it makes a form of cap-
ture of prey even more important. Again, we have agents
of three different varieties; prey(green), predator(blue) and
apex predator(red). The apex predator gets reward +1 if pre-
dating on a predator (meaning that the predator is in the apex
predator’s yellow beam), while the predator gets −1. Sim-
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Figure 4: One prey (green) getting surrounded by most of
the predators (blue).

ilarly a predator gets +1 for predating on prey, which then
gets −1. These are the rules that defines the environment
shown in Figure 5.

The agents are trained using a ecosystem training protocol
like in the 3D physics case, while differing by the learning
update used. We replace MPO with impala learning updates
(Espeholt et al., 2018) for this case in which the action space
is discrete. The agents observe a small 9x9 window around
the agent. Figure 5 shows screens from the resulting simula-
tions when using a modest 5 apex predators, 10 prey and 50
predators. In the next section, we will also consider agents
that spawn and vanish during very long episodes with thou-
sands of agents, yielding population dynamics reflecting the
relative success of each species over time.

Experiments
This section presents results from experiments with the in-
troduced ecosystems that test our hypothesis that flock-
ing and symbiosis can result in response to very generic
predator-prey pressures in a spatial environment with range-
limited sensation and action. We also investigate how the
emergence of the relevant strategies depends on levels of
predation pressure and the range of conspecific (within
species) sensing among the predators.

Physical worlds
Our first range of experiments in ecosystems with 3D-
physics, is varying the radius (5 vs 10 in a square with side
length 48) within which predator agents can see each other,
to see how well they make use of that information and what
the consequences for the ecosystem are. All experiments
features a radius of 5 both for sensing agents of other types,
for the apex predator and the prey to see their conspecifics
and the environment reward cut-off radius. We measure both
the reward achieved for each type of agent during training,
which was performed with 200 parallel habitats, and dur-
ing regular evaluation against fixed pretrained prey and apex
predator agents.

conspecific radius 5 10
number of predators 20 20
evaluation reward 2.7± 0.1 5.1± 0.2
symbiosis 0.6± 0.2 1.5± 0.4
predator group size 5.5± 1.4 9.3± 2.5
apex predator rewards 29.7± 5.8 51.8± 5.1
predator rewards 5.6± 1.5 9.3± 0.4
prey rewards −36.0± 4.6 −64.0± 13

conspecific radius 10 10
number of predators 40 10
symbiosis 1.7± 0.3 0.96± 0.22
predator group size 16.8± 2.8 4.2± 1.3
apex predator rewards 119± 20 25.9± 8.7
predator rewards 12.9± 8.7 8.5± 5.2
prey rewards −128± 18 −22.2± 9.1

Table 1: Results in 3D-physics ecosystems (at the end of
training) for evaluation predator reward against fixed apex
predator and prey, as well as on symbiosis measured by
the average number of prey near the apex predator, predator
group size measured by the average number of other preda-
tors near a predator and training reward for each species.
The result are from three full runs of each of four experi-
ments, pooling results for each species (3x10 policies) and
calculating averages and standard errors. For reward, it is
just the standard error for the three means. The ecosystems
features 1 apex predator, 10, 20 or 40 predators, 5 prey and
conspecific radius 5 or 10.

Unlike the results against the prey and the apex predator
that the predators are learning with and that keeps chang-
ing, the results against the pre-trained agents provide a con-
sistent well-defined evaluation. Further, during training we
also measure distances between pairs of predator agents as
well as between the apex predator and prey pairs of agents.
From these we can judge to what extent predator agents flock
and to what extent prey and the apex predator stay together.
The results can be found in Table 1 based on species aver-
ages over the last 0.5e10 of 3.0e10 training steps.

Predator coordination: Predators perform better when
able to sense other predators with a larger sensor radius as
can be seen in Table 1 (5.1 > 2.7). We also see larger preda-
tor groups (9.3 > 5.3) when the conspecific sensor radius is
larger. We believe that where there is a larger concentration
of predators, there is likely to be a prey, and it is easier to
join such groups if one can sense further.

Apex predator-prey coordination: Another observa-
tion is that the number of prey on average within a circle
around the apex predator is much higher (1.5 > 0.6) when
the predator has the wider conspecific sensor radius, which
makes them a more effective hunter and increases the in-
centive of protection for prey. The smaller number (0.6) can
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Figure 5: Grid world ecosystem showing group captures
(predators of prey, highlighted by orange ellipses) and the
apex predator-prey partnerships (orange rectangles).

largely be due to the apex predator chasing a group of preda-
tors that is chasing a prey and thereby, keeping the prey and
the apex predator near each other. The stronger pattern (1.5)
is clearly a more direct partnership pattern as can be seen in
the videos1, from which Figure 2 was taken. When the prey
is chased by a flock of predators it cannot escape, it heads
to the middle where it meets the apex predator that breaks
up the pursuing predators. The videos1 also show an exam-
ple with a smaller world where the two prey and the apex
predator find each other and the three stay together.

It is interesting that the apex predator earns substantially
more reward when this partnership pattern with prey has
emerged. The end result of predators getting better at hunt-
ing is that its own predator (the apex predator) is a big win-
ner, via the adaptation by the prey. This is an example of the
fascinating and indirect possibilities that arise from model-
ing more than two trophic levels. Figure 2 shows an example
situation at the end of the learning for this case, while Figure
4 shows a situation generated by the very same agents (same
weights) as in Figure 2, but here a lone prey is surrounded
by a very large number of predators and does not find an es-
cape route until the apex predator agent arrives. The prey
here suffers catastrophic reward.

Varying numbers of predators: We compare varying
numbers of predators, all with conspecific sensing radius
10. We see (Table 1) that the apex predator-prey partner-
ship emerges more with 40 predators when the pressure on
prey is obviously higher, and much less with 10 predators.

Grid worlds
In a first grid world ecosystem experiment with 5 apex
predators, 10 prey and 50 predators, we consistently see
groups of predators capturing prey agents, both in the middle
of the floor (by 4 predators) and against walls (3 predators)
or in corners (2 predators). We also see prey learning the de-
fence strategy of sheltering near the apex predator, and the
apex predator staying with the prey as it can enjoy reward
for predating on approaching predators. These two strate-
gies are visible multiple times in Figure 5.

Figure 6: Top three on the left:The number of prey (top),
predators (middle) and apex predators (bottom) present on
average per episode. Top three on the right: The number
of prey (top), predators (middle) and the apex predator (bot-
tom) during the last episode. Bottom two rows: Peace (frac-
tion of time agents on average is present in the environment
(not vanished), numbers of predators near (within 3 cells on
each side) prey, apex predators near prey (sheltering) and
predators near the apex predator.

Large scale worlds with spawning and vanishing
agents. In our final experiment, we extend our experiments
both in scale and to introduce population dynamics, in the
simplest way available. We give each agent a total amount
of health (5) at the start, which is depleted by one unit each
time they are preyed upon. Upon depletion, agents sit out
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of the game for a certain amount of time (200) and then are
respawned. While neither this, nor a fixed spawn rate as in
Yang et al. (2018), represents the multiplicative nature of
biological population dynamics, we do still get an environ-
ment where the relative population size indicates how well
a certain agent type performs at a point in learning history.
Within episodes we get a fluctuating curve with a significant
oscillatory component around this mean, as is also familiar
from ecology (Levin, 2009) if not in an identical manner.

In addition, our design allows for defence by prey species.
That is, a predator can fire its yellow beam at the apex preda-
tor to reduce its health by one, and similarly prey can defend
against predators. The structure of this defence indirectly
encourages group strategies, since it takes a while for de-
fence to eliminate the predator. While better for all agents if
predators are eliminated, each individual can selfishly opti-
mize reward by running away and allowing one’s peers to
defend them. While reminiscent of the sequential social
dilemmas of Leibo et al. (2017), here a solution involving
a familiar partnership with the third species is found.

From the perspective of the prey, we see a progression
from annihilation to initiating defence to seeking shelter
near the apex predator and jointly decimating the predator,
which decrease its predation and peace increase. After this,
the apex predator must hunt the predator more actively, and
the predator gradually increase its predation on the prey.

Figure 6 showz the result of this experiment. Each (very
long 10000 step) episode starts with 1000 prey, 500 preda-
tors and 100 apex predators, in terms of population level
at different times of learning, and how the numbers varies
within an episode. After the first 100 (parallel) episodes (24
hours on the compute cluster), we see a drop in prey num-
bers to near extinction, and in the within episode results, we
see a complete annihilation early in the episodes. Predators
have learnt early on to efficiently hunt prey. Closer inspec-
tion shows that the prey mostly individually flee, while they
also start using their beam at the predator. After a period
of nearly 300 episodes (3 days on cluster), prey numbers
quickly increase while predator numbers now plummet be-
fore they adapt to this situation and gradually improve at the
expense of both prey and apex predators. In Figure 6 (bot-
tom right) we can see that the number of apex predators on
average around a prey, climbs up to a peak just at the time
when the change starts around episode 200. After this, we
can see that this is followed by peace (low predation) to in-
crease. We see predation levels between all species decrease
substantially and we also see in Figure 6 that the species
are now less frequently near each other. Our interpretation
is that the predators decreased their pursuit of prey as a re-
sponse to an apex predator-prey partnership that made it face
a combination of predation and defence it was decimated by.

Conclusions
In this work, we have approached emergence of complex
group behaviours in ecosystems as a sequence of optimiza-
tion problems where each species is optimizing its fitness
based on the current policies of other species. We use state-
of-the-art deep reinforcement learning methods to address
these optimization problems and consistently found the hy-
pothesized emergence of strategies like flocking and sym-
biosis. These group patterns, which appear widely in dif-
ferent forms and contexts in nature, emerge through interac-
tions of independently incentivized self-interested reinforce-
ment learning agents acting in simple ecosystems that are
not shaped to encourage the emergence of these particular
strategies. Taken together, our results demonstrate that state-
of-the-art reinforcement learning agents combined with our
open-ended ecosystem training protocol can generate inter-
esting coordinated behaviours familiar from nature.
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