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Preconditioned Stochastic Gradient Descent
Xi-Lin Li

Abstract—Stochastic gradient descent (SGD) still is the
workhorse for many practical problems. However, it converges
slow, and can be difficult to tune. It is possible to precondition
SGD to accelerate its convergence remarkably. But many at-
tempts in this direction either aim at solving specialized problems,
or result in significantly more complicated methods than SGD.
This paper proposes a new method to adaptively estimate a
preconditioner such that the amplitudes of perturbations of pre-
conditioned stochastic gradient match that of the perturbations
of parameters to be optimized in a way comparable to Newton
method for deterministic optimization. Unlike the preconditioners
based on secant equation fitting as done in deterministic quasi-
Newton methods, which assume positive definite Hessian and
approximate its inverse, the new preconditioner works equally
well for both convex and non-convex optimizations with exact
or noisy gradients. When stochastic gradient is used, it can
naturally damp the gradient noise to stabilize SGD. Efficient
preconditioner estimation methods are developed, and with
reasonable simplifications, they are applicable to large-scale
problems. Experimental results demonstrate that equipped with
the new preconditioner, without any tuning effort, preconditioned
SGD can efficiently solve many challenging problems like the
training of a deep neural network or a recurrent neural network
requiring extremely long term memories.

Index Terms—Stochastic gradient descent, preconditioner, non-
convex optimization, Newton method, neural network.

I. INTRODUCTION

Stochastic gradient descent (SGD) has a long history in
signal processing and machine learning [1]–[5], [20], [21].
In adaptive signal processing, an exact gradient might be un-
available in a time-varying setting, and typically it is replaced
with instantaneous gradient, a stochastic gradient with mini-
batch size 1 [1], [2]. In machine learning like the training
of neural networks, deterministic gradient descent is either
expensive when the training data are large, or unnecessary
when the training samples are redundant [5]. SGD keeps
to be a popular choice due to its simplicity and proved
efficiency in solving large-scale problems. However, SGD may
converge slow and is difficult to tune, especially for large-
scale problems. When the Hessian matrix is available and
small, second order optimization methods like the Newton
method might be the best choice, but in practice, this is
seldom the case. For example, calculation of Hessian for a
fairly standard feedforward neural network can be much more
complicated than its gradient evaluation [6]. In deterministic
optimization, quasi-Newton methods and (nonlinear) conjugate
gradient methods are among the most popular choices, and
they converge fast once the solution is located in a basin of
attraction. However, these methods require a line search step,
which can be problematic when the cost function cannot be
efficiently evaluated, a typical scenario where SGD is used.
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Still, they are applied with successes to machine learning
problems like neural network training, and are made available
in standard toolboxes, e.g., the Matlab neural network tool-
box [7]. The highly specialized Hessian-free neural network
training methods in [8] represent the state of the art in this
direction. There are attempts to adapt the deterministic quasi-
Newton methods to stochastic optimization [9]–[11]. However,
due to the existence of gradient noise and infeasibility of line
search in stochastic optimization, the resultant methods either
impose strong restrictions such as convexity on the target
problems, or are significantly more complicated than SGD. On
the other hand, numerous specialized SGD methods are devel-
oped for different applications. In blind source separation and
independent component analysis, relative (natural) gradient is
proposed to replace the regular gradient in SGD [20], [21].
However, in general the natural gradient descent using metrics
like Fisher information can be as problematic as Newton
method for large-scale problems. In neural network training,
a number of specialized methods are developed to improve
the convergence of SGD, and to name a few, the classic
momentum method and Nesterov’s accelerated gradient, the
RMSProp method and its variations, various step size control
strategies, pre-training, clever initialization, and a few recent
methods coming up with element-wise learning rates [12]–
[17]. Clearly, we need a stochastic optimization method that
is as simple and widely applicable as SGD, converges as fast
as a second order method, and lastly but not the least, is user
friendly, requiring little tuning effort.

In this paper, we carefully examine SGD in the general
non-convex optimization setting. We show that it is possible
to design a preconditioner that works well for both convex
and non-convex problems, and such a preconditioner can be
estimated exclusively from the noisy gradient information.
However, when the problem is non-convex, the preconditioner
cannot be estimated following the conventional ways of Hes-
sian estimation as done in the quasi-Newton methods. For the
general non-convex optimization, a new method is required
to estimate the preconditioner, which is not necessarily the
inverse of Hessian, but related to it. This new preconditioner
has several desired properties. It reduces the eigenvalue spread
of preconditioned SGD to speed up convergence, scales the
stochastic gradient in a way comparable to Newton method
such that step size selection is trivial, and lastly, it has a built-
in gradient noise suppression mechanism to stabilize precon-
ditioned SGD when the gradient is heavily noisy. Practical
implementation methods are developed, and applications to a
number of interesting problems demonstrate the usefulness of
our methods.
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II. BACKGROUND

A. SGD

Although this paper focuses on stochastic optimization,
deterministic gradient descent can be viewed as a special case
of SGD without gradient noise, and the theories and methods
developed in this paper are applicable to it as well. Here, we
consider the minimization of cost function

f(θθθ) = E[`(θθθ,zzz)], (1)

where θθθ is a parameter vector to be optimized, zzz is a random
vector, ` is a loss function, and E takes expectation over zzz. For
example, in the problem of classification using neural network,
θθθ represents the vector containing all the tunable weights in
the neural network, zzz = (xxx, y) is the pair of feature vector
xxx and class label y, and ` typically is a differentiable loss
like the mean squared error, or the cross entropy loss, or the
(multi-class) hinge loss. Gradient descent can be used to learn
θθθ as

θθθ[new] = θθθ[old] − µggg(θθθ[old]), (2)

where µ > 0 is a positive step size, and

ggg(θθθ) = E

[
∂`(θθθ,zzz)

∂θθθ

]
(3)

is the gradient of f(θθθ) with respect to θθθ. Evaluation of the
expectation in (3) may be undesirable or not possible. In SGD,
this expectation is approximated with sample average, and thus
leading to the following update rule for θθθ,

ĝgg(θθθ) =
1

n

n∑
i=1

∂`(θθθ,zzzi)

∂θθθ
, (4)

θθθ[new] = θθθ[old] − µĝgg(θθθ[old]), (5)

where the hat ∧ suggests that the variable under it is estimated,
n ≥ 1 is the mini-batch size, and zzzi denotes the ith sample,
typically randomly drawn from the training data. Now ĝgg(θθθ) is
a random vector, and it is useful to rewrite it as

ĝgg(θθθ) = ggg(θθθ) + εεε′ (6)

to clearly show its deterministic and random parts, where
random vector εεε′ models the approximation error due to
replacing expectation with sample average. Although being
popular due to its simplicity, SGD may converge slow and
the selection of µ is nontrivial, as revealed in the following
subsection.

B. Second Order Approximation

We consider the following second order approximation of
f(θθθ) around a point θθθ0,

f(θθθ) ≈ f(θθθ0) + gggT0 (θθθ − θθθ0) +
1

2
(θθθ − θθθ0)THHH0(θθθ − θθθ0), (7)

where superscript T denotes transpose, ggg0 = ggg(θθθ0) is the
gradient at θθθ0, and

HHH0 =
∂2f(θθθ)

∂θθθT∂θθθ

∣∣∣∣
θθθ=θθθ0

is the Hessian matrix at θθθ0. Note that HHH0 is symmetric by its
definition. With this approximation, the gradients of f(θθθ) with
respect to θθθ around θθθ0 can be evaluated as

ggg(θθθ) ≈ ggg0 +HHH0(θθθ − θθθ0), (8)
ĝgg(θθθ) = ggg0 +HHH0(θθθ − θθθ0) + εεε, (9)

where εεε contains the errors introduced in both (6) and (8).
Using (9), around θθθ0, the learning rule (5) turns into the
following linear system,

θθθ[new] = (III − µHHH0)θθθ[old] − µ(ggg0 −HHH0θθθ0 + εεε), (10)

where III is a conformable identity matrix. Behaviors of such
a linear system largely depend on the selection of µ and the
distribution of the eigenvalues of III−µHHH0. In practice, this lin-
ear system may have a large dimension and be ill-conditioned.
Furthermore, little is known about HHH0. The selection of µ is
largely based on trial and error, and still, the convergence may
be slow. However, it is possible to precondition such a linear
system to accelerate its convergence remarkably as shown in
the next section.

III. PRECONDITIONED SGD

A preconditioned SGD is defined by

θθθ[new] = θθθ[old] − µPPPĝgg(θθθ[old]), (11)

where PPP is a conformable matrix called preconditioner. The
SGD in (5) is a special case of (11) with PPP = III , and we should
call it the plain SGD. Noting that our target is to minimize
the cost function f(θθθ), PPP must be positive definite, and
symmetric as well by convention, such that the search direction
always points to a descent direction. In convex optimization,
inverse of the Hessian is a popular preconditioner. However,
in general, the Hessian is not easy to obtain, not always
positive definite, and for SGD, such an inverse of Hessian
preconditioner may significantly amplify the gradient noise,
especially when the Hessian is ill-conditioned. In this section,
we detail the behaviors of preconditioned SGD in a general
setting where the problem can be non-convex, and PPP is not
necessarily related to the Hessian.

A. Convergence of Preconditioned SGD

We consider the same second order approximation given in
(7). With preconditioning, the learning rule in (10) becomes

θθθ[new] = (III − µPPPHHH0)θθθ[old] − µPPP (ggg0 −HHH0θθθ0 + εεε). (12)

To proceed, let us first prove the following statement.
Proposition 1: All the eigenvalues of PPPHHH0 are real, and for

nonzero eigenvalues, their signs are the same as those of the
eigenvalues of HHH0.

Proof: Let PPP 0.5 denote the principal square root of
PPP . Since PPP is positive definite, PPP 0.5 is symmetric and
positive definite as well. First, we show that PPPHHH0 and
PPP 0.5HHH0PPP

0.5 have the same eigenvalues. Supposing vvv is an
eigenvector of PPP 0.5HHH0PPP

0.5 associated with eigenvalue λ, i.e.,
PPP 0.5HHH0PPP

0.5vvv = λvvv, then we have

PPPHHH0(PPP 0.5vvv) = PPP 0.5PPP 0.5HHH0PPP
0.5vvv = λPPP 0.5vvv.
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As PPP 0.5 is positive definite, PPP 0.5vvv 6= 000. Thus PPP 0.5vvv is an
eigenvector of PPPHHH0 associated with eigenvalue λ. Similarly,
if vvv is an eigenvector of PPPHHH0 associated with eigenvalue λ,
then by rewriting PPPHHH0vvv = λvvv as

(PPP 0.5HHH0PPP
0.5)PPP−0.5vvv = λPPP−0.5vvv,

we see that λ is an eigenvalue of PPP 0.5HHH0PPP
0.5 as well.

Hence PPPHHH0 and PPP 0.5HHH0PPP
0.5 have identical eigenvalues, and

they are real as PPP 0.5HHH0PPP
0.5 is symmetric. Second, matrices

PPP 0.5HHH0PPP
0.5 and HHH0 are congruent, and thus their eigenvalues

have the same signs, which implies that the eigenvalues of
PPPHHH0 and HHH0 have the same signs as well. �

Basically, Proposition 1 states that a preconditioner does not
change the local geometric structure around θθθ0 in the sense
that a local minimum, or maximum, or saddle point before
preconditioning keeps to be a local minimum, or maximum,
or saddle point after preconditioning, as shown in a numerical
example given in Fig. 1.

By introducing eigenvalue decomposition

PPPHHH0 = VVVDDDVVV −1,

we can rewrite (12) as

ϑϑϑ[new] = (III − µDDD)ϑϑϑ[old] − µVVV −1PPP (ggg0 −HHH0θθθ0 + εεε), (13)

where diagonal matrix DDD and nonsingular matrix VVV contain
the eigenvalues and eigenvectors of PPPHHH0 respectively, and
ϑϑϑ = VVV −1θθθ defines a new parameter vector in the transformed
coordinates. Since III−µDDD is diagonal, (13) suggests that each
dimension of ϑϑϑ evolves independently. This greatly simplifies
the study of preconditioned SGD. Without loss of generality,
we consider the ith dimension of ϑϑϑ,

ϑ
[new]
i = (1− µdi)ϑ[old]i − µhi − µvi, (14)

where ϑi and hi are the ith elements of ϑϑϑ and VVV −1PPP (ggg0 −
HHH0θθθ0) respectively, di is the ith diagonal element of DDD,
and random variable vi is the ith element of random vector
VVV −1PPPεεε. We consider the following three cases.
di > 0): By choosing 0 < µ < 1/di, we have 0 < 1−µdi <

1. Then repeatedly applying (14) will let the expectation of ϑi
converge to −hi/di. When the variance of vi is bounded, the
variance of ϑi is bounded as well.
di < 0): For any step size µ > 0, we have 1 − µdi > 1.

Iteration (14) always pushes ϑi away from hi/di.
di = 0): This should be a transient state since ϑi always

drifts away from such a singular point due to gradient noise.
Similar pictures hold true on the convergence of ϑϑϑ as well.

When HHH0 is positive definite, the diagonal elements of DDD
are positive according to Proposition 1. Then by choosing
0 < µ < 1/max di, repeated applications of iteration (13)
let the expectation of θθθ converge to θθθ0 − HHH−10 ggg0, a local
minimum of f(θθθ) around θθθ0, where max di denotes the
maximum eigenvalue. When HHH0 is negative definite, θθθ0 is
located around a local maximum of f(θθθ), and iteration (13)
pushes the expectation of θθθ away from θθθ0 −HHH−10 ggg0. When
HHH0 has both positive and negative eigenvalues, by choosing
0 < µ < 1/max di, the part of ϑϑϑ associated with positive
eigenvalues is attracted to VVV −1

(
θθθ0 −HHH−10 ggg0

)
, and the part

associated with negative eigenvalues is repelled away from
VVV −1

(
θθθ0 −HHH−10 ggg0

)
. Saddle point is instable due to gradient

noise.
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Fig. 1. (a) Gradient vectors of quadratic function −(0.75θ21 + 2.5θ1θ2 +
0.75θ22). Eigenvalue along the diagonal direction is 0.5, and −2 along the
anti-diagonal direction. (b) Preconditioned gradient vectors with precondi-
tioner [1.25,−0.75;−0.75, 1.25]. After preconditioning, eigenvalues along
the diagonal and anti-diagonal directions do not change their signs, but are
scaled to the same amplitude.

B. Three Desirable Properties of a Preconditioner

We expect a good preconditioner to have the following three
desired properties.

1) Small eigenvalue spread: In order to achieve approxi-
mately uniform convergence rates on all the coordinates of ϑϑϑ,
all the eigenvalues of PPPHHH0 should have similar amplitudes.
We use the standard deviation of the logarithms of the absolute
eigenvalues of a matrix to measure its eigenvalue spread. The
eigenvalue spread gain of a preconditioner PPP is defined as the
ratio of the eigenvalue spread of HHH0 to the eigenvalue spread
of PPPHHH0. Larger eigenvalue spread gain is preferred, and as a
base line, a plain SGD has eigenvalue spread gain 1.

2) Normalized eigenvalue amplitudes: We hope that all
the absolute eigenvalues of PPPHHH0 are close to 1 to facilitate
the step size selection in preconditioned SGD. Note that in
deterministic optimization, the step size can be determined
by line search, and thus the scales of eigenvalues are of less
interest. However, in stochastic optimization, without the help
of line search and knowledge of Hessian, step size selection
can be tricky. We use the mean absolute eigenvalues of PPPHHH0

to measure the scaling effect of PPP . In a well preconditioned
SGD, a normalized step size, i.e., 0 < µ < 1, should work
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well for the whole learning process, eliminating any manual
step size tweaking effort.

3) Large stochastic gradient noise suppression gain: Un-
like the deterministic optimization, preconditioning for SGD
comes at a price, amplification of gradient noise. For the plain
SGD in (5), the gradient noise energy is (εεε′)Tεεε′; while for the
preconditioned SGD in (11), this noise energy is (εεε′)TPPP 2εεε′.
We use the preconditioned gradient noise energy of Newton
method, which is (εεε′)THHH−20 εεε′, as the reference, and define the
noise suppression gain of preconditioner PPP as

E
[
(εεε′)THHH−20 εεε′

]
E [(εεε′)TPPP 2εεε′]

=
tr
{
HHH−20 E

[
εεε′(εεε′)T

]}
tr {PPP 2E [εεε′(εεε′)T ]}

,

where tr(·) takes the trace of a matrix. A good approximation
of noise suppression gain is tr(HHH−20 )/tr(PPP 2).

Unfortunately, due to the existence of gradient noise, gen-
erally we cannot find a single preconditioner that simultane-
ously satisfies all our expectations. When the gradient noise
vanishes, for nonsingular HHH0, we indeed can find at least one
ideal preconditioner such that all the eigenvalues of PPPHHH0 have
unitary amplitude, as stated in the following proposition.

Proposition 2: For any nonsingular symmetric HHH0, there
exists at least one preconditioner PPP such that all the absolute
eigenvalues of PPPHHH0 are unitary, and such a PPP is unique when
HHH0 is positive or negative definite.

Proof: First, we show that such a preconditioner exists.
Assuming the eigenvalue decomposition of HHH0 is HHH0 =
UUU0DDD0UUU

T
0 , we can construct a desired preconditioner as PPP =

UUU0|DDD−10 |UUUT0 , where UUU0 is an orthogonal matrix, DDD0 is a
diagonal matrix, and |·| takes the element-wise absolute value.

Second, we show that such a preconditioner is unique when
HHH0 is positive or negative definite. When HHH0 is positive
definite, according to Proposition 1, PPPHHH0 has positive eigen-
values. If all these eigenvalues are 1, then PPPHHH0 = III , i.e.,
PPP = HHH−10 . For negative definite HHH0, similarly we can show
that PPP = −HHH−10 . �

However, such a preconditioner is not necessarily unique
for an indefinite Hessian. For example, for Hessian matrix

HHH0 =

[
1 0
0 −1

]
,

any preconditioner having form

PPP =
1

α2 − β2

[
α2 + β2 2αβ

2αβ α2 + β2

]
, |α| 6= |β|

makes PPPHHH0 have unitary absolute eigenvalues.

IV. PRECONDITIONER ESTIMATION CRITERIA

In practice, the gradient may be easily evaluated, but not
for the Hessian matrix. Thus we focus on the preconditioner
estimation methods only using the noisy stochastic gradient
information. We first discuss two criteria based on secant
equation fitting. Although they are not ideal for non-convex
optimization, it is still beneficial to study them in detail as
they are intimately related to the deterministic and stochastic
quasi-Newton methods. We then propose a new preconditioner
estimation criterion suitable for both convex and non-convex
stochastic optimizations, and show how it overcomes the fun-
damental limitations of secant equation fitting based solutions.

A. Criteria Based on Secant Equation Fitting

Let δθθθ be a small perturbation of θθθ around θθθ0. From (9),
we know that

ĝgg(θθθ + δθθθ)− ĝgg(θθθ) = HHH0δθθθ + εεε, (15)

where εεε is a random vector accounting for the errors intro-
duced by stochastic approximation of gradients and second
order approximation of cost function. It is proposed to use the
same randomly sampled training data to calculate ĝgg(θθθ + δθθθ)
and ĝgg(θθθ) for two reasons. First, this practice reduces stochastic
noise, and makes sure that ĝgg(θθθ+δθθθ)−ĝgg(θθθ)→ 000 when δθθθ → 000.
Second, it avoids reloading or regenerating training data. To
simplify the notation, we rewrite (15) as

δĝgg = HHH0δθθθ + εεε, (16)

where δĝgg = ĝgg(θθθ+δθθθ)−ĝgg(θθθ) denotes a random perturbation of
stochastic gradient. We call (16) the stochastic secant equation.
In quasi-Newton methods, the secant equation is used to derive
diverse forms of estimators for the Hessian or its inverse, and
Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula is among
the widely used ones. In deterministic optimization, BFGS is
used along with line search to ensure that the updated Hessian
estimate is always positive definite. However, in stochastic
optimization, due to the existence of gradient noise and the
infeasibility of line search, attempts in this direction can
only achieve limited successes. One common assumption to
justify the use of (16) for preconditioner estimation is that
the true Hessians around θθθ0 are positive definite, i.e., the
optimization problem is convex or θθθ already is in a basin
of attraction. This can be a serious limitation in practice,
although it greatly simplifies the design of stochastic quasi-
Newton methods. Nevertheless, secant equation based Hessian
estimators are still widely adopted in both deterministic and
stochastic optimizations.

1) Criterion 1: With sufficient independent pairs of (δθθθ, δggg)
around θθθ0, we will be able to estimate HHH0 by fitting the
secant equation (16). It is natural to assume that the error
εεε is Gaussian distributed, and thus a reasonable criterion for
preconditioner estimation is

c1(PPP ) = E
[∥∥δĝgg −PPP−1δθθθ∥∥2] , (17)

where ‖ · ‖ denotes the Euclidean length of a vector, δθθθ and
the associated δĝgg are regarded as random vectors, and E takes
expectation over them. The preconditioner determined by this
criterion is called preconditioner 1. Using equation

dPPP−1 = −PPP−1dPPPPPP−1, (18)

we can show that the derivative of c1(PPP ) with respect to PPP is

∂c1(PPP )

∂PPP
= PPP−1

(
eee1δθθθ

T + δθθθeeeT1
)
PPP−1, (19)

where d denotes differentiation, and eee1 = δĝgg−PPP−1δθθθ. Noting
that PPP is symmetric, the gradient of c1 with respect to PPP is
symmetric as well, or equivalently, the symmetric part of the
gradient of c1 with respect to PPP without considering symmetry
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constraint. By letting the gradient be zero, we can find the
optimal PPP by solving equation

RRRθPPP
−1 +PPP−1RRRθ − (RRRθg +RRRgθ) = 000, (20)

where RRRθ = E[δθθθδθθθT ], RRRθg = E[δθθθδĝggT ], and RRRgθ =
E[δĝggδθθθT ].

Equation (20) is a continuous Lyapunov equation well
known in control theory. Using result

vec(AAABBBCCC) = (CCCT ⊗AAA)vec(BBB), (21)

we can rewrite (20) as

(III ⊗RRRθ +RRRθ ⊗ III)vec(PPP−1) = vec(RRRθg +RRRgθ) (22)

to solve for PPP , where vec(AAA) is the vector formed by stacking
the columns of AAA, ⊗ denotes matrix Kronecker product, and
III is a conformable identity matrix.

However, the solution given by (22) is not intuitive. We can
solve for PPP directly with the following mild assumptions:
A1) δθθθ has zero mean, i.e., E[δθθθ] = 000.
A2) δθθθ and εεε are uncorrelated, i.e., E[δθθθεεεT ] = 000.
A3) Covariance matrix RRRθ = E[δθθθδθθθT ] is positive definite.
With the above assumptions, we have

RRRgθ = HHH0RRRθ, RRRθg = RRRθHHH0. (23)

Using (23), (20) becomes

RRRθ(PPP
−1 −HHH0) + (PPP−1 −HHH0)RRRθ = 000, (24)

or equivalently

(III ⊗RRRθ +RRRθ ⊗ III)vec(PPP−1 −HHH0) = 000 (25)

by using (21). Since RRRθ is positive definite, III⊗RRRθ+RRRθ⊗III is
positive definite as well. Hence vec(PPP−1 −HHH0) = 000 by (25),
i.e., PPP = HHH−10 . Thus as in the deterministic optimization,
with enough independent pairs of (δθθθ, δggg), criterion 1 leads to
an asymptotically unbiased estimation of HHH−10 . Such an un-
biasedness property is preferred in deterministic optimization,
however, it might be undesirable in stochastic optimization as
such a preconditioner may significantly amplify the gradient
noise. Furthermore, when preconditioner 1 is estimated using
finite pairs of (δθθθ, δggg), PPP cannot be guaranteed to be positive
definite even if HHH0 is positive definite.

2) Criterion 2: By rewriting (16) as HHH−10 δĝgg = δθθθ+HHH−10 εεε,
we may introduce another criterion for secant equation fitting,

c2(PPP ) = E[‖PPPδĝgg − δθθθ‖2]. (26)

Naturally, the preconditioner determined by this criterion is
called preconditioner 2. The derivative of c2 with respect to
PPP is

∂c2(PPP )

∂PPP
= δĝggeeeT2 + eee2δĝgg

T , (27)

where eee2 = PPPδĝgg − δθθθ. By letting the derivative of c2 with
respect to PPP be zero, we find that the optimal PPP satisfies
equation

PPPRRRg +RRRgPPP −RRRgθ −RRRθg = 000, (28)

where RRRg = E[δĝggδĝggT ].
Again, (28) is a continuous Lyapunov equation, and can

be numerically solved. Unfortunately, there does not exist a

simple closed-form relationship between the optimal PPP and
HHH0. Still, analytical solutions in simplified scenarios can cast
crucial insight into the properties of this criterion. By assuming
assumption A4,

RRRθ = σ2
θIII, RRRε = E[εεεεεεT ] = σ2

εIII, (29)

the optimal PPP can be shown to be

PPP =

m∑
i=1

λi
λ2i + σ2

ε/σ
2
θ

uuuiuuu
T
i , (30)

whereHHH0 =
∑m
i=1 λiuuuiuuu

T
i is the eigenvalue decomposition of

HHH0 with uuui being its ith eigenvector associated with eigenvalue
λi. As criterion 1, criterion 2 leads to an unbiased estimation
of HHH−10 when σ2

ε = 0. But unlike criterion 1, the optimal PPP
here underestimates the inverse of Hessian when σ2

ε > 0. Such
a built-in annealing mechanism is actually desired in stochastic
optimization. Again, when preconditioner 2 is estimated using
finite pairs of (δθθθ, δggg), it can be indefinite even if HHH0 is
positive definite.

B. A New Criterion for Preconditioner Estimation

As examined in Section III, the essential utility of a pre-
conditioner is to ensure that ϑϑϑ enjoys approximately uniform
convergence rates across all directions. Amplitudes, but not
the signs, of the eigenvalues of Hessian are to be normalized.
There is no need to explicitly estimate the Hessian. We propose
the following new criterion for preconditioner estimation,

c3(PPP ) = E[δĝggTPPPδĝgg + δθθθTPPP−1δθθθ], (31)

and call it and resultant preconditioner criterion 3 and precon-
ditioner 3 respectively. The rationale behind criterion 3 is that
when c3(PPP ) is minimized, we should have

∂c3(κPPP )

∂κ

∣∣∣∣
κ=1

= 0,

which suggests its two terms, E[δĝggTPPPδĝgg] and E[δθθθTPPP−1δθθθ],
are equal, and thus the amplitudes of perturbations of precon-
ditioned stochastic gradients match that of parameter perturba-
tions as in the Newton method where the inverse of Hessian
is the preconditioner. Furthermore, c3(PPP ) is invariant to the
changes of the signs of δĝgg and δθθθ, i.e., pairs (±δθθθ,±δggg) re-
sulting in the same cost. We present the following proposition
to rigorously justify the use of criterion 3. To begin with, we
first prove a lemma.

Lemma 1: If AAA is symmetric, AAA2 = DDD, and DDD is a diagonal
matrix with distinct nonnegative diagonal elements, then we
have AAA = DDDsignDDD

0.5, where DDDsign is an arbitrary diagonal
matrix with diagonal elements being either 1 or −1.

Proof: Let the eigenvalue decomposition of AAA be AAA =
UUUDDDAUUU

T . Then AAA2 = DDD suggests UUUDDD2
AUUU

T = DDD. Noting
that the eigenvalue decomposition of DDD is unique when it has
distinct diagonal elements, we must have UUU = III andDDD2

A = DDD,
i.e., AAA = DDDsignDDD

0.5. �
Proposition 3: For positive definite covariance matrices RRRθ

andRRRg , criterion c3(PPP ) determines an optimal positive definite
preconditioner PPP scaling δĝgg as PPPE[δĝggδĝggT ]PPP = E[δθθθδθθθT ].
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The optimal PPP is unique when RRR0.5
θ RRRgRRR

0.5
θ has distinct

eigenvalues.
Proof: The derivative of c3(PPP ) with respect to PPP is

∂c3(PPP )

∂PPP
= E[δĝggδĝggT ]−PPP−1E[δθθθδθθθT ]PPP−1. (32)

By letting the gradient be zero, we obtain the following
equation for optimal PPP ,

PPPRRRgPPP −RRRθ = 000, (33)

which has the form of a continuous time algebraic Riccati
equation known in control theory, but lacking the linear term
of PPP . To solve for PPP , we rewrite (33) as

(RRR−0.5θ PPPRRR−0.5θ )RRR0.5
θ RRRgRRR

0.5
θ (RRR−0.5θ PPPRRR−0.5θ ) = III, (34)

where AAA0.5 denotes the principal square root of a positive
definite matrix AAA. By introducing eigenvalue decomposition

RRR0.5
θ RRRgRRR

0.5
θ = UUUDDDUUUT , (35)

we can rewrite (34) as

(UUUTRRR−0.5θ PPPRRR−0.5θ UUU)DDD(UUUTRRR−0.5θ PPPRRR−0.5θ UUU) = III, (36)

or equivalently,

DDD = (UUUTRRR−0.5θ PPPRRR−0.5θ UUU)−2. (37)

When RRR0.5
θ RRRgRRR

0.5
θ does not have repeated eigenvalues, the

diagonal elements of DDD are distinct, and the solution PPP must
have form

PPP = RRR0.5
θ UUU(DDDsignDDD

−0.5)UUUTRRR0.5
θ (38)

by Lemma 1. For positive definite PPP , we can only choose
DDDsign = III , and thus the optimal PPP is unique. When
RRR0.5
θ RRRgRRR

0.5
θ has repeated eigenvalues, (38) still gives a valid

solution, but not necessarily the only one. The assumption of
non-singularity of RRRθ and RRRg is used to make the involved
matrix inversion feasible. �

Unlike the two secant equation fitting based preconditioners,
preconditioner 3 is guaranteed to be positive definite as long as
the estimated covariance matrices R̂RRθ and R̂RRg are positive defi-
nite. To gain more insight into the properties of preconditioner
3, we consider closed-form solutions in simplified scenarios
that can explicitly link the optimal PPP to HHH0. When RRRθ and RRRε
have the simple forms shown in (29), the closed-form solution
for PPP is

PPP =

m∑
i=1

1√
λ2i + σ2

ε/σ
2
θ

uuuiuuu
T
i , (39)

where HHH0 =
∑m
i=1 λiuuuiuuu

T
i is the eigenvalue decomposition

of HHH0. The eigenvalues of PPPHHH0 are λi/
√
λ2i + σ2

ε/σ
2
θ , 1 ≤

i ≤ m. When σ2
ε →∞, we have

λi√
λ2i + σ2

ε/σ
2
θ

→ σθλi
σε

.

Thus for heavily noisy gradient, the optimal preconditioner
cannot improve the eigenvalue spread, but are damping the
gradient noise. Such a built-in step size adjusting mechanism
is highly desired in stochastic optimization. When σ2

ε = 0, PPP
reduces to the ideal preconditioner constructed in the proof of

Proposition 2, and all the eigenvalues of PPPHHH0 have unitary
amplitude. These properties make preconditioner 3 an ideal
choice for preconditioned SGD.

C. Relationship to Newton Method

In a Newton method for deterministic optimization, we
have δggg = HHH0δθθθ. Here δggg is an exact gradient pertur-
bation. Let us rewrite this secant equation in matrix form
as HHH−10 δgggδgggTHHH−10 = δθθθδθθθT , and compare it with relation
PPPE[δĝggδĝggT ]PPP = E[δθθθδθθθT ] from Proposition 3. Now it is clear
that preconditioner 3 scales the stochastic gradient in a way
comparable to Newton method in deterministic optimization.

The other two preconditioners either over or under compen-
sate the stochastic gradients, inclining to cause divergence or
slowdown convergence as shown in our experimental results.
To simplify our analysis work, we consider the closed-form
solutions of the first two preconditioners. For preconditioner
1, we have PPP = HHH−10 under assumptions A1, A2 and A3.
Then with (16), we have

PPPE[δĝggδĝggT ]PPP − E[δθθθδθθθT ] = HHH−10 E[εεεεεεT ]HHH−10 � 000,

which suggests that preconditioner 1 over compensates the
stochastic gradient, where � 000 means that the matrix on the
left side of � is positive semidefinite definite. For precondi-
tioner 2, using the closed-form solution in (30), we have

PPPE[δĝggδĝggT ]PPP − E[δθθθδθθθT ] = −
m∑
i=1

σ2
εuuuiuuu

T
i

λ2i + σ2
ε/σ

2
θ

� 000,

which suggests that preconditioner 2 under compensates the
stochastic gradient, where � 000 means that the matrix on the
left side of � is negative semidefinite.

V. PRECONDITIONER ESTIMATION METHODS

It is possible to design different preconditioner estimation
methods based on the criteria proposed in Section IV. To
minimize the overhead of preconditioned SGD, we only con-
sider the simplest preconditioner estimation methods: SGD
algorithms for learning PPP minimizing the criteria in Section
IV with mini-batch size 1. We call the SGD for θθθ the primary
SGD to distinguish it from the SGD for learning PPP . In each
iteration of preconditioned SGD, we first evaluate the gradient
twice to obtain ĝgg(θθθ) and ĝgg(θθθ+ δθθθ). Then the pair, (δθθθ, δĝgg), is
used to update the preconditioner estimation once. Lastly, (11)
is used to update θθθ to complete one iteration of preconditioned
SGD.

A. Dense Preconditioner

We focus on the algorithm design for criterion 3. Algorithms
for the other two criteria are similar, and will be given without
detailed derivation. In this subsection, we do not assume that
the preconditioner has any sparse structure except for being
symmetric, i.e. it is a dense matrix. Elements in the Hessian,
and thus the preconditioner, can have a large dynamic range.
Additive learning rules like the regular gradient descent may
converge slow when the preconditioner is poorly initialized.
We find that multiplicative updates, e.g., the relative (natural)
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gradient descent, could perform better due to its equivariant
property [20], [21]. However, to use the relative gradient
descent, we need to find a Lie group representation for PPP .
It is clear that positive definite matrices do not form a Lie
group under matrix multiplication operation. Let us consider
the Cholesky factorization

PPP = QQQTQQQ, (40)

where QQQ is an upper triangular matrix with positive diagonal
elements. It is straightforward to show that all upper triangular
matrices with positive diagonal elements form a Lie group
under matrix multiplication operation. Thus in order to use
the relative gradient descent, we shall learn the matrix QQQ.
One desired by-product of Cholesky factorization is that the
resultant triangular system can be efficiently solved by forward
or backward substitution.

Following the third criterion, the instantaneous cost to be
minimized is

ĉ3(PPP ) = δĝggTPPPδĝgg + δθθθTPPP−1δθθθ, (41)

which is an approximation of (31) with mini-batch size 1. We
consider a small perturbation of QQQ given by δQQQ = EQQQ, where
E is an infinitely small upper triangle matrix such that QQQ+δQQQ
still belongs to the same Lie group. The relative gradient is
defined by

∇∇∇E =
∂ĉ3(QQQ+ EQQQ)

∂E

∣∣∣∣
E=000

,

where with slight abuse of notation, c3 is rewritten as a
function of QQQ. Using (18), we can show that

∇∇∇E = 2triu
(
QQQδĝggδĝggTQQQT −QQQ−T δθθθδθθθTQQQ−1

)
, (42)

where operator triu(·) takes the upper triangular part of a
matrix. Then QQQ can be updated as

QQQ[new] = QQQ[old] − µQ∇∇∇EQQQ[old], (43)

where µQ > 0 is a small enough step size such that the
diagonal elements of QQQ[new] keep to be positive. To simplify
the step size selection, normalized step size

µQ =
µQ,0

max |∇∇∇E|
(44)

can be used, where 0 < µQ,0 < 1, and max |∇∇∇E| denotes
the maximum element-wise absolute value of ∇∇∇E . Another
normalized step size

µQ =
µQ,0

max |diag(∇∇∇E)|

can be useful, and also ensures that QQQ[new] belongs to the
same Lie group when 0 < µQ,0 < 1, where max |diag(∇∇∇E)|
denotes the maximum absolute value of the diagonal elements
of∇∇∇E . Our experiences suggest that the two step size normal-
ization strategies are comparable in stochastic optimization.
However, the one given in (44) seems to be preferred in de-
terministic optimization as it leads to more stable convergence.

We summarize the complete preconditioned SGD as below.

One complete iteration of preconditioned SGD with precon-
ditioner 3

Inputs are θθθ[old] and QQQ[old]; outputs are θθθ[new] and QQQ[new].

1) Sample δθθθ, and calculate ĝgg(θθθ[old]) and δĝgg = ĝgg(θθθ[old] +
δθθθ)− ĝgg(θθθ[old]).

2) Calculate aaa = QQQ[old]δĝgg, and bbb =
(
QQQ[old]

)−T
δθθθ via

solving triangular system
(
QQQ[old]

)T
bbb = δθθθ.

3) Update the preconditioner by

QQQ[new] = QQQ[old] − µQ,0
max |∇∇∇E|

∇∇∇EQQQ[old],

where ∇∇∇E = 2triu(aaaaaaT − bbbbbbT ), and 0 < µQ,0 < 1.
4) Update θθθ by

θθθ[new] = θθθ[old] − µθ,0
(
QQQ[new]

)T
QQQ[new]ĝgg(θθθ[old]),

where 0 < µθ,0 < 1.

Here, elements of δθθθ can be sampled from the Gaussian
distribution with a small variance. Then the only tunable
parameters are the two normalized step sizes, µQ,0 and µθ,0.

Algorithm design for the other two preconditioners is simi-
lar, and we give their relative gradients for updatingQQQ without
derivation. For criterion 1, the relative gradient is

∇∇∇E = 2triu
(
QQQ−T δθθθeeeT1QQQ

−1 +QQQ−Teee1δθθθ
TQQQ−1

)
,

where eee1 = δĝgg−PPP−1δθθθ. For criterion 2, the relative gradient
is

∇∇∇E = 2triu
(
QQQδĝggeeeT2QQQ

T +QQQeee2δĝgg
TQQQT

)
,

where eee2 = PPPδĝgg− δθθθ. It is worthy to mention that by writing
PPP = QQQTQQQ when using criteria 1 and 2, we are forcing the
preconditioners to be positive definite, but the optimal solution
minimizing criterion 1 or 2 is not necessarily positive definite.
For criterion 3, by writing PPP = QQQTQQQ, we are selecting the
positive definite solution among many possible ones.

B. Preconditioner with Sparse Structures

In practice, θθθ can have millions of free parameters to learn,
and thus a dense PPP might have trillions of elements to estimate
and store. Clearly, a dense representation for PPP is no longer
feasible. For large-scale problems, we need to assume that PPP
has certain sparse structures so that it can be manipulated.
One extreme example is to treat PPP as a diagonal matrix.
However, such a simplification is too coarse, and generally
does not lead to significant performance gain over the plain
SGD. Application specific knowledge may play the key role
in determining a proper form for PPP .

One example is to assume QQQ has structure

QQQ =

[
QQQ11 QQQ12

000 QQQ22

]
,

where QQQ11 is an upper triangular matrix, QQQ12 is a dense
matrix,QQQ22 is a diagonal matrix, and all the diagonal elements
of QQQ are positive. It is straightforward to show that such
limited-memory triangular matrices form a Lie group, and thus
relative gradient descent applies here. Cholesky factor of ill-
conditioned matrix can be well approximated with this form.
However, the dimension of QQQ11 should be properly selected
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to achieve a good trade off between representation complexity
and accuracy.

In many situations, the parameters to be optimized naturally
form a multi-dimensional array, reflecting certain built-in
structures of the training data and the parameter space. Hence
we may approximate the preconditioner as Kronecker products
of a series of small matrices. For example, preconditioner for
a 3×4×5 parameter array may be approximated as Kronecker
product of three small matrices with sizes 5 × 5, 4 × 4 and
3×3. Such a bold simplification often works well in practice.
Interestingly, similar ideas have been exploited in [18], [19],
and achieved certain successes.

To explain the above idea clearly, let us consider a concrete
example where the parameters to be optimized naturally form a
two dimensional array, i.e., a matrix, denoted by ΘΘΘ. Its stochas-
tic gradient, ĜGG(ΘΘΘ), is a matrix with the same dimensions. The
preconditioned SGD for updating ΘΘΘ is

vec
(
ΘΘΘ[new]

)
= vec

(
ΘΘΘ[old]

)
− µPPPvec

[
ĜGG(ΘΘΘ[old])

]
. (45)

To simplify the preconditioner estimation, we may assume that
PPP = PPP 2 ⊗PPP 1, and thus can rewrite (45) as

ΘΘΘ[new] = ΘΘΘ[old] − µPPP 1ĜGG(ΘΘΘ[old])PPP 2 (46)

using (21), where PPP 1 and PPP 2 are two positive definite matrices
with conformable dimensions. Similarly, by adopting Cholesky
factorizations

PPP 1 = QQQT1QQQ1, PPP 2 = QQQT2QQQ2,

we can use relative gradients to update QQQ = QQQ2 ⊗ QQQ1 as
δQQQ1 = E1QQQ1 and δQQQ2 = E2QQQ2. For criterion 3, the two
relative gradients are given by

AAA = QQQ1δĜGGQQQ
T
2 ,

BBB = QQQ−T2 δΘΘΘTQQQ−11 ,

∇∇∇E1 = 2triu
(
AAAAAAT −BBBTBBB

)
,

∇∇∇E2 = 2triu
(
AAATAAA−BBBBBBT

)
,

where BBB can be calculated by solving linear system
QQQT2BBBQQQ1 = δΘΘΘT to avoid explicit matrix inversion. The
relative gradients for preconditioner updating with criteria 1
and 2 have similar forms, and are not listed here.

VI. EXPERIMENTAL RESULTS

Five sets of experimental results are reported in this section.
For the preconditioner estimation, we always choose mini-
batch size 1, initialize PPP to an identity matrix, set µQ,0 = 0.01
in (44), and sample δθθθ from Gaussian distribution N (000, eps×
III), where eps = 2−52 is the accuracy in double precision. For
the primary SGD, except for the blind equalization example
where the mini-batch size is 10, we always use mini-batch
size 100. Step size for the preconditioned SGD is selected
in [0, 1], and in many cases, this range is good for the plain
SGD as well. Supplementary materials, including a Matlab
code package reproducing all the experimental results here, is
available on https://sites.google.com/site/lixilinx/home/psgd.

A. Criteria and Preconditioners Comparisons

This experiment compares the three preconditioner estima-
tors developed in Section V. The true Hessian HHH0 is a 10×10
symmetric random constant matrix, and its elements are drawn
from normal distribution N (0, σ2

h). We vary three factors for
performance study: positive definite Hessian and indefinite
Hessian; noise free gradient and heavily noisy gradient with
signal-to-noise ratio −20 dB; large scale Hessian (σ2

h = 1012)
and tiny scale Hessian (σ2

h = 10−12). Totally we have 23

different testing scenarios. Samples of δĝgg and δθθθ are generated
by model (16), and the task is to estimate a preconditioner with
the three desirable properties listed in Section III.B using SGD.

Fig. 2 shows a set of typical results. We can make the
following observations from Fig. 2. Criterion 3 shows robust
performance in all the test cases. When the gradient is noise
free, it has large eigenvalue spread gains, well normalized
eigenvalues, and no amplification of gradient noise. When
the gradient is heavily noisy, it cannot improve, but neither
worsen, the eigenvalue spread. Instead, it damps the gradient
noise, shown by average absolute eigenvalues smaller than
1 and gradient noise suppression gains larger than 1. Also,
it is worthy to point out that the preconditioner estimation
algorithm for criterion 3 shows similar convergence rates
when the Hessians have an extremely large numerical dynamic
range, a desirable behavior expected due to the equivariant
property of relative gradient descent [20]. Criteria 1 and 2 fail
completely in the cases of indefinite Hessians, and also show
limited performance when the Hessians are positive definite.
In the third row of Fig. 2, preconditioner 1 does show a larger
eigenvalue spread gain than preconditioner 3, but the price is
the amplification of gradient noise, as revealed by its smaller
gradient noise suppression gain.

B. Blind Equalization (Deconvolution)

Let us consider a blind equalization (deconvolution) prob-
lem using constant modulus criterion [2]. Blind equalization
is an important communication signal processing problem,
and SGD is a default method. This problem is weakly non-
convex in the sense that using a equalizer with enough taps, the
constant modulus criterion has no local minimum [22]. In our
settings, the source signal is uniformly distributed in range
[−1, 1], the communication channel is simulated by linear
filter h(z−1) = (−0.8 + z−2)/(1 + 0.8z−2), the equalizer,
w(z−1), is an adaptive finite impulse response (FIR) filter
with 21 taps, initialized by setting its center tap to 1 and
other taps to zeros, and the mini-batch size is 10. Step sizes of
the compared algorithms are manually adjusted such that their
steady state intersymbol interference (ISI) performance indices
are about 0.027, where ISI is defined by

∑
i c

2
i /max c2i − 1,

and
∑
i ciz

−1 = h(z−1)w(z−1).
Fig. 3 summarizes the results. A preconditioner constructed

in the same way as in the proof of Proposition 2 using
an adaptively estimated Hessian matrix achieves the fastest
convergence, however, such a solution may be too compli-
cated in practice. Precondition 3 performs reasonably well
considering its simplicity. Preconditioner 2 completely fails
to improve the convergence with step size 0.01, while a larger

https://sites.google.com/site/lixilinx/home/psgd
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Fig. 2. Preconditioner estimation criteria comparison. Row 1: positive definite Hessian, noise free gradient, σ2
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noise free gradient, σ2
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step size leads to divergence. Preconditioner 1 does accelerate
the convergence due to the weak non-convexity nature of cost
function. The plain SGD converges the slowest, and still its
steady state ISI is bumpy and higher than 0.027.
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Fig. 3. ISI convergence curves. Each point on the curve is an ISI index
evaluated every 100 mini-batches. The curve with preconditioner 2 and step
size 0.01 does not converge, but a larger step size, 0.02, leads to divergence.

C. A Toy Binary Classification Problem
In this problem, the input features are x1 and x2, indepen-

dently and uniformly distributed in [0, 1], and the class label
is

y = mod [round(10x1 − 10x2)/2] ,

where round(·) rounds a real number to its nearest integer,
and mod(·) denotes modulus after division. Fig. 4 shows
the defined zebra stripe like pattern to be learned. It is a
challenging classification problem due to its sharp, interleaved,
and curved class boundaries. A two layer feedforward neural
network with 100 hidden nodes is trained as the classifier. As
a common practice, the input features are normalized before
feeding to the network, and the network coefficients of a
certain layer are initialized as random numbers with variance
proportional to the inverse of the number of nodes connected
to this layer. Nonlinear function tanh is used. Cross entropy
loss is the training cost. A 401× 401 dense preconditioner is
estimated and used in preconditioned SGD.

Fig. 5 presents one set of typical learning curves with eight
different settings. By using the plain SGD as a base line, we
find that preconditioner 2 fails to speed up the convergence;
both preconditioner 1 and preconditioner 3 significantly ac-
celerate the convergence, and yet preconditioner 3 performs
far better than preconditioner 1. Note that there is no trivial
remedy to improve the convergence of SGD. A larger step size
makes SGD diverge. We have tried RMSProp, and found that
it does accelerate the convergence during the initial iterations,
but eventually converges to solutions inferior to that of SGD.

Fig. 4. The pattern to be learned in the toy example. White areas belong to
class 1, and black areas belong to class 0.
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Fig. 5. One set of typical convergence curves for the toy binary classification
problem. Each point on the curves is a cross entropy loss averaged over 100
mini-batches.

D. Recurrent Neural Network Training

Let us consider a more challenging problem: learning
extremely long term dependencies using recurrent neural
network. The addition problem initially proposed in [23] is
considered. The input is a sequence of two rows. The first
row contains random numbers independently and uniformly
distributed in [−0.5, 0.5]. Elements in the second row are
zeros, except two of them are marked with 1. The desired
output of the whole sequence is the sum of the two random
numbers from the first row marked with 1 in the second
row. More details can be found in [23] and our supplemental
materials.
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In our settings, the sequence length is 100, and a standard
(vanilla) recurrent neural network with 50 hidden states are
trained to predict the output by minimizing the mean squared
error. The feedforward coefficients are initialized as Gaussian
random numbers with mean zero and variance 0.01, and the
feedback matrix is initialized as a random orthogonal matrix
to encourage long term memories. Backpropagation through
time [4] is used for gradient calculation. Totally, this network
has 2701 tunable parameters. A dense preconditioner might be
expensive, and thus a sparse one is used. Coefficients in the
first layer naturally form a 50× 53 matrix, and coefficients in
the second layer form a 1× 51 vector. Thus we approximate
the preconditioner for gradient of parameters in the first layer
as Kronecker product of a 53×53 matrix with a 50×50 matrix,
and the preconditioner for gradient of parameters in the second
layer is a 51 × 51 matrix. Preconditioner for gradient of the
whole parameter vector is the direct sum of the preconditioner
of the first layer and the one of the second layer.

Fig. 6 summarizes the results of a typical run. Only the
preconditioned SGD using preconditioner 3 converges. A
recurrent neural network can be regarded as a feedforward
one with extremely large depth by unfolding its connections
in time. It is known that the issues of vanishing and exploding
gradients arise in a deep neural network, and SGD can hardly
handle them [24]. Preconditioned SGD seems perform quite
well on such challenging problems. More testing results on the
eight pathological recurrent neural network training problems
proposed in [23] are reported in supplementary materials and
[25], which suggests that preconditioned SGD performs no
worse than Hessian-free optimization, although our method
has a significantly lower complexity and involves less param-
eter tweaking than it.
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Fig. 6. Convergence curves of the addition problem with sequence length
100. Each point on the curves is a mean squared error averaged over 100
mini-batches.

E. MNIST Handwritten Recognition

In the last experiment, we consider the well known MNIST
handwritten recognition problem [26]. The training data are

60000 images of handwritten digits, and the test data are
10000 such images. Feedforward neural network is used as the
classifier. The inputs are normalized to dynamic range [−1, 1].
Due to the high dimension of data, the preconditioners are
always approximated as Kronecker products, and each layer
has its own preconditioner.

We first consider a linear classifier using the cross entropy
loss. Such a model is also known as a logistic regression
model, and it is convex. Fig. 7 summarizes the results.
Except that the setting with preconditioner 1 and step size 0.1
diverges, and the setting with preconditioner 2 and step size
0.01 converges slow, all the other settings show reasonably
good performance. Still, the setting with preconditioner 3 and
step size 0.01 performs the best, converging to a test error
rate slightly lower than 0.08. Here, the test error rate is the
ratio of the number of misclassified testing samples to the total
number of testing samples.
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Fig. 7. Convergence curves of a linear classifier on MNIST data set. (a) Each
point on the curves is a cross entropy loss averaged over 60 mini-batches, i.e.,
0.1 epoch. (b) Each point is a test error rate evaluated every 60 mini-batches.

Then we consider a two layer neural network classifier with
300 hidden nodes, trained using the cross entropy loss as
well. Fig. 8 shows the results. Preconditioner 1 and 2 perform
poorly due to the non-convexity of cost function. Precondition
3 leads to the best performance on the training data. The
best test error rate is slightly higher than 0.02, achieved by
preconditioner 3. However, the neural network trained by
preconditioned SGD with preconditioner 3 using a large step
size over fits the training data after about two epochs, and
the neural network coefficients are pushed to extremely large
values. Application related knowledge may be required to
prevent or alleviate overfitting. In this example, the input data
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are rank deficient as many pixels close to image boundaries
are zero for all samples. Apparently, this can be one reason
causing ill-conditioned Hessian. One common practice is to
use regularization terms. We have tried adding regularization
term 10−4θθθTθθθ to the training cost, and found that not only
overfitting is avoided, but also the test error rate is reduced
to 0.017 after convergence. Coefficient sharing, as done in
convolution and recurrent neural networks, is another way to
avoid overfitting. In [25], a small but deep two dimensional
RNN trained with our preconditioned SGD achieves test error
rate 0.006 without using any pre-processing, pre-training, or
distorted version of training samples.
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Fig. 8. Convergence curves of a two layer neural network classifier on
MNIST data set. (a) Each point on the curves is a cross entropy loss averaged
over 60 mini-batches. (b) Each point is a test error rate evaluated every 60
mini-batches.

Lastly we train a three layer neural network classifier with
300 and 100 nodes in the first and second hidden layers
respectively. We deliberately use a multi-class hinge loss
to test the numerical robustness of preconditioned SGD in
the presence of non-smooth gradient. Supposing the neural
network output is ooo and the target class label is i, the hinge
loss is defined by max(maxj 6=i oj + 1− oi, 0) [27]. We use a
slightly modified and smoother hinge loss,√

max(max
j 6=i

oj + 1− oi, 0)2 + 0.01− 0.1.

Still, it is not second order differentiable everywhere due to
the use of function max(·).

Fig. 9 summarizes the results. Again, preconditioner 1 and
2 perform poorly due to the non-convexity of cost function.
Precondition 3 considerably accelerates the convergence, and
achieves the best test error rate which is slightly higher than

0.02. With a large step size, the test error rate converges just
with about 1.5 epochs. But unlike the use of cross entropy
loss, no apparent overfitting is observed here. Interestingly,
the preconditioner estimation algorithms can cope with non-
smooth and noisy gradients.
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Fig. 9. Convergence curves of a three layer neural network classifier on
MNIST data set. (a) Each point on the curves is a multi-class hinge loss
averaged over 60 mini-batches. (b) Each point is a test error rate evaluated
every 60 mini-batches.

We briefly discuss the computational complexity of precon-
ditioned SGD to end this section. Comparison with SGD, pre-
conditioned SGD introduces two fixed overheads per iteration,
one more gradient evaluation and one preconditioner update.
When simplified preconditioner is used or the gradient calcu-
lation is complicated, the overhead due to gradient evaluation
dominates. Thus compared with SGD, preconditioned SGD
roughly doubles the complexity. Luckily, the two gradients
in preconditioned SGD can be evaluated simultaneously to
save computational time when parallel computing is available.
When the Hessian does not change fast over its parameters,
one may evaluate the perturbed gradient and update precon-
ditioner less frequently to save computational complexity as
well.

We give two examples on the time complexity of precon-
ditioner estimation based on profile analysis of the supple-
mentary Matlab code. In the recurrent neural network training
example, preconditioner updating only consumes about 0.5%
CPU time. In the MNIST neural network training example,
preconditioner updating consumes about 15% CPU time.
In both examples, gradient evaluation dominates the time
complexity, and preconditioning can be beneficial as it may
accelerate the convergence by far more than two times.
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VII. CONCLUSIONS

Preconditioned stochastic gradient descent (SGD) is studied
in this paper. Our analysis suggests that an ideal preconditioner
for SGD should be able to reduce the eigenvalue spread and
normalize the amplitudes of eigenvalues of the Hessian, and
at the same time, avoid amplification of gradient noise. We
then study the performance of three preconditioner estimation
criteria. Two of them are based on stochastic secant equation
fitting as done in the quasi-Newton methods, and naturally
they are confined to convex stochastic optimization. A new
preconditioner estimation criterion is proposed, and is shown
to be applicable to both convex and non-convex optimization
problems. We show that the new preconditioner scales the
stochastic gradient in a way similar to the Newton method
where the inverse of Hessian is the preconditioner, while the
other two preconditioners either over or under compensate the
gradient due to gradient noise. Based on these criteria, variant
stochastic relative (natural) gradient descent preconditioner
estimation algorithms are developed. Due to the equivariant
property of relative gradient descent, the proposed precondi-
tioner estimation algorithms work well for Hessians with wide
numerical dynamic ranges. Finally, both toy and real world
problems with different levels of difficulties are examined to
study the performance of preconditioned SGD. Using SGD as
a base line, we observe that preconditioner 1 may accelerate
the convergence for convex and weakly non-convex problems,
but inclines to cause divergence; preconditioner 2 seldom
causes divergence, but neither can it improve convergence;
preconditioner 3 always achieves the best performance, and it
provides the only solution capable of training recurrent neural
networks requiring extremely long term memories.
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