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Joint Optimization for Chinese POS Tagging
and Dependency Parsing

Zhenghua Li, Min Zhang, Wanxiang Che, Ting Liu, and Wenliang Chen

Abstract—Dependency parsing has gained more and more in-
terest in natural language processing in recent years due to its sim-
plicity and general applicability for diverse languages. Previous
work demonstrates that part-of-speech (POS) is an indispensable
feature in dependency parsing since pure lexical features suffer
from serious data sparseness problem. However, due to little mor-
phological changes, Chinese POS tagging has proven to be much
more challenging than morphology-richer languages such as Eng-
lish (94% vs. 97% on POS tagging accuracy). This leads to severe
error propagation for Chinese dependency parsing. Our experi-
ments show that parsing accuracy drops by about 6% when re-
placing manual POS tags of the input sentence with automatic ones
generated by a state-of-the-art statistical POS tagger. To address
this issue, this paper proposes a solution by jointly optimizing POS
tagging and dependency parsing in a unique model. We propose
for our joint models several dynamic programming based decoding
algorithms which can incorporate rich POS tagging and syntactic
features. Then we present an effective pruning strategy to reduce
the search space of candidate POS tags, leading to significant im-
provement of parsing speed. Experimental results on two Chinese
data sets, i.e. Penn Chinese Treebank 5.1 and Penn Chinese Tree-
bank 7, demonstrate that our joint models significantly improve
both the state-of-the-art tagging and parsing accuracies. Detailed
analysis shows that the joint method can help resolve syntax-sensi-
tive POS ambiguities {NN, VV}. In return, the POS tags become
more reliable and helpful for parsing since the syntactic features
are used in POS tagging. This is the fundamental reason for the
performance improvement.

Index Terms—Dependency parsing, dynamic programming,
joint models, part-of-speech tagging.
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I. INTRODUCTION

G IVEN an input sentence of n words, denoted by
X = wi...w,, part-of-speech (POS) tagging aims to
find an optimal tag sequence t = ¢1...t,, where t; € 7T
(1 £ ¢ < n)and 7 is a predefined tag set. POS tags are
designed to represent word classes so that words of the same
POS tag play a similar role in syntactic structures. The size of
T is usually much less than the vocabulary size. Typically, POS
tagging is treated as a sequence labeling problem, and has been
previously addressed by machine learning algorithms such as
maximum-entropy (ME) [1], conditional random fields (CRF)
[2], and perceptron [3]. Fig. 1 shows an example sentence
from Penn Chinese Treebank 5.1 (CTBS). The lowest three
rows present the n-best POS tags for each word produced by a
state-of-the-art CRF-based tagger. Looking at the 1-best POS
tags, we can see that the CRF model makes four errors, i.e.
de/DEC — DEG, ouwen/NR — NN, xiaoli/VV — NN, and
liwupudui/NR — NN. In fact, syntax-sensitive POS ambigui-
ties, such as {NN, VV} and {DEC, DEG}, require long-distance
syntactic knowledge to resolve and are very difficult for the
sequential labeling models.

Dependency parsing maps a natural language sentence into
a structural dependency tree conforming to a predefined depen-
dency grammar, as depicted in Fig. 1. A dependency tree is de-
notedbyd = {(h,m, 1) : 0 < h<mn 1 <m<nlelL}]
where (i, m, ) means a dependency from the head word (also
called father) 1wy, to the modifier (also called child or depen-
dent) w,, with a dependency label {, and L is the label set. De-
pendency labels are used to indicate the syntactic or semantic
relation between the two words. For instance, the dependency
(8, 6, SUB) in Fig. 1 means ouwen is the subject of xiacli. wy
is an artificial token which points to the head word of the sen-
tence and is used to simplify the formalization of the problem.
Since this paper focuses on unlabeled dependency parsing, we
use (h, m) or b ~ m interchangeably to represent a dependency
arc without considering the label Z.

Data-driven dependency parsing models make heavy use
of POS tags to compose supporting features, since it leads to
severe data sparseness problem if only lexical features are used.
However, due to the lack of morphological clues, Chinese POS
tagging turns out to be much more challenging than other mor-
phology-richer languages such as English. The state-of-the-art
POS tagging accuracy is about 94% for Chinese, which is much
lower than 97% for English [3]. This causes a serious error
propagation problem for Chinese dependency parsing. Our ex-
perimental results show that parsing accuracy drops by about 6%
when using automatic POS tags instead of gold-standard ones
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Fig. 1. A labeled dependency tree from CTBS5. The Pinyin transcriptions and English translations are presented in the two rows below the Chinese sentence. We
prune out the implausible POS tags according to the marginal probabilities (see Section I1I-C) and list the top three candidate POS tags in the lowest three rows

(incorrect POS tags in grey color and correct ones in black color).

(see Table Vand VI in Section IV). For example in Fig. 1, due
to the tagging error of xiacli/VV.— NN, our pipelined parsing
model fails to recognize xiaoli as the predicate of the sentence and
returns a fully unreasonable structure. However, this issue has not
been well addressed in previous work. Previous research either
simply adopts a pipeline approach by first POS tagging and then
dependency parsing, or unrealistically overlooks this problem
by using gold-standard POS tags for Chinese [4], [5], [6].

In this paper, we address this issue by jointly optimizing POS
tagging and dependency parsing. Intuitively, joint inference of
POS tagging and dependency parsing should be helpful to the
two closely related individual tasks. On the one hand, syntactic
information can help resolve some POS ambiguities which are
difficult to handle by the sequential POS tagging models. On the
other hand, more accurate POS tags are able to further improve
dependency parsing. Take the tagging error of xiaoli/VV —
NN in Fig. 1 as an example. Since xiaoli is an unknown word
and the word contexts provide little clues, it is difficult for the
sequential CRF-based tagger to correctly tag xiaoli as a verb VV
instead of a noun NN. Differently, under the joint framework,
the model may find that if xiaoli is tagged as a noun, the sentence
would have no predicate and an undesirable dependency tree
would be built; on the contrary, if xiaoli is tagged as a verb,
the model could end up with a much more desirable syntactic
structure. With such observations, the joint model may make
the correct decision of xiacli/VV. In summary, we make the
following contributions:

* We propose several dynamic programming (DP) based de-
coding algorithms for our joint models which are capable
of effectively incorporating rich POS tagging and parsing
features on the one hand and efficiently searching out op-
timal joint results from the huge combinatorial hypothesis
space on the other hand.

+ We also present an effective marginal probability based
pruning method to constrain the search space of the POS
tag candidates of each word. Experiments show that our
joint models achieve comparable parsing speeds to their
pipeline counterparts.

* We experiment with the joint approach on two Chinese
standard dataset, i.e. CTB5 and CTB7, showing that our

joint models can significantly improve the state-of-the-art
POS tagging and parsing accuracies.

* Detailed error analysis shows that the joint method can
help resolve syntax-sensitive POS ambiguities. In return,
the POS tags become more reliable and helpful for parsing.
This is the fundamental reason for the performance im-
provements.

The remainder of this paper is organized as follows. Section II
describes the pipeline method, including the POS tagging and
parsing models. Section III presents the joint models, the
decoding algorithms, and the method for POS tag pruning.
Section IV reports the experimental results and error analysis.
We review previous research closely related to this work in
Section V, and conclude this paper in Section VI.

This paper is a substantial extension of our earlier work in [7].
We add new experimental results, a comprehensive description
of the models, more details about our method, and in-depth anal-
ysis of the results.

II. THE PIPELINE APPROACH

The pipeline method treats POS tagging and dependency
parsing as two cascaded problems. First, an optimal POS tag
sequence t is determined.

t = arg max Scorepos(x, t)
t

(1)

where Score,os (x,t) is the score of the POS tag sequence t for
the input sentence x. Then, an optimal dependency tree d is
determined based on x and t.

d = arg max Scoregyp (%, t,d)
d

(2)

where Scoregy, (%, t,d) is the score of the dependency tree d
given the input sentence x and the tag sequence t.

A. CRF-based POS Tagging

POS tagging is a typical sequence labeling problem. We adopt
CRF to build our baseline POS tagger for two reasons. Firstly,
our preliminary experiments show that the CRF-based tagger
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TABLE I
POS TAGGING FEATURES USED IN BOTH TAGGING AND JOINT MODELS

POS Unigram Features: fpu(x,1,1;)
01: t; ow;
02: t; ow;—1
03: ¢t; ow;iy1
04: t;ow; 0ci-1,-1
05: t; ow; o ciy1,0
06: ti 0 Ci,0
07: ti 0Cj—1
08:t;0cik,0 <k <H#c; —1
09:t;oci00¢ik,0 <k <#ci—1
10: tjoc;,—10¢; 1,0 <k <#c;—1
11: if #c; = 1 then t; ow;0c;_1,-10¢Ci+1,0
12:if ¢; , = ci k41 then t; 0c; o “consecutive”
13: t; o prefix(w;, k), 1 < k < 4,k < #¢;
14: t; o suffix(w;, k),1 < k < 4,k < #c¢;

POS Bigram Features: fo,(x,4,t;-1,1;)

15: t; 0t;—1

outperforms both perceptron and ME based models. Secondly,
the CRF-based tagger can produce marginal probabilities and
therefore is used to prune the POS tags for the joint models (see
Section III-C).

As a conditional log-linear probabilistic model, CRF defines
the probability of a tag sequence as

exp(Scorepes(x,t))
> 4 exp(Score,oq(x, t7))
Scorepos (X, t) = Wpos - fpos(X, t)
= Z (Scorepu(x, 1, t;)
1<i<n
+ Scorepn(x, 4, ti—1,t:))  (4)

Score,u (X, 4, t;) = Wpu - fhu(x,4, ;)

P(t]x) = G3)

Scorepb(x, i, tifl., ti) = Wp} - fpb(X, ’i, tifl, ti) (5)

where f,,05(x,t) refers to the aggregated POS feature vector
and wy, is the corresponding weight vector. Given the input
X, Score,.(x, 1, ;) denotes the score of tagging w; as t;, and
Scorepb(x7 i,ti—1,t;) represents the score of tagging w;_1 as
t;—1 and w; as 1;. Correspondingly, two sets of POS features are
incorporated, i.e. POS unigram features f(x,4,t;), and POS
bigram features f,1,(x,4,%; _1,1;), and Wy, /51, are their feature
weights. We adopt the state-of-the-art features for Chinese POS
tagging [1], [8], which are listed in Table I, where o means string
concatenation; ¢; j denotes the k' Chinese character of w;; ¢; 0
is the first Chinese character; ¢;, _1 is the last Chinese character;
#£¢; is the total number of Chinese characters contained in w;;
prefix /suffix(w;, k) denote the k-Character prefix/suffix of w;.

We adopt the exponentiated gradient algorithm to learn the
weight vector w,,s [9]. During the test phase, we adopt the
Viterbi algorithm to get the optimal tagging sequence for an
input sentence.

(©) (@

Fig. 2. Four types of scoring parts used in current graph-based
models [10] (a) single dependency (b) adjacent sibling (c) grandparent
(d) grandparent-sibling.

B. Graph-based Dependency Parsing

Recently, graph-based dependency parsing has gained more
and more interest due to both its principled formalization of
this problem, which allows the application of graph-related al-
gorithms, and its state-of-the-art accuracy. Graph-based depen-
dency parsing views the problem as finding the highest scoring
tree from a directed graph. In order to facilitate an efficient and
global search based on DP algorithms, graph-based models usu-
ally make strong independence assumptions that only some con-
strained dependencies are correlated with each other. Therefore,
the score of a dependency tree is factored into scores of small
parts (subtrees).

Scoregyn (X, t,d) = Wopn - fiyu(x, t, d)
= Z SCOrepart (Xa tv p) (6)

pCd

where p is a scoring part which contains one or more depen-
dencies in the dependency tree d; Score,a,¢ (x, t, p) denotes the
weight contributed by p; fsyn(x, t, d) is the aggregated syntactic
feature vector corresponding to (x,t, d) and wy, is the weight
vector.

In the past few years, researchers try to weaken the indepen-
dence assumptions made in earlier graph-based models, and in-
corporate more non-local features by incrementally enlarging
the scoring subtrees. Although with the cost of efficiency, this
effort is rewarding and the parsing accuracy improves [11], [12],
[13], [10]. Fig. 2 shows different types of scoring parts used in
current graph-based models. If all the subtrees in Fig. 2 are in-
corporated, the score of a dependency tree is rewritten as

>

{(h,m)}Cda

Scoregyn(x,t,d) =

+ >
{(h,5),(h,m)}Cd
+ 2
{(g.h).(h,m)}Cd
+ >
{(g,h),(h,s),(h, )} Cd
where Scoregep /sib/grd /gsib (-) respectively denote the scores
contributed by the four scoring parts in Fig. 2. Under a linear
model, these score functions are defined as

Scoredep (X, t, b, m)
Scoregin (X, t, h, s, m)
Scorega(x,t, g, h,m)

Scoreg.in(x,t, g, h,s,m)  (7)
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TABLE II
SYNTACTIC FEATURES USED IN BOTH PARSING AND JOINT MODELS

Dependency Features: fqep(x,t, h,m); r and d denote the direction and distance of h ~ m; b is an index between h and m.

01: wp oty orod 02: wporod 03: tporod 04: mp ot orod
05: wmorod 06: t;morod 07: wp otp ©wm otm orod 08: tp, owm otm orod
09: wp o wm otm orod 10: wp otp oty orod 11: wp otp cowmorod 12: wp owm orod
13: tp otmorod 14: wp ot orod 15: wp ot orod 16: tp otp410tm—10tmorod
17:tp otpy1 otmotmyrorod [18:ty_qotpotym—10tmorod|19:ty_jotpyqo0tim—10tmorod|20:ty,_qotyotpiotmorod
2l:tpotm—10tmotmyrorod|22: ty ot g otimorod 23:tpotym—10tmorod 24: tp otm Otmyr1orod
25:tpotpotmorod 26: tp, o #verb(h,m) otm orod |27: t, o #conj(h,m) otmorod 28: tp, o #punc(h,m)otmorod
Sibling Features: fgp (X, t, h,s,m); r and d denote the direction and distance of h ~ m.
29:tpotsotmorod 30: wpotsotmorod 3l:tpowsotmorod 32:tpotsowmorod
33:tsotmorod 34: wgowmorod 35:tsowmorod 36: wsotmorod
37:tsotsy1o0tmor 38:ts—1o0tsotmor 39:tsotm—10tmor 40: tsotm otmyror
41:tsotsyr otm—_10tmor 42: tg_10tsotm—10tmor 43:tsotsy10tm otmypror 44: tg_1otsotmotmtror
Grandparent Features: fg.q(x,t, g, h,m); r denotes the direction of o ~ m and r’ denotes the direction of g ~ h.
45 tgotpotmoror’ 46: wgotpotmoror 47 tgowpotmoror 48: tgotpowmoror
49: tgotmoror 50: wg owmoror’ 51t wgotmoror 52:tgowmoror’
53:tgotm—_10tmoror 54: tg otm otmir1oror 55:tg_10tgotmoror 56: tgotgriotmoror
57:tg—10tgotm_10tmoror |58:tg_10tgotmotmyroror |59 tgotgr1 0tm_10tmoror 60: tgotgy1 0tm Otmproror
Grandparent-sibling Features: fagip (X, t, 9, h,s,m); r denotes the direction of h ~ m and r’ denotes the direction of g ~ h.
61:tgothotsotmoror’ 62:wgothotsotmoror' 63:tgowhotsotmoror’ 64:tgothowsotmoror’
65:tgotpotsowmoror 66: wg owp otsotmoror 67:tgotsotmoror 68: wgotsotmoror
(@) = +
Scoreqep (X, t, h,m) = Waep - Laep(X, t, i, m) m

Scoregin(X,t, h, s, m) = Wb - fan (X, t, k. 5,m) i j i r r+l J
Scoregra (X, t, g, h,m) = Wepd - fra (X, t, g, h,m)

Scoreysin (X, t, g, b, 8, 1) = Wegin, - foein (X, t, 9, 2, 8,m) (b) = m + i

@ ;

where fuey,/sib/grd/gsin () denote the four kinds of feature
vectors corresponding to the four scoring parts in Fig. 2
and Wep/sib/grd /gsib are the feature weights. We follow the
state-of-the-art practice to define the feature functions [14],
[10]. Table II lists the syntactic feature templates, where
#verb(h, m) denotes the number of verbs between A and m,
#conj(h,m) the number of conjunctions, and #punc(h,m)
the number of punctuation marks. In addition, we use the last
Chinese character of each word as its lemma, and duplicate
each word-related feature in Table II by replacing words with
lemmas following [15]. Compared with [7], this work explores
much richer syntactic features, leading to improved parsing
accuracy for both pipeline and joint models.

To better study the effect of joint modeling, we implement
three pipeline parsing models of different complexities.

The First-order Parsing Model (O1): [16] proposes a gen-
eral DP based parsing algorithm with time complexity of O(n?)
for bilexical grammars. This algorithm is usually referred to
as Eisner algorithm. Based on the algorithm, [11] propose the
first-order model, in which each scoring part contains only one
dependency. In other words, the score of a dependency tree in
the first-order model only includes Scoreqe,(.) (see Eq. (7).

Fig. 3 and Algorithm 1 illustrate Eisner algorithm in detail.
Eisner algorithm uses spans as the basic data structures and
builds a dependency tree in a bottom-up fashion by iteratively
combining two smaller spans into a larger one. The left-side

J

Fig.3. The DP structures and derivations of Eisner algorithm for the first-order
parsing model. Trapezoids denote incomplete spans. Triangles denote complete
spans.

span in Fig. 3(a), denoted by I;~ ;, represents an partial tree
spanning w; . . . w; in which w; and w; composes a dependency
i ~ j. I;~; is called an incomplete span in the sense that w;
may append more right-side children in future operations. The
left-side span in Fig. 3(b), denoted by C;_.;, represents a par-
tial tree spanning w; . . . w; in which w; is a descendant of ;.
Ci_.; is called a complete span in the sense that w; has col-
lected all its children and therefore cannot add new modifiers in
future. In both ;. ; and C;_.;, w; is called the span head. Anal-
ogously, spans headed by w; are denoted by /; ~; and C,._;. For
brevity, Fig 3 omits the symmetric operations for creating these
two spans of the opposite direction.

Algorithm 1: Eisner algorithm for the first-order dependency
parsing (O1)

1. YO<i<nt, e TC;_; =0,C;_; =0/ initialization

2. forw =1 ton do // span width

3. for : = 0 to (n — w) do // span start index

4 J =t + w// span end index

5 L-mj:maxig,‘q {Cii,,+(7,,+1_‘,~+5coredep (X, t, e, ])}
/I corresponding to Fig. 3(a)

6. I nj=maxi<, < j {Ci o HCryr j+Scoreqe, (X, t, 4, 1) }
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Algorithm 2: The decoding algorithm of the first-order joint model (JO1)

=0,0"

21

. YO<i<mnt, eTCH

—¢

2. for w =1 ton do //span width

= 0 initialization

3. for : = 0 to (n — w) do //span start index

4. J = 4+ w span end index

5. for all (¢;,¢;) € 72 do

6. Iltmj—mderq max(;, 7t,+1)eyz{CIAT—I—CP’,_*ll_’j—Q—Scoredcp(

/I corresponding to Fig. 4(a).
t;

X, [tit;], 4, jHScorepu (X, j, 1 HScore,n (%, r+l, ¢, tri1)}

tits], 4, iScorepu (X, 4, £ HScorep (X, r+1, by, trr1)}

s

G, 1) G5 Gt (r,8) (r+1, 81) G, 4)

7. Imj—mdxz<r<7 maxXe, ¢, ,)eT? {C’L:,—FCI:_+11ij+5coredcp(
8. Cl-f:j = maX;<,<; 111&)(,5,,,6«7{be7 + C, rj]} /I corresponding to Fig. 4(b).
9. C’f‘:j = MaX;<r<; nlaXtTeT{CZ:r + Ir:n]]
10. end for
11. end for
12.  end for
13.  return max,, g, c7{C" }
7. Ci—j=maX;c,r<j{Lin+Cr_;}
/I corresponding to Fig. 3(b).
8. Oi‘_:/' = HlaXiSI,.<J'{Oil_,. + I,.ﬂj}
. end for
10. end for

11. return Cy_,,

Line 5 in Algorithm 1 tries to find the optimal incomplete
span I, ;. Given r, two spans C;_.,. and C,. ;1. ; are combined,
as illustrated in Fig. 3(a). This operation invents a new depen-
dency 7 ~ j. The score of the resulting span I;~ ; is composed
of three parts, i.e. the scores of the two component spans and the
score contributed by the new dependency Scoreqe,(X.t, 4, j)
(see Eq. (7)). All possible split points 7 are tried to find the
highest-scoring I; ;.

Line 7 in Algorithm 1 tries to find the optimal complete span
C;_,;. Given r, two spans J;~, and C,_; are combined, as
illustrated in Fig. 3(b). The score of the resulting span C;_.;
is the summation of the scores of the two component spans. All
possible split points # are tried to find the highest-scoring C;_. ;.

Analogously, line 6 and line 8 build the spans headed by ;.
We omit the explanation for conciseness. Finally, the returned
span Cy ,, contains the score of the optimal complete depen-
dency tree, and the dependency tree can be gained via back-
tracking. It can be proved that Algorithm 1 finds the highest
scoring tree according to Eq. (7).

The algorithm stores about 2n2 complete spans and 272 in-
complete spans. Therefore, the space complexity is O(n?). The
time complexity of line 5-8 in Algorithm 1 is O(4n); the outside
loops over w and i has a total complexity of O(n?); therefore,
the time complexity is O(n?).

The Second- and Third-order Parsing Models (02 & O3):
[10] extend the Eisner algorithm and propose a DP based de-
coding algorithm which can incorporate all the scoring parts
in Fig. 2. The model is referred to as the third-order model.

IS

@ 1) Gy G (rt) (1)
Fig.4. The DP structures and derivations of the decoding algorithm of the basic

first-order joint models (JO1). We omit symmetric right-headed versions for
brevity. Solid circles denote POS tags of the corresponding indices.

Ve B Re AR |

(g t) (1) G,y (gt) Gt) ) (8t) (r+l,tes) (1)
[ ] [ ]
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mb - m& FALY
s
(g t) (1) G4 (@&t Gt @) Gt @) (.1

N B

(&1 G1) Gy @t G Gw Gw e 65

Fig. 5. The DP structures and derivations of the decoding algorithm of the
third-order joint model (JO3). For brevity, we elide the right-headed and right-
parented versions. Rectangles represent sibling spans.

If the grandparent-sibling features are deactivated, it becomes
the second-order model. We omit the detailed illustration of
the decoding algorithm for brevity, since it can be derived from
the more complex decoding algorithm for the third-order joint
model (see Fig. 5 and Algorithm 3).
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III. JOINT MODELS

In the joint framework, we aim to simultaneously solve the
two problems.
(t,d) 9)

= arg max Scorejpint (x, t, d)
t,d

where Scorejoint (X, t, d) denotes the score of the tag sequence
t and dependency tree d for the input sentence x, which is the
summation of the POS score and syntactic score defined in the
pipeline tagging and parsing models.

Scorejoint (X, t, d) = Scorep,os(X, t) + Scoreyy,(x,t,d)

= Wpos@syn ° fposé\%syn(xv t~, d)

= Wijoint * fjjoint (xﬁ t? d) (10)
where figine(.) or fhospsyn(.) denotes the aggregated feature
vector for the joint result, which is the concatenation of f,,,(.)
and £y, (L) Wioin, OF Wpososyn 1S the feature weights. Different
from the pipeline method, the joint model simultaneously learns
the weights of the POS and syntactic features so that their dis-
criminative power can be well balanced. During the test phase,
the POS and syntactic features can interact and negotiate with
each other to determine an optimal joint result.

The crucial problem for the joint approach is to design effec-
tive decoding algorithms to effectively capture rich POS tag-
ging and syntactic features and efficiently search out the op-
timal results from a huge hypothesis space at the same time.
[16] describes a preliminary idea to handle polysemy by ex-
tending parsing algorithms. Based on this idea, we propose two
DP based decoding algorithms for our joint models by extending
the decoding algorithms of the parsing models.

To compare with the baseline parsing models, we implement
three joint models of different complexities, i.e. the first-order,
second-order, and third-order joint models according to the syn-
tactic features incorporated in Scorey,(.) (see Eq. (7)).

A. The First-order Joint Model (JO1)

Similar to the first-order parsing model, the syntactic score
Scoregyy(.) in the first-order joint model only consists of scores
contributed by single dependencies Scoregep,(.) (see Eq. (7)).
We propose a DP based decoding algorithm for the JO1 model
by extending the Eisner algorithm based on the idea in [16].
Fig. 4 and Algorithm 2 illustrate the algorithm in detail. The dif-
ference is that the boundary indices of each span are augmented
with their POS tags. I o ; denotes an incomplete span with w;
tagged as f and w; as t like the left-side one in Fig. 4(a);
whereas C 7 _; denotes a complete span with boundary POS tags
t; and ¢ like the left-side one in Fi ig. 4(b).

Algorithm 2 also works in a bottom-up fashion. Line 6 tries
to find the optimal incomplete span [ f;ji. Givenr,t,,and t, 41,

two spans C;"7, and C)/ 717 ; are combined, as illustrated in
Fig. 4(a). This operation 1nvents a new dependency ¢ ~ 7. The
score of the resulting span It;jl is composed of five parts, i.e.
the scores of the two component spans, the score contributed
by the new dependency (Scoreqep (X, [tit;], 4, 7)), a POS score

for tagging w; as t; (Score,u(x, j,%;)), and a POS score for

tagging w, ast, and wy4+1 ast,41 (Scorepn(x, 7+ 1,1, tr41)).
All possible r, £,., and #,41, are enumerated to find the highest-
scoring [ Itm’J

Note that Scoreqep (X, [tit;].4,4) is a collapsed version of
Scoregep (X, t, 4, j) defined in Eq. (7) with incomplete param-
eters. Scoreqep (X, t, 4, j) requires the full tag sequence t as the
input, but Scoreqep (X, [tit;], 1, j) only provides the tags of w;
and w; as the decoding algorithm is unable to encode other con-
text POS tags. As shown in Table II, the syntactic feature set for
a single dependency fy.p, (X, t, ¢, j) requires other context POS
tags like #;4+ 1,741, and even the number of verbs between ¢ and
J (#verb(i, j)). Such surrounding or even global POS tags are
not encoded in the spans. Therefore, we follow the practice in
[17] and approximately fix such context POS tags as the most
likely ones from the baseline CRF-based tagger. [7] show that
this approximation does not decrease the tagging and parsing
accuracies.!

Line 8 in Algorithm 2 tries to ﬁnd the optimal complete span
C’H - Given r and t,., two spans I ir " and C ; are combined,
as illustrated in Fig. 4(b). The score of the resultlng span (’H g
is the summation of the scores of the two component spans.
All possible r and ¢, are enumerated to find the highest-scoring
C2l.

Liiie 7 and 9 create spans headed by w;. Finally, line 13 enu-
merates all possible tag t,, for w,, to find the highest scoring
complete span 0 ot - We use “#£” as the POS tag of the dummy
word wy. Through backtracking, we can get the highest-scoring
joint result. Analogous to Algorithm 1, we can prove that Al-
gorithm 2 correctly compute the syntactic score according to
Eq. (7).

Then the question is whether the POS scores are correctly
computed according to Eq. (4). In Algorithm 2, we collect the
POS scores following two principles. (1) The POS score for tag-
ging w;. as {y, is collected when the father of 1wy, is determined.
For example, the operation in Fig. 4(a) assign w; as the father of
wj, leading to the accumulation of Score,, (x, 7, ;) into the re-
sulting span I “4.. Since Algorithm 2 assigns one and only one
head for each word we can see that POS scores contributed by
the POS unigram features are correctly computed. (2) the POS
score contributed by tagging wy, as #, and w41 as x4 is col-
lected when two complete spans split at &£ are combined into
one incomplete span. For example, the operation in Fig. 4(b)
triggers the collection of Scorepy, (x, 7 4+ 1,4, %-41). It can be
proved that the POS scores contributed by the POS bigram fea-
tures are correctly computed in this way, though the proof is
slightly more trivial and complex.

The algorithm needs to store 2n°q~ incomplete spans and
2n2q? complete spans, where ¢ = |’T |. Therefore, the space
complexity is O(n?¢?). Line 6 and 7 both have time complexity
of O(nq?); whereas line 8 and 9 both require O(nq). The out-
side loops over w, %, t;, and £; require O(anz). Therefore, the
time complexity of Algorithm 2 is O(n3¢*).

2.2

IIn [7], we try to encode some context POS tags like ¢,+1 and t;+1 in the
spans and comes up with more complicated decoding algorithms, which we
name as the joint models of version 2. Experiments show that the joint models of
version 2 achieve similar performance in both tagging and parsing, but is much
slower.
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Algorithm 3: The decoding algorithm of the third-order joint model (JO3)

. V0<i<n -1<g<n,(t,,t) € TQCQM =0, Cgi}jt ,; = 0/ initialization

2. forw = 1 ton do // span width

3. for : = 0 to (n — w) do // span start index

4. J =1+ w/ span end index

5. for all g such that -1 < g < 2 orj < g < n do// parent index

6. for all (t,,t;.;) € T° do

7. Szgf\zqum7_lndxl<r<l max, ¢, +1)€7—2{ qgf‘vlz)1—\T+qux7]+7}-ﬂill—7+Score<1b( [fgt'ith 9, ia j)—I—Scorepb (X', r+1, 2, f1‘+1)}

!/l corresponding to Fzg 5(a).

8. ;%L 7mJ =max;. +167{ s Lél-l—C'L;”*l;H; +Scoreqep X, [t2;], 1,7+ coregdX, [t £it;].9.4,)+Scoreqn(x, [t;]. 4,— jH
ScoregsinX, [tytit;]. g, 4, —, jHScoreyn (x, 441, ;, i HScorepy (X, j. £5)}
/' 3 is the first child of i; corresponding to Fig. 5(b).

9. ;;;l]Jzﬂ7—m&XtJ_leT{(VZ;\J]_l1:;7 Oqu] o tScoreqep (%, [t 5], 5,0Scorega (x, [ttit;].9.4,9+Scoreg (x, [t#],5,—iH
Scoreyqin (X, [t tit; ] 9,4, —.4) + Scorepy (X, . tj_1,t;) + Scorepu (X, 4, t;)} // ¢ is the first child of j.

10. ;i;/mj 1IchX{ gt A, << ANAXY, eri gi\ffm,—Q—SL;j,JmJ—l—Scoredop( [t ],8, )+Scorega (X, [Etit],g9,¢,07
Scoregin (X, [tytit ;). g, i, 7, jHScore, (X, j, 1))} 1/ corresponding to Fig. 5(c).

11. ;ar;'i]«fmj_111ax Ig’mj g MAX <y jMAX, 67{510] Tﬂ]+Ig/f” TnJ+Scoredep( Jti 1,0, 04Scoregd (%, [ty it ;].9.7,04
Scoregsin (X, [tgtitrt;]. g. 3,7, i)4+Scorep(x. 4,2;) }}

12. C;‘;jl’iéj—maxq-qq maxy, eT{ij;[m,—i—CL;fr’, _jScoresin (x, [tity], i, 7, — HScoregsin (X, [tytits]. g, 4,7, =)}

/I v is the last child of i; correspondmg to Fig. 5(d).
13. i TMAX < j AXy, er{C! s, ,,_r+Ig;W e tSCOreiL (X, [t 5], 4, 7y — HScoregsin (X, [tytrt;], g 4,7, —)}
/v is the last child of 7.

14. end for

15. end for

16. end for

17. end for

18.  return max; ,—»u» ;o—» 4~ er{Ch 00— )

B. The Second- and Third-order Joint Models (JO2 & JO3)

[10] propose a DP based decoding algorithm for the third-
order parsing model. We extend their algorithm and propose the
decoding algorithm for the third-order joint model, as illustrated
in Fig. 5 and Algorithm 3. In order to incorporate the higher-
order features, a new type of spans, namely sibling spans, is
invented to encode sibling structures; moreover, each span is
augmented with a parent index. Analogous to the extensions
made for the first-order joint decoding algorithm, we augment
each span with the POS tags at the boundary indices as well
as the parent index. The left-side span in Fig. 5(a), denoted as
Glaii represents a sibling span in which ¢ and j are two

gryigrg?

adjacent modifiers of g and their POS tags are respectively 1,

tt, and L. I ggﬂm ; and C' g”m: ’;_.; denotes the same spans as
; and cl except the extra requirements that ¢ is the head

of i and is tagjged as tg4.

The work flow of Algorithm 3 is analogous to the case for the
first-order Jomt model. Line 7 tries to find the highest-scoring
sibling span St For all possible », ¢, {41, tWo spans
(';i;flér and C i:;“rl ;1; ; are combined, and the scores trig-
gered by this operation are collected. Scoregn, (X, [ty tit;], 9,4, )
is the collapsed version of Scoregn(x,t, g, l,j) defined in

Eq. (7) with incomplete POS tags. Score,, (x, 7 + 1,4, 4,11)

gr\,t Slf"J

isfdeﬁned in Eq. (5). The highest-scoring one will be kept in
ygf:ifgmj ’

Line 8 and 10 collaboratively determine the best incom-
plete span I gj\jl T j Line 8 handles the case when j is
the first child of i, whereas line 10 handles other cases.
Scoregin (X, [tif;]. 1, —, J) indicates the sibling score of creating
a dependency ¢ ~ j where j is the first right-side child of <.
Similarly, Scoregin (X, [t4tit;]. g, 4, —, j) represents the grand-
parent-sibling score of j being the first right-side child of 7 and
¢ modifying g.

Line 12 finds the optimal complete span C" i
rithm implies that once ct gm LJLQ y is built, ¢ will not append new
right-side children in the future Therefore, this operation trig-
gers last-child syntactic scores. Scoreg;, (x, [t:t..], 4, r, —) repre-
sents the sibling score of  being the last right-side child of 4.
Similar explanation goes to Scoreg.in (X, [tytit,], g, 4,7, —).

For conciseness, we omit the illustration of line 9, 11, and
13, which create spans headed by w; with symmetric opera-
tions. Analogous to the first-order case, the context POS tags
like #,+1 and #,+1, which are missed by the collapsed score
functions Scoregep /sib/grd/gsib () in the algorithm (see Eq. (7)
and Table II), are fixed as the most likely POS tags from the
baseline CRF-based tagger.

. The algo-
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Similarly, we can prove that this algorithm can correctly com-
pute the POS score according to Eq. (4) and the syntactic score
according to Eq. (7). We can also find out that the space and
time complexity of the algorithm are respectively O(n3¢®) and
O(n*q®).

The second-order joint model (JO2) also adopts Algorithm 3
for decoding, except that the scores contributed by the third-
order grandparent-sibling features Score,i,(.) are deactivated.

C. POS Tag Pruning

The time complexity of the joint decoding algorithm is high
with regard to the number of candidate POS tags for each word
(g = |T|). [17] constrain the search space and use two most
likely POS tags for each word according to a baseline ME
based POS tagger (¢ = 2). However, we find that it is still too
time-consuming, especially for JO2 and JO3. To deal with this
problem, we propose a pruning method that can effectively
reduce the POS tag space based on marginal probabilities
provided by the baseline CRF-based tagger.

The marginal probability of tagging a word w; as ¢ is

Z P(tx)
tetfi]=t
_ Zt:t[i]:t exp(Scorepes (X, t))
Y, exp(Scorepos(x, )

where P(t|x) and Score,.(x,t) is defined in Eq. (3) and (4).
This can be efficiently computed using the forward-backward
algorithm.

We define ptmax,(x) to be the highest marginal probability
of tagging the word w;:

P, =tx) =

(11)

t ; = P, =t
ptma,(x) = max P(1; = 11x)

(12)

We then define the allowable candidate POS tags of the word
w; to be

T(x)={t:t€T,P(t; =1t]x) > A\ x ptmax;(x)} (13)
where A; is the pruning threshold (0 < A; < 1). 7;(x) is used to
constrain the POS search space by replacing 7 in Algorithm 2
and 3. For example, the enumeration (¢4, ¢;,¢;) € 7 in line 6 of
Algorithm 3 becomes ¢, € 7,(x), t; € T;(x), and t; € T;(x).
Experiments in Section IV show that this pruning strategy is
effective. When A\; = 0.01, each word has only 1.40 candidate
POS tags on average and the oracle tagging accuracy is 99.27%
on CTBS5. We adopt 10-fold jackknifing to do pruning for the
training dataset. First, training sentences are randomly divided
into ten folds. Then, we prune the sentences in one fold using
a CRF-based model trained with the sentences in the left nine
folds. For the development and test datasets, we train a CRF-
based model with the entire training dataset to do pruning.

D. Training with Averaged Perceptron

Averaged perceptron training has proven successful in several
structured classification problems such as POS tagging [3] and
parsing [11], [18]. Our preliminary experiments on dependency

parsing show that averaged perceptron achieves similar perfor-
mance to other more sophisticated training algorithms such as
the passive-aggressive algorithm [19] and the margin infused
relaxed algorithm (MIRA) [20]. Therefore, we adopt average
perceptron to train both the pipeline parsing and joint models.
Algorithm 4 shows the workflow for training the joint models.
The procedure iteratively traverses the entire training dataset
and use one instance to update the feature weights at each time.
First, the best hypothesis for the instance is found based on the
current feature weights at line 6. Then, the feature weights are
updated such that the features in the gold-standard result get
higher weights, whereas the features in the returned hypothesis
are penalized. If the current model finds a completely correct re-
sult, then the two feature sets are equal and no update is made.

The training algorithm for the pipeline parsing models is sim-
ilar to Algorithm 4 except that 1) the decoding algorithm for
the parsing model is applied to find the best tree in line 6, and
2) only the syntactic features f.yn(.) and their weights wyy., are
involved. For both the pipeline parsing and joint tasks, we train
each model for 20 iterations and select the parameters that per-
form best on the development set.

Algorithm 4: Averaged perceptron training for joint POS
tagging and dependency parsing

1. Input: Training Data D = {(x(), £\, d(j))}jyz1
2. Output: Wigini (= Wposgsyn)

3. Initialization: wj(m)nt =0v=0k=0

4. for: =1 to I do // iterations

5 for j = 1 to N do // traverse the samples

6 fJoinr (Xm»t» d)

/I decode based on current feature weights

~ oA k
(t,d) = argmax; 4 W](ol)nt

7. Wi(iﬁ) ffi) Hioine X9 600, A0 (xD £, d)
k41

8. v=v+ WJ(mnt)

10. end for

11. end for

12, Wieine = v/(I x N) // average the weights

IV. EXPERIMENTS

We conduct the experiments on the widely used CTBS [21] to
compare with the state-of-the-art results. Following the settings
of [4], [5], [6], we split CTBS into training (secs 001-815 and
1001-1136), development (secs 886-931 and 1148-1151), and
test (secs 816-885 and 1137-1147) sets, and use the head-finding
rules of [5] to turn the bracketed sentences into dependency
structures.

We also compare the pipeline and joint models on CTB7, a
newer and larger-scale version, to further examine the impact of
joint modeling. We follow the data split suggested in the official
manual and convert the phrase-structure trees into dependency
structures with the head-finding rules of [5]. Table III summa-
rizes the data sets used in this paper.

Evaluation metrics. We use the standard tagging accuracy
(TA) to evaluate POS tagging. For dependency parsing, we use
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TABLE 111
DATA SETS (IN SENTENCE NUMBER)

Train Dev Test
CTBS5 | 16,091 803 | 1,910
CTB7 | 46,572 | 2,079 | 2,796
TABLE IV

RESULTS OF THE JO2 MODEL WITH DIFFERENT A, ON THE DEVELOPMENT SET

At ||Ti(x)||Oracle| UAS| RA | CM | TA |Speed
0.001| 1.83 | 99.55 |82.85(76.75|31.50|94.52| 0.5
0.01 | 1.40 | 99.27 |83.02|78.63 |31.75({94.52| 1.0
0.1 1.16 | 98.07 |82.77|77.38|31.25|94.55| 1.7

the unlabeled attachment score (UAS) as the main evaluation
metric. We also provide the root accuracy (RA) and complete
match rate (CM) for detailed comparison with previous results.
Following previous practice, all metrics for parsing ignore punc-
tuation marks. For significance test, we adopt Dan Bikel’s ran-
domized parsing evaluation comparator [22].2

A. Impact of POS Tag Pruning

To study the effect of POS tag pruning, we train and evaluate
the JO2 model on the training and development sets with dif-
ferent pruning threshold A;. We adopt the JO2 model because
of its efficiency compared with the JO3 model and its capa-
bility of capturing rich features compared with the JO1 model.
Table IV shows the results. | Z;(x)| means the averaged number
of POS tag candidates of each word after pruned with the cor-
responding threshold. “Oracle” refers to the oracle TA in the
pruned POS space. “Speed” refers to the parsing speed mea-
sured in the number of sentences processed per second. We can
see that pruning with A; = 0.01 leads to the highest parsing ac-
curacy. Moreover, it seems that A; does not largely influence the
tagging accuracy. Therefore, we choose A; = 0.01 with which
the constrained search space contains 1.40 POS tag candidates
for each word on average and achieve a high oracle tagging ac-
curacy of 99.27%. For simplicity, we do not tune A; for other
joint models, and adopt A; = 0.01 for all joint models in later
experiments.

B. Final Results on CTB5

Experimental results of the pipeline models with gold-stan-
dard POS tags: Table V shows the results of our baseline
parsing models on the test set with gold-standard POS tags. We
also list a few state-of-the-art results in the bottom. Duan07
refers to the results of [4]. They enhance the transition-based
parsing model with the beam search. Z&CO08 refers to the
results of [5]. They use a hybrid model to combine the advan-
tages of both graph-based and transition-based models. H&S10
refers to the results of [6]. They expand the search space of
the transition-based model by merging equivalent states with
DP. Z&N11 refers to the feature-rich transition-based parser
of [23], which achieve the best performance so far for tran-

2http://www.cis.upenn.edu/~dbikel/software.html

TABLE V
RESULTS OF THE PIPELINE PARSING MODELS WITH
GOLD-STANDARD POS TAGS ON THE TEST SET

UAS | RA | CM
03 86.60 | 80.26 | 36.07
02 86.72 | 80.26 | 36.07
ol 83.77 | 73.40 | 28.38

Hatoril1 [24] | 85.96 | 80.87 | 35.03

Z&N11[23] | 860 | — | 369

H&S10 [6] | 85.20 | 78.32 | 33.72

Z&CO8 [5] | 85.77 | 76.26 | 34.41

Duan07 [4] | 83.88 | 73.70 | 32.70

TABLE VI

RESULTS OF THE PIPELINE MODELS WITH AUTOMATIC
POS TAGS ON THE TEST SET

UAS | RA CM TA | Speed
03 80.50 | 77.33 | 28.22 0.7
02 80.64 | 77.33 | 28.59 | 93.88 | 2.7
0O1 77.19 | 70.05 | 22.72 5.8
Hatorill [24] | 78.04 | 75.55 | 26.07 | 93.82 | 9.0

sition-based models on CTBS. Hatorill refers to the pipeline
transition-based parsing model in [24].

We can see that when using gold-standard POS tags, our
pipeline O2 and O3 parsing models achieve the best parsing ac-
curacy. It is a little unexpected that the O2 model slightly out-
performs the O3 one. However, the difference is not statistically
significant (p > 0.1). We suspect that the reason may be that the
grandparent-sibling features are too sparse to be useful for this
dataset. [10] also show that their third-order model outperforms
the second-order one by only 0.32% on English and 0.07% on
Czech.

Experimental results of the pipeline models with automatic
POS tags: Table VI shows the results on the test set when using
automatic POS tags. Compared with the results in Table V, the
parsing accuracy of the pipeline models degrades by 6~8%.
This demonstrates that the tagging errors severely influence the
parsing process. Since POS tags provides the most informative
clues for parsing, the parsing accuracy suffers a lot when the
POS tags are unreliable.

Experimental results of the joint models: Table VII shows
the performance of the joint models on the test set. Compared
with the results in Table VI, we can see that the joint models
can help both tagging and parsing. The parsing accuracy is sig-
nificantly improved by 0.7 ~ 0.9% for all first-, second- and
third-order cases (p < 107?). The tagging accuracy also signif-
icantly increases from 93.88% to 94.28%, and the improvement
is statistically significant (p < 10~2). Compared with the tran-
sition-based joint model (Hatorill) of [24], our JO2 and JO3
models achieve similar parsing accuracy and better tagging ac-
curacy.

Comparing the parsing speed, we can find that the pruning of
POS tags is very effective. The JO2 model can parse 1.0 sen-
tences per second, whereas the pipeline O2 model can parse 2.7
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TABLE VII
RESULTS OF THE JOINT MODELS ON THE TEST SET

UAS | RA CM TA | Speed
JO3 81.26 | 77.07 | 30.47 | 94.19 | 0.27
JO2 81.30 | 77.17 | 29.32 | 94.28 | 1.0
JO1 78.09 | 70.68 | 23.56 | 94.05 | 5.8
Hatorill [24] | 81.33 | 77.93 | 29.90 | 9394 | 1.5

B pipeline (02)

Hjoint (JO2)

Absolute Error Number

POS Error Patterns

Fig. 6. POS error analysis.

sentences per second, which is not a large difference considering
that there is a factor of ¢°.

C. Error Analysis

To find out the impact of our joint models on the individual
tasks, we conduct detailed error analysis through comparing the
results of the pipeline O2 model and the JO2 model.

Impact on POS tagging: Fig. 6 shows how the joint model
changes the distribution of a number of high-frequency POS
error patterns compared with the pipeline model. An error pat-
tern “X — Y” means that the focus word, whose true tag is
“X”, is assigned a tag “Y”. We can see that the joint method is
clearly better at resolving tagging ambiguities like {VV, NN}

TABLE VIII
COMPARISON OF PARSING ERROR RATES ON DIFFERENT POS TAG
PATTERNS BETWEEN THE PIPELINE AND JOINT MODELS

pipeline joint

POS patterns percent | error rate || percent |error rate

| &
NN — NN 95.7 16.0 -0.6 -1.3
W — W 90.4 31.7 +0.3 -1.3
Correct DEG — DEG| 85.0 9.8 +4.0 -2.8
DEC — DEC| 80.7 18.3 +8.3 -5.3
NR — NR 90.7 14.4 +1.1 -0.6
JJ—=JdJ 81.3 8.9 0 -0.6
NN — VWV 2.5 54.3 -0.3 +20.8
Syntax-sensitive WV — NN 66 62.5 1.0 47
DEG — DEC 15.0 50.3 -4.0 +49.0
DEC — DEG 19.1 45.8 -8.2 +51.1
NN — NR 0.6 23.8 +0.3 +0.6
Syntax-insensitive NN — JJ 0.5 17.5 +0.2 +0.2
NR — NN 7.1 24.6 -0.8 -8.0
JJ — NN 10.4 17.0 -0.9 +2.4

and {DEG,DEC}.3> One common characteristic of these am-
biguous pairs is that the local or even whole syntactic structure
will be destructed if the wrong tag is chosen. In other words, cor-
rectly resolving these ambiguities is critical and helpful from the
parsing viewpoint. From another perspective, the joint model
is capable of preferring the right tag with the help of syntactic
structures, which is impossible for the baseline sequential la-
beling model. In this sense, we call such POS ambiguities like
{VV,NN} and {DEG, DEG} syntax-sensitive ambiguities.

In contrast, pairs like {NN,NR} and {NN, JJ} only slightly
influence the syntactic structure when mis-tagged. Therefore,
we refer to them as syntax-insensitive ambiguities. The joint
method slightly reduces the errors of “NR — NN” and “JJ —
NN, but also increases the errors of “NN — NR” and “NN —
3.

In summary, we can conclude that the joint model can help
resolve syntax-sensitive POS ambiguities which are more dis-
criminative and helpful from the parsing viewpoint.

Impact on parsing: Table VIII studies how the joint model in-
fluences the percentage and the parsing error rates of different
POS tag patterns. Given a pattern “X — Y?”, “percent” means
the percentage of words that are tagged as “X” in the gold-stan-
dard reference and assigned “Y” by the pipeline or joint model;
while parsing “error rate” is the proportion of words that be-
long to the corresponding pattern and are assigned an incorrect
head word according to the gold-standard dependency tree. The
last two columns give the absolute reduction (-) or increase (+)
made by the joint model compared with the pipeline model.

For the correct POS patterns, the joint model increases their
percentages except for “NN” and “JJ”, which means more
words of the corresponding POS tags are correctly recalled.
More importantly, the parsing error rates of such patterns are all

3DEG and DEG are the two POS tags for the frequently used auxiliary word
“#9” (dg, translated as “of” or “that” in English) in Chinese. The associative *
9> is tagged as DEG, such as “(R 3% /father) (K9) (BE B /eyes)” (eyes of the
father); whereas the one in a relative clause is tagged as DEG, such as “(fti/he)
(ER#8/made) (B) (3 & /progress)” (progress that he made).
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TABLE IX
RESULTS ON THE TEST SET OF CTB7
UAS RA CM TA
JO3 | 83.18 | 79.81 | 29.42 | 94.54
Joint JO2 | 83.11 | 80.19 | 29.40 | 94.61
JO1 | 79.68 | 71.17 | 22.35 | 94.37
03 | 82.50 | 80.90 | 28.11
Pipeline 02 | 82.40 | 79.54 | 28.43 | 94.01
O1 | 78.92 | 70.96 | 21.60
O3 | 88.44 | 83.43 | 35.97
Gold POS | O2 | 88.45 | 82.89 | 35.93 | 100.0
O1 | 85.11 | 74.39 | 27.72

reduced. This implies that the joint model can do better given
the correct tags than the pipeline model.

For the syntax-sensitive POS error patterns, the parsing error
rates are largely increased. However, the proportion of such
error patterns are largely reduced at the same time. In other
words, the joint model does much better in resolving such
syntax-sensitive ambiguities, but produces much worse parsing
results when mis-tagged. This indicates that the syntax-sensitive
POS tags become more accurate and the parsing component
puts more trust in them under the joint framework.

For the syntax-insensitive POS error patterns, it seems that
the joint approach has slight and somewhat unstable impact on
them. It sounds reasonable since such POS tags play similar
syntactic roles and therefore the dependency structure is unable
to provide useful feedback to their disambiguation.

In summary, we can conclude that the joint model helps re-
solve syntax-sensitive POS ambiguities and the POS tags be-
come morve reliable and helpful for parsing in return. This is the
fundamental reason for the performance improvements.

D. Experiments on CTB7

We conduct experiments on CTB7 to investigate whether the
joint models can improve the performance on larger datasets.
Table IX shows the results. We can draw the following findings
which are consistent with those on CTBS5.

» Error propagation from POS tagging degrades parsing ac-

curacy by about 6.0%.

* The joint method significantly boosting tagging accuracy
by about 0.6% (p < 10~2), which is an error reduction of
10%.

* The joint method significantly improves the parsing accu-
racy by 0.7% (p < 10~%), which is an error reduction of
4%.

Different from the results on CTBS, the third-order pipeline
and joint models slightly but insignificantly outperform the
second-order counterparts on the parsing accuracy on the larger
dataset (p > 0.1), which may confirm our earlier discussions
that the third-order features are ineffective on CTBS due to the
data sparseness problem.

V. RELATED WORK

Joint modeling has been a popular and effective approach to
simultaneously solve related tasks. Recently, many successful
joint models have been proposed, such as joint tokenization and

POS tagging [8], [25], [26], joint lemmatization and POS tag-
ging [27], joint POS tagging and named entity recognition [28],
joint named entity recognition and parsing [29], joint named
entity recognition and normalization for Tweets [30] joint en-
tity and event coreference resolution [31], joint tokenization
and parsing [32], [33], joint parsing and semantic role labeling
(SRL) [34], joint word sense disambiguation and SRL [35],
joint tokenization and machine translation (MT) [36], [37], joint
parsing and MT [38], and joint parsing and word alignment [39].
Note that the aforementioned “parsing” all refer to constituent
parsing. As far as we know, there are few successful models for
jointly solving dependency parsing and other tasks before our
work in [7].

Theoretically, [16] proposed a preliminary idea of extending
the decoding algorithm for dependency parsing to handle
polysemy. Here, word senses can be understood as POS-tagged
words. Based on this idea, [17] extended his second-order
graph-based parsing model and conducted a primitive study on
joint POS tagging and dependency parsing. To make inference
tractable, they used top two candidate POS tags for each word
based on a baseline ME based tagger. Their experiments on
English Penn Treebank showed that parsing accuracy can be
improved from 91.5% to 91.9%. However, they found that the
joint model was unbearably time-consuming. In this work, we
present a systematical and in-depth study on the joint opti-
mization of POS tagging and dependency parsing for Chinese.
Several DP based joint decoding algorithms are designed to
incorporate rich POS tagging and syntactic features. Moreover,
we propose an effective marginal probability based pruning
strategy to constrain the POS tag space. Our experiments on
two standard Chinese datasets show that the joint models sig-
nificantly outperform their counterparts on both POS tagging
and parsing accuracies.

[40] applied loopy belief propagation (LBP) to dependency
parsing and pointed out that LBP could naturally represent POS
tags as latent variables so that the POS tags can be inferred
jointly with the parse. [41] proposed a LBP based model to
study joint morphological disambiguation and dependency
parsing for morphologically-rich languages including Latin,
Czech, Ancient Greek, and Hungarian. For these languages,
morphological analysis requires the disambiguation of POS
tags, gender, case, etc. They showed that the joint model could
well capture the interaction between morphology and syntax
and achieve gains on both subtasks. [42] proposed dual de-
composition (DD) for integrating different NLP subtasks at the
test phase. They experimented with two cases, one integrating
a constituent parser and a dependency parser, and the other
integrating a phrase-structure parser and a POS tagger. Both
cases show that DD can help the individual subtasks. [43] con-
ducted an extensive comparison of LBP and DD for joint CCG
supertagging and parsing at the test phase. They showed that
LBP and DD achieved similar parsing accuracy improvement
but had largely different convergence characteristics. More-
over, their work focuses on integrating two separately-trained
sub-models, and they find that training the integrated model
with LBP leads to large improvement drops.

[24] proposed a transition-based joint model for Chinese
POS tagging and dependency parsing. They also gained large
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improvement on parsing accuracy but slight improvement on
tagging accuracy. We make comparison with their work in
this paper and find that our graph-based joint models achieve
the same parsing accuracy but higher tagging accuracy. [44]
studied joint POS tagging and labeled non-projective de-
pendency parsing based on the transition-based framework.
Recently, [45] and [46] proposed joint models on joint word
segmentation, POS tagging, and dependency parsing for
Chinese by extending the transition-based parser, and [47]
presented a novel decoding algorithm to integrate separately
trained models for joint word segmentation, POS tagging, and
constituent parsing for Chinese.

VI. CONCLUSIONS

In this paper, we have systematically investigated the issue
of joint Chinese POS tagging and dependency parsing by
extending state-of-the-art graph-based parsing models. We pro-
pose and compare several joint models and their corresponding
decoding algorithms which can incorporate different feature
sets. We also propose an effective POS tag pruning strategy
which can greatly improve the decoding efficiency. The ex-
perimental results show that our joint models can significantly
improve the state-of-the-art POS tagging parsing accuracies.
Detailed error analysis shows that the fundamental reason for
the parsing accuracy improvement is that the joint method is
able to choose POS tags that are helpful and discriminative
from parsing viewpoint.

In future, we would like to continue this work in the following
directions. So far, we employ averaged perceptron [3] to learn
the feature weights of the joint models, which equally treats
the POS and syntactic features. We are interested in pursuing
better training procedures to study the interaction between the
two sets of features. Moreover, we will conduct detailed com-
parison with the transition-based joint model to gain more in-
sights into the joint optimization of Chinese POS tagging and
dependency parsing.
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