
Understanding the Disharmony between Dropout and Batch Normalization by
Variance Shift

Xiang Li 1 Shuo Chen 1 Xiaolin Hu 2 Jian Yang 1

Abstract

This paper first answers the question “why do
the two most powerful techniques Dropout and
Batch Normalization (BN) often lead to a worse
performance when they are combined together?”
in both theoretical and statistical aspects. The-
oretically, we find that Dropout would shift the
variance of a specific neural unit when we transfer
the state of that network from train to test. How-
ever, BN would maintain its statistical variance,
which is accumulated from the entire learning
procedure, in the test phase. The inconsistency
of that variance (we name this scheme as “vari-
ance shift”) causes the unstable numerical behav-
ior in inference that leads to more erroneous pre-
dictions finally, when applying Dropout before
BN. Thorough experiments on DenseNet, ResNet,
ResNeXt and Wide ResNet confirm our findings.
According to the uncovered mechanism, we next
explore several strategies that modifies Dropout
and try to overcome the limitations of their com-
bination by avoiding the variance shift risks.

1. Introduction
(Srivastava et al., 2014) brought Dropout as a simple way to
prevent neural networks from overfitting. It has been proved
to be significantly effective over a large range of machine
learning areas, such as image classification (Szegedy et al.,
2015), speech recognition (Hannun et al., 2014) and even
natural language processing (Kim et al., 2016). Before
the birth of Batch Normalization, it became a necessity of
almost all the state-of-the-art networks and successfully
boosted their performances against overfitting risks, despite
its amazing simplicity.

(Ioffe & Szegedy, 2015) demonstrated Batch Normaliza-

1DeepInsight@PCALab, Nanjing University of Science and
Technology, China 2Tsinghua National Laboratory for Informa-
tion Science and Technology (TNList) Department of Computer
Science and Technology, Tsinghua University, China. Correspon-
dence to: Xiang Li <xiang.li.implus@njust.edu.cn>.

𝑋 = 𝑥 ෠𝑋 =
𝑋−𝐸𝑀𝑜𝑣𝑖𝑛𝑔 (𝑋)

𝑉𝑎𝑟𝑀𝑜𝑣𝑖𝑛𝑔 𝑋 +𝜀
𝑋

𝑉𝑎𝑟𝑇𝑟𝑎𝑖𝑛 𝑋 =
1

𝑝

𝑉𝑎𝑟𝑇𝑒𝑠𝑡 𝑋 = 1

𝑉𝑎𝑟𝑀𝑜𝑣𝑖𝑛𝑔 𝑋 = 𝐸(
1

𝑝
)

𝑉𝑎𝑟𝑀𝑜𝑣𝑖𝑛𝑔 𝑋 = 𝐸(
1

𝑝
)

𝑥~𝒩(0,1)

Train Mode

Test Mode

𝑋 = 𝑎
1

𝑝
𝑥 𝑋𝑥~𝒩(0,1)

𝜇 = 𝐸 𝑋 , 𝜎2 = 𝑉𝑎𝑟 𝑋 , ෠𝑋 =
𝑋 − 𝜇

𝜎2 + 𝜀
𝐸𝑀𝑜𝑣𝑖𝑛𝑔 𝑋 ← 𝐸(𝜇) 𝑉𝑎𝑟𝑀𝑜𝑣𝑖𝑛𝑔 𝑋 ← 𝐸(𝜎2)

Dropout 𝑎~Bernoulli(𝑝) BN

0 20 40 60 80 100

BN layer index on DenseNet trained on CIFAR100

0.5

1.0

1.5

2.0

2.5

3.0

3.5

m
a
x
(
re
a
l_
va
r i

m
ov
in
g_
va
r i
,m

ov
in
g_
va
r i

re
a
l_
va
r i

)

Test Acc 77.42%, No Dropout in each bottleneck
Test Acc 68.55%, Dropout 0.5 in each bottleneck

Figure 1. Up: a simplified mathematical illustration of “variance
shift”. In test mode, the neural variance of X is different from
that in train mode caused by Dropout, yet BN attempts to regard
that variance as the popular statistic accumulated from training.
Note that p denotes for the Dropout retain ratio and a comes from
Bernoulli distribution which has probability p of being 1. Down:
variance shift in experimental statistics on DenseNet trained on
CIFAR100 dataset. The curves are both calculated from the same
training data. “moving vari” is the moving variance (take its mean
value instead if it’s a vector) that the i-th BN layer accumulates dur-
ing the entire learning, and “real vari” stands for the real variance
of neural response before the i-th BN layer in inference.

tion (BN), a powerful skill that not only speeded up all the
modern architectures but also improved upon their strong
baselines by acting as regularizers. Therefore, BN has been
implemented in nearly all the recent network structures
(Szegedy et al., 2016; 2017; Howard et al., 2017; Zhang
et al., 2017) and demonstrates its great practicability and
effectiveness.

However, the above two nuclear weapons always fail to
obtain an extra reward when combined together practically.
In fact, a network even performs worse and unsatisfactorily
when it is equipped with BN and Dropout simultaneously.
(Ioffe & Szegedy, 2015) have already realized that BN elim-
inates the need for Dropout in some cases – the authors
exposed the incompatibility between them, thus conjectured

ar
X

iv
:1

80
1.

05
13

4v
1

 [
cs

.L
G

]
 1

6
Ja

n
20

18

Understanding the Disharmony between Dropout and Batch Normalization by Variance Shift

that BN provides similar regularization benefits as Dropout
intuitively. More evidences are provided in the modern ar-
chitectures such as ResNet (He et al., 2016a;b), ResNeXt
(Xie et al., 2017), DenseNet (Huang et al., 2016), where
the best performances are all obtained by BN with the ab-
sence of Dropout. Interestingly, a recent study Wide ResNet
(WRN) (Zagoruyko & Komodakis, 2016) show that it is
positive for Dropout to be applied in the WRN design with
a large feature dimension. So far, previous clues leave us a
mystery about the confusing and complicated relationship
between Dropout and BN. Why do they conflict in most of
the common architectures? Why do they cooperate friendly
sometimes as in WRN?

We discover the key to understand the disharmony between
Dropout and BN is the inconsistent behaviors of neural vari-
ance during the switch of networks’ state. Considering one
neural response X as illustrated in Figure 1, when the state
changes from train to test, Dropout would scale the response
by its Dropout retain ratio (i.e. p) that actually changes the
neural variance as in learning, yet BN still maintains its
statistical moving variance of X . This mismatch of variance
could lead to a numerical instability (see red curve in Fig-
ure 1). As the signals go deeper, the numerical deviation on
the final predictions may amplify, which drops the system’s
peformance. We name this scheme as “variance shift” for
simplicity. Instead, without Dropout, the real neural vari-
ances in inference would appear very closely to the moving
ones accumulated by BN (see blue curve in Figure 1), which
is also preserved with a higher test accuracy.

Theoretically, we deduced the “variance shift” under two
general conditions, and found a satisfied explanation for the
aforementioned mystery between Dropout and BN. Further,
a large range of experimental statistics from four modern
networks (i.e., PreResNet (He et al., 2016b), ResNeXt (Xie
et al., 2017), DenseNet (Huang et al., 2016), Wide ResNet
(Zagoruyko & Komodakis, 2016)) on the CIFAR10/100
datasets verified our findings as expected.

Since the central reason for their performance drop was
discovered, we adopted two strategies that explored the
possibilities to overcome the limitation of their combination.
One was to apply Dropout after all BN layers and another
was to modify the formula of Dropout and made it less
sensitive to variance. By avoiding the variance shift risks,
most of them worked well and achieved extra improvements.

2. Related Work and Preliminaries
Dropout (Srivastava et al., 2014) can be interpreted as a
way of regularizing a neural network by adding noise to its
hidden units. Specifically, it involves multiplying hidden
activations by Bernoulli distributed random variables which
take the value 1 with probability p (0 ≤ p ≤ 1) and 0

otherwise1. Importantly, the test scheme is quite different
from the train. During training, the information flow goes
through the dynamic sub-network. At test time, the neural
responses are scaled by the Dropout retain ratio, in order
to approximate an equally weighted geometric mean of the
predictions of an exponential number of learned models that
share parameters. Consider a feature vector x = (x1 . . . xd)
with channel dimension d. Note that this vector could be
a part (one location) of convolutional feature-map or the
output of the fully connected layer, i.e., it doesnot matter
which type of network it lies in. If we apply Dropout on x,
for one unit xk, k = 1 . . . d, in the train phase, it is:

x̂k = akxk, (1)

where ak ∼ P that comes from the Bernoulli distribution:

P (ak) =

{
1− p, ak = 0
p, ak = 1

, (2)

and a = (a1 . . . ad) is a vector of independent Bernoulli
random variables. At test time for Dropout, one should
scale down the weights by multiplying them by a factor
of p. As introduced in (Srivastava et al., 2014), another
way to achieve the same effect is to scale up the retained
activations by multiplying by 1

p at training time and not
modifying the weights at test time. It is more popular on
practical implementations, thus we employ this formula of
Dropout in both analyses and experiments. Therefore, the
hidden activation in the train phase would be:

x̂k = ak
1

p
xk, (3)

whilst in inference it would be simple like: x̂k = xk.

Batch Normalization (BN) (Ioffe & Szegedy, 2015) pro-
poses a deterministic information flow by normalizing
each neuron into zero mean and unit variance. Consid-
ering values of x (for clarity, x ≡ xk) over a mini-batch:
B = {x(1)...(m)}2 with m instances, we have the form of
“normalize” part:

µ =
1

m

m∑
i=1

x(i), σ2 =
1

m

m∑
i=1

(x(i) − µ)2, x̂(i) = x(i) − µ√
σ2 + ε

,

(4)
where µ and σ2 would participate in the backpropagation.
The normalization of activations that depends on the mini-
batch allows efficient training, but is neither necessary nor
desirable during inference. Therefore, BN accumulates
the moving averages of neural means and variances during
learning to track the accuracy of a model as it trains:

EMoving(x)← EB(µ), V ar
Moving(x)← E

′

B(σ
2), (5)

1p denotes for the Dropout retain ratio and (1− p) denotes for
the drop ratio in this paper.

2Note that we donot consider the “scale and shift” part in BN
because the key of “variance shift” exists in its “normalize” part.

Understanding the Disharmony between Dropout and Batch Normalization by Variance Shift

whereEB(µ) denotes for the expectation of µ from multiple
training mini-batches B and E

′

B(σ
2) denotes for the expec-

tation of the unbiased variance estimate (i.e., m
m−1 ·EB(σ

2))
over multiple training mini-batches. They are all obtained
by implementations of moving averages (Ioffe & Szegedy,
2015) and are fixed for linear transform during inference:

x̂ =
x− EMoving(x)√
V arMoving(x) + ε

. (6)

3. Theoretical Analyses
From the preliminaries, one could notice that Dropout only
ensures an “equally weighted geometric mean of the pre-
dictions of an exponential number of learned models” by
the approximation from its test policy, as introduced in the
original paper (Srivastava et al., 2014). This scheme poses
the variance of the hidden units unexplored in a Dropout
model. Therefore, the central idea is to investigate the vari-
ance of the neural response before a BN layer, where the
Dropout is previously applied. This could be attributed
into two cases generally, as shown in Figure 2. In case
(a), the BN layer is directly subsequent to the Dropout
layer and we only need to consider one neural response
X = ak

1
pxk, k = 1 . . . d in train phase and X = xk in test

phase. In case (b), the feature vector x = (x1 . . . xd) would
be passed into a convolutional layer (or a fully connected
layer) to form the neural response X . We also regard its
corresponding weights (the convolutional filter or the fully
connected weight) to be w = (w1 . . . wd), hence we get
X =

∑d
i=1 wiai

1
pxi for learning and X =

∑d
i=1 wixi for

test. For the ease of deduction, we assume that the inputs
all come from the distribution with c mean and v variance
(i.e., E(xi) = c, V ar(xi) = v, i = 1 . . . d, v > 0) and we
also start by studying the linear regime. We let the ai and
xi be mutually independent, considering the property of
Dropout. Due to the aforementioned definition, ai and aj
are mutually independent as well.

Dropout BN

Dropout
Convolutional /
Fully Connected

BN

𝚾

𝚾

(a)

(b) 𝑋

𝑋

Dropout [inference: 𝑋 =
𝑑

𝑚
Χ] BN [inference: ෠𝑋 =

𝑋−𝐸𝑀𝑜𝑣𝑖𝑛𝑔 [𝑋]

𝑉𝑎𝑟𝑀𝑜𝑣𝑖𝑛𝑔 𝑋 +𝜀
]𝑋

𝑉𝑎𝑟𝑇𝑟𝑎𝑖𝑛 𝑋 = 1 − 𝑑/𝑚

𝑉𝑎𝑟𝑇𝑒𝑠𝑡 𝑋 = 1 − 𝑑/𝑚 2

𝑉𝑎𝑟𝑀𝑜𝑣𝑖𝑛𝑔 𝑋 = 𝐸 1 − 𝑑/𝑚

𝑉𝑎𝑟𝑀𝑜𝑣𝑖𝑛𝑔 𝑋 = 𝐸 1 − 𝑑/𝑚

Χ

Χ~𝑁(0,1)

Χ~𝑁(0,1) ≠

Train Mode

Test Mode

Figure 2. Two cases for analyzing variance shift.

Figure 2 (a)

Following the paradigms above, we have V arTrain(X) as:

V arTrain(X) = V ar(ak
1

p
xk) = E((ak

1

p
xk)

2)− E2(ak
1

p
xk)

=
1

p2
E(a2k)E(x2k)−

1

p2
(E(ak)E(xk))

2 =
1

p
(c2 + v)− c2

(7)

In inference, BN keeps the moving average of variance (i.e.,
E

′

B(
1
p (c

2+v)−c2)) fixed. In another word, BN wishes that
the variance of neural response X , which comes from the
input images, is supposed to be close toE

′

B(
1
p (c

2+v)−c2).
However, Dropout breaks the harmony when it comes to
its test stage by having X = xk to get V arTest(X) =
V ar(xk) = v. If putting V arTest(X) into the unbiased
variance estimate, it would become E

′

B(v) which is obvi-
ously different from the popular statisticE

′

B(
1
p (c

2+v)−c2)
of BN during training when Dropout (p < 1) is applied.
Therefore, the shift ratio is obtained:

4(p) =
V arTest(X)

V arTrain(X)
=

v
1
p (c

2 + v)− c2
(8)

In case (a), the variance shift happens via a coefficient
4(p) ≤ 1. Since modern neural networks carry a deep
feedforward topologic structure, previous deviate numerical
manipulations could lead to more uncontrollable numerical
outputs of subsequent layers (Figure 1). It brings the chain
reaction of amplified shift of variances (even affects the
means further) in every BN layers sequentially as the net-
works go deeper. We would show that it directly leads to a
dislocation of final predictions and makes the system suffer
from a performance drop later in the statistical experimental
part (e.g., Figure 4, 6 in Section 4).

In this design (i.e., BN directly follows Dropout), if we want
to alleviate the variance shift risks, i.e.,4(p)→ 1, the only
thing we can do is to eliminate Dropout and set the Dropout
retain ratio p → 1. Fortunately, the architectures where
Dropout brings benefits (e.g., in Wide ResNet) donot follow
this type of arrangement. In fact, they adopt the case (b) in
Figure 2, which is more common in practice, and we would
describe it in details next.

Figure 2 (b)

At this time,X would be obtained by
∑d
i=1 wiai

1
pxi, where

w denotes for the corresponding weights that act on the fea-
ture vector x, along with the Dropout applied. For the ease
of deduction, we assume that in the very later epoch of train-
ing, the weights of w remains constant given the gradients
become significantly close to zero. Similarly, we can write
V arTrain(X) by following the formula of variance:

V arTrain(X) = Cov(

d∑
i=1

wiai
1

p
xi,

d∑
i=1

wiai
1

p
xi)

=
1

p2

d∑
i=1

(wi)
2V ar(aixi)

+
1

p2

d∑
i=1

d∑
j 6=i

ρaxi,jwiwj
√
V ar(aixi)

√
V ar(ajxj)

= (
1

p
(c2 + v)− c2)(

d∑
i=1

w2
i + ρax

d∑
i=1

d∑
j 6=i

wiwj),

(9)

Understanding the Disharmony between Dropout and Batch Normalization by Variance Shift

0 20 40 60 80 100
Convolutional Layer Index of Networks Trained on CIFAR10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
a
n
 o

f
(c
os

(θ
))

2

PreResNet
ResNeXt
WRN
DenseNet

0 20 40 60 80 100
Convolutional Layer Index of Networks Trained on CIFAR100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
a
n
 o

f
(c
os

(θ
))

2

PreResNet
ResNeXt
WRN
DenseNet

0 1000 2000 3000 4000 5000 6000
Weight Dimension d of Convolutional Filter Trained on CIFAR10

0

20

40

60

80

100

120

140

M
e
a
n
 o

f
d
(c
os

(θ
))

2

PreResNet
ResNeXt
WRN
DenseNet

0 1000 2000 3000 4000 5000 6000
Weight Dimension d of Convolutional Filter Trained on CIFAR100

0

20

40

60

80

100

M
e
a
n
 o

f
d
(c
os

(θ
))

2

PreResNet
ResNeXt
WRN
DenseNet

Figure 3. Statistical mean values of (cos θ)2 and d(cos θ)2. These four modern architectures are trained without Dropout on CIFAR10
and CIFAR100 respectively. We observe that (cos θ)2 lies in (0.01, 0.10) approximately in every network structure and various datasets.
Interestingly, the term d(cos θ)2 in WRN is significantly bigger than those on other networks mainly due to its larger channel width d.

where ρaxi,j =
Cov(aixi,ajxj)√

V ar(aixi)
√
V ar(ajxj)

∈ [−1, 1]. For the

ease of deduction, we simplify all the linear correlation
coefficients to be the same as a constant ρax ∼= ρaxi,j ,∀i, j =
1 . . . d, i 6= j. Similarly, V arTest(X) is obtained:

V arTest(X) = V ar(

d∑
i=1

wixi) = Cov(
d∑
i=1

wixi,
d∑
i=1

wixi)

=

d∑
i=1

w2
i v +

d∑
i=1

d∑
j 6=i

ρxi,jwiwj
√
v
√
v

= v(

d∑
i=1

w2
i + ρx

d∑
i=1

d∑
j 6=i

wiwj),

(10)
where ρxi,j =

Cov(xi,xj)√
V ar(xi)

√
V ar(xj)

∈ [−1, 1], and we also

have a constant ρx ∼= ρxi,j ,∀i, j = 1 . . . d, i 6= j. Since ai
and xi, ai and aj are mutually independent, we can get the
relationship between ρax and ρx:

ρax ∼= ρaxi,j =
Cov(aixi, ajxj)√

V ar(aixi)
√
V ar(ajxj)

=
p2Cov(xi, xj)

p(c2+v)−p2c2
v

√
V ar(xi)

√
V ar(xj)

=
v

1
p (c

2 + v)− c2
ρxi,j
∼=

v
1
p (c

2 + v)− c2
ρx.

(11)

According to Equation (9), (10) and (11), we can write the
variance shift V arTest(X)

V arTrain(X)
as:

v(
∑d
i=1 w

2
i + ρx

∑d
i=1

∑d
j 6=i wiwj)

(1p (c
2 + v)− c2)(

∑d
i=1 w

2
i + ρax

∑d
i=1

∑d
j 6=i wiwj)

=
v
∑d
i=1 w

2
i + vρx

∑d
i=1

∑d
j 6=i wiwj

(1p (c
2 + v)− c2)

∑d
i=1 w

2
i + vρx

∑d
i=1

∑d
j 6=i wiwj

=
v + vρx((

∑d
i=1 wi)

2 −
∑d
i=1 w

2
i)/
∑d
i=1 w

2
i

1
p (c

2 + v)− c2 + vρx((
∑d
i=1 wi)

2 −
∑d
i=1 w

2
i)/
∑d
i=1 w

2
i

=
v + vρx(d(cos θ)2 − 1)

1
p (c

2 + v)− c2 + vρx(d(cos θ)2 − 1)
,

(12)

Table 1. Statistical means of (cos θ)2 and d(cos θ)2 over all the
convolutional layers on four representative networks.

Networks CIFAR10 CIFAR100
(cos θ)2 d(cos θ)2 (cos θ)2 d(cos θ)2

PreResNet 0.03546 2.91827 0.03169 2.59925
ResNeXt 0.02244 14.78266 0.02468 14.72835
WRN 0.02292 52.73550 0.02118 44.31261
DenseNet 0.01538 3.83390 0.01390 3.43325

where (cos θ)2 comes from the expression:

(
∑d
i=1 wi)

2

d ·
∑d
i=1 w

2
i

= (

∑d
i=1 1 · wi√∑d

i=1 1
2

√∑d
i=1 w

2
i

)

2

= (cos θ)2,

(13)
and θ denotes for the angle between vector w and vector
(1 . . . 1)︸ ︷︷ ︸

m

. To prove that d(cos θ)2 scales approximately lin-

ear to d, we made rich calculations w.r.t the term d(cos θ)2

and (cos θ)2 on four modern architectures3 trained on CI-
FAR10/100 datasets (Table 1 and Figure 3). Based on Table
1 and Figure 3, we observe that (cos θ)2 lies in (0.01, 0.10)
stably in every network and various datasets whilst d(cos θ)2

tends to increase in parallel when d grows. From Equa-
tion (12), the inequation V arTest(X) 6= V arTrain(X)
holds when p < 1. If we want V arTest(X) to approach
V arTrain(X), we need this term

4(p, d) =
V arTest(X)

V arTrain(X)
=

vρx(d(cos θ)2 − 1) + v

vρx(d(cos θ)2 − 1) + 1
p (c

2 + v)− c2

=
vρx + v(1−ρx)

d(cos θ)2

vρx +
(1
p−1)c2+v(

1
p−ρx)

d(cos θ)2

(14)
to approach 1. There are two ways to achieve4(p, d)→ 1:

• p→ 1: maximizing the Dropout retain ratio p (ideally
up to 1 which means Dropout is totally eliminated);

• d→∞: growing the width of channel exactly as the
Wide ResNet did to enlarge d.

3For the convolutional filters which have larger than 1 filter
size as k × k, k > 1, we vectorise them by expanding its channel
width d to d× k × k while maintaining all the weights.

Understanding the Disharmony between Dropout and Batch Normalization by Variance Shift

4. Statistical Experiments
We conduct extensive statistical experiments to check the
correctness of above deduction in this section. Four modern
architectures including DenseNet (Huang et al., 2016), Pre-
ResNet (He et al., 2016b), ResNeXt (Xie et al., 2017) and
Wide ResNet (WRN) (Zagoruyko & Komodakis, 2016) are
adopted on the CIFAR10 and CIFAR100 datasets.

Datasets. The two CIFAR datasets (Krizhevsky & Hinton,
2009) consist of colored natural scence images, with 32×32
pixel each. The train and test sets contain 50k images and
10k images respectively. CIFAR10 (C10) has 10 classes
and CIFAR100 (C100) has 100. For data preprocessing, we
normalize the data by using the channel means and standard
deviations. For data augmentation, we adopt a standard
scheme that is widely used in (He et al., 2016b; Huang
et al., 2016; Larsson et al., 2016; Lin et al., 2013; Lee et al.,
2015; Springenberg et al., 2014; Srivastava et al., 2015): the
images are first zero-padded with 4 pixels on each side, then
a 32×32 crop is randomly sampled from the padded images
and at least half of the images are horizontally flipped.

Networks with Dropout. The four modern architectures
are all chosen from the open-source codes4 written in py-
torch that can reproduce the results reported in previous
papers. The details of the networks are listed in Table 2:

Table 2. Details of four modern networks in experiments. #P de-
notes for the amount of model parameters.

Model #P on C10 #P on C100

PreResNet-110 1.70 M 1.77 M
ResNeXt-29, 8 × 64 34.43 M 34.52 M
WRN-28-10 36.48 M 36.54 M
DenseNet-BC (L=100, k=12) 0.77 M 0.80 M

Since the BN layers are already developed as the indispensi-
ble components of their body structures, we arrange Dropout
that follows the two cases in Figure 2:

(a) We assign all the Dropout layers only and right be-
fore all the bottlenecks’ last BN layers in these four net-
works, neglecting their possible Dropout implementations
(as in DenseNet (Huang et al., 2016) and Wide ResNet
(Zagoruyko & Komodakis, 2016)). We denote this design
to be models of Dropout-(a).

(b) We follow the assignment of Dropout in Wide ResNet
(Zagoruyko & Komodakis, 2016), which finally improves
WRNs’ overall performances, to place the Dropout before
the last Convolutional layer in every bottleneck block of
PreResNet, ResNeXt and DenseNet. This scheme is denoted
as Dropout-(b) models.

4Our implementations basicly follow the public code in
https://github.com/bearpaw/pytorch-classification. The training
details can also be found there. Our code for the following experi-
ments would be released soon.

Statistics of variance shift. Assume a network G contains
n BN layers in total. We arrange these BN layers from
shallow to deep by giving them indices that goes from 1
to n accordingly. The whole statistical manipulation is
conducted by following three steps:

(1) Calculate moving vari, i ∈ [1, n]: when G is trained
until convergence, each BN layer obtains the moving aver-
age of neural variance (the unbiased variance estimate) from
the feature-map that it receives during the entire learning
procedure. We denote that variance to be moving var. Since
the moving var for every BN layer is a vector (whose length
is equal to the amount of channels of previous feature-map),
we leverage its mean value to represent moving var instead,
for a better visualization. Further, we denote moving vari
as the moving var of i-th BN layer.

(2) Calculate real vari, i ∈ [1, n]: after training, we fix all
the parameters of G and set its state to be the evaluation
mode (hence the Dropout would apply its inference policy
and BN would freeze its moving averages of means and
variances). The training data is again utilized for going
through G within a certain of epochs, in order to get the real
expectation of neural variances on the feature-maps before
each BN layer. Data augmentation is also kept to ensure
that every possible detail for calculating neural variances
remains exactly the same with training. Importantly, we
adopt the same moving average algorithm to accumulate
the unbiased variance estimates. Similarly in (1), we let the
mean value of real variance vector be real vari before the
i-th BN layer.

(3) Obtain max(real vari
moving vari

,
moving vari

real vari), i ∈ [1, n]: since we
focus on the shift, the scalings are all kept above 1 by their
reciprocals if possible in purpose of a better view. Various
Dropout drop ratios [0.0, 0.1, 0.3, 0.5, 0.7] are applied for
clearer comparisons in Figure 4. The corresponding error
rates are also included in each column.

Agreements between analyses and experiments about
the relation between performance and variance shift. In
these four columns of Figure 4, we discover that when the
drop ratio is relatively small (i.e., 0.1), the green shift curves
are all near the blue ones (i.e. models without Dropout),
thus their performances are as well very close to the base-
lines. It agrees with our previous deduction that whenever
in (a) or (b) case, decreasing drop ratio 1−p would alleviate
the variance shift risks. Furthermore, in Dropout-(b) models
(i.e., the last two columns) we find that, for WRNs, the
curves with drop ratio 0.1, 0.3 even 0.5 approaches closer
to the one with 0.0 than other networks, and they all outper-
form the baselines. It also aligns with our analyses since
WRN has a significantly larger channel dimension d, and it
ensures that a slightly larger p would not explode the neu-
ral variance but bring the original benefits, which Dropout
carries, back to the BN-equipped networks.

Understanding the Disharmony between Dropout and Batch Normalization by Variance Shift

0 20 40 60 80 100 120 140 160 180

[Dropout-(a) C10] BN layer index on PreResNet

1.0

1.5

2.0

2.5

3.0

m
a
x
(
re
a
l_
va
r i

m
ov
in
g_
va
r i
,m

ov
in
g_
va
r i

re
a
l_
va
r i

) Dropout 0.0
Dropout 0.1
Dropout 0.3
Dropout 0.5
Dropout 0.7

0 5 10 15 20 25 30

[Dropout-(a) C10] BN layer index on ResNeXt

1.0

1.5

2.0

2.5

3.0

m
a
x
(
re
a
l_
va
r i

m
ov
in
g_
va
r i
,m

ov
in
g_
va
r i

re
a
l_
va
r i

) Dropout 0.0
Dropout 0.1
Dropout 0.3
Dropout 0.5
Dropout 0.7

0 5 10 15 20 25

[Dropout-(a) C10] BN layer index on WRN

1.0

1.5

2.0

2.5

3.0

m
a
x
(
re
a
l_
va
r i

m
ov
in
g_
va
r i
,m

ov
in
g_
va
r i

re
a
l_
va
r i

) Dropout 0.0
Dropout 0.1
Dropout 0.3
Dropout 0.5
Dropout 0.7

0 20 40 60 80 100

[Dropout-(a) C10] BN layer index on DenseNet

1.0

1.5

2.0

2.5

3.0

m
a
x
(
re
a
l_
va
r i

m
ov
in
g_
va
r i
,m

ov
in
g_
va
r i

re
a
l_
va
r i

) Dropout 0.0
Dropout 0.1
Dropout 0.3
Dropout 0.5
Dropout 0.7

0 20 40 60 80 100 120 140 160 180

[Dropout-(a) C100] BN layer index on PreResNet

1.0

1.5

2.0

2.5

3.0

m
a
x
(
re
a
l_
va
r i

m
ov
in
g_
va
r i
,m

ov
in
g_
va
r i

re
a
l_
va
r i

) Dropout 0.0
Dropout 0.1
Dropout 0.3
Dropout 0.5
Dropout 0.7

0 5 10 15 20 25 30

[Dropout-(a) C100] BN layer index on ResNeXt

1.0

1.5

2.0

2.5

3.0

m
a
x
(
re
a
l_
va
r i

m
ov
in
g_
va
r i
,m

ov
in
g_
va
r i

re
a
l_
va
r i

) Dropout 0.0
Dropout 0.1
Dropout 0.3
Dropout 0.5
Dropout 0.7

0 5 10 15 20 25

[Dropout-(a) C100] BN layer index on WRN

1.0

1.5

2.0

2.5

3.0

m
a
x
(
re
a
l_
va
r i

m
ov
in
g_
va
r i
,m

ov
in
g_
va
r i

re
a
l_
va
r i

) Dropout 0.0
Dropout 0.1
Dropout 0.3
Dropout 0.5
Dropout 0.7

0 20 40 60 80 100

[Dropout-(a) C100] BN layer index on DenseNet

1.0

1.5

2.0

2.5

3.0

m
a
x
(
re
a
l_
va
r i

m
ov
in
g_
va
r i
,m

ov
in
g_
va
r i

re
a
l_
va
r i

) Dropout 0.0
Dropout 0.1
Dropout 0.3
Dropout 0.5
Dropout 0.7

0 20 40 60 80 100 120 140 160 180

[Dropout-(b) C10] BN layer index on PreResNet

1.00

1.05

1.10

1.15

1.20

m
a
x
(
re
a
l_
va
r i

m
ov
in
g_
va
r i
,m

ov
in
g_
va
r i

re
a
l_
va
r i

) Dropout 0.0
Dropout 0.1
Dropout 0.3
Dropout 0.5
Dropout 0.7

0 5 10 15 20 25 30

[Dropout-(b) C10] BN layer index on ResNeXt

1.00

1.05

1.10

1.15

1.20

m
a
x
(
re
a
l_
va
r i

m
ov
in
g_
va
r i
,m

ov
in
g_
va
r i

re
a
l_
va
r i

) Dropout 0.0
Dropout 0.1
Dropout 0.3
Dropout 0.5
Dropout 0.7

0 5 10 15 20 25

[Dropout-(b) C10] BN layer index on WRN

1.00

1.05

1.10

1.15

1.20

m
a
x
(
re
a
l_
va
r i

m
ov
in
g_
va
r i
,m

ov
in
g_
va
r i

re
a
l_
va
r i

) Dropout 0.0
Dropout 0.1
Dropout 0.3
Dropout 0.5
Dropout 0.7

0 20 40 60 80 100

[Dropout-(b) C10] BN layer index on DenseNet

1.00

1.05

1.10

1.15

1.20

m
a
x
(
re
a
l_
va
r i

m
ov
in
g_
va
r i
,m

ov
in
g_
va
r i

re
a
l_
va
r i

) Dropout 0.0
Dropout 0.1
Dropout 0.3
Dropout 0.5
Dropout 0.7

0 20 40 60 80 100 120 140 160 180

[Dropout-(b) C100] BN layer index on PreResNet

1.00

1.05

1.10

1.15

1.20

m
a
x
(
re
a
l_
va
r i

m
ov
in
g_
va
r i
,m

ov
in
g_
va
r i

re
a
l_
va
r i

) Dropout 0.0
Dropout 0.1
Dropout 0.3
Dropout 0.5
Dropout 0.7

0 5 10 15 20 25 30

[Dropout-(b) C100] BN layer index on ResNeXt

1.00

1.05

1.10

1.15

1.20

m
a
x
(
re
a
l_
va
r i

m
ov
in
g_
va
r i
,m

ov
in
g_
va
r i

re
a
l_
va
r i

) Dropout 0.0
Dropout 0.1
Dropout 0.3
Dropout 0.5
Dropout 0.7

0 5 10 15 20 25

[Dropout-(b) C100] BN layer index on WRN

1.00

1.05

1.10

1.15

1.20

m
a
x
(
re
a
l_
va
r i

m
ov
in
g_
va
r i
,m

ov
in
g_
va
r i

re
a
l_
va
r i

) Dropout 0.0
Dropout 0.1
Dropout 0.3
Dropout 0.5
Dropout 0.7

0 20 40 60 80 100

[Dropout-(b) C100] BN layer index on DenseNet

1.00

1.05

1.10

1.15

1.20

m
a
x
(
re
a
l_
va
r i

m
ov
in
g_
va
r i
,m

ov
in
g_
va
r i

re
a
l_
va
r i

) Dropout 0.0
Dropout 0.1
Dropout 0.3
Dropout 0.5
Dropout 0.7

PreResNet ResNeXt WRN DenseNet

Dropout-(a) C10
0

5

10

15

20

E
rr

o
r

ra
te

 (
%

)

0.0 0.1 0.3 0.5 0.7

PreResNet ResNeXt WRN DenseNet

Dropout-(a) C100
0

5

10

15

20

25

30

35

40

E
rr

o
r

ra
te

 (
%

)

0.0 0.1 0.3 0.5 0.7

PreResNet ResNeXt WRN DenseNet

Dropout-(b) C10
0

1

2

3

4

5

6

7

8

E
rr

o
r

ra
te

 (
%

)

0.0 0.1 0.3 0.5 0.7

PreResNet ResNeXt WRN DenseNet

Dropout-(b) C100
0

5

10

15

20

25

30

E
rr

o
r

ra
te

 (
%

)

0.0 0.1 0.3 0.5 0.7

Figure 4. See by columns. Statistical visualizations about “variance shift” on BN layers of four modern networks w.r.t: 1) Dropout type;
2) Dropout drop ratio; 3) dataset, along with their test error rates (the fifth row). Obviously, WRN is less influenced by Dropout (i.e.,
small variance shift) when the Dropout-(b) drop ratio ≤ 0.5, thus it even enjoys an improvement with Dropout applied before BN.

Even the training data performs inconsistently between
train and test mode. In addition, we also observe that
for DenseNet and PreResNet (their channel d is relatively
small), when their state is changed from train to test, even
the training data cannot be kept with a coherent accuracy at
last. In inference, the variance shift happens and it leads to
an avalanche effect on the numerical explosion and insta-
bility in networks that finally changes the final prediction.
Here we take the two models with drop ratio being 0.5 as an
example, hence demonstrate that a large amount of training
data would be classified inconsistently between train and
test mode, despite their same model parameters (Figure 5).

Neural responses (of last layer before softmax) for train-
ing data are unstable from train to test. To get a clearer
understanding of the numerical disturbance that the variance
shift brings finally, a bundle of images (from training data)
are drawn with their neural responses before the softmax
layer in both train stage and test stage (Figure 6). From those

pictures and their responses, we can find that with all the
weights of networks fixed, only a mode transfer (from train
to test) would change the distribution of the final responses
even in the train set, and it leads to a wrong classification
consequently. It proves that the predictions of training data
differs between train stage and test stage when a network is
equipped with Dropout layers before BN layers. Therefore,
we confirm that the unstable numerical behaviors are the
fundamental reasons for the performance drop.

Only an adjustment for moving means and variances
would bring an improvement, despite all other parame-
ters fixed. Given that the moving means and variances of
BN would not match the real ones during test, we attempt
to adjust these values by passing the training data again
under the evaluation mode. In this way, the moving average
algorithm (Ioffe & Szegedy, 2015) can also be applied. Af-
ter shifting the moving statistics to the real ones by using
the training data, we can have the model performed on the

Understanding the Disharmony between Dropout and Batch Normalization by Variance Shift

0 40 80 120 160

PreResNet Dropout-(a) C100

0

20

40

60

80

100
A

cc
u
ra

cy
 (

%
)

w
.r

.t
 e

p
o
ch

Dropout 0.0 Training data on Train Mode
Dropout 0.0 Training data on Test Mode
Dropout 0.5 Training data on Train Mode
Dropout 0.5 Training data on Test Mode

0 40 80 120 160 200 240 280

DenseNet Dropout-(a) C100

0

20

40

60

80

100

A
cc

u
ra

cy
 (

%
)

w
.r

.t
 e

p
o
ch

Dropout 0.0 Training data on Train Mode
Dropout 0.0 Training data on Test Mode
Dropout 0.5 Training data on Train Mode
Dropout 0.5 Training data on Test Mode

30 70 110 150

PreResNet Dropout-(a) C10

82

84

86

88

90

92

94

96

98

100

A
cc

u
ra

cy
 (

%
)

w
.r

.t
 e

p
o
ch

Dropout 0.0 Training data on Train Mode
Dropout 0.0 Training data on Test Mode
Dropout 0.5 Training data on Train Mode
Dropout 0.5 Training data on Test Mode

30 70 110 150 190 230 270

DenseNet Dropout-(a) C10

70

75

80

85

90

95

100

A
cc

u
ra

cy
 (

%
)

w
.r

.t
 e

p
o
ch

Dropout 0.0 Training data on Train Mode
Dropout 0.0 Training data on Test Mode
Dropout 0.5 Training data on Train Mode
Dropout 0.5 Training data on Test Mode

Figure 5. Accuracy by train epochs. Curves in blue means the train of these two networks without Dropout. Curves in red denotes the
Dropout version of the corresponding models. These accuracies are all calculated from the training data, while the solid curve is under
train mode and the dashed one is under evaluation mode. We observe the significant accuracy shift when a network with Dropout ratio 0.5
changes its state from train to test stage, with all network parameters fixed but the test policies of Dropout and BN applied.

Figure 6. Examples of inconsistent neural responses between train mode and test mode of DenseNet Dropout-(a) 0.5 trained on CIFAR10
dataset. These samples are from the training data, whilst they are correctly classified by the model during learning yet erroneously judged
in inference, despite all the fixed model parameters. Variance shift finally leads to the prediction shift that drops the performance.

Table 3. Adjust BN’s moving mean/variance by running moving
average algorithm on training data under test mode. These numbers
are all averaged from 5 parallel runnings with different random
initial seeds.

C10 Dropout-(a) Dropout-(b)
0.5 0.5-Adjust 0.5 0.5-Adjust

PreResNet 8.42 6.42 5.85 5.77
ResNeXt 4.43 3.96 4.09 3.93
WRN 4.59 4.20 3.81 3.71
DenseNet 8.70 6.82 5.63 5.29

C100 Dropout-(a) Dropout-(b)
0.5 0.5-Adjust 0.5 0.5-Adjust

PreResNet 32.45 26.57 25.50 25.20
ResNeXt 19.04 18.24 19.33 19.09
WRN 21.08 20.70 19.48 19.15
DenseNet 31.45 26.98 25.00 23.92

test set. From Table 3, All the Dropout-(a)/(b) 0.5 models
outperform their baselines by having their moving statistics
adjusted. Significant improvements (e.g., ∼ 2 and ∼ 4.5
gains for DenseNet on CIFAR10 and on CIFAR100 respec-
tively) can be observed in Dropout-(a) models. It again
verifies that the drop of performance could be attributed to
the “variance shift”: a more proper popular statistics with
smaller variance shift could recall a bundle of erroneously
classified samples back to right ones.

Table 4. Error rates after applying Dropout after all BN layers.
These numbers are all averaged from 5 parallel runnings with
different random initial seeds.

C10 drop ratio 0.0 0.1 0.2 0.3 0.5

PreResNet 5.02 4.96 5.01 4.94 5.03
ResNeXt 3.77 3.89 3.69 3.78 3.78
WRN 3.97 3.90 4.00 3.93 3.84
DenseNet 4.72 4.67 4.73 4.75 4.87

C100 drop ratio 0.0 0.1 0.2 0.3 0.5

PreResNet 23.73 23.43 23.65 23.45 23.76
ResNeXt 17.78 17.77 17.99 17.97 18.26
WRN 19.17 19.17 19.23 19.19 19.25
DenseNet 22.58 21.86 22.41 22.41 23.49

5. Strategies to Combine Them Together
Since we get a clear knowledge about the disharmony be-
tween Dropout and BN, we can easily develop several ap-
proaches to combine them together, to see whether an extra
improvement could be obtained. In this section, we intro-
duce two possible solutions in modifying Dropout. One is
to avoid the scaling on feature-map before every BN layer,
by only applying Dropout after the last BN block. Another
is to slightly modify the formula of Dropout and make it less
sensitive to variance, which can alleviate the shift problem
and stabilize the numerical behaviors.

Understanding the Disharmony between Dropout and Batch Normalization by Variance Shift

Table 5. Error rates after applying Dropout after all BN layers on
the representative state-of-the-art models on ImageNet. These
numbers are averaged from 5 parallel runnings with different ran-
dom initial seeds. Consistent improvements can be observed.

ImageNet drop ratio
top-1 top-5

0.0 0.2 0.0 0.2

ResNet-200 (He et al., 2016b) 21.70 21.48 5.80 5.55
ResNeXt-101(Xie et al., 2017) 20.40 20.17 5.30 5.12
SENet (Hu et al., 2017) 18.89 18.68 4.66 4.47

Apply Dropout after all BN layers. According to above
analyses, the variance shift only happens when there exists
a Dropout layer before a BN layer. Therefore, the most
direct and concise way to tackle this is to assign Dropout in
the position where the subsequent layers donot include BN.
Inspired by early works that applied Dropout on the fully
connected layers in (Krizhevsky et al., 2012), we add only
one Dropout layer right before the softmax layer in these
four architectures. Table 4 indicates that such a simple oper-
ation could bring 0.1 improvements on CIFAR10 and reach
up to 0.7 gain on CIFAR100 for DenseNet. Please note
that the last-layer Dropout performs worse on CIFAR100
than on CIFAR10 generally since the training data of CI-
FAR100 is insufficient and these models may suffer from
certain underfitting risks. We also find it interesting that
WRN may not need to apply Dropout on each bottleneck
block – only a last Dropout layer could bring enough or at
least comparable benefits on CIFAR10. Additionally, we
discover that in some previous work like (Hu et al., 2017),
the authors already adopted the same tips in their winning
solution on the ILSVRC 2017 Classification Competition.
Since it didnot report the gain that last-layer Dropout brings,
we made some additional experiments and evaluate several
state-of-the-art models on the ImageNet (Russakovsky et al.,
2015) validation set (Table 5) using a 224× 224 centre crop
evaluation on each image (where the shorter edge is first
resized to 256). We observe consistent improvements when
drop ratio 0.2 is employed after all BN layers on the large
scale dataset.

Change Dropout into a more variance-stable form. The
drawbacks of vanilla Dropout lie in the weight scale during
the test phase, which may lead to a large disturbance on
statistical variance. This clue could push us to think: if we
find a scheme that functions like Dropout but carries a lighter
variance shift, we may stabilize the numerical behaviors of
neural networks, thus the final performance would probably
enjoy a possible benefit. Here we take the Figure 2 (a)
case as an example for investigation where the variance
shift rate is v

1
p (c

2+v)−c2 = p (we let c = 0 for simplicity).

That is, if we set the drop ratio (1− p) as 0.1, the variance
would be scaled by 0.9 when the network is transferred
from train to test. Inspired by the original Dropout paper
(Srivastava et al., 2014) where the authors also proposed
another form of Dropout that amounts to adding a Gaussian

Table 6. Apply new form of Dropout (i.e. Uout) in Dropout-(b)
models. These numbers are all averaged from 5 parallel runnings
with different random initial seeds.

C10 β 0.0 0.1 0.2 0.3 0.5

PreResNet 5.02 5.02 4.85 4.98 4.97
ResNeXt 3.77 3.84 3.83 3.75 3.79
WRN 3.97 3.96 3.80 3.90 3.84
DenseNet 4.72 4.70 4.64 4.68 4.61

C100 β 0.0 0.1 0.2 0.3 0.5

PreResNet 23.73 23.73 23.62 23.53 23.77
ResNeXt 17.78 17.74 17.77 17.83 17.86
WRN 19.17 19.07 18.98 18.95 18.87
DenseNet 22.58 22.39 22.57 22.35 22.30

distributed random variable with zero mean and standard
deviation equal to the activation of the unit, i.e., xi + xir
and r ∼ N (0, 1), we modify r as a uniform distribution that
lies in [−β, β], where 0 ≤ β ≤ 1. Therefore, each hidden
activation would be X = xi + xiri and ri ∼ U(−β, β).
We name this form of Dropout as “Uout” for simplicity.
With the mutually independent distribution between xi and
ri being hold, we apply the form X = xi + xiri, ri ∼
U(−β, β) in train stage and X = xi in test mode. Similarly,
in the simplified case of c = 0, we can deduce the variance
shift again as follows:
V arTest(X)

V arTrain(X)
=

V ar(xi)

V ar(xi + xiri)
=

v

E((xi + xiri)2)

=
v

E(x2i) + 2E(x2i)E(ri) + E(x2i)E(r2i)
=

3

3 + β2
.

(15)
Giving β as 0.1, the new variance shift rate would be 300

301 ≈
0.9966777 which is much closer to 1.0 than the previous
0.9 in Figure 2 (a). A list of experiments is hence employed
based on those four modern networks under Dropout-(b)
settings w.r.t β (Table 6). We find that “Uout” would be less
affected by the insufficient training data on CIFAR100 than
applying the last-layer Dropout, which indicates a superior
property of stability. Except for ResNeXt, nearly all the
architectures achieved up to 0.2 ∼ 0.3 increase of accuracy
on both CIFAR10 and CIFAR100 dataset.

6. Conclusion
In this paper, we investigate the “variance shift” phe-
nomenon when Dropout layers are applied before Batch
Normalization on modern neural networks. We discover
that due to their distinct test policies, neural variance would
be improper and shifted as the information flows in infer-
ence, and it leads to the unexpected final predictions that
drops the performance. To avoid the variance shift risks,
we next explore two strategies, and they are proved to work
well in practice. We highly recommand that researchers
could take these solutions to boost their models’ perfor-
mance if further improvement is desired, since their extra
cost is nearly free and they are easy to be implemented.

Understanding the Disharmony between Dropout and Batch Normalization by Variance Shift

References
Hannun, Awni, Case, Carl, Casper, Jared, Catanzaro, Bryan,

Diamos, Greg, Elsen, Erich, Prenger, Ryan, Satheesh,
Sanjeev, Sengupta, Shubho, Coates, Adam, et al. Deep
speech: Scaling up end-to-end speech recognition. arXiv
preprint arXiv:1412.5567, 2014.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun,
Jian. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 770–778, 2016a.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun,
Jian. Identity mappings in deep residual networks. In
European Conference on Computer Vision, pp. 630–645.
Springer, 2016b.

Howard, Andrew G, Zhu, Menglong, Chen, Bo,
Kalenichenko, Dmitry, Wang, Weijun, Weyand, Tobias,
Andreetto, Marco, and Adam, Hartwig. Mobilenets: Ef-
ficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

Hu, Jie, Shen, Li, and Sun, Gang. Squeeze-and-excitation
networks. arXiv preprint arXiv:1709.01507, 2017.

Huang, Gao, Liu, Zhuang, Weinberger, Kilian Q, and
van der Maaten, Laurens. Densely connected convolu-
tional networks. arXiv preprint arXiv:1608.06993, 2016.

Ioffe, Sergey and Szegedy, Christian. Batch normalization:
Accelerating deep network training by reducing internal
covariate shift. In International Conference on Machine
Learning, pp. 448–456, 2015.

Kim, Yoon, Jernite, Yacine, Sontag, David, and Rush,
Alexander M. Character-aware neural language models.
In the Association for the Advance of Artificial Intelli-
gence, pp. 2741–2749, 2016.

Krizhevsky, Alex and Hinton, Geoffrey. Learning multiple
layers of features from tiny images. 2009.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E.
Imagenet classification with deep convolutional neural
networks. In Advances in Neural Information Processing
Systems, pp. 1097–1105, 2012.

Larsson, Gustav, Maire, Michael, and Shakhnarovich, Gre-
gory. Fractalnet: Ultra-deep neural networks without
residuals. arXiv preprint arXiv:1605.07648, 2016.

Lee, Chen-Yu, Xie, Saining, Gallagher, Patrick, Zhang,
Zhengyou, and Tu, Zhuowen. Deeply-supervised nets. In
Proceedings of the International Conference on Artificial
Intelligence and Statistics, pp. 562–570, 2015.

Lin, Min, Chen, Qiang, and Yan, Shuicheng. Network in
network. arXiv preprint arXiv:1312.4400, 2013.

Russakovsky, Olga, Deng, Jia, Su, Hao, Krause, Jonathan,
Satheesh, Sanjeev, Ma, Sean, Huang, Zhiheng, Karpa-
thy, Andrej, Khosla, Aditya, Bernstein, Michael, et al.
Imagenet large scale visual recognition challenge. Inter-
national Journal of Computer Vision, 115(3):211–252,
2015.

Springenberg, Jost Tobias, Dosovitskiy, Alexey, Brox,
Thomas, and Riedmiller, Martin. Striving for sim-
plicity: The all convolutional net. arXiv preprint
arXiv:1412.6806, 2014.

Srivastava, Nitish, Hinton, Geoffrey E, Krizhevsky, Alex,
Sutskever, Ilya, and Salakhutdinov, Ruslan. Dropout: a
simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15(1):1929–1958,
2014.

Srivastava, Rupesh K, Greff, Klaus, and Schmidhuber,
Jürgen. Training very deep networks. In Advances in
Neural Information Processing Systems, pp. 2377–2385,
2015.

Szegedy, Christian, Liu, Wei, Jia, Yangqing, Sermanet,
Pierre, Reed, Scott, Anguelov, Dragomir, Erhan, Dumitru,
Vanhoucke, Vincent, and Rabinovich, Andrew. Going
deeper with convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 1–9, 2015.

Szegedy, Christian, Vanhoucke, Vincent, Ioffe, Sergey,
Shlens, Jon, and Wojna, Zbigniew. Rethinking the in-
ception architecture for computer vision. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2818–2826, 2016.

Szegedy, Christian, Ioffe, Sergey, Vanhoucke, Vincent, and
Alemi, Alexander A. Inception-v4, inception-resnet and
the impact of residual connections on learning. In the
Association for the Advance of Artificial Intelligence, pp.
4278–4284, 2017.

Xie, Saining, Girshick, Ross, Dollár, Piotr, Tu, Zhuowen,
and He, Kaiming. Aggregated residual transformations
for deep neural networks. In IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 5987–5995.
IEEE, 2017.

Zagoruyko, Sergey and Komodakis, Nikos. Wide residual
networks. arXiv preprint arXiv:1605.07146, 2016.

Zhang, Xiangyu, Zhou, Xinyu, Lin, Mengxiao, and Sun,
Jian. Shufflenet: An extremely efficient convolutional
neural network for mobile devices. arXiv preprint
arXiv:1707.01083, 2017.

